初中几何圆切线题目解析
初三圆的切线试题及答案
初三圆的切线试题及答案
一、选择题
1. 下列说法正确的是()
A. 圆的切线垂直于过切点的半径
B. 圆的切线与过切点的半径垂直
C. 圆的切线与过切点的直径垂直
D. 圆的切线与过切点的弦垂直
答案:B
2. 经过圆外一点作圆的切线,下列说法正确的是()
A. 只能作一条
B. 能作两条
C. 能作无数条
D. 不能作
答案:B
二、填空题
3. 已知圆的半径为5,圆心到切线的距离为3,则切线的长度为______。
答案:4√2
4. 圆的直径为10,切线与直径的夹角为30°,则切线的长度为______。
答案:5√3
三、解答题
5. 已知圆O的半径为2,点A在圆外,OA=4,求经过点A的圆O的切
线长。
答案:首先,连接OA,设切点为B。
由题意知,OA=4,OB=2。
在直角
三角形OAB中,根据勾股定理,AB²=OA²-OB²=4²-2²=12,所以
AB=2√3。
由于切线与半径垂直,所以切线长为2√3。
6. 圆的半径为3,圆心到切线的距离为2,求切线与圆心的夹角。
答案:设切线与圆心的夹角为θ,根据切线的性质,圆心到切线的距
离等于半径乘以sinθ,即2=3sinθ。
解得sinθ=2/3。
由于θ在0°到90°之间,所以θ=arcsin(2/3)。
专题 证明圆的切线的常用方法(六大题型)(解析版)
(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。
初三圆的切线试题及答案
初三圆的切线试题及答案一、选择题1. 圆的切线与圆相切于一点,该点称为切点。
圆的切线有以下哪个特征?A. 切线与半径垂直B. 切线与直径平行C. 切线与切点的半径垂直D. 切线与圆心的距离等于半径答案:C2. 已知圆的半径为5,点A到圆心的距离为7,那么点A到圆的切线距离是多少?A. 2B. 3C. 4D. 5答案:A二、填空题1. 圆的切线与圆相切于______,并且切线与该点的半径垂直。
答案:切点2. 如果圆的半径为r,点P到圆心的距离为d,当d > r时,点P到圆的切线距离为d - r;当d < r时,点P到圆的切线距离为______。
答案:r - d三、解答题1. 如图,圆O的半径为3,点P在圆O上,PA是圆O的切线,PA垂直于OP,求PA的长度。
解:由于PA是圆O的切线,根据切线的性质,我们知道PA与OP 垂直,且PA的长度等于OP的长度减去半径的长度。
因此,PA的长度为OP - 3。
由于OP是半径,所以OP = 3。
代入公式得PA = 3 - 3 = 0。
但这个结果显然是错误的,因为PA不可能为0。
这里需要重新审视题目,如果题目没有错误,那么可能是题目本身存在问题。
2. 已知圆的半径为5,点A在圆上,点B在圆外,AB是圆的切线,且AB垂直于过圆心的直线l,求点B到圆心O的距离。
解:由于AB是圆的切线,且AB垂直于过圆心的直线l,我们可以知道OA = 5(半径),并且由于AB垂直于l,根据勾股定理,我们可以计算出OB的长度。
设OB = x,那么根据勾股定理,我们有:\[ x^2 = OA^2 + AB^2 \]由于AB垂直于OA,所以AB的长度等于OA的长度,即AB = 5。
代入公式得:\[ x^2 = 5^2 + 5^2 = 50 \]解得x = √50 ≈ 7.07。
结束语:通过上述试题,我们可以看到圆的切线问题涉及到切线的性质、勾股定理以及几何图形的构造。
解决这类问题需要对圆的性质有深入的理解,并且能够灵活运用几何知识。
初中圆切线试题及答案
初中圆切线试题及答案一、选择题1. 圆的切线与过切点的半径垂直,这是圆的切线性质中的哪一条?A. 切线与半径垂直B. 切线与直径垂直C. 切线与切点垂直D. 切线与圆心垂直答案:A2. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 无法确定答案:C3. 圆的切线与圆的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:B二、填空题4. 圆的切线与过切点的半径垂直,因此圆的切线与_________垂直。
答案:过切点的半径5. 如果圆的半径为r,圆心到直线的距离为d,那么直线与圆相切的条件是_________。
答案:d = r三、解答题6. 已知圆O的半径为4,圆心O到直线l的距离为3,求证:直线l是圆O的切线。
证明:由题意知,圆心O到直线l的距离d=3,圆的半径r=4。
因为d=r,所以直线l与圆O相切。
7. 已知圆的半径为6,圆心到直线的距离为5,求圆与直线的交点个数。
解:由于圆心到直线的距离d=5小于圆的半径r=6,所以直线与圆相交,交点个数为2个。
四、计算题8. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,直线方程为3x + 4y - 15 = 0,求直线与圆的切线方程。
解:首先求圆心坐标,圆心为(2, 3)。
计算圆心到直线的距离d,利用点到直线距离公式:\[ d = \frac{|3*2 + 4*3 - 15|}{\sqrt{3^2 + 4^2}} = \frac{|6 + 12 - 15|}{5} = 1 \]由于d=1,直线与圆相切。
设切线方程为3x + 4y + c = 0,将圆心坐标代入得:\[ 3*2 + 4*3 + c = 0 \]\[ 6 + 12 + c = 0 \]\[ c = -18 \]所以切线方程为3x + 4y - 18 = 0。
中考真题;切线的判定与性质(答案详解)
中考复习:切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线;(2)EM =FM 。
:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。
求证:AC 是⊙O 的切线。
》【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。
<(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。
•例1图321MFOEDCB A例2图 EO D C B A •例3图321OD C BA探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。
(1)求∠G 的余弦值;!(2)求AE 的长。
【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。
,(1)求∠POQ ;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。
(|•问题一图 G F E O DCB A 问题二图NQ P EO DC BA答案精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
圆的切线中考原题解析
辅导:圆的切线(一)学习要求:【学习目标】1.了解切线的概念,探索切线与过切点的半径之间的关系.2.能判定一条直线是否为圆的切线,理解切线的判定定理、性质定理.3.会过圆上点画圆的切线.【学习重点】切线判定定理、性质定理的区别与应用.(二)知识要点:1.直线是圆的切线.2.直线l与⊙O相切于点A,OA是过切点的半径,直线l与半径OA位置关系如何?圆的切线经过的半径.(三)例题展现:问题1:(2012•衢州第21题)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.问题2:(2012•丽水第20题)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.(四)自我体会:1、(2012山东省荷泽市,11,3)如图,PA 、PB 是⊙o 的切线,A 、B 为切点,AC 是⊙o 的直径,若∠P=46∘,则∠BAC=______.2、(2012•扬州)如图,P A 、PB 是⊙O 的切线,切点分别为A 、B 两点,点C 在⊙O 上,如果ACB =70°,那么∠P 的度数是 .3、(2012海南)如图,∠APB=300,圆心在边PB 上的⊙O 半径为1cm ,OP=3cm ,若⊙O 沿BP 方向移动,当⊙O 与直线PA 相切时,圆心O 移动的距离为 cm.4、(2012•黄石)如图(4)所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且2AB =,1AD =,P 点在切线CD 上移动.