信号与系统报告 实验2 连续时间系统的模拟

合集下载

北京理工大学信号与系统实验报告7 连续时间系统的建模与仿真

北京理工大学信号与系统实验报告7 连续时间系统的建模与仿真

实验7 连续时间系统的建模与仿真(设计型实验)一、实验目的1) 掌握利用系统方框图模拟实际系统的分析方法2) 学习和掌握利用Simulink 仿真工具对连续时间系统的建模与仿真。

二、实验原理与方法连续时间系统的模型除了利用微分方程来描述之外,也可以借助方框图来模拟,模拟连续时间系统的基本单元有加法器、积分器和倍乘器,下图列出了连续时间系统的基本方框图单元,利用这些基本方框图单元即可组成一个完整系统。

加法器: 积分器:倍乘器Simulink 的Commonly Used Blocks 模块库中提供了上述三种基本运算单元的模块,sum 模块表示加法器,Integrator 模块表示积分器,Gain 模块表示倍乘器,此外Math Operations 模块库中的Add 模块也可用于实现信号的加减运算。

因此,根据系统的方框图可以方便地由Simulink 对连续时间信号进行建模,并利用Simulink 的强大功能进行一系列仿真。

除了运用基本运算单元构成连续时间系统,Simulink 还提供了其他的模型描述方法,例如根据连续时间系统的系统函数、零极点分布和状态方程,分别采用Simulink 的Continuous 模块库中的Transfer Fcn 模块、Zero-Pole 模块和State-Space 模块来描述系统。

三、实验内容(1) 已知由微分方程1)2(t)2)根据上述3种系统框图,分别采用Simulink的基本运算单元的模块创建系统的模型,并仿真实现系统的单位阶跃响应。

直接型级联型并联型(2) 已知一个三阶连续时间因果系统的系统函数为3257(s)554s H s s s +=+++,根据系统函数,采用simulink 创建系统模型,并仿真实现对输入(t)u(t 3)u(t)x =--的响应。

四、实验心得通过本次实验掌握了利用Simulink 仿真工具对连续时间系统进行建模、仿真的基本方法。

信号与系统测试报告

信号与系统测试报告

信号与系统测试报告在进行信号与系统测试时,我们主要关注信号的特性以及系统的响应。

通过测试,我们可以验证系统的性能是否符合设计要求,以及信号是否能够正确地传输和处理。

本次测试旨在评估系统的频率响应、时域响应和稳定性等方面的表现,以确保系统能够准确、稳定地工作。

我们对系统的频率响应进行了测试。

通过输入不同频率的信号,我们可以观察系统对不同频率信号的响应情况。

测试结果显示,系统在特定频率范围内表现良好,能够准确地传输信号并保持稳定。

然而,在高频率下系统的响应有所下降,需要进一步优化以提高高频响应能力。

我们对系统的时域响应进行了测试。

通过输入不同形状的信号,如方波、正弦波等,我们可以观察系统对信号的延迟、失真等情况。

测试结果显示,系统在时域上能够准确地响应输入信号,并且延迟较小,失真程度也较低。

这表明系统具有良好的时域特性,能够满足实际应用中的需求。

我们还对系统的稳定性进行了测试。

通过输入不同幅度的信号,我们可以观察系统的稳定性和抗干扰能力。

测试结果显示,系统在输入信号幅度较小的情况下表现稳定,但在输入信号幅度较大时出现了一定程度的失真。

这提示我们需要进一步优化系统的动态范围,以提高系统的稳定性和抗干扰能力。

综合以上测试结果,我们可以得出结论,系统在频率响应、时域响应和稳定性等方面表现良好,能够满足大多数实际应用的需求。

然而,仍有一些方面需要进一步优化,如提高高频响应能力、优化动态范围等。

通过持续的测试和优化,我们相信系统将能够更好地满足用户的需求,并在实际应用中发挥更大的作用。

总的来说,信号与系统测试是确保系统正常工作的重要环节。

通过不断测试和优化,我们可以提高系统的性能和稳定性,确保系统能够准确、稳定地传输和处理信号。

希望通过本次测试报告的分享,能够帮助更多的人了解信号与系统测试的重要性,促进系统技术的进步和发展。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。

