圆的切线的判定(教案)

合集下载

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线判定1.1 引入:通过实际问题引入圆的切线判定定理。

1.2 讲解:讲解圆的切线判定定理,即圆外一点与圆只有一个交点的直线是圆的切线。

1.3 例题:讲解几个典型的圆的切线判定例题,让学生理解并掌握切线判定定理。

1.4 练习:给出一些练习题,让学生运用切线判定定理进行解答。

第二章:圆的切线性质2.1 引入:通过实际问题引入圆的切线性质。

2.2 讲解:讲解圆的切线性质,即切线与半径垂直,切线长度等于半径长度。

2.3 例题:讲解几个典型的圆的切线性质例题,让学生理解并掌握切线性质。

2.4 练习:给出一些练习题,让学生运用切线性质进行解答。

第三章:圆的切线方程3.1 引入:通过实际问题引入圆的切线方程。

3.2 讲解:讲解圆的切线方程的求法,即利用切点坐标和半径长度求解切线方程。

3.3 例题:讲解几个典型的圆的切线方程例题,让学生理解并掌握切线方程的求法。

3.4 练习:给出一些练习题,让学生运用切线方程进行解答。

第四章:圆的切线与圆的位置关系4.1 引入:通过实际问题引入圆的切线与圆的位置关系。

4.2 讲解:讲解圆的切线与圆的位置关系的判定方法,即切线与圆相切、相离、相交的判定。

4.3 例题:讲解几个典型的圆的切线与圆的位置关系例题,让学生理解并掌握切线与圆的位置关系的判定。

4.4 练习:给出一些练习题,让学生运用切线与圆的位置关系的判定进行解答。

第五章:圆的切线综合应用5.1 引入:通过实际问题引入圆的切线综合应用。

5.2 讲解:讲解圆的切线在实际问题中的应用,如求解几何问题、设计图案等。

5.3 例题:讲解几个典型的圆的切线综合应用例题,让学生理解并掌握切线在实际问题中的应用。

5.4 练习:给出一些练习题,让学生运用切线综合应用进行解答。

第六章:圆的切线与圆的切点6.1 引入:通过实际问题引入圆的切线与圆的切点。

6.2 讲解:讲解圆的切线与圆的切点的关系,即切线与圆的切点是切线与圆的唯一交点。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。

圆的切线性质和判定教案

圆的切线性质和判定教案

切线教案【学习目标】:使学生掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力。

【学习过程】:一、引入新课同学产注意观察教师的表演,当老师高速转动这个圆盘时,圆盘边缘的线条的运动状态是怎样的?显然每根线都是成直线状态,这些直线就是⊙O 的切线,线固定在圆盘边缘上的点就是直线与圆相切的切点,这些切线与经过切点的半径垂直,如右图所示。

下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况。

二、切线的判定和性质做一做:画一个圆O 及半径OA ,画一条CD 经过⊙O 的半径的外端点A ,且垂直于这条半径OA ,这条直线与圆有几个交点?从图23.2.8可以看出,此时直线与圆只有一个交点,即直线l 是圆的切线.切线的判定方法:经过半径外端且垂直于这条半径的直线是圆的切线。

思考:如图1,直线AB 垂直于半径OC ,直线AB 是⊙O 的切线吗? 如图2,直线AB 垂直于半径OC ,直线AB 是⊙O 的切线吗?如上图,如果直线CD 是⊙O 的切线,点A 为切点,那么半径OA 与CD 垂直吗?由于CD 是⊙O 的切线,圆心O 到直线CD 的距离等于半径,所以OA 是圆心O 到AB 的距离,因此CD AB 。

切线的性质:圆的切线垂直于经过切点的半径。

三、例题与练习如图23.2.9,已知直线AB 经过⊙O 上的点A ,且AB =OA ,∠OBA =45°,直线AB 是⊙O 的切线吗?为什么?分析:要证明一条直线是圆的切线,必须符合两个条件,其一是这条直线是否经过半径外端,其二是这条直线是否与这条半径垂直,若满足这两个条件,就能说明这条直线是圆的切线。

解 直线AB 是⊙O 的切线. 因为AB =OA ,且∠OBA =45°,所以∠AOB =45°,∠OAB =90°]图23.2.8C图2CB图23.2.9根据经过半径的外端且垂直于这条半径的直线是圆的切线所以直线AB 是⊙O 的切线练习:1、已知:PA 、PB 是⊙O 的切线,切点为A 、B 点,点C 为圆周上的一 点,求ACB ∠的度数。

《24.2.2切线的判定》教案

《24.2.2切线的判定》教案

1《24.2.2圆的切线判定》教学设计 昆十四中 曾晓坚教学目标(1)掌握圆的切线的判定定理,会用切线的判定解决问题,培养学生的逻辑推理能力。

(2)培养学生的观察能力、研究问题的能力、数学思维能力以及创新意识,充分领会数学转化思想。

(3)通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐,养成动手、动脑的习惯,并养成良好的书写习惯重点 理解圆的切线的判定定理,会运用切线的判定解决简单的数学问题难点 定理条件理解,利用切线的判定定理解决几何问题的技巧——辅助线的添加授课过程简要步骤内容提要设计目的反思(评价)几何画板动态演示圆与直线的三种位置关系,强调几种位置的特点(判定)讨论形成概念分析定理,提炼精华音乐放松,加深理解引入:切线的理解:英文tangent →touch →触摸的特点→直线与圆怎样touch几何画板动态演示并回顾圆与直线的三种位置关系 形成概念提问:形成切线时距离和半径有何关系?(小组讨论) 教师引导得出结论:经过半径外端并且垂直于这条半径的直线是圆的切线图形辨析:下列图形l 是否是圆的切线定理的条件:①过半径外端;②垂直于这条半径。