当APB ∠的度数最大时,则ABP ∠的度数为( )A. 15°B. 30°C. 60°D. 90°5、(2012山西,9,2分)如图,AB 是⊙O 的直径,C .D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )A . 40°B . 50°C .60°D .70°6、(2012•嘉兴第4题)如图,AB 是⊙0的弦,BC 与⊙0相切于点B ,连接OA 、OB .若∠ABC=70°,则∠A 等于( )A .15°B .20°C .30°D .70°7、(2012•扬州)如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的切线,垂足为D .(1)求证:AC 平分BAD ;(2)若AC =2,CD =2,求⊙O 的直径.第6题 第4题 第5题 第1题 第2题第3题8、(2012湖北随州,23,10分) 如图,已知直角梯形ABCD,∠B=90°,AD∥BC,并且AD+BC=CD,O为AB的中点.(1)求证:以AB为直径的⊙O与斜腰CD相切;(2)若OC=8cm,OD=6cm,求CD的长.9、(2012湖南衡阳市,26,8)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B 作直线BF∥CD交AD的延长线于点F,若AB=10cm.(1)求证:BF是⊙O的切线.(2)若AD=8cm,求BE的长.(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.310、(2012•扬州)如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①直接写出点E的坐标:.②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P 的半径.问题1:考点:切线的判定;相似三角形的判定与性质。
初三圆的切线练习题及答案
初三圆的切线练习题及答案圆的切线是数学中的重要概念,初三学生需要通过练习来巩固和掌握相关的知识。
下面是一些圆的切线练习题及答案,供初三学生参考。
题目一:已知圆O的半径为6cm,A为圆上一点,B为圆上与A相对应的点,且AB为圆的直径。
点C为圆上任意一点,点D为OC的垂足。
求证:OC是∠ACD的平分线。
(解析)解:首先,连接OD、AD。
由于AB是圆的直径,所以∠BAD为直角。
因为AO、OD都是半径,所以AO=OD。
又因为∠OAD=∠ODA,所以△AOD是等腰三角形。
根据等腰三角形的性质,可知∠DAO=∠DOA。
又因为∠DAB=90°,所以∠ODA+∠DAB=90°。
所以∠ODA+∠DAB=∠DAO+∠DOA。
整理得到∠ODA=∠DAO。
因此,OC是∠ACD的平分线。
已知圆O的半径为8cm,切线AB与半径OC相交于点D,且CD = 14cm。
求证:AD = 2BD。
(解析)解:首先,连接OD、AO、BO。
根据切线与半径的性质,可知∠ODB=90°,∠OAB=90°。
所以△ODB与△OAB共边且有一个角是90°,因此△ODB≌△OAB。
根据等腰三角形的性质,可知OD=OA。
设AD=x,BD=y。
根据勾股定理可得:x²+y²=OD²①由于△ODB≌△OAB,所以AD=2y。
根据勾股定理可得:(2y)²+y²=OA²②由于OD=OA,所以OD²=OA²。
代入上式,得到:化简得到:x²=2y²由于AD=2y,所以x=2y。
所以AD=2BD。
答案一:OC是∠ACD的平分线。
答案二:AD = 2BD。
通过以上的练习题及答案,初三学生可以加强对圆的切线性质的理解与掌握。
希望同学们通过不断地练习与思考,能够熟练运用相关知识解决实际问题。
祝大家学习进步!。
中考九年级证明圆的切线例题方法
切线证明法一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E,∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒⌒∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3. DC∴∠3+∠4=900.即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB,∴△OBC是等边三角形.∴OB=BC.D ∵OB=BD,∴OB=BC=BD.∴OC⊥CD.∴DC是⊙O的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA2=OD·OP,OA=OC,∴OC2=OD·OP,OCOPOD OC. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.证明:取FG 中点O ,连结OC.∵ABCD 是正方形,∴BC ⊥CD ,△CFG 是Rt △ ∵O 是FG 的中点, ∴O 是Rt △CFG 的外心. ∵OC=OG , ∴∠3=∠G , ∵AD ∥BC , ∴∠G=∠4.∵AD=CD ,DE=DE ,∠ADE=∠CDE=450, ∴△ADE ≌△CDE (SAS )∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE ⊥AB ,DF ⊥AC , ∴DE=DF. ∴F 在⊙D 上.∴AC 与⊙D 相切.说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB.∵AC ∥BD ,∴∠1+∠2+∠3+∠4=1800. ∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900. ∵∠4+∠5=900. ∴∠1=∠5.∴Rt △AOC ∽Rt △BDO. ∴OD OCOB AC =. ∵OA=OB ,∴ODOCOA AC =. 又∵∠CAO=∠COD=900, ∴△AOC ∽△ODC , ∴∠1=∠2.又∵OA ⊥AC ,OE ⊥CD,O∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD与⊙O相切于B,∴AO的延长线必经过点B.∴AB是⊙O的直径.∵AC∥BD,OA=OB,CF=DF,∴OF ∥AC , ∴∠1=∠COF.∵∠COD=900,CF=DF , ∴CF CD OF ==21. ∴∠2=∠COF. ∴∠1=∠2.∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.此题较难,需要同学们利用所学过的知识综合求解. 以上介绍的是证明圆的切线常用的两种方法供同学们参考.切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
圆的切线证明 中考数学专项训练(含答案解析)
圆的切线证明(1)求证:CD 为O 切线;(2)若1CD =,5AC =,求PB (1)求证:CD 是O 的切线;(2)若16ABCD S =正方形,求CE3.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F 连接OF 交AD 于点G .(1)求证:BC 是O 的切线;(2)若60OFA ∠=︒,半径为4,在圆O 上取点P ,使15PDE ∠=︒,求点P 到直线DE 的距离.4.如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果20AB =,12CD =,求AE 的长.5.如图,O 是ABC 的外接圆,O 点在BC 边上,BAC ∠的平分线交O 于点D ,连接BD 、CD ,过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)若3AB =,4AC =,求线段BD 的长.6.如图,已知以Rt ABC △的直角边AB 为直径作O ,与斜边AC 交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是O 的切线;(2)若AD ,AB 的长是方程210240x x -+=的两个根,求直角边BC 的长.(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求图中阴影部分的面积.(1)求证:DE 是O 的切线;(2)若2AB =,30C ∠=︒,求9.