对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。

下面是一个关于连续LTI系统的时域分析的实验。

一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。

二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。

这可以通过使用MATLAB中的lti函数来完成。

我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。

2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。

在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。

3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。

这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。

4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。

这可以帮助我们理解系统的行为,并验证我们的模型是否正确。

三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。

对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。

通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。

2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。

这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。

这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统MATLAB实验-实验三 连续时间系统的时域分析

信号与系统MATLAB实验-实验三 连续时间系统的时域分析

四、实验内容1、一系统满足微分方程''()5'()6()()(1)y t y t y t u t u t++=--(1)求出该系统的零状态响应的解析表达式y zs(t),并用向量表示法绘制响应曲线。

(2)用lsim求出该系统的零状态响应;利用(1)所得结果画出该系统的零状态响应。

比较二者是否相同。

%用向量表示法绘制响应曲线clearclc%函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解。

如果有初始条件,则求出特解%MATLAB常微分方程符号解的语法是:dsolve('equation', 'condition')%其中,equation代表常微分方程式,且以Dy代表一阶微分项y',D2y代表.一阶微分项y", condition则为初始条件。

disp('零状态响应');a=dsolve('D2y+5*Dy+6*y = u(t)-u(t-1)','y(0) = 0','Dy(0)=0')%用lsim求出该系统的零状态响应clearclcdisp('用线性常系数微分方程描述LTI系统');t=-6:0.001:6;sys=tf([1],[1 5 6]);ft2=((t>=0)-(t>=1));%ft2=heaviside(t)-heaviside(t-1);y1=lsim(sys,ft2,t);plot(t,y1);xlabel('x');ylabel('y1');title('零状态响应');grid on%axis([0, t(end), -1.1, 1.1])%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等2、如图所示电路,其中121,1,1,2,L H C F R R ===Ω=Ωf(t)是输入信号,y(t)是输出响应。

实验2连续时间系统的模拟

实验2连续时间系统的模拟

信号与系统实验指导书编写:高玉芹、丁洪影、朱永红信电工程学院2014-7-11前言“信号与系统”是无线电技术、自动控制、通信工程、生物医学电子工程、信号图象处理、空间技术等专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。

当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。

21世纪要求培养“创造型、开发型、应用型”人才,即要求培养智力高、能力强、素质好的人才。

由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。

目录实验一信号的时域表示及变换 (1)实验二连续信号的卷积 (4)实验三阶跃响应与冲激响应 (8)实验四连续系统的频域分析 (12)实验五抽样定理与信号恢复 (23)实验六连续系统的s域分析 (30)实验七连续系统零极点分析 (33)实验一信号的时域表示及变换一、实验目的1. 掌握用matlab软件产生基本信号的方法。

2. 应用matlab软件实现信号的加、减、乘、反褶、移位、尺度变换及卷积运算。

二、实验原理(一)产生信号波形的方法利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生信号并绘出波形。

1.产生正弦波t=0:0.01:3*pi;y=sin(2*t);plot(t,y)图1-1 图1-22.产生叠加随机噪声的正弦波t=0:0.01:3*pi;y=10*sin(2*t);s=y+randn(size(t));plot(t,s)3. 产生周期方波t=0:0.01:1;y=square(4*pi*t);plot(t,y)4. 产生周期锯齿波t=(0:0.001:2.5);y=sawtooth(2*pi*30*t);plot(t,y),axis([0 0.2 -1 1])图1-3 图1-45.产生Sinc函数x=linspace(-5,5);y=sinc(x);plot(x,y)图1-5 图1-6 6.产生指数函数波形x=linspace(0,1,100);(或x=0:0.01:1;)y=exp(-x);plot(x,y)(二)信号的运算1.加(减)、乘运算:要求二个信号序列长度相同例1-1t=0:0.01:2;f1=exp(-3*t);f2=0.2*sin(4*pi*t);f3=f1+f2;f4=f1.*f2;subplot(2,2,1);plot(t,f1);title('f1(t)');subplot(2,2,2);plot(t,f2);title('f2(t)');subplot(2,2,3);plot(t,f3);title('f1+f2');subplot(2,2,4);plot(t,f4);title('f1*f2');图1-72.用matlab的符号函数实现信号的反褶、移位、尺度变换由f(t)到f(-at+b)(a>0)步骤:b)atf(b)f(atb)f(tf(t)反褶尺度移位+-−−→−+−−→−+−−→−例1-2:已知f(t)=sin(t)/t,试通过反褶、移位、尺度变换由f(t)的波形得到f(-2t+3) 的波形。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统连续时间LTI系统的几种响应求解方法及例题

