最新高二数学上学期期末考试试卷
2023最新高二数学上册期末考试试卷及答案
2023最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)1、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C )A.p:∃x∈R,sinx≥1⌝B.p:∀x∈R,sinx≥1⌝C.p:∃x∈R,sinx>1⌝D.p:∀x∈R,sinx>1⌝2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B ).A .160B .180C .200D .2203.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( C ).A .5B .13C .13D .374.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线x 2a 2y 2b 2的离心率为( D )A. B. C.D. 735443535.在△ABC中,能使sinA >成立的充分不必要条件是( C )32A .A∈ B .A∈ C .A∈(0,π3)(π3,2π3)(π3,π2)D .A∈(π2,5π6)6.△ABC 中,如果==,那么△ABC 是( B ).Aatan Bbtan Cc tan A .直角三角形B .等边三角形 C .等腰直角三角形D .钝角三角形7.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B )A .1∶2B .1∶1C .3∶1D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A. B.5553C. D. 255359.当x >1时,不等式x +≥a 恒成立,则实数a 的取值范围是( D 11-x ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组,所表示的平面区域被直线y =kx +分为⎪⎩⎪⎨⎧4≤ 34 ≥30≥y x y x x ++34面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A.B. C. D. (0,22)(0,33)(0,55)(0,66)解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈。
最新高二数学上学期期末考试试卷含答案
高二上期末考试模拟试题数学(测试时间:120分钟 满分150分)一. 选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,将正确结论的代号填入后面的表中)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有一项是符合题目要求的.)1、设R b a ∈,,现给出下列5个条件:①2=+b a ;②2>+b a ;③222>+b a ;④1>ab ;⑤0log <b a ,其中能推出“a ,b 中至少有一个大于1”的条件为( )(A)②③④(B)②③④⑤(C)①②③⑤(D)②⑤2、若直线0=++c by ax 经过第一、二、三象限,则( )(A)0,0>>bc ab (B)0,0<>bc ab (C)0,0><bc ab (D)0,0<<bc ab3、若不等式组⎩⎨⎧<->-ax a x 2412的解集非空,则实数a 的取值范围是( )(A) (-1,3) (B)(-3,1) (C)(-∞,-1) (D)(-∞,-3)∪(1,+∞)4、“a >1”是直线0=-x a y 与直线a x y =-有且仅有两个交点的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5、AB 是过抛物线y x =2的焦点弦,且4=AB ,则AB 的中点到直线01=+y 的距离是( )(A)25(B)2 (C)411(D)3 6、用一个与圆柱母线成︒60角的平面截圆柱,截口是一个椭圆,则此椭圆的离心率是( ) (A)22(B)21(C)23(D)337、已知25≥x , 则4254)(2-+-=x x x x f 有( )(A)最大值45(B)最小值45(C)最大值1 (D)最小值1 8、已知直线)2(2:-=-x k y l 与圆02222=--+y x y x 相切,则直线l 的一个方向向量v为 ( )(A)(2,-2) (B)(1,1) (C)(-3,2) (D)(1,21)9、已知函数42)6()(-+-=a x a x f 在⎥⎦⎤⎢⎣⎡1,54上0)(>x f 恒成立,则a 的取值范围是( ) (A)),722(+∞(B)),310(+∞(C)]6,722((D)]6,310( 10、如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )(A ){}22,02|≤<<<-x x x 或(B ){}22,22|≤<-<≤-x x x 或 (C)⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 (D ){}0,22|≠<<-x x x 且11、已知动点),(y x P 满足y x y x 43)2()1(1022+=-+-,则此动点P 的轨迹是( )(A)椭圆 (B)双曲线 (C)抛物线 (D)两相交直线12、已知椭圆的一个焦点和对应的准线分别是抛物线22x y =的焦点与准线,则椭圆短轴的右端点的轨迹方程是( )(A))0(212>-=x y x (B))0)(1(22>-=x y x(C))0)(81(412>-=x y x (D))0)(41(212>-=x y x第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题;每小题4分,共16分.把答案填在题中的横线上.)13、若直线)0,0022>>=+-b a by ax (始终平分圆014222=+-++y x y x 的圆周,则ba 11+的最小值为14、),(y x P 是椭圆12322=+y x 上的动点,则y x 2-的的取值范围是15、已知一椭圆的两焦点为)0,5(),0,5(21F F -,有一斜率为98-的直线被椭圆所截得的弦的中点为(2,1),则此椭圆方程为 16、给出下列四个命题①两条直线平行的充要条件是它们的斜率相等;②过点),(00y x 与圆222r y x =+相切的直线方程为200r y y x x =+;③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;④抛物线上任意一点M 到焦点的距离等于该点M 到准线的距离。
江苏省2024届高二上数学期末统考试题含解析
江苏省2024届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,半焦距为c ,过点2F 作一条渐近线的垂线,垂足为P ,若12PF F △的面积为22c ,则该双曲线的离心率为()A.3B.2D.2.如图,样本A 和B 分别取自两个不同的总体,它们的平均数分别为A x 和B x ,标准差分别为A S 和B S ,则()A .A B A B x x S S >>B.,A B A Bx x S S <>C.A B A Bx x S S ><D.,A B A Bx x S S <<3.变量x ,y 满足约束条件10,1,1,x y y x -+⎧⎪⎨⎪-⎩则65z x y =+的最小值为()A.6- B.8-C.1- D.54.函数()210x y x x+=>的值域为()A.[1,)+∞ B.(1,)+∞C.[2,)+∞ D.(2,)+∞5.已知等差数列{}n a 的公差0d <,若3721a a =,2810a a +=,则该数列的前n 项和n S 的最大值为()A.30B.35C.40D.456.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为()A.120B.84C.56D.287.设x ∈R ,则x <3是0<x <3的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.某一电子集成块有三个元件a ,b ,c 并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为45,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A.1231 B.48125C.1625 D.161259.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-= ,点P 是OC 上一点,则当PA PB ⋅ 取得最小值时,点P 的坐标为()A.114,,333⎛⎫ ⎪⎝⎭ B.11,,222⎛⎫ ⎪⎝⎭C.11,,144⎛⎫ ⎪⎝⎭ D.()2,2,810.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合{1,2,3}中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1B.2C.3D.411.下面四个条件中,使a b >成立的充分而不必要的条件是A.1a b +> B.1a b ->C.22a b > D.33a b >12.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1OO ,2OO ,3OO ,4OO 分别是大星中心点与四颗小星中心点的联结线,16α≈o ,则第三颗小星的一条边AB 所在直线的倾斜角约为()A.0B.1C.2D.3 二、填空题:本题共4小题,每小题5分,共20分。
2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析