符号语言:∵OT 是⊙O 半径,OT ⊥l 于T 。

∴l 是⊙O 的切线利用r&b 音乐(简单爱——周杰伦),转化成r&d 条件,巧妙记忆定理条件通过英文引入,提升学生的兴趣,利用肢体语言,形象理解切线.回顾旧知识,加强知识联系性,并为基础较差的同学做一个复习.学生参与知识形成,体验数学探索乐趣,体会数学的连贯性三个图形是显然错误的,对照切线判定加深概念理解,增强后进生学习信心图形语言+文字语言+符号语言 立体化强化定理,锻炼逻辑能力加深证明条件印象2例题分析独立思考+小组讨论教师及时引导做出辅助线并规范解题步骤强调r&b独立思考+小组讨论 引导学生勇于探索,大胆画出辅助线,教师巡回检查,指导学生写出解答步骤,并规范解题步骤,强化r&d比较归纳: 灵活运用巩固新学习的知识.结合学生实际适当选取2到3个题进行解决多个变式练习强化知识迁移能力例题讲解例1、 已知:直线AB 经过⊙O 上的点C ,并且OA=OB,CA=CB.求证:直线AB 是⊙O 的切线。

圆的切线的判定(教案)

圆的切线的判定(教案)

圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线概念,讲解圆的切线是如何与圆相切的。

通过图形和实例,让学生理解圆的切线的特点。

1.2 圆的切线性质讲解圆的切线的性质,包括切线与半径垂直、切线与圆心连线垂直等。

提供相关的定理和公式,让学生能够熟练掌握。

第二章:圆的切线判定定理2.1 第一判定定理讲解第一判定定理,即如果一条直线与圆相切,这条直线的斜率等于过切点的半径的斜率。

提供定理的证明和相关的例题,让学生能够理解和应用。

2.2 第二判定定理讲解第二判定定理,即如果一条直线与圆相切,这条直线与圆的切点处的切线垂直于直线。

提供定理的证明和相关的例题,让学生能够理解和应用。

第三章:圆的切线方程3.1 切线方程的定义讲解切线方程的定义,即切线的一般式和点斜式。

引导学生理解切线方程与圆的切线的关系。

3.2 切线方程的求法讲解如何求解圆的切线方程,包括给定圆的方程和切点的坐标等。

提供相关的例题和练习题,让学生能够熟练掌握。

第四章:圆的切线与圆的位置关系4.1 切线与圆相离讲解切线与圆相离的情况,即切线与圆没有交点。

提供相关的例题和练习题,让学生能够理解和应用。

4.2 切线与圆相切讲解切线与圆相切的情况,即切线与圆只有一个交点。

提供相关的例题和练习题,让学生能够理解和应用。

第五章:圆的切线综合应用5.1 切线与圆的交点问题讲解如何求解切线与圆的交点,包括切线与圆的方程联立等。

提供相关的例题和练习题,让学生能够熟练掌握。

5.2 切线与圆的切点问题讲解如何求解切线与圆的切点,包括切线的斜率和切线方程等。

提供相关的例题和练习题,让学生能够熟练掌握。

第六章:圆的切线与圆的性质6.1 切线与圆的切点性质讲解切线与圆的切点的性质,如切点处的切线与半径垂直。

提供相关的定理和公式,让学生能够熟练掌握。

6.2 切线与圆的切线性质讲解切线与圆的切线的性质,如切线与圆心连线垂直。

提供相关的定理和公式,让学生能够熟练掌握。

圆的切线的判定(教案)

圆的切线的判定(教案)

圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。

让学生掌握圆的切线的性质。

1.2 教学内容圆的切线的定义。

圆的切线的性质。

1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。

1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。

讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。

1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。

1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。

章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。

让学生能够运用判定定理判断一条直线是否为圆的切线。

2.2 教学内容圆的切线的判定定理。

判定定理的应用。

2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。

2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。

讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。

2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。

2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。

章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。

让学生能够运用求法求出圆的切线方程。

3.2 教学内容圆的切线方程的求法。

切线方程的求法应用。

3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。

3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。

讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。

3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。

3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。

切线的判定和性质数学教案

切线的判定和性质数学教案

切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。

2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。

3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。

二、教学重点与难点1. 教学重点:切线的判定方法和性质。

2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。

三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。

(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。

2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。

(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。

3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。

(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。

(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。

如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。

例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。

(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。

(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。

四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。

同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。

圆的切线的判定和性质参考教案

圆的切线的判定和性质参考教案

圆的切线的判定和性质一、学习目的:1:理解切线的性质定理,判定定理及两个推论,能利用定理及推论解决相关的几何问题2能归纳并正确表述由圆的切线的性质定理和两个推论整合而成的定理二、学习重点:切线的性质定理,判定定理及两个推论三、学习难点:切线的性质定理,判定定理及两个推论的应用。