信号与系统连续时间LTI系统的几种响应求解方法及例题
同时,随着数字信号处理和模拟信号处理技术 的融合,将为连续时间LTI系统响应求解提供更 多新的思路和方法。
谢谢您的聆听
THANKS
优点
能够直接得到系统在任意 时刻的响应值。
缺点
计算量大,需要逐个时间 点进行计算。
拉普拉斯变换法
定义
拉普拉斯变换法是一种将时域函 数转换为复频域函数的数学工具。
01
描述ห้องสมุดไป่ตู้
02 通过拉普拉斯变换,将系统的微 分方程转化为代数方程,然后求 解得到系统在复频域的响应。
优点
能够方便地求解高阶微分方程, 适用于具有复杂特性的系统。 03
拉普拉斯变换法
能够求解系统的零状态响应,但需要 已知系统传递函数,且变换过程可能 较为复杂。
05
结论
总结
本文介绍了求解连续时间LTI系统响应的几种方法,包括时域法和频域法。 通过具体实例,展示了这些方法在求解系统响应中的应用和优势。
时域法通过建立和求解微分方程来获取系统输出,具有直观和物理意义 明确的优点。而频域法则通过分析系统函数的频域特性来求解响应,具
信号与系统连续时间LTI系统的 几种响应求解方法及例
CONTENTS
• 引言 • 几种响应求解方法 • 例题解析 • 方法比较与选择 • 结论
01
引言
背景介绍
01
信号与系统是电子工程和通信工 程的重要基础学科,主要研究信 号和系统在时域和频域的行为和 特性。
02
在信号与系统中,线性时不变 (LTI)系统是最基本、最重要的 系统之一,其响应求解是研究的重 要内容。
LTI系统的基本概念
LTI系统是指系统的输出仅与输入和系统 的状态有关,而与时间无关。
LTI系统具有线性、时不变和因果性等基 本特性。

实验九,连续时间系统的模拟

实验九,连续时间系统的模拟

实验报告实验课程:信号与系统实验学生姓名:学号:专业班级:121班指导老师:2014 年 6 月 15 日南昌大学实验报告学生姓名: 孙薇 学 号: 6100212177 专业班级: 卓越通信121班 实验类型:□ 验证 □ 综合 □设计 □ 创新 实验日期: 实验成绩:实验九、连续时间系统的模拟一、 实验目的学习根据给定的连续系统的传输函数,用基本运算单元组成模拟装置。

二、 实验原理1. 线性系统的模拟系统的模拟就是用基本运算单元组成的模拟装置来模拟实际的系统。

这些实际的系统可以是电的或非电的物理量系统,也可以是社会、经济和军事等非物理量系统。

模拟装置可以与实际系统的内容完全不同,但是两者之间的微分方程完全相同,输入输出关系即传输函数也完全相同。

模拟装置的激励和响应是电物理量,而实际系统的激励和响应不一定是电物理量,但它们之间的关系是一一对应的。

所以,可以通过对模拟装置的研究来分析实际系统,最终达到在一定条件下确定最佳参数的目的。

对于那些用数学手段较难处理的高阶系统来说,系统模拟就更为有效。

2. 图3-1所示二阶RC 低通电路,可以用图3-2所示由运算放大器构成的有源低通滤波电路来模拟。

1U 2U 5.1R K =Ω 5.1R K =Ω0.047C Fμ=三、 实验仪器1.GDS-806C数字存储示波器;2.GPD-3303直流电源;3.EE1640C系列函数信号发生器/计数器;4.信号与系统综合实验板。