如图,AB 为O 的直径,C ,D 为O 上的两点,BAC DAC ∠=∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若30CAO ∠=︒,2BC =,求CE 的长.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得ACQ ABC ∠=∠.(1)求证:直线PQ 是O 的切线.(2)过点A 作AD PQ ⊥于点D ,交O 于点E ,若O 的半径为2,30DAC ∠=︒,求图中阴影部分的面积.11.如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线;(2)若6AB =,求阴影部分的面积12.如图,AB 是ABC 外接圆O 的直径,PA 是O 的切线,BD OP ∥,点D 在O 上.(1)求证:PD 是O 的切线.(2)若ABC 的边6cm AC =,8cm BC =,I 是ABC 的内心,求IO 的长度.13.如图,AB 是O 的直径,AC 是弦,点D 是O 上一点,OD AB ⊥,连接CD 交AB 于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 是O 的切线;(2)若8CF =,4BF =,求弧BD 的长度.14.如图所示,在Rt ABC △中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆O ,分别与BC 、AB 相交于点D 、E ,连接AD ,已知CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若23AD CD ==时,求阴影部分的面积.(1)求证:PA是O(2)若tan CAD∠=(3)延长CD,AB交于点(1)求证:DE BG=;(2)求证:BF是O的切线;(3)若23DEEG=时,AE(1)当60A ∠=︒,2AD =时,求(2)求证:DF 是O 的切线.(1)求证:DF 是O (2)若 BE DE =,tan(1)求证:直线AB 为O 的切线;(2)若4tan 3A =,O 的半径为2,求AB (1)求证:BF 是O 的切线;(2)若6EF =,cos ABC ∠①求BF 的长;②求O 的半径.参考答案:∵CD AE ⊥,∴90ADC ∠=︒,∵OC OA =,∴OCA OAC ∠=∠,∵的平分线AC 交O 于∵AB 为O 直径,∴90ACB ∠=︒,∴90ADC ACB ∠=∠=︒,∵DAC OAC ∠=∠,∴,【点睛】此题重点考查正方形的性质、等腰三角形的性质、切线的判定、平行线分线段成比例定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.3.(1)见解析(2)232-或423-【分析】(1)连接OD ,可得(2)①过点P 作PN DE ⊥交交于H ,可求60EOD ∠=︒,即可求解;②连接OD ,OP 60EOD ∠=︒,30POE ∠=︒,可证求解.【详解】(1)解:如图,连接∴OA OD =,∴ODA OAD ∠=∠,AD 是BAC ∠的平分线,, ∠=︒PDE15=,PE PE ∴∠=︒POE30,OA OF∠=︒60OFA=,∴∠=︒,OAF60∠的平分线, AD是BAC同理可求60EOD ∠=︒,30POE ∠=︒,1302DOL EOD ∴∠=∠=︒,30DOP EOD POE ∠=∠-∠=︒,DOP DOL ∴∠=∠,AB 是O 的直径,90ACB ∴∠=︒,AO OB =,AB CD ⊥ ,AB ∴平分弦CD ,AB 平分 CD,CH HD ∴=, CBDB =,90CHA CHE ∠=︒=∠,BAD BAC DCB ∴∠=∠=∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴BDC 为直角三角形,∵E 为BC 边上的中点,∴ED EB =,∴12∠=∠,∵OB OD =,3=4∠∠∵AB AC =,∴A ABC CB =∠∠,设OB OD r ==,∴ABC ODB ∠=∠,∵AB AC =,23CD =,C ∠=∴23BD CD ==,30B C ∠=∠=∴1803030120BOD ∠=︒-︒-︒=︒OF BD ⊥==OB OD AB AC,∴∠=∠,B CB ODB∠=∠∴∠=∠.ODB C∴∥.OD AC,=OA OC∴∠=∠,OAC OCAQ,∠=∠DAC BAC∴∠=∠,DAC OCA∥,∴AD OC,EF AD⊥∴⊥,而OC为半径,EF OC的切线;∴是OEF的直径,(2)解:AB为O(1)根据题意连接OC ,可知90ACB ∠=︒,可知AOC 是等腰三角形,OAC OCA ∠=∠,继而可证90OCD ∠=︒;(2)连接OE ,过点E 作EF AB ⊥,根据题意可知60EAO ∠=︒即可得知AEO △为等边三角形,再求出扇形AOE 面积减去AEO △的面积即为阴影面积.【详解】(1)解:连接OC ,,∵OA OC =,AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒,∴AOC 是等腰三角形,∴OAC OCA ∠=∠,∵ACQ ABC ∠=∠,∴90ACQ OCA ∠+∠=︒,∴OC PQ ⊥,∴直线PQ 是O 的切线;(2)解:连接OE ,过点E 作EF AB ⊥,,∵AD PQ ⊥,ACQ ABC ∠=∠,∴30DAC CAB ∠=∠=︒,∴60EAO ∠=︒,∵AB 为O 的直径,∴90ADB ∠=︒,∵BD OP ∥,∴OP AD ⊥,OP 是AD 的垂直平分线,∴PD PA =,则IU IV IQ ==,∵AB 为O 的直径,∴90ACB ∠=︒,∵6cm AC =,8cm BC =,∴226810AB =+=,5OB OA ==(2)3π.【分析】本题考查了切线的判定,求弧长;(1)如图,连接OC ,OD .证明90OCF ∠=︒即可;(2)设O 的半径为r ,在Rt COF △中,勾股定理可得6r =,再根据弧长公式可解决问题.【详解】(1)证明:连接OCCF EF= CEF ECF∴∠=∠OD AB⊥ 90DOE ∴∠=︒,90ODE OED ∴∠+∠=︒,OD OC = ,ODE OCD ∴∠=∠,CEF OED ∠=∠ ,OED ECF ∴∠=∠,90OCD ECF ∴∠+∠=︒,即90OCF ∠=︒,OC CF ∴⊥,CF ∴是O 的切线.(2)设O 的半径为r ,∵4BF =,∴4OF r =+,在Rt OCF 中,90,∠=︒ACB∴∠+∠CAD ADC=,OB OD∴∠=∠,B ODB则sin 30OH OD =⋅ODB S S S ∴=-阴影扇形∴CAD BAD ∠=∠,∴5CD BD ==,∵AB 为直径,点∴90ADB ∠=︒,∵2DOB DAB ∠=∠=∠又∵DFO CFA ∠=∠,∴DOF CAF ∽,又∵OB BF OA ==,∴23DF FO FC FA ==,∴90EHB BGF ∠=∠=︒,∵点C 为劣弧BD 中点,∴ CDBC =,∴DAC BAC DBC ∠=∠=∠∵AD 是O 的直径,∴90AED ∠=︒,∵60A ∠=︒,2AD =∴30ADE ∠=︒,则12AE =∴2222DE AD AE =-=∵AD 是直径,∴90AED ∠=︒,∴1809090DEB ∠=︒-︒=︒∵四边形ABCD 为菱形,∴DBE DBF ∠=∠,AD ∥∵BE BF =,DB DB =,∴()SAS DBE DBF ≌,∴90DFB DEB ∠=∠=︒,∵AD BC ∥,∴90ADF DFB ∠=∠=︒,∴AD DF ⊥,∵AD 为直径,∴DF 是O 的切线.【点睛】本题主要考查了直径所对的圆周角为直角,含30度角的直角三角形的性质,勾股定理,切线的判定,解题的关键是作出辅助线,熟练掌握切线的判定方法.18.(1)见解析(2)52AB 是O 的直径,90ADB ∴∠=︒,90BDC ∴∠=︒,90BDF CDF ∠∠∴+=︒,OB OD = ,OBD ODB ∴∠=∠,CDF ABD ∠∠= ,ODB CDF ∠∠∴=,90ODB BDF ∴∠+∠=︒,90ODF ∴∠=︒,DF OD ∴⊥,OD 是O 的半径,DF ∴是O 的切线;(2)如图,连接AE ,∵ BEDE =,BAE CAE ∴∠=∠,AB 是O 的直径,90AEB ∴∠=︒,90AEC ∴∠=︒,AEB AEC ∴∠=∠,∵OC OD =,∴OCD ODC ∠=∠.设OCD ODC α∠=∠=,∴22A BCD α∠=∠=.∵90ACB ∠=︒,。
人教版九年级数学上册《圆的切线》题组训练(含答案解析)