四、学习内容:(一)自主学习1:判断直线与圆的位置关系.方法一:解析法当直线与圆有____________公共点时,直线与圆相交,当直线与圆有___________公共点时,直线与圆相切,当直线与圆___________时,直线与圆相离.方法二:几何法设⊙O的半径为r,直线l与圆心O的距离为d___________ ⇔直线与圆相离____________⇔直线与圆相切_____________⇔直线与圆相交2 切线的判定定理: 过________且___________的直线是圆的切线3切线的性质定理: 圆的切线_________________半径.推论1经过圆心且垂直于切线的直线必经过______________________推论2: 经过切点且垂直于切线的直线必经过__________________4切线长定理从圆外一点引圆的两条切线,它们的切线长__________,圆心和这一点的连线___________ 两条切线的夹角(二)合作探究例1:见课本例1例2:见课本例2题型一:切线的作法例3:作经过一定点C的圆的切线(1)点C在圆上(2)点C在圆外题型二:证明切线问题∠交AC于点,点D在AB 例4:如图,在Rt△ABC中,90∠=BE平分ABCC上,DE EB⊥求证:AC是△BDE的外接圆的切线题型三:圆的切线的性质和判定定理的应用⊥,P是OA上任意一点,例5:如图,OA和OB是圆O的半径,并且OA OBBP的延长线交圆O于Q,过Q作圆O的切线交OA的延长线于R,求证:△PQR 为等腰三角形。

五:学习与小结1:圆的切线的判定方法2圆的切线的性质定理及它的两个推论,概括起来就是三点,这三点是?六达标与检测1 下列说法(1)与原有公共点的直线是圆的切线(2)垂直于圆的半径的直线是圆的切线(3)与原心的距离等于半径的直线是圆的切线(4)过半径的端点,垂直于止境的直线是圆的切线。

圆切线判定教案

圆切线判定教案

《切线的判定》教学设计学习目标1. 探索并理解切线的判定定理.2. 能运用圆切线的判定定理进行简单证明.重点:使学生掌握切线的判定定理,并能初步运用它解决有关问题。

难点:定理的运用中,辅助线的添加方法是难点.关键:证明切线时,灵活运用“作半径证垂直”与“作垂直证半径”. 一、复习导入:⒈直线与圆有几种位置关系?分别是什么? 2.如何判定直线与圆相切? 二、新课讲析:1.合作探究:如图1,在⊙O 中,经过半径OA 的外端点A 作直线l OA ⊥,则圆心经过半径的外端并且垂直于这条半径的直线是圆的切线.定理的几何语言:如图2,∵l OA ⊥, OA 是⊙O 的半径.∴直线l 是⊙O 的切线.2.判一判:下列各直线是不是圆的切线?如果不是,请说明为什么? (图2)l4.议一议:截止目前为止,圆的切线有几种判定方法?分别是什么?总结:判断一条直线是一个圆的切线有三个方法:(1).定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2).数量关系法:圆心到这条直线的距离等于半径时,直线与圆相切; (3).判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.三.当堂训练1. 如图3,直线AB 经过⊙O 上的点C,并且OA=OB, CA=CB,求证:直线AB 是⊙O 的切线.小结:当直线与圆有公共点时,常连接圆心和公共点得半径,证垂直,2.如图4,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,OD ⊥AB 于D .以O 点为圆心,OD 长为半径作⊙O 求证:AC 与⊙O 相切.小结:当直线与圆无公共点时,常过圆心作直线的垂线,证圆心到 直线的距离等于半径.(图4) C(图3)llA议一议 问题:(1)中两个题有什么相同之处?不同之处又是什么?(从已知或解法考虑)(2)关于圆的切线的证明你发现了什么方法?小结:当直线与圆有公共点时,常连接圆心和公共点得半径,证垂直,当直线与圆无公共点时,常过圆心作直线的垂线,证圆心到直线的距离等于半径.3、如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交边BC 于P , PE ⊥AC 于E 。

圆的切线的判定(教案)

圆的切线的判定(教案)

圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。

通过图形和实例解释圆的切线的性质和特点。

1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。

通过几何证明和实例来加深对圆的切线性质的理解。

第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。

通过图形和实例来展示切线判定定理的应用。

2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。

通过证明过程来加深对切线判定定理的理解和应用。

第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。

通过图形和实例来展示切线方程的应用。

3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。

通过例题和练习来掌握切线方程的求解方法。

第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。

通过图形和实例来展示切线与圆相切的特点和性质。

4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。

通过图形和实例来展示切线与圆相离和相交的特点和性质。

第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。

通过例题和练习来展示切线在几何问题中的应用方法。

5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。

通过实例来展示切线在日常生活中的重要性和作用。

第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。

通过图形和实例来展示切线判定定理的推广应用。

6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。

通过例题和练习来展示切线判定定理与其他数学概念的结合应用。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:引言1.1 课程背景本节课主要学习圆的切线判定和性质。