四、实验内容1、计算系统函数和转折频率(参看所附预习报告)2、分别测量RC电路及其模拟装置的幅频特性,将结果记录下来,根据数据用Matlab画出频谱图,比较两者是否一致。

二阶RC低通电路运算放大器构成的有源低通滤波电路Uo Ui Uo/Ui Uo Ui Uo/Ui f (HZ)7.25 8 0.90625 4.98 5 0.996 107.25 8 0.90625 4.96 5 0.992 1006.7 8 0.8375 4.32 5 0.864 2006.3 8 0.7875 4.01 5 0.802 2505.9 8 0.7375 3.61 5 0.722 3004.32 8 0.54 3.2 5 0.64 5002.48 8 0.31 2.1 5 0.42 1k1.3 8 0.1625 0.96 5 0.192 2k0.39 8 0.04875 0.28 5 0.056 5k0.25 8 0.03125 0.19 5 0.038 10k0.17 8 0.02125 0.12 5 0.024 20k0.16 8 0.02 0.12 5 0.024 30k0.16 8 0.02 0.12 5 0.024 40k0.16 8 0.02 0.11 5 0.022 50k(1)以logf为横坐标,vo/vi为纵坐标,画出二阶RC低通电路频谱图如下:(2)以logf为横坐标,vo/vi为纵坐标,画出由运算放大器构成的有源低通滤波电路频谱图如下:分析:通过比较这两个电路的频谱图,可以得到RC电路及其模拟装置的幅频特性基本一致,实验较为成功,通过这个实验,我对系统函数的求解有了进一步的学习,对模拟框图也有了更深的认识,我也知道系统函数的正负不影响频谱特性。

实验二 连续时间系统的模拟

实验二 连续时间系统的模拟

实验二 连续时间系统的模拟一. 实验目的了解用集成运算放大器构成基本运算单元——标量乘法器、加法器和积分器,以及它们的组合全加积分器的方法。

掌握用以上基本运算单元以及它们的组合构成模拟系统,模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。

实验原理说明1模拟连续时间系统的意义由于自然界的相似性,许多不同的系统具有相同的特性。

不论是物理系统还是非物理系统,不论是电系统还是非电系统,只要是连续的线性时不变系统,都可以用线性常系数微分方程来描述。

把一具体的物理设备经过数学处理,抽象为数学表示,从而便于研究系统的性能,这在理论上是很重要的一步;有时,也需要对一系统进行实验模拟,通过实验观察研究当系统参数或输入信号改变时,系统响应的变化。

这时并不需要在实验里去仿制真实系统,而只要根据系统的数学描述,用模拟装置组成实验系统,它可以与实际系统完全不同,只要与实际系统具有同样的微分方程数学表示,即输入输出关系(也即传输函数或系统响应)完全相同即可。

系统的模拟是指数学意义上的模拟。

本实验即由微分方程的相似性出发,用集成运算放大器组成的电路来模拟一阶系统(RC 低通电路)和二阶系统(RLC 带通谐振电路) 2. 2集成运算放大器构成基本运算单元——标量乘法器、加法器和积分器,以及它们的组合全加积分器连续时间系统的模拟,通常由三个基本运算单元——标量乘法器、加法器和积分器构成,实际上还常常用到它们的组合全加积分器,这些运算单元都可以用集成运算放大器构成。

(1) 标量乘法器(又称比例放大器)图2-1(a ) 反相标量乘法器 图2-1(b ) 同相标量乘法器电路 反相标量乘法器电路如图2-1(a)所示: i i Fo u k u R R u ⋅=-=1式中比例系数k 为:1R R k F-= 当R 1=R F 时,k = -1,则u o = - u i ,成为反相跟随器。

同相标量乘法器电路如图2-1(b)所示,有: i i Fo u k u R R u ⋅=+=)1(1式中:11R R k F+=标量乘法器符号如图2-1(c)所示。