提技能·题组训练切线的判定1.如图,△ABC的一边AB是☉O的直径,请你添加一个条件,使BC是☉O的切线,你所添加的条件为.【解析】当△ABC为直角三角形时,即∠ABC=90°时,BC与圆相切,∵AB是☉O的直径,∠ABC=90°,∴BC是☉O的切线(经过半径外端,与半径垂直的直线是圆的切线).答案:∠ABC=90°2.如图,已知点A是☉O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.则AB (填“是”或“不是”)☉O的切线.【解析】连接OA,∵OC=BC,AC=OB,∴∠OAB=90°,∴AB是☉O的切线.答案:是3.如图,点A,B,D在☉O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与☉O的位置关系为.【解析】∵∠A=25°,∴∠BOD=50°,又∵∠OCB=40°,∴∠OBC=90°,∴BC为☉O的切线.答案:相切4.(2013·牡丹江中考)如图,点C是☉O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是☉O的切线.(2)若半径OB=2,求AD的长.【解析】(1)连接OD,如图,则有BO=BD=BC=DO,∴∠C=∠CDB,∠DOB=∠BDO.又∵∠C+∠CDB+∠DOB+∠BDO=180°,∴∠CDB+∠BDO=90°,即∠CDO=90°,∴CD是☉O的切线.(2)∵OB=2,∴BD=OB=2,AB=4.∵AB是直径,∴∠ADB=90°,∴AD=2.【方法技巧】证明一条直线是圆的切线的常用方法1.当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”.2.当直线和圆公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”.切线的性质1.(重庆中考)如图,AB是☉O的切线,B为切点,AO与☉O交于点C,若∠BAO=40°,则∠OCB的度数为( )A.40°B.50°C.65°D.75°【解析】选C.∵AB是☉O的切线,∴∠OBA=90°,∴∠O=90°-∠BAO=90°-40°=50°,又∵O B=OC,∴∠OCB=∠OBC=(180°-50°)=65°.2.(2013·黔西南州中考)如图所示,线段AB是☉O的直径,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于( )A.50°B.40°C.60°D.70°【解析】选A.连接OC,∵CE为切线,∴∠OCE=90°,∵∠CDB=20°,∴∠COE=40°,∴∠E=50°.3.(济南中考)如图,AB是☉O的直径,点D在☉O上,∠BAD=35°,过点D作☉O的切线交AB的延长线于点C,则∠C= .【解析】连接OD,则∠ODC=90°,∠DOC=2∠BAD=70°,因此∠C=90°-70°=20°.答案:20°4.(永州中考)如图,已知△ABC内接于☉O,BC是☉O的直径,MN与☉O相切,切点为A,若∠MAB=30°.则∠B= .【解析】连接OA,则OA⊥MN,由于∠MAB=30°,所以∠OAB=90°-30°=60°,而OA=OB,所以∠B=∠OAB=60°.答案:60°5.如图,AB为☉O的直径,BC切☉O于B,CO交☉O于D,AD的延长线交BC于E,若∠C=25°,求∠A的度数.【解析】∵AB为☉O的直径,BC切☉O于B,∴∠ABC=90°.∵∠C=25°,∴∠BOC=65°.∵∠A=∠BOD,∴∠A=32.5°.【知识归纳】关于切线性质的五点理解1.切线与圆只有一个公共点.2.切线和圆心的距离等于半径.3.切线垂直于过切点的半径.4.经过圆心且垂直于切线的直线必过切点.5.经过切点且垂直于切线的直线必过圆心.注意:对于任意一条直线,如果具备下列条件中的两个,就可以推出第三个结论:①垂直于切线;②经过切点;③经过圆心.【错在哪?】作业错例课堂实拍如图,直线AB,CD相交于点O,∠AOC=30°,半径为1cm的☉P的圆心在射线OA上,且与点O的距离为6cm,如果☉P以1cm/s的速度沿由A向B的方向移动,那么☉P与直线CD相切时运动时间为秒.(1)错因:.(2)纠错:.答案:(1)☉P在点O的左右两边各相切一次,本题错在只考虑了一种情况,而遗漏另一种情况(2)作PE⊥CD于E.若☉P与直线CD相切,则PE=1,当点P在OA上时,此时OP=2PE=2,则☉P需要移动6-2=4(cm),需要时间4s;当点P在OB上时,此时OP=2PE=2,则☉P需要移动6+2=8(cm),需要时间8s。
专题08 切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题
专题08 切线的判定与性质概念规律重在理解1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径,BC ⊥OA于A。
则BC为⊙O的切线。
注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线。
2.判断一条直线是一个圆的切线有三个方法:(1)定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2)数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.证切线时辅助线的添加方法(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.4.有切线时常用辅助线添加方法见切点,连半径,得垂直.5.切线的其他重要结论(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.6.切线的性质定理:圆的切线垂直于经过切点的半径.直线l是⊙O 的切线,A是切点,直线l ⊥OA.说明:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.典例解析掌握方法【例题1】(2021吉林长春)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35°B.45°C.55°D.65°【答案】C【解析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.【例题2】(2021广西玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【答案】见解析。
中考数学总复习《圆的切线证明》专题训练(附带答案)
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
中考数学专题圆的切线
中考(Kao)数学专题圆的切线第(Di)一部分真题(Ti)精讲【例(Li)1】已知:如(Ru)图,AB为(Wei)⊙O的直(Zhi)径,⊙O过(Guo)AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.【例2】已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为⊙O的切线;(2)若,,求⊙O的半径.【例(Li)3】已知:如(Ru)图,点D是(Shi)⊙的(De)直径延长线(Xian)上一点,点在(Zai)⊙O上(Shang),且(1)求(Qiu)证:是⊙O的切线;(2)若点是劣弧BC上一点,与BC相交于点,且,,求⊙O的半径长.【例4】如图,等腰三角形中,,.以BC为直径作⊙O交于点D,交于点,,垂足为F,交的延长线于点E.(1)求证:直线是⊙O的切线;(2)求的值.【例5】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.第(Di)二部分发散(San)思考【思(Si)考1】如(Ru)图,已(Yi)知AB为(Wei)⊙O的(De)弦,C为(Wei)⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。
同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。
第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。
【思考2】已知:AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径等于4,,求CD的长.【思路分析】本题也是非常典型的通过角度变换来证明90°的题目。