通过学习,学生能够掌握圆的切线的判定方法,理解圆的切线性质,并能运用到实际问题中。

1.2 教学目标了解圆的切线的判定方法掌握圆的切线性质能够运用圆的切线判定和性质解决实际问题第二章:圆的切线判定2.1 判定方法一:点斜式讲解点斜式的定义和判定条件举例说明如何根据点斜式判定一条直线是否为圆的切线2.2 判定方法二:切线垂直于过切点的半径讲解切线垂直于过切点的半径的定义和判定条件举例说明如何根据切线垂直于过切点的半径判定一条直线是否为圆的切线第三章:圆的切线性质3.1 性质一:切线与半径垂直讲解切线与半径垂直的性质举例说明如何应用这一性质解决问题3.2 性质二:切线与圆心连线垂直讲解切线与圆心连线垂直的性质举例说明如何应用这一性质解决问题第四章:应用举例4.1 例题一:判断一条直线是否为圆的切线给出直线和圆的信息引导学生运用切线判定方法进行判断4.2 例题二:求圆的切线方程给出圆的信息和切点信息引导学生运用切线性质求解切线方程回顾本节课学习的圆的切线判定和性质强调重点和难点5.2 练习给出练习题目引导学生独立完成练习,巩固所学知识第六章:拓展学习圆的割线与切线的关系6.1 割线的定义讲解割线的定义及其与切线的区别举例说明割线在圆的性质中的应用6.2 割线定理介绍割线定理的内容演示如何运用割线定理解决问题第七章:圆的切线与圆的方程7.1 圆的切线方程的求法讲解如何根据圆的切点坐标求切线方程举例说明切线方程的求法7.2 切线方程与圆的相交问题探讨切线与圆相交的情况引导学生如何解决相关的几何问题第八章:实际应用圆的切线问题在工程和几何中的运用8.1 圆的切线在工程中的应用讲解圆的切线在工程中的实际应用案例分析切线知识在工程问题中的重要性8.2 圆的切线在几何中的运用探讨圆的切线在几何证明中的应用举例说明切线性质在几何问题解决中的作用第九章:课堂活动与互动9.1 小组讨论组织学生进行小组讨论,探讨圆的切线判定和性质的应用鼓励学生分享自己的解题经验和思路9.2 问题解答邀请学生回答课堂提出的问题通过问答形式巩固学生对圆的切线判定和性质的理解第十章:作业布置与课后自学建议10.1 作业布置布置相关的练习题目,巩固所学知识提醒学生按时完成作业,并鼓励自我检查10.2 课后自学建议推荐学生阅读相关的数学书籍和资料鼓励学生参与数学社团或在线数学学习平台,拓展知识面重点和难点解析六、拓展学习圆的割线与切线的关系割线与切线的区别和联系是本节课的新知识点,学生可能难以理解。

《圆的切线的判定》教学案

《圆的切线的判定》教学案

《圆的切线的判定》教学案主备人:关雯清 审核者:九年级数学组全体成员【教学目标】1.理解切线的判定定理,会准确过圆上一点画圆的切线;2.会用圆的判定定理进行简单的证明.【教学重点】理解并掌握切线的判定定理及其应用;【教学难点】理解并掌握切线的判定定理及其应用;【教学过程】一:板书课题,展示目标:二:指导自学:阅读教材P51-52自习教材并完成下列各题⒈切线的定义:直线与圆有 公共点时,这条直线叫做圆的切线.2.切线的判定方法:(1)和圆有 公共点的直线是圆的切线.(即切线的定义)(2)到圆心的距离 半径的直线是圆的切线.3.切线的判定定理:________________________________________________________;4.切线的性质定理:________________________________________________________; 三:先学:从作图中得到切线的判定定理:经过____________并且_______于这条半径的的直线是圆的切线.定理必须满足哪两个条件,如果只满足一个条件,画图看一看,此时所画的 直线是不是圆的切线.定理的几何语言:如图2,________________,_________直线l 是⊙O 的切线(31、如图3,直线AB 经过⊙O 上的点C,并且OA=OB,CA=CB,求证:直线AB 是⊙O 的切线.(分析:已知AB 经过圆上的点C ,要用上面的判定定理,应该连接 , 证明 )证明:小结:当直线与圆有公共点,常连接 和公共点得半径,证明直线垂直于 .(图2) 图3四:后教:已知:如图4,P 是∠AOB 的角平分线OC 上一点.PE ⊥OA 于E .以P 点为圆心,PE 长为半径作⊙P .求证:⊙P 与OB 相切.(分析:OB 与圆没有公共点,应该选用哪种判定方法?怎样作辅助线?)方法小结:当直线与圆没有公共点,常过圆心作直线的 ,证明圆心到直线的距离等于 .通过自学和同学展示你还有哪些困惑或新的思考:1、课堂总结(1).圆的切线有哪几种判定方法?分别是什么?(2).证明圆的切线时,常常要添加辅助线,有两种方法:①当直线与圆有公共点时,简说成“连半径,证垂直”;②当直线与圆没有公共点时,简说成“作垂直,证半径”.五:当堂训练:1.下列说法正确的是( )A .与圆有公共点的直线是圆的切线.B .和圆心距离等于圆的半径的直线是圆的切线;C .垂直于圆的半径的直线是圆的切线;D .过圆的半径的外端的直线是圆的切线2.教材p52练习第1,2,3题.3.已知:如图5,A 是⊙O 外一点,AO 的延长线交⊙O 于点C ,点B 在圆上,且AB BC =,30A ∠=︒.求证:直线AB 是⊙O 的切线4、已知:如图6,△ABC 内接于⊙O ,过A 点作直线DE ,当∠BAE =∠C 时,试确定直线DE 与⊙O 的位置关系,并证明你的结论.(图4) (图5) (图6)。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引导学生回顾圆的定义,理解圆上所有点到圆心的距离相等。