《信号与系统》实验讲义

《信号与系统》实验讲义

《信号与系统》实验讲义龙岩学院物理与机电工程学院电子教研室编2008年1月实验一阶跃响应与冲激响应一、实验目的1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响。

2、掌握有关信号时域的测量方法。

二、实验内容1、用示波器观察欠阻尼、临界阻尼和过阻尼状态的阶跃响应波形。

2、用示波器观察欠阻尼、临界阻尼和过阻尼状态的冲激响应波形。

三、实验仪器1、信号与系统实验箱一台2、信号与系统实验平台3、阶跃响应与冲激响应模块(D Y T3000-64)一块4、20M H z双踪示波器一台5、连接线若干四、实验原理RLC串联电路的阶跃响应与冲激响应电路原理图如下所示,其响应有以下三种状态:阶跃响应与冲激响应原理图1、当电阻R>2L时,称过阻尼状态;C2、当电阻R=2L时,称临界阻尼状态;C3、当电阻R<2L时,称欠阻尼状态。

C冲激信号是阶跃信号的导数,所以对线性时不变系统冲激响应也是阶跃响应的导数。

为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号,而用周期方波通过微分电路后得到的尖脉冲代替冲激信号,冲激脉冲的占空比可通过电位计W102调节。

五、实验步骤本实验使用信号源单元和阶跃响应与冲激响应单元。

1、熟悉阶跃响应与冲激响应的工作原理。

接好电源线,将阶跃响应与冲激响应模块插入信号系统实验平台插槽中,打开实验箱电源开关,通电检查模块灯亮,实验箱开始正常工作。

2、阶跃响应的波形观察:①将信号源单元产生的VPP =3V、f=1KHz方波信号送入激励信号输入点STEP_IN。

②调节电位计W101,使电路分别工作在欠阻尼、临界阻尼和过阻尼状态,用示波器观察三种状态的阶跃响应输出波形并分析对应的电路参数。

3、冲激响应的波形观察:①连接跳线J101,将信号源单元产生的VPP =3V、f=1KHz方波信号送入激励信号输入点IMPULSE_IN。

②用示波器观察STEP_IN测试点方波信号经微分后的响应波形(等效为冲激激励信号)。

信号与系统

信号与系统

●信号的分类:●(1)确定信号与随机信号●(2)周期信号与非周期信号●(3)连续时间信号和离散时间信号●(4)能量信号和功率信号●(5)实现与频限信号●(6)物理可实现信号●确定信号:信号在定义域内的任意时刻都有确定的函数值,该信号为确定信号●随机信号不能用数学关系式描述●周期信号是指按某一固定时间重复出现的信号f(t)=f(t+T),t的定义域为负无穷到正无穷f[k]=f[k+N],k的定义域为负无穷到正无穷,k取整数最小T,N值称为周期信号的几波周期周期信号的三个特点:1,周期信号必须在时间上是无始无终的,即自变量时间t的定义域为负无穷到正无穷。

2,随时间变化的规律必须具有周期性,其周期为T或N。

3,在各周期内信号的波形完全一样非周期信号也可看做为周期T趋于无穷大时的周期信号(T→∞)连续信号是指在信号的定义域内,除若干个第一类间断点外,对于任意时刻值都有确定的函数值的信号。

能量信号总能量E=见本子平均功率P=见本子若信号的能量有界,即0〈E〈∞,此时P=0,则称此小信号为能量有限信号,简称能量信号若信号的功率有界,即0〈P〈∞,此时E=∞,则称此信号为功率有限信号,简称为功率信号。