中考数学考点《圆的切线的证明》专项练习题-附答案
中考数学考点《圆的切线的证明》专项练习题-附答案学校:班级:姓名:考号:1.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC与⊙D相切.2.已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.3.如图,点C在以AB为直径的⊙O上,弧AC=1弧BC,经过点C与⊙O相切的直线CE交BA的延长线2于点D,连接BC,过点D作DF∥BC.求证:DF是⊙O的切线.4.如图,Rt△ABC中∠C=90°,点O是AB边上一点,以OA为半径作⊙O,与边AC交于点D,连接BD,若∠DBC=∠A,求证:BD是⊙O的切线.5.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)6.如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.7.如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.8.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O 在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.9.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.10.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:DE是⊙O的切线(2)若DE=3,⊙O的半径为5,求BF的长11.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)12.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为√5,OP=1,求BC的长.13.如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长.14.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.15.如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=13,BC=10,求CE的长.16.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4 √2,求EF的长.17.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)连接BT,若⊙O半径为1,AT= √3,求BT的长.18.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.19.如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD 交AC于点F,延长AC到点P,连接PB.(1)若PF=PB,求证:PB是⊙O的切线;(2)如果AB=10,BC=6,求CE的长度.答案解析1.证明:过点D作DF⊥AC于F,如图所示:∵AB为⊙D的切线∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切.2.【解答】证明:∵AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE ∴AB⊥CD∵BF∥CD∴BF⊥AB∴BF是⊙O的切线.3.解:连接OC,过点O作OG⊥DF,垂足为G弧BC∵弧AC =12∴∠AOC=13∠AOB=60°∴∠ABC=12∠AOC=30°∵CE切⊙O于点C∴OC⊥CE,即∠DCO=90°∴在ΔDOC中∵DF//CB∴∠ABC=∠GDO=30°∴∠CDO=∠GDO,即DO平分∠CDG∵OC⊥CE,OG⊥DF ∴OC=OG(角平分线性质)∴OG是⊙O的半径∴DF是⊙O的切线(垂径定理).4.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO.∵∠C=90°∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=180°﹣(∠ADO+∠CDB)=90°.∴直线BD与⊙O相切.5.(1)证明:如图1,连接BD、OD∵AB是⊙O直径∴BD ⊥AC∵AB=BC∴AD=DC∵AO=OB∴OD 是△ABC 的中位线∴DO ∥BC∵DE ⊥BC∴DE ⊥OD∵OD 为半径∴DE 是⊙O 切线;(2)解:如图2所示,连接OG ,OD∵DG ⊥AB ,OB 过圆心O∴弧BG=弧BD∵∠A=35°∴∠BOD=2∠A=70°∴∠BOG=∠BOD=70°∴∠GOD=140°∴劣弧DG 的长是140π×5180=359π.6.解:(1)证明:连接OG∵弦CD ⊥AB 于点H∴∠HKA+∠KAH=90°∵EG=EK∴∠EGK=∠EKG∵∠HKA=∠GKE∴∠HAK+∠KGE=90°∵AO=GO∴∠OAG=∠OGA∴∠OGA+∠KGE=90°∴GO⊥EF∴EF是⊙O的切线;(2)解:连接CO,在Rt△OHC中∵CO=13,CH=12∴HO=5∴AH=8∵AC∥EF∴∠CAH=∠F∴tan∠CAH=tan∠F=128=32在Rt△OGF中,∵GO=13∴FG=13tan∠E =263.7.解:(1)AD是⊙O的切线,理由如下:连接OA∵∠B=30°∴∠O=60°∵OA=OC∴∠OAC=60°∵∠CAD=30°∴∠OAD=90°又∴点A在⊙O 上∴AD是⊙O的切线;(2)∵∠OAC=∠O=60°∴∠OCA=60°∴△AOC是等边三角形∵OD⊥AB∴OD垂直平分AB∴AC=BC=5∴OA=5即⊙O的半径为5.8.(1)证明:连接OD,在△AOD中,OA=OD∴∠A=∠ODA又∵∠A+∠CDB=90°∴∠ODA+∠CDB=90°∴∠BDO=180°-90°=90°,即OD⊥BD ∴BD与⊙O相切.(2)解:连接DE,∵AE是⊙O的直径∴∠ADE=90°∴DE∥BC.又∵D是AC的中点,∴AE=BE.∴△AED∽△ABC.∴AC∶AB=AD∶AE.∵AC∶AB=4∶5令AC=4x,AB=5x,则BC=3x.∵BC=6,∴AB=10∴AE=5,∴⊙O的直径为5.9.(1)连接OA∵DA平分∠BDE∴∠BDA=∠EDA.∵OA=OD∴∠ODA=∠OAD∴∠OAD=∠EDA∴OA∥CE.∵AE⊥DE∴∠AED=90°.∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线;(2)∵BD是直径∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°∴∠BDE=120°.∵DA平分∠BDE∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°∴BD=2AD=4DE.∵DE的长是1cm∴BD的长是4cm.10.(1)证明:如图(1)连接OD.∵AD平分∠BAC,∴∠1=∠2.又∵OA="OD" ,∴∠1=∠3.∴∠2="∠3."∴OD∥AE.∵DE⊥AE∴DE⊥OD.而D在⊙O上∴DE是⊙O的切线.(2)过D作DG⊥AB 于G.∵DE⊥AE ,∠1=∠2.∴DG="DE=3" ,半径OD=5.在Rt△ODG中,根据勾股定理: OG===4 ∴AG=AO+OG=5+4=9.∵FB是⊙O的切线, AB是直径∴FB⊥AB.而DG⊥AB∴DG∥FB. △ADG∽△AFB∴∴.∴BF=.11.(1)解:直线CD与⊙O相切∵在⊙O中,∠COB=2∠CAB=2×30°=60°又∵OB=OC∴△OBC是正三角形∴∠OCB=60°又∵∠BCD=30°∴∠OCD=60°+30°=90°∴OC ⊥CD又∵OC 是半径∴直线CD 与⊙O 相切.(2)解:由(1)得△OCD 是Rt △,∠COB=60° ∵OC=1∴CD= √3∴S △COD = 12 OC •CD= √32又∵S 扇形OCB = π6∴S 阴影=S △COD ﹣S 扇形OCB = √32−π6=3√3−π6 .12.