2023-2024学年北京市房山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.在三棱柱中,D为棱的中点.设,用基底表示向量,则()A. B. C. D.3.两条直线与之间的距离是()A.5B.1C.D.4.设直线l的方向向量为,两个不同的平面的法向量分别为,则下列说法中错误的是()A.若,则B.若,则C.若,则D.若,则5.如图,四棱锥中,底面ABCD是矩形,,平面ABCD,下列叙述中错误的是()A.平面PCDB.C. D.平面平面ABCD6.已知M为抛物线上一点,M到C的焦点F的距离为6,到x轴的距离为4,则()A.6B.4C.2D.17.下列双曲线中以为渐近线的是()A. B. C.D.8.已知点,若直线上存在点P ,使得,则实数k 的取值范围是()A. B.C.D.9.已知双曲线Q 与椭圆有公共焦点,且左、右焦点分别为,,这两条曲线在第一象限的交点为P ,是以为底边的等腰三角形,则双曲线Q 的标准方程为()A.B.C.D.10.如图,在棱长为2的正方体中,P 为线段的中点,Q 为线段上的动点,则下列结论正确的是()A.存在点Q ,使得B.存在点Q ,使得平面C.三棱锥的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为二、填空题:本题共6小题,每小题5分,共30分。
11.若直线与直线垂直,则a 的值为__________.12.复数的实部为__________.13.已知圆则圆的圆心坐标为__________;若圆与圆内切,则__________.14.如图,在正方体中,直线与直线所成角的大小为__________;平面ABCD 与平面夹角的余弦值为__________.15.已知直线,则与的交点坐标为__________;若直线不能围成三角形,写出一个符合要求的实数a的值__________.16.已知曲线,给出下列四个命题:①曲线关于x轴、y轴和原点对称;②当时,曲线共有四个交点;②当时,③当时,曲线围成的区域内含边界两点之间的距离的最大值是3;④当时,曲线围成的区域面积大于曲线围成的区域面积.其中所有真命题的序号是__________.三、解答题:本题共5小题,共60分。
重庆市南开中学校2023-2024学年高二上学期期末考试数学试题
重庆市南开中学校2023-2024学年高二上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.下列函数在定义域上为增函数的是( )A .()ln f x x x =B .()ln f x x x =+C .()cos f x x x=-D .()2e xf x x =迹为曲线C .(1)求曲线C 的方程;(2)若1A ,2A 分别为曲线C 的左、右顶点,M ,N 两点在直线6x =上,且11MA F NA F Ð=Ð.连接1A M ,2A N 分别与C 交于点P ,Q ,求证:直线PQ 过定点,并求出定点坐标.22.已知函数()()2ln 3R f x x x ax x a =--Î有两个极值点1x ,2x ,其中12x x <.(1)求a 的取值范围;(2)若不等式122ln 31ax k x k +>+恒成立,求实数k 的取值范围.16.(,2e]-¥【分析】求出函数的导数,设出曲线与公切线的坐标,利用导数的几何意义求得两切点坐标之间的关系式,进而求出t 的表达式,构造函数,利用导数求其最值,即可求得答案【详解】由题意得()()ln ,(0),t f x t x x f x x¢=>\=,()2g x x ¢=,设公切线与曲线()ln f x t x =切于点11(,ln )x t x ,与曲线()2g x x =切于点222(,x x 则2122112ln 2t x x t x x x x -==-,则122t x x =,212212ln x x x t x -=,当20x =时,0=t ,函数()ln f x t x =与()2g x x =的图象存在公切线0y =,符合题意;)可得,()()122,0,2,0A A -,)6,m ,因为11MA F NA F Ð=Ð,则()6,N m -,1:A M y m。
上海市上海交通大学附属中学2023-2024学年高二上学期期末考试数学试卷
上海市上海交通大学附属中学2023-2024学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________二、单选题13.已知双曲线G:224-=,直线l过()x y0,2.“直线l平行于双曲线G的渐近线”是“直线l与双曲线G恰有一个公共点”的().A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件14.空间中,设P 是直线l外一点,a 是一个平面,则以下列命题中,错误的是( ).A .过点P 有且仅有一条直线平行于l B .过点P 有且仅有一条直线垂直于lC .过点P 有且仅有一条直线垂直于aD .过点P 有且仅有一个平面垂直于l15.已知00(,)P x y 是圆222:(0)C x y r r +=>内异于圆心的一点,则直线200x x y y r +=与圆C 的位置关系是( )A .相交B .相切C .相离D .不能确定16.在长方体1111ABCD A B C D -中,1AA AD =,():,0AB AD l l =>,E 是棱11A B 的中点,点P 是线段1D E 上的动点,给出以下两个命题:①无论l 取何值,都存在点P ,使得PC BD ^;②无论l 取何值,都不存在点P ,使得直线1AC ^平面PBC .则( ).A .①成立,②成立B .①成立,②不成立C .①不成立,②成立D .①不成立,②不成立三、解答题17.在空间直角坐标系中,设()0,2,3A 、()2,1,6B -、()1,1,5C -、()3,3,4D .(1)设()2,0,8a =--r,b AB AD =+r uuu r uuu r ,求b r 的坐标,并判断a r 、b r 是否平行;(2)求AB uuu r 、AC uuu r 的夹角q ,以及AB uuu r 、AC uuu r 为相邻两边的三角形面积S .18.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为BC 的中点,N 为AB 的中点,P 为1BB 中点.(1)求证:1BD ^平面MNP ;(2)求异面直线1B D 与1C M 所成角的余弦值.19.在如图所示的圆锥中,P 是顶点,O 是底面的圆心,A 、B 是圆周上两点,且【点睛】关键点睛:本题第三问,x 0MQ NQ k +=,联立直线l ¢与双曲线G 21.(1)xOy 平面截曲面C 所得交线是平面见解析。
河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)
石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
高二数学上册期末考试试卷
高二数学上册期末考试试卷一、选择题(每题5分,共60分)1. 若直线\(y = kx + 1\)与圆\(x^{2}+y^{2}=1\)相交于\(P\)、\(Q\)两点,且\(\angle POQ = 120^{\circ}\)(其中\(O\)为原点),则\(k\)的值为()A. \(\pm\sqrt{3}\)B. \(\pm1\)C. \(\pm\frac{\sqrt{3}}{3}\)D.\(\pm\sqrt{2}\)2. 椭圆\(\frac{x^{2}}{16}+\frac{y^{2}}{9}=1\)的离心率为()A. \(\frac{\sqrt{7}}{4}\)B. \(\frac{\sqrt{7}}{3}\)C. \(\frac{3}{4}\)D.\(\frac{4}{3}\)3. 双曲线\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1(a>0,b>0)\)的渐近线方程为\(y=\pm\frac{3}{4}x\),则双曲线的离心率为()A. \(\frac{5}{4}\)B. \(\frac{5}{3}\)C. \(\frac{4}{3}\)D. \(\frac{3}{4}\)4. 抛物线\(y^{2}=2px(p>0)\)的焦点坐标为\((1,0)\),则\(p\)的值为()A. 1B. 2C. 3D. 45. 若方程\(\frac{x^{2}}{m - 1}+\frac{y^{2}}{3 - m}=1\)表示椭圆,则\(m\)的取值范围是()A. \((1,2)\cup(2,3)\)B. \((1,3)\)C. \((-\infty,1)\cup(3,+\infty)\)D.\((1,+\infty)\)6. 已知向量\(\overrightarrow{a}=(1,2)\),\(\overrightarrow{b}=(x, - 1)\),若\(\overrightarrow{a}\perp\overrightarrow{b}\),则\(x\)的值为()A. 2B. - 2C. \(\frac{1}{2}\)D. -\(\frac{1}{2}\)7. 过点\((1,0)\)且与直线\(x - 2y - 2 = 0\)平行的直线方程为()A. \(x - 2y - 1 = 0\)B. \(x - 2y + 1 = 0\)C. \(2x + y - 2 = 0\)D. \(x + 2y - 1 = 0\)8. 已知点\(A(1,3)\),\(B(4,-1)\),则与向量\(\overrightarrow{AB}\)同方向的单位向量为()A. \((\frac{3}{5},-\frac{4}{5})\)B. \((\frac{4}{5},-\frac{3}{5})\)C. \((-\frac{3}{5},\frac{4}{5})\) D. \((-\frac{4}{5},\frac{3}{5})\)9. 若直线\(y = x + m\)被圆\(x^{2}+y^{2}=4\)截得的弦长为\(2\sqrt{2}\),则\(m\)的值为()A. \(\pm\sqrt{2}\)B. \(\pm2\)C. \(\pm\sqrt{3}\)D. \(\pm1\)10. 