注:1,一个信号不可能同时既是功率信号,又是能量信号。

2,一个信号可是一个既非功率信号,又非能量信号。

(如单位斜坡信号)。

3,直流信号与周期信号都是功率信号。

4,非周期信号则可能出现三种情况:能量信号,功率信号,非功率非能量信号。

持续时间有限的非周期信号为能连信号;持续时间无限、幅度有限的非周期信号为功率信号;持续时间、幅度均无限的非周信号为非功率非能量信号。

信号特性:1,时间特性。

信号表出一定波形的时间特性,如出现时间的先后,持续时间的长短,重复周期的大小及随时间变化的快慢等。

2,频率特性。

任意信号在一定条件下总可以分解为许多不同频率的正弦分量,即具有一定的频率成分。

1.2.1 单位阶跃信号与单位冲激信号1连续时间单位阶跃信号和离散时间单位阶跃序列连续时间单位阶跃信号定义为见本2连续时间单位冲激信号和离散时间单位冲激序列工程定义为见本3冲激函数的性质1)加权特性(筛选特性)见本2)取样特性见本3)单位冲激函数为偶函数4)展缩特性(尺度变换见本5)单位冲激函数的导数及其性质见本4单位冲激和单位阶跃之间的关系见本有公式表明:单位冲激信号的积分为单位阶段信号,反之单位阶跃信号的导数应该为单位冲激信号。

信号与系统实验1:常见信号观测

信号与系统实验1:常见信号观测

号的相加和相乘都是基于向量的点运算。

f =symadd(f1,f2);或f=f1+f2; ezplot(f)f =symmul(f1,f2);或f=f1*f2; ezplot(f)3、连续时间信号的微分和积分符号运算工具箱有强大的积分运算和求导功能。

连续时间信号的微分运算,可使用diff 命令函数来完成,其语句格式为:diff(function, ‘variable ’,n)其中, function 表示需要进行求导运算的函数,或者被赋值的符号表达式;variable 为求导运算的独立变量; n 为求导阶数,默认值为一阶导数。

连续时间信号积分运算可以使用int 命令函数来完成,其语句格式为:int(function, ‘variable ’, a, b)其中,function 表示被积函数,或者被赋值的符号表达式;variable 为积分变量;a 为积分下限,b 为积分上限,a 和b 默认时则求不定积分。

三、实验内容及步骤1、在“开始--程序”菜单中,找到MATLAB 程序,运行启动;进入MATLAB 后 ,首先熟悉界面;在MATLAB 命令行窗口(Command Window )键入>> edit 指令或者通过“ File ”菜单中的“ New ”子菜单下的“ M -File ”命令或者单击工具栏上的新建按扭,进行程序输入,然后将文件保存,扩展名设置为.M。

执行;记录运行结果图形,并与笔算结果对照。

2、利用Matlab 命令绘制直流及上述9个信号(可参考教材P62);3、利用Matlab 命令绘制下列信号的波形图; (1) (2)()te u t --; (2) 0.32sin(),0303tet t -<<; (3)cos100cos3000,0.10.1t t t +-<<; (4) (20.5)[]k u k --;(5) 2()sin35kk π。

4、已知()f t 的波形如图1-1所示,作出()()f t f t +、()()f t f t 、()f t 的微分、()f t 的积分、(34)f t -、(1/1.5)f t -并作出()f t 的奇、偶分量。

信号与系统Matlab实验作业

信号与系统Matlab实验作业

实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。

二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t=----的波形图。

f t e u t u t2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的波形图。

t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)';f2='exp(0.4*t)*sin(8*t)';figure(1)ezplot(f1,t);grid on;figure(2)ezplot(f2,t);grid on;3)画出教材P16图1-18,即抽样信号Sa(t)的波形(-20<t<20)。

t=-10:0.01:10;f='sin(t)/t';ezplot(f,t);grid on;4)用符号函数sign画出单位阶跃信号u(t-3)的波形(0<t<10)。

t=0:0.01:10;f='(sign(t-3)+1)/2';ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为∆,幅度为1/∆的矩形脉冲,即t=t 1处的冲击信号为11111 ()()0 t t t x t t t otherδ∆⎧<<+∆⎪=-=∆⎨⎪⎩画出0.2∆=, t 1=1的单位冲击信号。

t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))';ezplot(f,t);grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。

连续时间信号与系统知识点总结

连续时间信号与系统知识点总结

连续时间信号与系统是信号处理和通信系统领域的重要基础知识。

以下是关于连续时间信号与系统的一些核心知识点总结:
1. 信号的基本概念:包括信号的定义、分类(连续、离散、确定、随机)、信号的表示方法(波形图、时域表达式、频域表示等)。