引入切线的概念:与圆相切且与圆心的连线垂直的直线。

1.2 圆的切线判定条件利用几何图形和实际情境,引导学生理解切线的判定条件。

判定条件1:直线过圆外一点,且与圆的切点在圆的直径上。

判定条件2:直线过圆内一点,且与圆的切点在圆的半径上。

第二章:圆的切线性质2.1 圆的切线性质1:切线与半径垂直通过几何证明和实际情境,引导学生理解切线与半径垂直的性质。

引导学生运用性质1解决相关问题。

2.2 圆的切线性质2:切线与圆心连线垂直通过几何证明和实际情境,引导学生理解切线与圆心连线垂直的性质。

引导学生运用性质2解决相关问题。

第三章:圆的切线方程3.1 圆的切线方程的定义引导学生理解切线方程的概念:描述切线位置和方向的方程。

3.2 圆的切线方程的求法引导学生运用点斜式和一般式求解切线方程。

引导学生运用判定条件和性质求解切线方程。

第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切引导学生理解圆的切线与圆相切的概念。

引导学生运用判定条件和性质判断圆的切线与圆相切。

4.2 圆的切线与圆相离引导学生理解圆的切线与圆相离的概念。

引导学生运用判定条件和性质判断圆的切线与圆相离。

第五章:圆的切线应用5.1 圆的切线长度引导学生理解圆的切线长度的概念。

引导学生运用切线性质和几何证明求解切线长度。

5.2 圆的切线与弦的关系引导学生理解圆的切线与弦的关系。

引导学生运用切线性质和几何证明解决相关问题。

第六章:圆的切线与圆的切点6.1 圆的切线与圆的切点的定义引导学生理解圆的切线与圆的切点的概念。

强调切线与圆的切点是切线与圆的唯一交点。

6.2 圆的切线与圆的切点的性质引导学生理解圆的切线与圆的切点的性质。

性质1:切线与圆的切点,圆心与切点的连线垂直。

性质2:切线与圆的切点,切线与半径的交点在圆心与切点连线上。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)章节一:圆的切线判定教学目标:1. 理解圆的切线的定义2. 学习圆的切线的判定方法教学内容:1. 圆的切线的定义2. 圆的切线的判定方法教学步骤:1. 引入圆的切线的定义,引导学生理解圆的切线与圆的关系。

2. 讲解圆的切线的判定方法,引导学生通过实例进行理解和掌握。

教学活动:1. 引导学生通过图形观察和理解圆的切线的定义。

2. 组织学生进行小组讨论,探讨圆的切线的判定方法。

教学评价:1. 通过测试题检查学生对圆的切线的定义的理解。

2. 通过解答题检查学生对圆的切线的判定方法的掌握。

章节二:圆的切线性质教学目标:1. 理解圆的切线的性质2. 学习圆的切线的性质的证明和应用教学内容:1. 圆的切线的性质2. 圆的切线的性质的证明和应用教学步骤:1. 引入圆的切线的性质,引导学生理解圆的切线的性质。

2. 讲解圆的切线的性质的证明和应用,引导学生通过实例进行理解和掌握。

教学活动:1. 引导学生通过图形观察和理解圆的切线的性质。

2. 组织学生进行小组讨论,探讨圆的切线的性质的证明和应用。

教学评价:1. 通过测试题检查学生对圆的切线的性质的理解。

2. 通过解答题检查学生对圆的切线的性质的证明和应用的掌握。

章节三:圆的切线方程教学目标:1. 理解圆的切线的方程2. 学习圆的切线的方程的求法教学内容:1. 圆的切线的方程2. 圆的切线的方程的求法教学步骤:1. 引入圆的切线的方程,引导学生理解圆的切线的方程的概念。

2. 讲解圆的切线的方程的求法,引导学生通过实例进行理解和掌握。

教学活动:1. 引导学生通过图形观察和理解圆的切线的方程的概念。

2. 组织学生进行小组讨论,探讨圆的切线的方程的求法。

教学评价:1. 通过测试题检查学生对圆的切线的方程的理解。

2. 通过解答题检查学生对圆的切线的方程的求法的掌握。

章节四:圆的切线与圆的位置关系教学目标:1. 理解圆的切线与圆的位置关系2. 学习圆的切线与圆的位置关系的判定方法教学内容:1. 圆的切线与圆的位置关系2. 圆的切线与圆的位置关系的判定方法教学步骤:1. 引入圆的切线与圆的位置关系,引导学生理解圆的切线与圆的位置关系的概念。

圆的切线的判定教学设计

圆的切线的判定教学设计

24.2.2直线和圆的位置关系——圆的切线判定定理一、教材分析:切线的判定是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是今后学习解析几何等知识.学习圆的切线长和切线长定理等知识的基础。