设\(F_{1}\),\(F_{2}\)是双曲线\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a > 0,b > 0)\)的两个焦点,\(P\)是双曲线上一点,若\(\vert PF_{1}\vert = 9\vert PF_{2}\vert\),且\(\angle F_{1}PF_{2}=60^{\circ}\),则双曲线的离心率为()A. \(\frac{\sqrt{5}}{2}\)B. \(\frac{\sqrt{15}}{4}\)C. \(\frac{\sqrt{17}}{4}\)D. \(\frac{\sqrt{13}}{3}\)11. 已知椭圆\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点分别为\(F_{1}\),\(F_{2}\),过\(F_{1}\)且垂直于\(x\)轴的直线与椭圆相交于\(A\),\(B\)两点,直线\(AF_{2}\)与椭圆的另一个交点是\(C\),若\(\overrightarrow{AF_{2}} = 2\overrightarrow{F_{2}C}\),则椭圆的离心率为()A. \(\frac{\sqrt{5}}{5}\)B. \(\frac{\sqrt{3}}{3}\)C. \(\frac{\sqrt{10}}{5}\)D.\(\frac{\sqrt{2}}{2}\)12. 已知抛物线\(y^{2}=4x\)的焦点为\(F\),准线为\(l\),过抛物线上一点\(P\)作\(PQ\perp l\)于\(Q\),若\(\angle QPF = 60^{\circ}\),则\(\vertPF\vert\)等于()A. 1B. 2C. 3D. 4二、填空题(每题5分,共20分)1. 已知直线\(l:y = kx + 3\)与圆\(C:(x - 1)^{2}+(y + 2)^{2}=4\)相交于\(M\)、\(N\)两点,若\(\vert MN\vert = 2\sqrt{3}\),则\(k\)的值为______。
安徽省合肥市2023-2024学年高二上学期期末考试数学试题含答案
2023-2024学年第一学期高二年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为150分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数列{}n a 中,11111n n a a a +==+,,则4a =()A.2B.32 C.53D.85【答案】C 【解析】【分析】由数列的递推公式,依次求出234,,a a a 即可.【详解】数列{}n a 中,11111n na a a+==+,,则有21112a a =+=,321312a a =+=,431513a a =+=.故选:C.2.“26m <<”是“方程22126x y m m+=--表示的曲线为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用椭圆的标准方程结合充分、必要条件的定义计算即可.【详解】易知26m <<时,20,60m m ->->,但4m =时有262m m -=-=,此时方程表示圆,所以不满足充分性,若方程22126x ym m +=--表示的曲线为椭圆,则()()20602,44,626m m m m m->⎧⎪->⇒∈⋃⎨⎪-≠-⎩,显然26m <<成立,满足必要性,故“26m <<”是“方程22126x y m m+=--表示的曲线为椭圆”的必要不充分条件.故选:B3.已知直线60x ay -+=和直线()3230a x y a ++-=互相平行,则实数a 的值为()A.1-或2B.1-或2- C.2- D.1-【答案】D 【解析】【分析】根据平行关系列式求a 的值,并代入检验即可.【详解】由题意可得:()32a a -+=,解得1a =-或2a =-,若1a =-,则两直线分别为60,2230x y x y ++=++=,符合题意;若2a =-,则两直线均为260x y ++=,不符合题意;综上所述:1a =-.故选:D.4.已知等差数列{}n a 的前n 项和为n S ,且36430a S ==,,则4a =()A.2- B.2C.4D.6【答案】D 【解析】【分析】根据等差数列的性质和前n 项求和公式计算即可求解.【详解】由题意知,616346()3()302S a a a a =+=+=,又34a =,所以43106a a =-=.故选:D5.已知x a =是函数21()(1)ln 2f x x a x a x =-++的极大值点,则实数a 的取值范围是()A.(,1)-∞B.(1,)+∞ C.(01),D.(0,1]【答案】C 【解析】【分析】求导后,得导函数的零点,1a ,比较两数的大小,分别判断在x a =两边的导数符号,确定函数单调性,从而确定是否在x a =处取到极大值,即可求得a 的范围.【详解】21()(1)ln 2f x x a x a x =-++,则()()1()(1)x a x a f x x a x x--=-++=',0x >,当(0,1)a ∈时,令()0f x '>得0x a <<或1x >,令()0f x '<得1<<a x ,此时()f x 在区间(0,)a 上单调递增,(),1a 上单调递减,()1,+∞上单调递增,符合x a =是函数()f x 的极大值点;当1a =时,()21()0x f x x-'=≥恒成立,函数()f x 不存在极值点,不符合题意;当(1,)a ∞∈+时,令()0f x '>得01x <<或x a >,令()0f x '<得1x a <<,此时()f x 在区间(0,1)上单调递增,()1,a 上单调递减,(),a +∞上单调递增,符合x a =是函数()f x 的极小值点,不符合题意;综上,要使函数()f x 在x a =处取到极大值,则实数a 的取值范围是(01),.故选:C.6.从某个角度观察篮球(如图1)可以得到一个对称的平面图形(如图2),篮球的外轮廓为圆O ,将篮球的表面粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆O 的交点将圆的周长八等分,且||||||AB BC CD ==,则该双曲线的离心率为()A.43B.167C.7D.97【答案】C 【解析】【分析】设双曲线的标准方程为()222210,0x y a b a b-=>>,求出圆O 与双曲线在第一象限内的交点E 的坐标,将点E 的坐标代入双曲线的方程,可得出ba的值,再利用双曲线的离心率公式可求得该双曲线的离心率.【详解】设双曲线的标准方程为()222210,0x y a b a b-=>>,设圆O 与双曲线在第一象限内的交点为E ,连接DE 、OE ,则33==+==OE OD OC CD OC a,因为坐标轴和双曲线与圆O 的交点将圆O 的周长八等分,则1π2π84DOE ∠=⨯=,故点,22⎛⎫⎪ ⎪⎝⎭E ,将点E的坐标代入双曲线的方程可得2222221⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=a b ,所以2297b a =,所以,该双曲线的离心率为7ce a===.故选:C.7.如图,在三棱锥A BCD -中,1,AD CD AB BC AC =====,平面ACD ⊥平面ABC ,则三棱锥A BCD -外接球的表面积为()A.3πB.8π3C.7π3D.2π【答案】B 【解析】【分析】先确定底面ABC 的外接圆圆心,结合图形的特征,利用勾股定理及外接球的表面积公式计算即可.【详解】如图所示,取AC 中点E ,连接,DE BE ,在BE 上取F 点满足2EF FB =,由题意易知ABC 为正三角形,则F 点为ABC 的外接圆圆心,且,ED AC BE AC ⊥⊥,因为平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,所以DE ⊥底面ABC ,BE ⊥底面ADC ,过F 作//FO DE ,故三棱锥A BCD -外接球的球心O 在直线FO 上,作OG EF //交DE 于G 点,设OF h =,球半径为R ,根据1,AD CD AB BC AC =====易知,,2263BE AE DE EF BF =====,四边形OGEF 为矩形,由勾股定理可知:222222OB OF BF OD OG DG =+==+,即22222120,3263R h h h R ⎛⎛⎫=+=-+⇒== ⎪ ⎪⎝⎭⎝⎭,故其外接球表面积为28π4π3S R ==.故选:B8.已知0.98ln 0.98a =-,1b =, 1.02 1.02ln1.02c =-,则()A.a b c <<B.c b a <<C.b<c<aD.b a c<<【答案】B 【解析】【分析】利用()ln ,0f x x x x =->的单调性可判断a b >,利用()ln (0)g x x x x x =->的单调性可判断c b <,故可得三者之间的大小关系.【详解】设()ln ,0f x x x x =->,则有11()1x f x x x'-=-=,∴当01x <≤时,()()0,f x f x '≤在(]0,1上单调递减;(0.98)(1)1f f ∴>=,即有0.98ln 0.981->,a b ∴>;令()ln (1)g x x x x x =-≥,则()1(ln 1)ln g x x x '=-+=-,∴当1x ≥时,()0g x '≤,当且仅当1x =时等号成立,故()g x 在[)1,∞+上单调递减;(1.02)(1)1g g ∴<=,即有1.02 1.02ln1.021-<,c b ∴<,综上所述,则有c b a <<,故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线():20R l ax y a a ++-=∈与圆22:5C x y +=,则下列结论正确的是()A.