2. 连续时间信号的运算:包括信号的加、减、乘、卷积等基本运算,以及信号的平移、反转、尺度变换等变换。

3. 系统的基本概念:包括系统的定义、分类(线性时不变、线性时变、非线性等)、系统的描述方法(微分方程、差分方程、传递函数等)。

4. 线性时不变系统的分析:包括系统的响应(零状态响应和零输入响应)、系统的稳定性、系统的频率响应等。

5. 连续时间傅里叶分析:包括傅里叶级数、傅里叶变换及其性质、频率域的信号分析等。

6. 系统函数的性质和表示方法:包括系统函数的极点、零点,以及它们对系统特性的影响。

7. 信号通过线性时不变系统的分析:包括冲激响应和阶跃响应的分析,以及信号的频谱分析和系统对不同类型信号的响应。

8. 滤波器设计:包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计,以及滤波器的频率响应和群时延特性。

9. 采样定理与信号重建:包括采样定理的理解,以及由采样信号重建原始信号的方法。

10. 连续时间系统的模拟与实现:包括模拟电路和数字电路实
现连续时间系统的方法,以及模拟与数字系统之间的转换。

以上知识点为连续时间信号与系统的基础内容,掌握这些知识点有助于理解实际通信系统和信号处理应用的原理。

如需更深入的学习,建议参考相关的教材或专业课程。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

实验9连续时间系统的模拟

实验9连续时间系统的模拟

实验9连续时间系统的模拟实验9 连续时间系统的模拟⼀、实验⽬的1.了解基本运算器——加法器、标量乘法器和积分器的电路结构和运算功能;2.掌握⽤基本运算单元模拟连续时间系统的⽅法。

⼆、实验原理说明1.线性系统的模拟系统的模拟就是⽤由基本运算单元组成的模拟装置来模拟实际的系统。

这些实际系统可以是电的或⾮电的物理量系统,也可以是社会、经济和军事等⾮物理量系统。

模拟装置可以与实际系统的内容完全不同,但是两者的微分⽅程完全相同,输⼊、输出关系即传输函数也完全相同。

模拟装置的激励和响应是电物理量,⽽实际系统的激励和响应不⼀定是电物理量,但它们之间的关系是⼀⼀对应的。

所以,可以通过对模拟装置的研究来分析实际系统,最终达到⼀定条件下确定最佳参数⽬的。

2. 三种基本运算电路(1)、⽐例放⼤器,如图9-1。

112u R R u ?-=图9-1 ⽐例放⼤器电路连接⽰意图(2)、加法器,如图9-2。

uo=-R2R1 (u1+u2)=-(u1+u2)(R1=R2)(3)、积分器,如图9-3。

-=dt u RCu 101u 0uR u 0uR 2=R 1u 图9-2 加法器电路连接⽰意图图9-3 积分器电路连接⽰意图3.⼀阶系统的模拟图9-4(a )。

它是最简单RC 电路,设流过R ·C 的电流为i(t):则有 )()()(t Ri t y t x =-根据容C 上电压与电流关系因此上式亦可写成这是最典型的⼀阶微分⽅程。

由于图9-4(a )的RC 电路输⼊与输出信号之间关系可⽤⼀阶微⽅程来描述,故常称为⼀阶RC 电路。

上述典型的微分⽅程我们可以改变形式,写成如下表⽰式:u 0uC0)(1)(1)(=-+t x RCt y RCdtt dy dtt dy c t i )()(=dt t dy RCt y t x )()()(=-)()()(1)(1t d t dy t y RC t x RC =-……………………(1)式(1)式是和(2)式的数学关系正好⽤图9-4的(b)、(c)表⽰,图(b)和图(c)在数学关系上是等效的。

信号与系统实验报告2015解析

信号与系统实验报告2015解析

信号与系统实验报告 13级通信四班赵豆学号:20131870实验一 连续时间信号的采样一、 实验目的1、进一步加深对采样定理和连续信号傅立叶变换的理解。

2、了解MATLAB 提供的在相邻点间内插的几种方法。

3、使用sinc 函数并且研究时域中的混叠问题二、 实验步骤1.复习采样定理和采样信号的频谱采样定理如果采样频率s F 大于有限带宽信号)(t x a 带宽0F 的两倍,即02F F s > (1)则该信号可以由它的采样值)()(s a nT x n x =重构。