由于本章所研究的问题往往是直线形与曲线形交织在一起,解决问题常需要综合运用代数、几何、三角等多方面知识。

二、教学目标:((1)掌握切线的判定定理. 使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法,应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力(3)培养学生动手操作能力.观察、探索、分析、总结、推理论证等能力.(4)通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.三、教学重点、难点1.重点:切线的判定定理.内心的性质2.难点:圆的切线证明问题中,辅助线的添加方法四、教学方法:动手操作观察归纳.教具:圆模型圆规三角板多媒体五、教学过程设计教学过程:(一)课前复习(5分钟)回答下列问题:(投影显示)1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?(要求学生举手回答,教师用教具演示)设计目的|:为探究圆的切线的判定方法做铺垫二)引如课题(1分钟):我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.三)提出问题、分析发现归纳结论(教师引导)(8分钟)1.切线判定定理的导出师:上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上书步骤作图(一同学到黑板上作):先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?(引导学生总结出):①经过关径外端,②垂直于这条半径.(设计意图:培养学生动手操作和观察归纳能力、及组织语言能力)师;如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)圆的切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:(引导学生理解):①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.提问:判定一条直线是圆的切线,我们有多少种方法呢?(学生讨论后,师生小结以下三种方法)(师板书):①与圆有唯一公共点的直线是圆的切线.②与圆心的距离等于半径的直线是圆的切线.③经过半径外端并且垂直于这条半径的直线是圆的切线.(四)应用定理,强化训练。

圆的切线初中教案

圆的切线初中教案

圆的切线初中教案教学目标:1. 理解圆的切线的定义和性质;2. 学会如何求解圆的切线方程;3. 能够应用圆的切线知识解决实际问题。

教学重点:圆的切线的定义和性质,求解圆的切线方程。

教学难点:理解圆的切线与半径的垂直关系,求解圆的切线方程。

教学准备:黑板,粉笔,圆规,直尺,PPT。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的定义和性质,如圆的标准方程,圆的半径和直径等;2. 提问:同学们,你们知道什么是圆的切线吗?它是如何与圆相切的?二、新课讲解(15分钟)1. 讲解圆的切线的定义:圆的切线是与圆只有一个公共点的直线;2. 讲解圆的切线的性质:圆的切线与半径垂直,即切线与半径的夹角为90度;3. 讲解如何求解圆的切线方程:a. 确定圆心和半径;b. 写出圆的标准方程;c. 利用切线与半径垂直的关系,求解切线的斜率;d. 根据切点的坐标和斜率,写出切线的方程。

三、例题讲解(15分钟)1. 讲解一个简单的例题,让学生理解圆的切线的求解过程;2. 引导学生思考如何应用圆的切线知识解决实际问题。

四、课堂练习(15分钟)1. 布置一些练习题,让学生巩固圆的切线知识;2. 引导学生互相讨论,共同解决问题。

五、总结与拓展(5分钟)1. 总结圆的切线的定义和性质,以及求解圆的切线方程的方法;2. 提出一些拓展问题,激发学生的学习兴趣,如:圆的切线与圆的割线有何不同?如何求解圆的割线方程?教学反思:本节课通过讲解圆的切线的定义、性质和求解方法,让学生掌握了圆的切线的基本知识。

在教学过程中,注意引导学生思考和讨论,提高学生的学习兴趣和参与度。

同时,通过课堂练习和拓展问题,巩固了学生的知识,并激发了学生的学习兴趣。

但在教学过程中,也要注意对于一些基础较差的学生,要适当放慢讲解速度,确保他们能够跟上课堂进度。

圆的切线的判定(教案)

圆的切线的判定(教案)

圆的切线的判定(教案)第一章:引言教学目标:1. 理解圆的切线的概念。

2. 能够识别圆的切线。

教学内容:1. 引入圆的切线的定义。

2. 解释圆的切线与圆的关系。

教学方法:1. 使用图形和实物模型来展示圆的切线。

2. 通过示例来说明圆的切线的特点。

教学活动:1. 引导学生观察和描述圆的切线。

2. 让学生通过实际操作来绘制圆的切线。

练习题:1. 判断给定的线段是否是圆的切线。

第二章:切线的判定条件教学目标:1. 掌握圆的切线的判定条件。

2. 能够判断一条直线是否是圆的切线。

教学内容:1. 介绍圆的切线的判定条件。

2. 解释判定条件的意义。

教学方法:1. 通过图形和示例来解释判定条件。

2. 使用问题来引导学生思考和理解判定条件。

教学活动:1. 让学生通过观察和分析图形来发现判定条件。

2. 引导学生通过逻辑推理来验证判定条件。

练习题:1. 判断给定的直线是否是圆的切线。

第三章:切线的性质教学目标:1. 理解圆的切线的性质。

2. 能够应用切线的性质解决几何问题。

教学内容:1. 介绍圆的切线的性质。

2. 解释切线性质的应用。

教学方法:1. 使用图形和实物模型来说明切线性质。

2. 通过示例来展示切线性质的应用。

教学活动:1. 引导学生观察和描述切线的性质。

2. 让学生通过实际操作来应用切线性质解决几何问题。

练习题:1. 应用切线性质解决给定的几何问题。

第四章:切线与弦的关系教学目标:1. 理解圆的切线与弦的关系。

2. 能够判断切线与弦的位置关系。

教学内容:1. 介绍圆的切线与弦的关系。

2. 解释切线与弦位置关系的判定方法。

教学方法:1. 使用图形和示例来说明切线与弦的关系。

2. 通过问题来引导学生思考和理解切线与弦的位置关系。

教学活动:1. 引导学生观察和描述切线与弦的位置关系。

2. 让学生通过实际操作来判断切线与弦的位置关系。

练习题:1. 判断给定的切线与弦的位置关系。

第五章:综合应用教学目标:1. 能够综合运用圆的切线的判定和性质解决几何问题。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线判定1.1 引入:复习圆的定义和基本概念,引出切线的概念。