直线l 必过定点B.l 与C 可能相离C.l 与C 可能相切D.当1a =时,l 被C 截得的弦长为【答案】ACD 【解析】【分析】利用直线方程确定过定点可判定A ,利用直线与圆的位置关系可判定BC ,利用弦长公式可确定D.【详解】由直线方程变形得()():120l a x y -++=,显然1x =时=2y -,即直线过定点()1,2-,故A 正确;易知()22125+-=,即点()1,2-在圆C 上,则直线l 不会与圆相离,但有可能相切,故B 错误,C 正确;当1a =时,此时直线:10l x y ++=,圆心为原点,半径为r =,则圆心到l 的距离为d =,所以l 被C 截得的弦长为=,故D 正确.故选:ACD10.定义:设()f x '是()f x 的导函数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()0x f x ,为函数()y f x =的“拐点”.经探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心.已知函数()321533f x x ax bx =+++的对称中心为()1,1,则下列说法中正确的有()A.1,0a b =-= B.函数()f x 既有极大值又有极小值C.函数()f x 有三个零点 D.对任意x ∈R ,都有()()11f x f x -+=【答案】AB 【解析】【分析】根据拐点定义二次求导可计算可求出函数解析式即可判定A ,根据导数研究其极值可判定B ,结合B 项结论及零点存在性定理可判定C ,利用函数解析式取特殊值可判定D.【详解】由题意可知()22f x x ax b '=++,()22f x x a ''=+,而()()151113301022f a b a b f a⎧==+++=-⎧⎪⇒⎨⎨=⎩⎪==+⎩'',故A 正确;此时()321533f x x x =-+,()()222f x x x x x '=-=-,显然2x >或0x <时,()0f x ¢>,则()f x 在()(),0,2,-∞+∞上单调递增,()0,2x ∈时,()0f x '<,即()f x 在()0,2上单调递减,所以()f x 在0x =时取得极大值,在2x =时取得极小值,故B 正确;易知()()()5100,250,2033f f f =>-=-<=>,结合B 结论及零点存在性定理可知()f x 在()2,0-存在一个零点,故C 错误;易知()()510113f f +=+≠,故D 错误.故选:AB11.如图,已知抛物线()220C y px p =>:的焦点为F ,抛物线C 的准线与x 轴交于点D ,过点F 的直线l (直线l 的倾斜角为锐角)与抛物线C 相交于A B ,两点(A 在x 轴的上方,B 在x 轴的下方),过点A 作抛物线C 的准线的垂线,垂足为M ,直线l 与抛物线C 的准线相交于点N ,则()A.当直线l 的斜率为1时,4AB p =B.若NF FM =,则直线l 的斜率为2C.存在直线l 使得AOB 90∠=D.若3AF FB =,则直线l 的倾斜角为60【答案】AD 【解析】【分析】根据抛物线的焦点弦的性质一一计算即可.【详解】易知,02p F ⎛⎫⎪⎝⎭,可设():02p AB y k x k ⎛⎫=-> ⎪⎝⎭,设()()1122,,,A x y B x y ,与抛物线方程联立得()22222220242p y k x k p k x k p p x y px⎧⎛⎫=-⎪ ⎪⇒-++=⎝⎭⎨⎪=⎩,则221212224k p p p x x x x k ++==,,对于A 项,当直线l 的斜率为1时,此时123x x p +=,由抛物线定义可知12422p pAF BF x x AB p +=+++==,故A 正确;易知AMN 是直角三角形,若NF FM =,则ANM FMN AMF FAM ∠=∠⇒∠=∠,又AF AM =,所以AMF 为等边三角形,即60AFx ∠= ,此时3k =B 错误;由上可知()()222212121212124pk p k x x y y k x x x x +=+-++()()2222222223104244p k p pk p k k p k +=+⨯-⨯+=-<,即0OA OB ×<uu r uu u r,故C 错误;若1212332322p p AF FB x x x p x ⎛⎫=⇒-=-⇒=- ⎪⎝⎭ ,又知212213,462p p px x x x =⇒==,所以1y =,则112y k p x ==-,即直线l 的倾斜角为60 ,故D 正确.故选:AD12.如图,在棱长为2的正方体1111ABCD A B C D -中,已知,,M N P 分别是棱111,,C D AA BC 的中点,Q 为平面PMN 上的动点,且直线1QB 与直线1DB 的夹角为30 ,则()A.1DB ⊥平面PMNB.平面PMN 截正方体所得的截面图形为正六边形C.点Q 的轨迹长度为πD.能放入由平面PMN分割该正方体所成的两个空间几何体内部(厚度忽略不计)的球的半径的最大值为32【答案】ABD 【解析】【分析】A 选项,建立空间直角坐标系,求出平面PMN 的法向量,得到线面垂直;B 选项,作出辅助线,找到平面截正方体所得的截面;C 选项,作出辅助线,得到点Q 的轨迹,并求出轨迹长度;D 选项,由对称性得到平面PMN 分割该正方体所成的两个空间几何体对称,由对称性可知,球心在1B D 上,设球心坐标建立方程,求出半径的最大值.【详解】A 选项,如图所示以D 为坐标原点,建立空间直角坐标系,则()()()()11,2,0,0,1,2,2,0,1,2,2,2P M N B ,故()()()12,2,2,1,1,2,1,2,1DB PM PN ==--=-.设平面PMN 的法向量为(),,m x y z = ,则2020m PM x y z m PN x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令11z x y =⇒==得()1,1,1m =,易知12DB m =,故1DB ⊥平面PMN ,即A正确;B 选项,取111,,AB CC AD 的中点,,F QE ,连接11,,,,,,,,NE NF ME MQ PQ PF A B EP D C ,结合题意可知11////,////NF A B EP EP CD MQ ,所以N F P E 、、、四点共面且M Q P E 、、、四点共面,两个平面都过点P ,所以M Q P E N F 、、、、、六点共面,易知EM MQ QP PF FN NE ======,所以平面PMN 截正方体所得的截面为正六边形ENFPQM ,B正确;C 选项,由上知1DB ⊥平面PMN ,设垂足为S ,以S 为圆心133B S 为半径在平面PMN 上作圆,由题意可知Q 轨迹即为该圆,结合B 的结论可知平面PMN 平分正方体,根据正方体的中心对称性可知S 平分1DB,故半径1111332B S DB =⨯=,故点Q 的轨迹长度为2π,C 错误;D 选项,由上知该两部分空间几何体相同,不妨求能放入含有顶点D 的这一空间几何体的球的半径最大值,结合A 项空间坐标系及正方体的对称性知该球球心O 在1DB 上,该球与平面PMN 切于点S ,与平面ABCD 、平面11A D DA 、平面11D C CD 都相切,设球心为()(),,01O a a a a <≤,则球半径为a ,易知()1,1,1S ,故()223312RS a a a a -=⇒-=⇒=,D 正确.故选:ABD 【点睛】思路点睛:关于立体几何中截面的处理思路有以下方法(1)直接连接法:有两点在几何体的同一个平面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3)作延长线找交点法:若直线相交但在立体几何中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.关于立体几何中求动点轨迹的问题注意利用几何特征,比如动直线与定直线夹角为定值,可以考虑结合圆锥体得出动点轨迹.第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A B 与1B C 所成的角的余弦值_________________.【答案】12##0.5【解析】【分析】利用正方体的特征构造平行线求异面直线夹角即可.【详解】如图所示连接1,A D BD ,根据正方体的特征易知11//B C A D ,且1A DB △为等边三角形,所以1DA B ∠即异面直线1A B 与1B C 所成的角,且160DA B ∠= ,11cos 2DA B ∠=.故答案为:1214.在正项等比数列{}n a 中,若234234111502a a a a a a ++=++=,,3a =_____________.【答案】5【解析】【分析】根据正项等比数列的定义与通项公式,计算即可【详解】正项等比数列{}n a 中,23450a a a ++=,234242334332224323234343323111502a a a a a a a a a a a a a a a a a a a a a a a ++++++++====,解得35a =±,舍去负值,所以35a =.故答案为:515.以两条直线1220350l x y l x y +=++=:,:的交点为圆心,并且与直线3490x y -+=相切的圆的方程是_____________________.【答案】()()221216x y -++=【解析】【分析】直接利用交点坐标和点到直线的距离公式求出圆心和半径,最后求出圆的方程.【详解】利用20350x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,则圆心坐标为()1,2-,设圆的方程为()()22212x y r -++=利用圆心()1,2-到直线3490x y -+=的距离d r =,整理得4r ==,故圆的方程为()()221216x y -++=.故答案为:()()221216x y -++=.16.关于x 的不等式()1e ln x a x x a x +--≥恒成立,则实数a 的最大值为_____________________.