(1)证明:连接OB ,如图∵OP ⊥OA∴∠AOP=90°∴∠A+∠APO=90°∵CP=CB∴∠CBP=∠CPB而∠CPB=∠APO∴∠APO=∠CBP∵OA=OB∴∠A=∠OBA∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90° ∴OB ⊥BC∴BC 是⊙O 的切线;(2)解:设BC=x ,则PC=x在Rt △OBC 中,OB= √5 ,OC=CP+OP=x+1 ∵OB 2+BC 2=OC 2∴( √5 )2+x 2=(x+1)2解得x=2即BC 的长为2.13.(1)证明:连接OC,OC交BD于E∵∠CDB=30°∴∠COB=2∠CDB=60°∵∠CDB=∠OBD∴CD∥AB又∵AC∥BD∴四边形ABDC为平行四边形∴∠A=∠D=30°∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC 又∵OC是⊙O的半径∴AC是⊙O的切线(2)解:由(1)知,OC⊥AC.∵AC∥BD∴OC⊥BD∴BE=DE∵在直角△BEO中,∠OBD=30°,OB=4∴BE=OBcos30°=2 √3∴BD=2BE=4 √314.(1)解:∵AB是⊙O直径,C在⊙O上∴∠ACB=90°又∵BC=3,AB=5∴由勾股定理得AC=4(2)解:证明:连接OC∵AC是∠DAB的角平分线∴∠DAC=∠BAC又∵AD⊥DC∴∠ADC=∠ACB=90°∴△ADC∽△ACB∴∠DCA=∠CBA又∵OA=OC∴∠OAC=∠OCA∵∠OAC+∠OBC=90°∴∠OCA+∠ACD=∠OCD=90°∴DC是⊙O的切线.15.(1)证明:连接OD∵D为BC的中点,O为AB的中点∴OD∥AC;∵DE⊥AC∴DE⊥OD∴DE是圆O的切线(2)解:连接 AD∵AB是直径∴AD⊥BC;∵D为BC的中点∴AD 是BC 的垂直平分线∴AC=AB=13;∵∠C=∠C ,∠DEC=∠ADC=90°∴△CDE ∽△CAD∴EC CD = DC AD ,而AC=AB=13,CD= 12 BC=5 ∴CE= 2513 .16.(1)证明:连接OD∵AD 平分∠CAB∴∠OAD=∠EAD .∵OD=OA∴∠ODA=∠OAD .∴∠ODA=∠EAD .∴OD ∥AE .∵∠ODF=∠AEF=90°且D 在⊙O 上 ∴EF 与⊙O 相切.(2)证明:连接BD ,作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB=90°∵AB=6,AD=4 √2∴BD= √AB 2−AD 2 =2∵OD=OB=3设OG=x ,则BG=3﹣x∵OD 2﹣OG 2=BD 2﹣BG 2,即32﹣x 2=22﹣(3﹣x )2 解得x= 73∴OG= 73∴DG= √OD2−OG2 = 43√2∵AD平分∠CAB,AE⊥DE,DG⊥AB∴DE=DG= 43√2∴AE= √AD2−DE2 = 163∵OD∥AE∴△ODF∽△AEF∴DFEF =ODAE,即EF−EDEF=ODAE∴EF−43√2EF=3163∴EF= 6421√2.17.(1)证明:连接OT,如图1所示:∵OA=OT∴∠OAT=∠OTA又∵AT平分∠BAD∴∠DAT=∠OAT∴∠DAT=∠OTA∴OT∥AC又∵CT⊥AC∴CT⊥OT∴CT为⊙O的切线(2)解:连接BT,如图2所示:∵AB是⊙O直径∴AB=2,∠ATB=90°∴BT= √AB2−AT2 = √22+(√3)2 =1.18.(1)解:连接OC .∵AC=BC ,AD=CD ,OB=OC∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2∴∠ACO=∠DCO+∠1=∠BCD又∵BD 是直径∴∠BCD=90°∴∠ACO=90°又C 在⊙O 上∴AC 是⊙O 的切线(2)解:由题意可得△DCO 是等腰三角形 ∵∠CDO=∠A+∠2,∠DOC=∠B+∠1∴∠CDO=∠DOC ,即△DCO 是等边三角形. ∴∠A=∠B=∠1=∠2=30°,CD=AD=2 在直角△BCD 中BC= √BD 2−CD 2 = √42−22 =2 √3 . 又AC=BC∴AC=2 √3 .作CE ⊥AB 于点E .在直角△BEC 中,∠B=30°∴CE= 12 BC= √3∴S △ABC = 12 AB •CE= 12 ×6× √3 =3 √3 .19.(1)证明:∵PF=PB∴∠PFB=∠PBF又∵∠DFE=∠PFB∴∠DFE=∠PBF∵AB 是圆的直径∴∠ACB=90°,即AC ⊥BC . 又∵OD ∥BC∴OD ⊥AC .∴在直角△DEF 中,∠D+∠DFE=90° 又∵OD=OB∴∠D=∠DBO∴∠DBO+∠PBE=90°,即PB ⊥AB ∴PB 是⊙O 的切线;(2)解:∵OD ∥BC ,OA=OB ∴OE= 12 BC= 12 ×6=3.∵OD ⊥AB∴EC=AE .∵在直角△OAE 中,OA= 12 AB= 12 ×10=5∴AE= √OA 2−OE 2 = √52−32 =4. ∴EC=4。
圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练
圆切线的判定与性质综合(3大类题型)重难点题型归纳【题型1证圆的切线-有公共点:连半径,证垂直】【题型2证圆的切线-没有公共点:作垂直,证半径】【题型3圆切线的判定与性质综合】满分必练【题型1证圆的切线-有公共点:连半径,证垂直】1(2023春•保德县校级期中)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.【答案】见解答.【解答】证明:连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODE=∠AED=90°,∴半径OD⊥DE,∴DE是⊙O的切线.2(2022秋•大连期末)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.求证:CD是⊙O的切线.【答案】见试题解答内容【解答】解:连OD,如图,∵∠ADE=60°,∠C=30°,∴∠A=∠ADE-∠C=60°-30°=30°,又∵OD=OA,∴∠ODA=∠A=30°,∴∠EDO=90°,所以CD是⊙O的切线.3(2022秋•龙川县校级期末)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求证:AB是⊙O的切线.【答案】见解答.【解答】证明:∵∠AOB=70°,∠B=20°,∴∠OAB=180°-∠B-∠AOB=90°,∴OA⊥AB,∵OA是⊙O的半径,∴AB是⊙O的切线.4(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.【答案】见解析.【解答】证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,在⊙D中,AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-∠ADC-∠C=180°-60°-30°=90°,∴AD⊥AC,又∵DA是半径,∴AC是⊙D的切线.5(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.【答案】见试题解答内容【解答】证明:连接OD,∵AO=OB,D为AC的中点,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线.6(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB= AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【答案】证明过程见解答.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.7(2022•昭平县一模)如图,AB是⊙O的弦,OP⊥AB交⊙O于C,OC=2,∠ABC=30°.(1)求AB的长;(2)若C是OP的中点,求证:PB是⊙O的切线.【答案】见试题解答内容【解答】(1)解:连接OA、OB,如图,∵∠ABC=30°,OP⊥AB,∴∠AOC =60°,∴∠OAD =30°,∴OD =12OA =12×2=1,∴AD =3OD =3,又∵OP ⊥AB ,∴AD =BD ,∴AB =23;(2)证明:由(1)∠BOC =60°,而OC =OB ,∴△OCB 为等边三角形,∴BC =OB =OC ,∠OBC =∠OCB =60°,∴C 是OP 的中点,∴CP =CO =CB ,∴∠CBP =∠P ,而∠OCB =∠CBP +∠P ,∴∠CBP =30°∴∠OBP =∠OBC +∠CBP =90°,∴OB ⊥BP ,∴PB 是⊙O 的切线.8(2022•漳州模拟)已知:△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E .