1.2 讲解:讲解圆的切线的判定条件,即切线与半径垂直。

1.3 例题:给出几个判断题,让学生判断给定的直线是否为圆的切线。

1.4 练习:让学生独立判断一些直线是否为圆的切线,并解释原因。

第二章:圆的切线性质2.1 引入:复习上一章的内容,引出圆的切线性质。

2.2 讲解:讲解圆的切线的性质,如切线与半径垂直,切线与圆只有一个交点等。

2.3 例题:给出几个关于圆的切线性质的题目,让学生解答。

2.4 练习:让学生独立解答一些关于圆的切线性质的题目,并解释原因。

第三章:圆的切线方程3.1 引入:复习上一章的内容,引出圆的切线方程的求法。

3.2 讲解:讲解如何求解圆的切线方程,包括切点在圆内和切点在圆外的情况。

3.3 例题:给出几个求解圆的切线方程的题目,让学生解答。

3.4 练习:让学生独立求解一些圆的切线方程,并解释原因。

第四章:圆的切线与圆的位置关系4.1 引入:复习上一章的内容,引出圆的切线与圆的位置关系。

4.2 讲解:讲解圆的切线与圆的位置关系,包括相切、相离和相交的情况。

4.3 例题:给出几个关于圆的切线与圆的位置关系的题目,让学生解答。

4.4 练习:让学生独立解答一些关于圆的切线与圆的位置关系的题目,并解释原因。

第五章:圆的切线与圆的切点5.1 引入:复习上一章的内容,引出圆的切线与圆的切点的关系。

5.2 讲解:讲解圆的切线与圆的切点的关系,如切线与切点的切线垂直,切线与切点的切线相交于切点等。

5.3 例题:给出几个关于圆的切线与圆的切点的题目,让学生解答。

5.4 练习:让学生独立解答一些关于圆的切线与圆的切点的题目,并解释原因。

第六章:圆的切线与圆的切线6.1 引入:复习上一章的内容,引出圆的切线与圆的切线的关系。

6.2 讲解:讲解圆的切线与圆的切线的关系,如两条切线相交于圆内一点,两条切线平行等。

圆的切线的判定教案

圆的切线的判定教案
看谁说得最好
教学小结
识别一条直线是圆的切线,有三种方法(1)根据切线定义判定(2)根据圆心到直线的距离来判定(3)根据直线的位置关系来判定
课后反思
3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:(1)直线经过半径的外端点;(2)直线垂直于半径.这样我们就得到了从位置上来判断直线是圆的切线的
方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线.
三、课堂练习
思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?
请学生回顾作图过程,切线是如何作出来的?它满足哪些条件?引导学生总结出:①经过半径外端;②垂直于这条半径.
请学生继续思考:这两个条件缺少一个行不行?(学生画出反例图)
理解并识记圆的切线的几种பைடு நூலகம்法,并比较应用。
通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。
试验体会圆的位置判别方法
教学过程及方法
问题与情境及教师活动
学生活动
(1)直线经过半径外端,但不与半径垂直;(2)直线与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
武邑宏达学校初中部教师课时教案
备课人
杨艳婷
授课时间
2012-4-26
课题
圆的切线的判定
课标要求
掌握切线的判别方法
教学目标
知识目标
使学生掌握切线的识别方法,并能初步运用它解决有关问题
技能目标
理解切线的判定定理和性质定理.使学生掌握切线的识别方法
情感态度
培养学生观察、分析、归纳问题的能力
重点
切线的判定定理
理解位置判别方法的两个要素。
教学过程及方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆的切线的判定》教学设计
福田河中心学校 成利华
教学目标:1、理解切线的判定定理,并并能初步运用它解决简单的问题。

2、知道判定切线的常用的三种方法,初步掌握方法的选择。

3、掌握在解决切线的问题中常用的辅助线的作法。

情感态度:通过判定定理的学习,培养学生观察、分析和归纳问题的能力,并
激发学生学习数学的兴趣;。

教学重点:切线的判定定理的理解和应用。

教学难点:理解切线判定定理的中的两个条件:一是经过半径的外端;二是直
线垂直于这条半径。

教学过程:
一、创设情景,导入新课。

问题:直线和圆有几种位置关系?你是如何来判断这几种位置关系的? 在学生回答后再展示相应的位置关系及判断的方法:
判断的方法:(1)根据直线与圆的交点的个数;
(2)圆心到直线的距离与圆的半径的大小关系。

教师强调:图(2)中的直线与圆相切,我们可以通过上述两种方法来判断它们的位置关系。

但在实际问题中如果我们始终用寻找交点的个数和圆心到直线的距离来判断很不方便,也难于操作,还有没有其它的方法呢?(引导学生思考)
二,启发学生,探究新知。

1、待学生思考后,可能没有什么发现。

我们可以让
学生在观察刚才的图(2),提示学生可再任作一条半径。

如图(4)所示:
教师引导:回顾图(2)中判断直线l 与圆相
切的方法:利用圆心O 到直线l 的距离等于圆
的半径。

2、教师启发:
(1)你能否把上面的文字叙述的条件改成数学语言呢?
可由学生积极思考,讨论,然后给出参考的答案: 距离OA :改写成OA ⊥l; 等于半径:改写成OA =r;
垂足A 在半径OA 上且为半径的一个端点。

(2)你能尝试在不改变句子意思的条件下把上面的文字叙述的命题
图(4)l
A
O r
改成意思相同的命题吗?
学生改写后交流,然后在集体讨论交流的基础上得出: 经过半径的外端并且垂直于这条半径的直线是圆的切线。