【答案】2e 2【解析】【分析】构造函数()()e 1ln ,xf x x xg x x=+-=,利用导数研究其单调性及最值,分离参数计算即可.【详解】设()()()e 1ln 0,xf x x x xg x x=+->=,易知()()()2e 11,x x x f x g x x x''--==,则当1x >时,()()0,0f x g x ''>>,即此时两函数均单调递增,当01x <<时,()()0,0f x g x ''<<,即此时两函数均单调递减,故()()()()12,1e f x f g x g ≥=≥=,对于不等式()()11ln e ln e 1ln x x x a x x a a x x x++---≥⇔≥+-,由上可知1ln 2u x x =+-≥,故1ln e 1ln x xa x x+-≤+-,又()()e 2u g u u u =≥单调递增,故()()2e 22g u g a ≥=≥.所以实数a 的最大值为2e 2.故答案为:2e 2.【点睛】关键点点睛:观察不等式结构可发现是指对同构式即原式等价于()1ln e 1ln x x a x x +-≥+-,构造函数()()e 1ln ,xf x x xg x x=+-=判定其单调性与最值分参计算即可.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足()111,211n n a a a n n n n +-==++.(1)证明数列{}n na 为等差数列,并求出数列{}n a 的通项公式;(2)设21n nb n a =,数列{}n b 的前n 项和为n S ,求20S .【答案】(1)证明见解析,1+=n n a n (2)202021S =【解析】【分析】(1)根据题中递推公式可得()111n n n a na ++-=,结合等差数列的定义和通项公式分析求解;(2)由(1)可得111n b n n =-+,利用裂项相消法运算求解.【小问1详解】因为()1111n n a a n n n n +-=++,则()111n n n a na ++-=,所以数列{}n na 是以首项112a ⨯=,公差1d =的等差数列,可得211n n na n =+-=+,所以1+=n n a n .【小问2详解】由(1)可得()2111111n n b n a n n n n ===-++,所以20111111201122320212121S =-+-+⋅⋅⋅+-=-=.18.设圆C 与两圆()()22221221,21C x y C x y ++=-+=::中的一个内切,另一个外切.(1)求圆心C 的轨迹E 的方程;(2)已知直线()00x y m m -+=>与轨迹E 交于不同的两点,A B ,且线段AB 的中点在圆2210x y +=上,求实数m 的值.【答案】(1)2213y x -=(2)2±【解析】【分析】(1)根据圆与圆的位置关系结合双曲线的定义分析求解;(2)联立方程结合韦达定理运算求解.【小问1详解】圆()22121C x y ++=:的圆心为()12,0C -,半径为1,圆()22221C x y -+=:的圆心为()22,0C ,半径为1,设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则121,1CC r CC r =-=+,可得212CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则211,1CC r CC r =-=+,可得122CC CC -=;综上所述:122CC CC -=,可知:圆心C 的轨迹E 是以1C 、2C 为焦点的双曲线,且1,2a c ==,可得2223b c a =-=,所以圆心C 的轨迹E 的方程2213y x -=.【小问2详解】联立方程22130y x x y m ⎧-=⎪⎨⎪-+=⎩,消去y 得222230x mx m ---=,则()()222Δ4831220m m m =---=+>,可知直线与双曲线相交,设()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y,可得120003,222x x m m x y x m +===+=,即3,22m m M ⎛⎫ ⎪⎝⎭,且3,22m m M ⎛⎫ ⎪⎝⎭在圆2210x y +=上,则2231022m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得2m =±,所以实数m 的值为2±.19.如图所示,用平面11BCC B 表示圆柱的轴截面,BC 是圆柱底面的直径,O 为底面圆心,E 为母线1CC 的中点,已知1AA 为一条母线,且14AB AC AA ===.(1)求证:平面AEO ⊥平面1AB O ;(2)求平面1AEB 与平面OAE 夹角的余弦值.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)根据图形特征结合勾股逆定理先证11,B O AO B O EO ⊥⊥,由线线垂直得线面垂直,根据线面垂直的性质可得面面垂直;(2)建立合适的空间直角坐标系,求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【小问1详解】依题意可知AB AC ⊥,则ABC 是等腰直角三角形,故AO BC ⊥,由圆柱的特征可知1BB ⊥平面ABC ,又AO ⊂平面ABC ,1BB AO ⊥,因为11,BB BC B BB BC =⊂ 、平面11BCC B ,则AO ⊥平面11BCC B ,而1B O ⊂平面11BCC B ,则AO ⊥1B O ,因为14AB AC AA ===,则2221124BC B O B B BO ==∴=+=,222222*********,36OE OC CE B E E C B C B O OE =+==+==+,所以1B O OE ⊥,因为1B O OE ⊥,AO ⊥1B O ,,AO OE O AO OE =⊂ 、平面AEO ,所以1B O ⊥平面AEO ,因为1B O ⊂平面1AB O ,所以平面AEO ⊥平面1AB O ;【小问2详解】由题意及(1)知易知1,,AA AB AC 两两垂直,如图所示建立空间直角坐标系则()()()14,0,4,0,4,2,2,2,0B E O ,所以()()()114,0,4,0,4,2,2,2,4AB AE B O ===-- ,由(1)知1B O 是平面AEO 的一个法向量,设(),,n x y z = 是平面1AB E 的一个法向量,则有1440420n AB x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取22,1z x y =-⇒==,所以()2,1,2n =- ,设平面1AEB 与平面OAE 的夹角为θ,所以111cos cos ,6n B O n B O n B Oθ⋅====⋅ .即平面1AEB 与平面OAE夹角的余弦值为6.20.已知函数()ln ,f x a x x a =-∈R .(1)设1x =是()f x 的极值点,求a 的值,并求()f x 的单调区间;(2)证明:当2a ≤时,()10f x x+<在()1,+∞上恒成立.【答案】(1)1a =,单调区间见解析(2)证明见解析【解析】【分析】(1)求导,根据极值的定义分析求解,进而可得单调区间;(2)根据题意分析可得()112ln f x x x x x +<-+,令()12ln ,1g x x x x x =-+>,利用单调性判断其单调性和符号,即可得结果.【小问1详解】因为()ln f x a x x =-的定义域为()0,∞+,则()1a f x x'=-,若1x =是()f x 的极值点,则()110f a -'==,解得1a =,当1a =,则()ln f x x x =-,()111x f x x x-=-=',令()0f x '>,解得01x <<;令()0f x '<,解得1x >;则()f x 在()0,1内单调递增,在()1,∞+内单调递减,可知1x =是()f x 的极大值点,即1a =符合题意,所以()f x 的单调递增区间为()0,1,单调递减区间为()1,∞+.【小问2详解】因为()1,x ∞∈+,则ln 0x >,且2a ≤,可得ln 2ln a x x ≤,即()112ln f x x x x x+≤-+,令()12ln ,1g x x x x x =-+>,则()()22212110x g x x x x-=--=-<'在()1,∞+内恒成立,可知()g x 在()1,∞+内单调递减,可得()()10g x g <=,即()112ln 0f x x x x x +≤-+<,所以当2a ≤时,()10f x x +<在()1,∞+上恒成立.21.对每个正整数(),,n n n n A x y 是抛物线24x y =上的点,过焦点F 的直线n FA 交抛物线于另一点(),n n n B s t .(1)证明:()41n n x s n =-≥;(2)取12n n x +=,并记n n n a A B =,求数列{}n a 的前n 项和.【答案】(1)证明见解析(2)11142134n n n +⎛⎫-+- ⎪⎝⎭【解析】【分析】(1)设直线:1n n n y A k B x =+,联立方程结合韦达定理分析证明;(2)根据抛物线的定义结合(1)可得1424n n n a =++,利用分组求和法结合等比数列求和公式运算求解.【小问1详解】由题意可知:抛物线24x y =的焦点()0,1F ,且直线n n A B 的斜率存在,设直线:1n n n y A k B x =+,联立方程214n y k x x y=+⎧⎨=⎩,消去y 得2440n x k x --=,可得216160n k ∆=+>,所以()41n n x s n =-≥.