求证:DE 是⊙O 的切线.【答案】见试题解答内容【解答】证明:连接OD ,∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,∴BD =DC ,∵BO =OA ,∴OD ∥AC ,∴∠ODE =180°-∠AED =90°,∴DE 是⊙O 的切线.9(2022秋•芜湖期末)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,AC =CD =DB,DE ⊥AC .求证:DE 是⊙O 的切线.【答案】见解析.【解答】证明:连接OD ,∵AC =CD =DB,∴∠BOD =13×180o =60o ,∵CD =DB ,∴∠EAD =∠DAB =12∠BOD =30°,∵OA =OD ,∴∠ADO =∠DAB =30°,∵DE ⊥AC ,∴∠E =90°,∴∠EAD +∠EDA =90°,∴∠EDA =60°,∴∠EDO =∠EDA +∠ADO =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.【题型2证圆的切线-没有公共点:作垂直,证半径】10(2022秋•长乐区期中)如图,在△OAB 中,OA =OB =5,AB =8,⊙O 的半径为3.求证:AB 是⊙O 的切线.【答案】证明见解析.【解答】证明:如图,过O 作OC ⊥AB 于C ,∵OA =OB ,AB =8,∴AC =12AB =4,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3,∵⊙O 的半径为3,∴OC 为⊙O 的半径,∴AB 是⊙O 的切线.11(2022•八步区一模)如图,在Rt △ABC 中,∠BAC 的角平分线交BC 于点D ,E 为AB 上一点,DE =DC ,以D 为圆心,DB 的长为半径作⊙D ,AB =5,BE =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【解答】(1)证明:过点D 作DF ⊥AC 于F ;∵AB 为⊙D 的切线,∴∠B =90°,∴AB ⊥BC ,∵AD 平分∠BAC ,DF ⊥AC ,∴BD =DF ,∴AC 与⊙D 相切;(2)解:在△BDE 和△DCF 中;BD =DF DE =DC ,∴Rt △BDE ≌Rt △DCF (HL ),∴EB =FC .∵AB =AF ,∴AB +EB =AF +FC ,即AB +EB =AC ,∴AC =5+3=8.12(秋•莆田期末)如图,半圆O 的直径是AB ,AD 、BC 是两条切线,切点分别为A 、B ,CO 平分∠BCD .(1)求证:CD 是半圆O 的切线.(2)若AD =20,CD =50,求BC 和AB 的长.【解答】(1)证明:过点O 作OE ⊥CD ,垂足为点E ,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD-DE=50-20=30,∴BC=30,∴CF=BC-BF=10,在Rt△CDF中,由勾股定理得:DF=DC2-CF2=502-102=206,∴AB=DF=206,∴BC的长为30,AB的长为206.【题型3 圆切线的判定与形式综合】13(2023•银川校级四模)如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.(1)求证:⊙D与AC相切;(2)若AC=5,BC=3,试求AE的长.【答案】见试题解答内容【解答】(1)证明:过D 作DF ⊥AC 于F ,∵∠B =90°,∴AB ⊥BC ,∵CD 平分∠ACB 交AB 于点D ,∴BD =DF ,∴⊙D 与AC 相切;(2)解:设圆的半径为x ,∵∠B =90°,BC =3,AC =5,∴AB =AC 2-BC 2=4,∵AC ,BC ,是圆的切线,∴BC =CF =3,∴AF =AB -CF =2,∵AB =4,∴AD =AB -BD =4-x ,在Rt △AFD 中,(4-x )2=x 2+22,解得:x =32,∴AE =4-3=1.14(2022秋•五莲县期中)如图,O 为正方形ABCD 对角线上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E .(1)求证:CD 是⊙O 的切线;(2)若正方形ABCD 的边长为10,求⊙O 的半径.【答案】见试题解答内容【解答】(1)证明:连接OE ,并过点O 作OF ⊥CD .∵BC 切⊙O 于点E ,∴OE ⊥BC ,OE =OA ,又∵AC 为正方形ABCD 的对角线,∴∠ACB =∠ACD ,∴OF =OE =OA ,即:CD 是⊙O 的切线.(2)解:∵正方形ABCD 的边长为10,∴AB =BC =10,∠B =90°,∠ACB =45°,∴AC =AB 2+BC 2=102,∵OE ⊥BC ,∴OE =EC ,设OA=r,则OE=EC=r,∴OC=OE2+EC2=2r,∵OA+OC=AC,∴r+2r=102,解得:r=20-102.∴⊙O的半径为:20-102.15(2023•甘南县一模)如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.(1)求证:直线CD是⊙O的切线;(2)若AB=4,∠DAB=60°,求AD的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图1所示:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴CD⊥OC,又∵OC是⊙O的半径,∴直线CD是⊙O的切线;(2)解:连接BC,如图2所示:∵AB是⊙O的直径,∴∠ACB=90°,∵AC平分∠DAB,∠DAB=60°,∴∠DAC=∠BAC=30°,AB=2,AC=3BC=23,∴BC=12∵AD⊥DC,∴∠ADC=90°,AC=3,AD=3CD=3.∴CD=1216(2023•夹江县模拟)如图,已知AB是⊙O的直径,BC⊥AB于点B,D是⊙O上异于A、B的一个动点,连接AD,过O作OC∥AD交BC于点C.(1)求证:CD是⊙O的切线;(2)若EA=1,ED=3,求⊙O的半径.【答案】(1)见解答;(2)4.【解答】解:(1)如图,连接OD,由OD=OA得:∠OAD=∠ODA,∵OC∥AD,∴∠DOC=∠ODA,∠BOC=∠OAD,∴∠DOC=∠BOC,又∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC,∵BC⊥AB,∴∠ODC=∠OBC=90°,又∵D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为x,则:OD=x,OA=x+1,∵CD是⊙O的切线,∴∠ODE=90°,在Rt△ODE中,由勾股定理得:ED2+OD2=OE2,∴32+x2=(x+1)2,解得:x=4,∴⊙O的半径为4.17(2022秋•盘山县期末)如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C的直线与AB的延长线相交于点P,且AC=PC,∠P=30°.(1)求证:PC是⊙O的切线;(2)若AB=6,求PC的长.【答案】(1)证明见解析;(2)33.【解答】(1)证明:如图所示,连接OC,∵AC=PC,∠P=30°,∴∠A=∠P=30°,∴∠BOC=2∠A=60°,∴∠PCO=180°-∠P-∠POC=90°,即OC⊥PC,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB=6且AB是⊙O的直径,∴OC=1OA=3,2在Rt△POC中,∠PCO=90°,∠P=30°,∴OP=2OC=6,∴PC=PO2-OC2=33.18(2023春•东营期末)如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【答案】见试题解答内容【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HPA=∠HPB,∵OP=OH,∴∠OHP=∠HPA,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB 是⊙O 的切线;(2)如图,过点O 作OE ⊥PC ,垂足为E ,∵OE ⊥PC ,OH ⊥BH ,BP ⊥BH ,∴四边形EOHB 是矩形,∴OE =BH =4,OH =BE ,∴CE =OH -2,∵OE ⊥PC∴PE =EC =OH -2=OP -2,在Rt △POE 中,OP 2=PE 2+OE 2,∴OP 2=(OP -2)2+16∴OP =5,∴AP =2OP =10,∴⊙O 的直径是10.19(2023•汉川市模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,直线BF 与AD 延长线交于点F ,且∠AFB =∠ABC .