(这就是我们今天要学习的内容:圆的切线的判定,并板书课题)
(3)熟悉定理,分析命题的题设和结论,并能用几何语言表示它们。

如图:题设两条件:①经过半径的外端;②垂直于这条半径。

几何语言的表示:∵直线l ⊥OA ,l 经过半径OA 的外端 ∴直线l 为圆O 的切线。

教师强调:上述两个条件缺一不可。

(4)学生思考:为什么不能缺少条件?能否举出反例。

图(6)经过半径的外端但不与半径垂直;图(7)与直线垂直,但没有经过半径的外端,都不是圆的切线。

加强学生的认识,判断圆的切线时,这两个条件缺一不可。

三,互动深化。

1、例1,如图(8),已知△ABC 内接于,⊙O
的直径AE 交BC 于点F ,点B 在BC 的延长线上,且CAP =∠ABC ;求证:PA 是⊙O 的切线。

分析:依据题目的条件有半径OA 且PA 经过OA 的外端,对照定理只须证pA ⊥OA 就可以了。

证明:连接CE ∵AE 是⊙A 的直径 ∴∠ACE =90° ∴∠E+∠EAC =90°
∵∠E =∠ABC ∠ABC =∠CAP ∴∠E =∠CAP
∴∠CAP+∠EAC =∠E+∠EAC =90° 即∠OAP =90º
∴PA ⊥OA ,且PA 经过A 点 ∴PA 为的⊙O 切线。

教师点评:依据定理判断切线时对照定理需要的条件,看已知条件满足其中的什么条件,再证明或查找另一个条件就可以了。

2、教学例2,如图(10),CD 是△ABC 中AB 图(8)
图10
G
A D
图(5)
A
边上的高,以CD 为直径的⊙O 分别交CA ,CB 于点E 、F ,点G 是AD 的中点,求证:GE 是⊙O 的切线。

分析:E 是GE 上的点又是⊙0上的一点,连接DE 就是⊙O 的半径,对照判定定理只需证明GE ⊥OE 就行。

证明:连接OE ﹑DE
∵CD 是⊙O 的直径 ∴∠AED =∠CED =90° ∵G 是AD 的中点 ∴EG =1/2 AD =DG ∴∠DEG =∠EDG ∵OE =OD
∴∠DEO =∠EDO
∴∠DEG+∠DEO =∠EDG +∠EDO 即∠EOG =∠CDA ∵CD ⊥AB
∴∠CDA =90°
∴∠EGO =∠CDA =90° ∵DE 是⊙O 半径 ∴GE 是⊙O 的切线。

教师点评:在已知条件中当这条直线过圆上某一个点时,通常情况下,先连接圆心与这个公共点就成为半径,然后再证明直线与这条半径垂直。

3、教学例3,如图(13),在△ABC 中,AD ⊥BC 于D ,且AD =½BC ,E 、F 分别是AB 、AC 的中点,O 为EF 的中点。

求证:以EF 为直径的圆O 与BC 相切。

分析:本题对照切线的判定方法都没有可用的条件,既没半径,又没垂直,可过O 作OH ⊥BC 于H 。

证明:过O 作OH ⊥BC 于H
∵E 、F 是AB 、AC 的中点
∴EF =1/2 BC M 是AD 的中点,MD =1/2 AD ∵AD =1/2 BC
∴EF =AD ∴MD =1/2 EF ∵AD ⊥BC OH ⊥BC ∴OH ∥MD
则四边形OHDM 是矩形 ∴OH =MD =1/2 EF ∴OH 为⊙O 的半径. 又∵OH ⊥BC
∴以EF 为直径的圆O 与BC 相切。

教师点评:证明切线时,已知条件没有直接可用的条件,既没有公共点,
图(12)B
C D H
也没有垂直时,通常情况下,可以过圆心作这条直线的垂线,然后再证明这条垂线段等于半径。

四,应用创新
1﹑如图(9),AB 是⊙O 的直径,∠ABT =45°,AT =AB 。

求证:AT 是⊙O 的切线。

2﹑如图Rt △ABC 中,∠ABC =9O °,以AB 为直径的⊙O 交AC 于点E 、点D 是BC 的中
点、连接DE 。

求证:DE 与⊙O 相切。

3﹑如图△ABC 中,AB =AC ,O 是BC 的中点,⊙O 与AB 相切于点D.
五,课堂小结
1、切线的判定定理。

2、判定一条直线是圆的切线的方法。

(1)定义:直线和圆有唯一公共点。

(2)数量关系:直线到圆心的距离等于半径。

(3)判定定理:经过半径的外端且与这条半径垂直的直线是圆的切线。

3、辅助线作法:
(1)有公共点:作半径证垂直。

(2)无公共点:作垂直证半径。

六,反馈评价。

1、如图,AB 是⊙O 的直径,∠BAC =30°,M 是OA
上一点,过M 作AB 垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E 。

求证:CF 是⊙O 的切线。

(有公共点的情况)
2、如图、DB 是圆O 的直径,点A 在BD 的延长线上AB =OB ,∠CAD =30° 求证:AC 是⊙O 的切线。

(属于没有公共点的
情况)
图(15)
A
图(11)
C
D B
图(13)
C 图(14)A B T。

相关文档
最新文档