【小问2详解】因为12n n x +=,由(1)可得142242n n n n s x +=-=-=-,则22144144,44444n n n n nn n n x s y t +======,可得12424n n n n n n n a A B y t ==++=++,设数列{}n a 的前n 项和为n T ,则()21221114442444n n n n T a a a n ⎛⎫=++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅++ ⎪⎝⎭()1111414441124211143414n nn n n n +⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎛⎫⎣⎦=++=-+- ⎪-⎝⎭-,所以11142134n n n T n +⎛⎫=-+- ⎪⎝⎭.【点睛】关键点点睛:利用韦达定理证明关系,并根据抛物线的定义求n a .22.已知椭圆()222210+=>>x y C a b a b :的离心率32,点3⎛ ⎝⎭在椭圆上.(1)求椭圆C 的方程;(2)设点()()()()0,1,,0,4,02A M t N t t -≠,直线AM AN ,分别与椭圆C 交于点,(,S T S T 异于),A AH ST ⊥,垂足为H ,求OH 的最小值.【答案】(1)2214x y +=(221-【解析】【分析】(1)根据题意结合离心率列式求,,a b c ,进而可得方程;(2)联立方程求,S T 的坐标,根据向量平行可知直线ST 过定点()2,1Q ,进而分析可知点H 在以AQ 为直径的圆上,结合圆的性质分析求解.【小问1详解】由题意可得:2222213142a b c a b c e a ⎧⎪=+⎪⎪+=⎨⎪⎪==⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2214x y +=.【小问2详解】由题意可得:直线:AM x ty t =-+,联立方程2214x ty t x y =-+⎧⎪⎨+=⎪⎩,消去x 可得()22224240t y t y t +-+-=,解得2244t y t -=+或1y =,可知点S 的纵坐标为2244t t -+,可得2224844t t x t t t t -=-⋅+=++,即22284,44t t S t t ⎛⎫- ⎪++⎝⎭,同理可得:()()()()2228444,4444t t T t t ⎛⎫--- ⎪ ⎪-+-+⎝⎭,即()22284812,820820t t t T t t t t ⎛⎫--+ ⎪-+-+⎝⎭,取()2,1Q ,则()222228,44t QS t t ⎛⎫- ⎪=-- ⎪++⎝⎭ ,()222228,820820t QT t t t t ⎛⎫- ⎪=-- ⎪-+-+⎝⎭,因为()()222222222288082044820t t t t t t t t ⎡⎤⎡⎤--⎛⎫⎛⎫-----=⎢⎥⎢⎥ ⎪ ⎪-+++-+⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,可知QS ∥QT ,即,,Q S T 三点共线,可知直线ST 过定点()2,1Q ,又因为AH ST ⊥,且()0,1A ,可知:点H 在以AQ 为直径的圆上,该圆的圆心为()1,1E ,半径112r AQ ==,所以OH的最小值为1OE r -=.。
高二数学上学期期末考试题及答案
高二数学上学期期末考试题及答案一、选择题(每题4分,共40分)1. 设函数$f(x) = x^3 - 3x + 1$,则$f(-1)$的值为()A. -3B. 0C. 3D. 4答案:C2. 函数$y = 2x^3 - 3x^2 + 1$的导数为()A. $6x^2 - 6x$B. $6x^2 + 6x$C. $6x^2 - 3x$D. $6x^2 + 3x$答案:A3. 设函数$y = \sqrt{1 - x^2}$,则其定义域为()A. $x \in (-\infty, 1]$B. $x \in [0, 1]$C. $x \in [-1, 1]$D. $x \in (-\infty, -1] \cup [1, +\infty)$答案:C4. 已知函数$f(x) = \frac{1}{x}$,$g(x) = x^2$,则$f(g(x))$的解析式为()A. $\frac{1}{x^3}$B. $\frac{1}{x^2}$C. $x^3$D. $x^4$答案:A5. 已知函数$f(x) = x^3 - 3x^2 + 2$,求$f(1)$的值()A. 0B. 1C. 2D. 3答案:B6. 设函数$f(x) = 2x + 3$,$g(x) = 4x - 5$,求$f(g(x))$的值()A. $8x - 7$B. $8x + 7$C. $6x - 7$D. $6x + 7$答案:A7. 已知函数$f(x) = x^2 - 2x + 1$,求$f(-1)$的值()A. 0B. 1C. 2D. 3答案:B8. 设函数$f(x) = 2x^3 - 3x^2 + 1$,则$f'(x)$的值为()A. $6x^2 - 6x$B. $6x^2 + 6x$C. $6x^2 - 3x$D. $6x^2 + 3x$答案:A9. 函数$y = x^2 + 2x + 1$的极值点为()A. 0B. 1C. -1D. 2答案:C10. 设函数$f(x) = x^3 - 3x^2 + 3x - 1$,则$f(2)$的值为()A. 0B. 1C. 2D. 3答案:D二、填空题(每题4分,共40分)11. 函数$f(x) = x^3 - 3x^2 + 2$的导数为________。
高二数学上学期期末考试试卷含答案(共3套)
高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
高二数学上学期期末考试题精选及答案
高二数学上学期期末考试题精选及答案一、选择题1. 有七名同学站成一排拍毕业照,其中甲必须站在正中间,乙和丙两位同学必须站在一起,则不同的站法一共有()A. 180种B. 90种C. 60种D. 30种答案:B2. 若函数f(x) = x^3 + ax + b在区间(-∞,+∞)上是增函数,则实数a的取值范围是()A. a ≥ 0B. a ≤ 0C. a > 0D. a < 0答案:C3. 若函数f(x) = 2x - k(x - 2)^2 在区间(1,+∞)上是减函数,则实数k的取值范围是()A. k ≤ 0B. k > 0C. k < 0D. k ≥ 0答案:C4. 设函数f(x) = x^2 + 2x + c,若f(x)在区间(-∞,+∞)上单调递增,则实数c的取值范围是()A. c ≥ 0B. c ≤ 0C. c > 0D. c < 0答案:A二、填空题5. 若函数f(x) = |x - 2| + |x + 1| 的最小值为3,则实数x的取值范围是______。
答案:x ∈ [-1, 2]6. 已知函数f(x) = x^3 - 6x + 9,求f(x)的单调递增区间为______。
答案:(-∞, 2] ∪ [3, +∞)7. 若函数f(x) = x^2 + mx + 1 在区间(1,+∞)上是减函数,则实数m的取值范围是______。
答案:m < -28. 已知函数f(x) = 3x^3 - 4x^2 + 1,求f(x)的单调递减区间为______。
答案:[0, 2/3]三、解答题9. 设函数f(x) = x^3 - 6x + a,其中a是常数。
(1)求f(x)的单调递增区间;(2)若f(x)在区间(-∞,+∞)上是减函数,求实数a的取值范围。
答案:(1)f(x)的单调递增区间为:(-∞, 2] ∪ [3, +∞)(2)由于f(x)在区间(-∞,+∞)上是减函数,所以f'(x) ≤ 0,即3x^2 - 6 ≤ 0。
最新高二数学上学期期末考试试卷含答案
(1)求证:平面PAD 平面PCD
(2)求直线AM与平面PBC所成角的余弦值.
20.(12分)已知函数
(1)求函数 的极值.
(2)若 ,求证: ;
21.(12分)设F1,F2分别是椭圆C: 的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N;
3.已知a,b是两条不同的直线,α是平面, ,那么a//α是“a//b”的( )
A.充分不必要条件B.充要条件
C.既不充分也不必要条件D.必要不充分条件
4.已知 ,则使不等式 都成立的x的取值集合是()
A. B. C. D.
5.若函数 在 处取得最小值,则m=()
A. B. C.4D.5
6.已知双曲线C: (a>0,b>0)的离心率为2, 且右焦点到一条渐近线的距离为 ,双曲线方程为()
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)设 为数列 的前n项和, ;
(1)求 及 ;
(2)判断这个数列是否是等差数列.
18.(12分)如图,在圆内接四边 形中,AB=1,AD=2,BD= ;
(1)求角C;
(2)若△DCB的面积 ,求△DCB的周长;
第Ⅰ卷
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的)
1.如果a<0,b>0,那么下列不等式正确的是()
A.a2>b2B.a2<b2C. D.
2.在△ABC中,角A,B,C所在的对边分别为a,b,c,若 则sinC等于()
浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
贵州省贵阳市2023-2024学年高二上学期期末考试数学试卷
B.异面直线
AA1
与
BD
的距离为
1 2
C.点 D1 到直线 EF 的距离为
14 3
D.点 D1 到平面 DEF 的距离为
6 3
三、填空题
11.已知直线 ax y 3 0 和直线 a 2 x y 2 0 互相垂直,则实数 a 等于
.
12.已知
a
1,
0,1,b
0,
2,
2
,则向量
a,
b
的夹角为
.
四、解答题
16.已知数列an 的前 n 项和为 Sn ,若 Sn 2an 1 .
(1)求 a1, a2, a3 ,试猜想数列an 的通项公式并证明;
(2)记 bn an log2an ,求bn 的前 n 项和 Tn .