否则就会在)(n x 中产生混叠。

该有限带宽模拟信号的02F 被称为乃魁斯特频率。

必须注意,在)(t x a 被采样以后,)(n x 表示的最高模拟频率为2/s F Hz (或πω=)。

2.熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。

然而如果用时间增量足够小的很密的网格对()a x t 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分析。

令t ∆是栅网的间隔且s t T ∆<<,则()()G a x m x m t ∆=∆ (2)可以用一个数组来仿真一个模拟信号。

不要混淆采样周期s T 和栅网间隔t ∆,因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系也可根据(2)近似为:∑∑∆Ω-∆Ω-∆=∆≈Ωmt m j G m t m j G a e m x t t em x j X )()()( (3) 现在,如果)(t x a (也就是)(m x G )是有限长度的。

则公式(3)与离散付利叶变换关系相似,因而可以用同样的方式以MATLAB 来实现,以便分析采样现象。

3.根据提供的例子程序,按照要求编写实验用程序;三、实验内容(1)通过例一熟悉用MATLAB 语言实现描绘连续信号的频谱的过程,并在MATLAB 语言环境中验证例1的结果;例1 令t a e t x 1000)(-=,求出并绘制其付利叶变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统
实验报告
实验二连续时间系统的模拟
实验报告评分:_______
连续时间系统的模拟
一、实验目的
1.了解用集成运算放大器构成基本运算单元—标量乘法器,加法和计分器,以及它们的组合全加积分器的方法。

2.掌握用以上基本运算单元以及它们的组合构成模拟系统,
模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。

二、实验内容及步骤
1.一阶模拟系统阶跃响应的观测
(1)对图9-5(c)的实际的电路,在输入端TP901处输入幅度Uim=0.2V,频率=200HZ的方波,观测输入波形及输出(TP903处)响应波形,比较输入波形与输出波形的周期和幅度,测量时间常数τ和放大倍数A。

(2)输入幅度Uim=0.2V的正弦波信号,由低频(20HZ左右)开始,缓慢改变正弦波信号频率,测出低通滤波器的截止频率f0.
2.二阶模拟系统频率特性测试
对图9-6(c)的实际电路,在输入端TP905处输入幅度Uim=0.2V正弦波,改变正弦波的信号频率,此时,应注意保持输入电压不变,记录相应的输出(TP907处)电压值,画出扶贫特性曲线,测定系统的放大倍数A,中心频率f0及其频带宽度Bw,计算品质因素Q。

三、实验过程
一阶模拟系统
一阶模拟系统输入波形:
输出波形:
(1)放大倍数A=Rf/R1=10K/1K=10
H(s)=(a^2)/(s^2+3*a*s+a^2)
其中a=1/RC,值为4170。

以log f为横坐标,Vo/Vi为纵坐标,绘制滤波器的幅频特性曲线。

再以log f为横坐标,Φ(ω)为纵坐标,绘制滤波器的相频特性曲线。

RC低通滤波器幅频响应曲线图如下:
二阶模拟系统输入正弦波图形:
幅频特性曲线:
四、实验的学习与感想
通过这次实验,将学到的理论知识通过动手再现出来,感到了信号与系统这门课的趣味,通过图形再现,使书本上枯燥乏味的图像,变得有意思多了。

繁杂的公式在这次试验中简化成简单的电路,更形象的记着了各种运算电路。

虽然实验过程中遇到不少困难,但是通过自己动手解决这些困难,掌握知识,让我能对课本的知识有了很好的吸收。

五、与上次实验的对比
上次实验通过软件再现信号图形,通过分析编程,让我对信号的公式和特性有了深刻的认识,这次实验通过动手连接,将信号图形通过电路,产生出来,然我对这信号的意义有了不同的理解。

相关文档
最新文档