(1)求证:直线BF 是⊙O 的切线;(2)若CD =12,BE =3,求⊙O 的半径.【答案】(1)证明见解析;(2)152.【解答】(1)证明:∵AC =AC ,∴∠ABC =∠ADC ,∵∠AFB =∠ABC ,∴∠ADC =∠AFB ,∴CD ∥BF ,∵CD ⊥AB ,∴AB ⊥BF ,∵OB 为⊙O 的半径.∴直线BF 是⊙O 的切线;(2)解:设⊙O 的半径为R ,连接OD ,如图,∵AB ⊥CD ,CD =12,∴CE =DE =12CD =6,∵BE =3,∴OE =R -3,在Rt △OED 中,∵OE2+DE2=OD2,∴R2=(R-3)2+62,解得:R=15 2.即⊙O的半径为15 2.20(2022秋•斗门区期末)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若PA=4,PC=BC,求⊙O的半径.【答案】(1)见解析;(2)4.【解答】(1)证明:连接OC,则OC=OB,∴∠OBC=∠OCB,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACP=∠OBC,∴∠ACP=∠OCB,∴∠OCP=∠OCA+∠ACP=∠OCA+∠OCB=∠ACB=90°,∵PC经过⊙O的半径OC的外端,且PC⊥OC,∴PC与⊙O相切.(2)解:∵PC=BC,∴∠P=∠B,∵∠ACP=∠B,∴∠ACP=∠P,∴CA=PA=4,∵∠OCP=90°,∴∠ACO+∠ACP=90°,∠AOC+∠P=90°,∴∠ACO=∠AOC,∴CA=OA=OC=4.21(2023•黑龙江模拟)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=10,BD=3,求AE的长.【答案】(1)见解析;(2)658.【解答】(1)证明:(1)连接OC ;∵AE ⊥CD ,CF ⊥AB ,又CE =CF ,∴∠1=∠2.∵OA =OC ,∴∠2=∠3,∠1=∠3.∴OC ∥AE .∴OC ⊥CD .∴DE 是⊙O 的切线.(2)解:∵OC ⊥ED ,AB =10,BD =3,∴OB =OC =5.CD =OD 2-OC 2=39,∵S △OCD =12OC ⋅CD =12OD ⋅CF ,即12×5×39=125+3 ⋅CF ,∴CF =5398,∴OF =OC 2-FC 2=658,∴AF =OA +OF =5+258=658,在Rt △AEC 和Rt △AFC 中,CE =CF ,AC =AC ,∴Rt △AEC ≌Rt △AFC (HL ),∴AE =AF =658.22(2023•宿豫区三模)如图,Rt △ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交BD 的延长线于点E ,CE =BC .(1)求证:CE 是⊙O 的切线;(2)若CD =2,BD =2,求⊙O 的半径.【答案】见试题解答内容【解答】解:(1)如图,连接OE,∵∠ACB=90°,∴∠1+∠5=90°.∵CE=BC,∴∠1=∠2.∵OE=OD,∴∠3=∠4.又∵∠4=∠5,∴∠3=∠5,∴∠2+∠3=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线.(2)在Rt△BCD中,∠DCB=90°,CD=2,BD=25,BC=CE=4.设⊙O的半径为r,则OD=OE=r,OC=r+2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.23(2023•东港区校级三模)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,点D在AB上,且以AD为直径的⊙O经过点E.(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.【答案】(1)证明见解析;(2)3.【解答】(1)证明:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,∵∠C=90°,∴∠OEC =90°,∴OE ⊥BC ,∵OE 为半径,∴BC 是⊙O 切线;(2)解:∵AD =3BD ,设BD =2x ,则AD =6x ,∴AO =OD =OE =3x ,∴OB =5x ,在Rt △OBE 中,根据勾股定理得:OE 2+BE 2=OB 2,∴(3x )2+42=(5x )2,∴x =1,∴OE =3x =3,∴⊙O 半径为3.24(2023•泗县校级模拟)如图,在Rt △ABC 中,∠ACB =90°,以AB 为直径作⊙O ,在⊙O 上取一点D ,使CD =BC,过点C 作EF ⊥AD ,交AD 的延长线于点E ,交AB 的延长线于点F .(1)求证:直线EF 是⊙O 的切线;(2)若AB =10,AD =6,求AC 的长.【答案】(1)见详解;(2)45.【解答】(1)证明:连接OC ,如图,∵CD =CB,∴∠EAC =∠CAB ,∵EF ⊥AD ,∴∠EAC +∠ACE =90°,∵OC =OA ,∴∠CAB =∠OCA ,∴∠EAC =∠OCA ,∴∠ACO +∠ACE =90°,即半径OC ⊥EF ,∴EF 是⊙O 的切线;(2)解:连接BD ,交OC 于点G ,如图,∵AE ⊥EF ,OC ⊥EF ,∴AE ∥OC ,∵O 为AB 为中点,∴OG 为△ABD 中位线,∴OG=1AD=3,DG=BG,2∴DG=BG=CE,DB⊥OC,GC=OC-OG=2,∵AB=10,∴OB=5,∴BG=OB2-OG2,∴DG=BG=4,∵AE⊥EF,OC⊥EF,DB⊥OC,∴四边形DECG是矩形,∴DE=CG=2,EC=DG=4,∴AE=8,∴在△AEC中,AC=AE2+EC2=45.25(2023•荔湾区校级一模)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为2,求EF的长度.【答案】(1)证明见解析;(2)12.【解答】(1)证明:如图所示,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图所示,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴DC=12BC=1,FC=12AC=1.∵∠EDC=30°,∴EC=12DC=12.∴EF=FC-EC=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各位同学:
大家好!
今天我们讲有关圆切线的题目,在讲题之前我们先大致把圆切线的有关定义和定理回顾一下:
1)直线与圆相切定义:如果一条直线和圆只有一个公共点,那么就说这条直线与圆相切。
2)切线判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
3)切线的性质定理:圆的切线垂直于经过切线的半径
当我们求证直线与圆相时,我们把问题总归纳为三点:
1)直线与圆相交(交点)
2)圆心到交点的连线=r (等径)
3)圆心到该交点的连线该直线;(垂径)
三要素
(顺序可倒)
3垂径可以通过:一、全等/相似、二、射线或线段平行、三、角互余原理
先举一例:
一、证全等/相似:
1、如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M. 求证:PC是⊙O的切线.
1)交点C
2)OC=r
3)OC PC (证PAB PCO)
2(相似)、
二、证平行:
证平行例题之2:
三、证角互余:
四、未知交点的圆切线证明:
回顾三要素:交点、等径、垂径
好,今天给大家分享了圆切线的三种证明方法,我以前常在平台里讲到大家最好是学会归类和细分,尽量形成一种模式,比如圆切线,我们扩展下去,它有几种解法,我们给它归类,可扫掉盲区。
下面给大家留几道题、、、、这几道题包括我们刚才讲的几种解题思路,有不清楚的可以平台上问,我们再交流,好的,同学们,今天的课就讲到这里,同学们再见!。