17.已知双曲线 C :
x2 a2
y2 b2
1(a
0,b
0) 的两个焦点 F1, F2
数列?如果能,求出该等差数列的公差,如果不能,说明理由.
试卷第 4页,共 4页
1,设 b2
a2
c2 (b
0) ,则得到方程
x2 a2
y2 b2
1(a
b
0),所以点 M
的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点 F c, 0 是椭圆的一
个焦点,直线 l : x a2 称为相应于焦点 F 的准线;定点 F c, 0 是椭圆的另一个焦点, c
直线 l : x a2 称为相应于焦点 F 的准线. c
贵州省贵阳市 2023-2024 学年高二上学期期末考试数学试卷
学校:___________姓名:___________班级:___________考号:___________
广东省汕头市潮阳区2023-2024学年高二上学期期末考试 数学含答案
潮阳区2023—2024学年度第一学期高二级教学质量监测试卷数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动用橡皮擦千净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡对应答题区域上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.拼音chao 所有字母组成的集合记为A ,拼音yang 所有字母组成的集合记为B ,则A B = ()A .{}cB .{}hC .{}a D .{}02.设31iiz +=,则z =()A .1B .CD .23.已知A 为抛物线C :22y px =(0p >)上一点,点A 到C 的焦点的距离为8,到y 轴的距离为5,则p =()A .2B .3C .6D .94.已知函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,若实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值()A .恒为正B .等于0C .恒为负D .不大于05.设22tan 251tan 25a ︒=-︒,2sin 25cos 25b =︒︒,c =,则有()A .b c a <<B .a b c<<C .a c b<<D .c b a<<6.若等差数列{}n a 的前项和为n S ,且10a >,3100a a +>,670a a <,则满足0n S >的最大自然数n 的值为()A .6B .7C .12D .137.已知函数()()ln ln 2f x x x =+-,则()A .()f x 在()0,2单调递增B .()f x 在()0,2单调递减C .()y f x =的图像关于点()1,0对称D .()y f x =的图像关于直线1x =对称8.如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为1S ;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为2S .以此类推,操作n 次,若1220232024n S S S ++⋅⋅⋅+≥,则n 的最小值是()A .12B .11C .10D .9二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,至少有两项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.若直线y b =+与圆221x y +=相切,则b 的取值可以是()A .2-B .C .2D 10.已知一组样本数据1x ,2x ,…,15x ,其中2i x i =(1,2,,15i =⋅⋅⋅),由这组数据得到另一组新的样本数据1y ,2y ,…,15y ,其中20i i y x =-,则()A .两组样本数据的样本方差相同B .两组样本数据的样本平均数相同C .1y ,2y ,…,15y 样本数据的第30百分位数为10-D .将两组数据合成一个样本容量为30的新的样本数据,该样本数据的平均数为511.在长方体1111ABCD A B C D -中,已知4AB =,12BC AA ==,点P 在线段1AD 上运动(不含端点),则下列说法正确的是()A .4,BP ⎡∈⎣B .三棱锥111B A BC -的体积为83C .平面11CD P ⊥平面1B CPD .若点P 是线段1AD 的中点,则三棱锥P ABD -的外接球的表面积为20π12.设1F ,2F 为椭圆C :2212516x y +=的两个焦点,()00,P x y 为C 上一点且在第一象限,()11,I x y 为12F PF △的内心,且12F PF △内切圆半径为1,则()A .2IP =B .083y =C .OI =D .O 、I 、P 三点共线第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.将函数sin y x =的图象纵坐标不变,横坐标扩大为原来的3倍,则得到了函数为______.14.已知数列{}n a 为等比数列,11a =,516a =,则3a =______.15.如图,正方形ABCD 中,2DE EC =,P 是线段BE 上的动点且AP xAB y AD =+ (0x >,0y >),则31x y+的最小值为______.16.定义:点P 为曲线L 外的一点,A ,B 为L 上的两个动点,则APB ∠取最大值时,APB ∠叫点P 对曲线L 的张角.已知点P 为双曲线C :2218y x -=上的动点,设P 对圆M :()2231x y -+=的张角为θ,则cos θ的最小值为______.四、解答题:本题共6小题,第17题满分10分,其它5个小题满分均为12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2sin b A a B =.(1)求A ;(2)若2a =,ABC △,求ABC △的周长.18.(12分)2023年上海书展于8月16日至22日在上海展览中心举办.展会上随机抽取了50名观众,调查他们每个月用在阅读上的时长,得到如图所示的频率分布直方图:(1)求x 的值,并估计这50名观众每个月阅读时长的平均数;(2)用分层抽样的方法从[)20,40,[)80,100这两组观众中随机抽取6名观众,再若从这6名观众中随机抽取2人参加抽奖活动,求所抽取的2人恰好都在[)80,100这组的概率.19.(12分)已知正项数列{}n a 的前n 项和n S ,满足:212nn a S +⎛⎫= ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)记n b =,设数列{}n b 的前n 项和为n T ,求n T .20.(12分)如图,已知长方体1AC 中,1AB BC ==,12BB =,连接1B C ,过B 点作1B C 的垂线交1CC 于E ,交1B C 于F.(1)求证:1A C ⊥平面EBD ;(2)求点A 到平面11A B C 的距离;(3)求直线DE 与平面11A B C 所成角的正弦值.21.(12分)随着科技的发展,手机上各种APP 层出不穷,其中抖音就是一种很火爆的自媒体软件,抖音是一个帮助用户表达自我,记录美好生活的视频平台.在大部分人用来娱乐的同时,部分有商业头脑的人用抖音来直播带货,可谓赚得盆满钵满,抖音上商品的价格随着播放的热度而变化.经测算某服装的价格近似满足:()1012hb b J J J J ⎛⎫=+- ⎪⎝⎭,其中0J (单位:元)表示开始卖时的服装价格,J (单位:元)表示经过一定时间t (单位:天)后的价格,b J (单位:元)表示波动价格,h (单位:天)表示波动周期.某位商人通过抖音卖此服装,开始卖时的价格为每件120元,波动价格为每件20元,服装价格降到70元每件时需要10天时间.(1)求h 的值;(2)求服装价格降到60元每件时需要的天数.(结果精确到整数)参考数据:lg 20.3010≈22.(12分)已知1F ,2F 分别为椭圆E :22221x y a b+=(0a b >>)的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,1F AB △的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.潮阳区2023—2024学年度第一学期高二级教学质量监测试卷数学参考答案一、单项选择题:1.C 2.B3.C4.A5.D6.C7.D8.B二、多项选择题:9.AC10.AC11.BCD12.BC三、填空题:13.1sin 3y x=14.415.16316.12四、解答题:【解】由sin 2sin b A a B =,得2sin cos sin b A A a B =由正弦定理得:2sin sin cos sin sin B A A A B =,由于sin sin 0A B ≠,则1cos 2B =.因为0A π<<,所以3A π=.由余弦定理得:2222cosA a b c bc =+-,又2a =,则224b c bc =+-①又ABC △,则1sin 2bc A =即1sin 23bc π=4bc =②由①②得228b c +=,则222()28816b c b c bc +=++=+=,则4b c +=.所以ABC △的周长为6.18.【解】(1)由频率分布直方图得:()0.0040.020.0080.002201x ++++⨯=,解得0.016x =,阅读时长在区间[20,40),[40,60),[60,80),[80,100),[100,120]内的频率分别为0.08,0.32,0.40,0.16,0.04,所以阅读时长的平均数0.08300.32500.40700.16900.0411065.2x =⨯+⨯+⨯+⨯+⨯=.(2)由频率分布直方图,得数据在[)[)20,40,80,100两组内的频率比为0.004:0.0081:2=,则在[)20,40内抽取2人,记为12,A A ,在[)80,100内抽取4人,记为1234,,,B B B B ,从这6名志愿者中随机抽取2人的不同结果如下:()()()()()()()()()121112131421222324,,,,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B ()()()()()()121314232434,,,,,,,,,,,B B B B B B B B B B B B ,共15个,其中抽取的2人都在[)80,100内的有()()()()()()121314232434,,,,,,,,,,,B B B B B B B B B B B B ,共6个,所以所抽取2人都在[)80,100内的概率62155P ==.19.【解】(1)当1n =时,21112a a +⎛⎫= ⎪⎝⎭,解得11a =.当2n ≥时,由212n n a S +⎛⎫= ⎪⎝⎭①,可得21112n n a S --+⎛⎫= ⎪⎝⎭,②①-②得:2211422n n n n n a a a a a --=-+-,即()()1120n n n n a a a a --+--=.0n a > ,12n n a a -∴-=.{}n a ∴是以1为首项,以2为公差的等差数列,∴数列{}n a 的通项公式1(1)221n a n n =+-⨯=-.(2)由(1)可得2(121)2n n nS n +-==,111(1)1n b n n n n ∴==-++1211111111112233411n n T b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,1111nn n =-=++20.【解】(1)如图,分别以AB ,AD ,1AA 为x 轴、y 轴、z 轴,建立空间直角坐标系,()()()()()10,0,0,0,0,2,1,0,0,0,1,0,1,1,0A A B D C ,()11,0,2B ,因为E 在1CC 上,故可设()1,1,E t ,又1BE B C ⊥,所以()()10,1,0,1,20120BE B C t t ⋅=⋅-=+-= ,解得12t =,所以11,1,2E ⎛⎫ ⎪⎝⎭,()1111,1,2,0,1,,1,0,22A C BE DE ⎛⎫⎛⎫∴=-== ⎪ ⎪⎝⎭⎝⎭ ()11·1011202A C BE =⨯+⨯+-⨯= ,()11·1110202A C DE =⨯+⨯+-⨯= 11,AC BE AC DE ∴⊥⊥ ,即11,A C BE A C DE ⊥⊥BE DE E = ,,BE DE ⊂平面EBD .所以1A C ⊥平面EBD .(2)设平面11A B C 的一个法向量为(),,m x y z = ,()()1111,0,0,0,1,2A B B C ==-,则111·0·0A B m B C m ⎧=⎪⎨=⎪⎩,02x y z =⎧∴⎨=⎩,令1z =,得()0,2,1m = ,()10,0,2AA = ,所以所求的距离为1·AA m d m === (3)由(2)知,()0,2,1m = ,11,0,2ED ⎛⎫=-- ⎪⎝⎭ ,ED设与m 所成角为θ,则·1sin 5·m ED m ED θ==所以直线ED 与平面11A B C 所成角的正弦值为15.21.【解】(1)在()012htb b J J J J ⎛⎫=+-⎪⎝⎭中,070,20,120,10b J J J t ====,则有()1017020120202h⎛⎫=+-⎪⎝⎭,整理得102121h⎛⎫=⎪⎝⎭,即101h=,解得10h =,所以h 的值为10.(2)由(1)知,101220100t J ⎛⎫⎪⎝⎭=+,当60J =时,10201006012t ⎛⎫= ⎪⎭+⎝,即有105122t⎛⎫= ⎪⎝⎭,取常用对数得:12lg lg 1025t =,解得()10lg 5lg 21110210213.22lg 2lg 20.3010t -⎛⎫⎛⎫==-≈≈ ⎪ ⎪⎝⎭⎝⎭,而N t *∈,则14t =,所以服装价格降到60元每件时需要14天.22.【解】(1)解:由题意,椭圆E 的离心率为12,可得12c a =,又由椭圆的定义,可知1248AB AF AF a ++==,所以2a =,所以1c =,又因为222a b c =+,所以23b =,所以椭圆E 的标准方程为22143x y +=.(2)解:设()()1122,,A x y B x y ,直线l 的方程为1x my =+,由221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,则有122634m y y m -+=+,122934y y m -⋅=+,故221 1234m AB m +===⨯+,同理,直线l '的方程为11x y m=--,设()33,C x y ,()44,D x y ,则222211112123434m m CD m m++=⨯=⨯++,所以四边形ABCD 的面积:22221117223443m m S AB CD m m ++==⨯⨯++()()22221172311411m m m m ++=⨯⨯+++-2272113411m m =⎛⎫⎛⎫+- ⎪⎪++⎝⎭⎝⎭,因为222221134114911341124m m m m ⎛⎫++-⎪⎛⎫⎛⎫+++-≤= ⎪ ⎪⎪++⎝⎭⎝⎭ ⎪⎝⎭,当且仅当21m =时,等号成立,所以227228811493411S m m =≥⎛⎫⎛⎫+- ⎪⎪++⎝⎭⎝⎭,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.双曲线19
2
2
=-y x 的实轴长为 ( )
A .4
B .3
C .2
D .1 2.下列四个命题中,真命题是( ) A .若m >1,则x 2-2x +m >0; B .“正方形是矩形”的否命题; C .“若x =1,则x 2=1”的逆命题;
D .“若x +y =0,则x =0,且y =0”的逆否命题.
3.若椭圆9322=+y x 上一点P到左焦点的距离为5,则其到右焦点的距离为( ) A.5B.3C.2D.1
4.若命题“p q ∧”为假,且“p ⌝”为假,则( )
A .p 或q 为假
B .q 假
C .q 真
D .不能判断q 的真假
5.点1F 和2F 是双曲线13
y 2
2
=-x 的两个焦点,则=21F F ( )
A .2
B .2
C .22
D .4 6.“2x >-”是“24x <”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7.已知方程12
2
22=++m y m x 表示焦点在x 轴上的椭圆,则m 的取值范围是( )
A .12-<>m m 或或
B .2->m
C .21<<-m
D .122-<<->m m 或 8.函数)(x f y =的导函数)(x f y '=的图象如图所示,则函数)(x f y =的图象可能是( )
A .
B .
C .
D .
9.若函数1)(3--=ax x x f 的单调递减区间为[]1,1-,则实数a 的值为( ) A .0 B .3
1 C .
2 D .3
10.抛物线2
8x y =的焦点到双曲线2
2
13
y x -=的渐近线的距离是( )
A .1
B .2
C 3.3
11.函数x x x f 12)(3-=在区间[]3,3-上的最小值是() A .-9 B .-16 C .-12 D .9
12.已知点21,F F 分别是双曲线)0,0(1:22
22>>=-b a b
y a x C 的左、右焦点,O 为
坐标原点,点M 在双曲线C 的右支上OM F F 221=,△MF 1F 2的面积为24a ,则双曲线C 的离心率为( ) A .5 B .3 C .2 D .2
6
二、填空题(本大题共4小题,每小题5分,共计20分,将正确答案写
在题中横线上)
13.命题“20000,sinx 2cos x R x x ∃∈+>”的否定为_____________. 14.抛物线240x y +=的准线方程是__________.
15.已知双曲线)0,0(122
22>>=-b a b
y a x 的离心率为3,则该双曲线的渐近线方
程为__________.
16.已知函数8)3(23
1)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是__________.
三、解答题(本大题共6小题,共计70分,解答应写出必要的文字说明和解题步骤)
17.已知双曲线的离心率等于2,且与椭圆22
1259
x y +=有相同的焦点,求此
双曲线方程.
18.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病不患心肺疾病合计
男 5
女10
合计50
3.已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
5(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;下面的临界值表供参考:
P(K2≥k)
0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024
6.635
7.879
10.828
(参考公式)
)()()(()(2
2
d b c a d c b a bc ad n k ++++-=其中d c b a n +++=)
19.已知函数)(193)(23R x x x x x f ∈+--=. (1)求函数)(x f 在点))0(,0(f 处的切线方程; (2)求函数)(x f 的单调区间.
20.《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款200元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据: 月份
1 2 3 4
5
违章驾驶员人数 120
105
100
90 85
(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程a x b y ˆˆˆ+=;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式:回归直线的方程是ˆˆˆy
bx a =+,其中()()()
11
2
22
11
ˆn
n
i i i
i
i i n
n
i i
i i x y nx y x x y y b
x nx x x ====-⋅--==
--∑∑∑∑, ˆˆˆa y bx
=-. 参考数据:1415=i i y x
21.已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且过点P )2
1
,3(-。
(1)求椭圆的标准方程;
(2)已知斜率为1的直线l 过椭圆的右焦点F 交椭圆于A.B 两点,求弦AB 的长。
22.已知函数x x a x f ln )1()(2--=
(1)若)(x f y =在2=x 处取得极小值,求a 的值; (2)若0)(≥x f 在()+∞,1上恒成立,求a 的取值范围.。