蒙特卡洛方法模拟小例子

合集下载

风险定量分析工具龙卷风图决策树形图蒙特卡洛模拟

风险定量分析工具龙卷风图决策树形图蒙特卡洛模拟

风险定量分析⼯具龙卷风图决策树形图蒙特卡洛模拟龙卷风图:是项⽬管理中⽤于在风险识别和定性分析之后,进⾏定量风险分析的技术----敏感性分析技术中最常⽤的⼀种图表技术。

敏感性分析:敏感性分析有助于确定哪些风险对项⽬具有最⼤的潜在影响。

它把所有其他不确定因素保持在基准值的条件下,考察项⽬的每项要素的不确定性对⽬标产⽣多⼤程度的影响。

敏感性分析最常⽤的显⽰⽅式是龙卷风图。

龙卷风图有助于⽐较具有较⾼不确定性的变量与相对稳定的变量之间的相对重要程度。

它因其显⽰形式像龙卷风⼀样⽽得名。

图例请见图⽚。

___________________________________________________________________________________________风险定量分析⼯具之龙卷风图https:///rongwenbin/article/details/9301091龙卷风图(TornadoDiagram)是在风险定量分析中采⽤的⼀种对单因素敏感性分析的⼯具。

因其图形状像龙卷风,因此⽽得名。

主要⽤来分析在其它因素单个较⾼不确定性因素和其它相对稳定因素之间的相对重要程度。

⼀个标准的龙卷风图如下图所⽰。

图中,X轴表⽰各因素对结果的影响的取值范围。

Y轴表⽰各不确定性因素的名称,它们对结果的影响值和它们本⾝的取值。

对每⼀个不确定的决定因素,该图都包含了⼀个横杆和两组数字(分别在横杆的左边和右边)。

每组数字对应着该因素对结果的影响值(上⾯的数字,负数⽤括号括住了)和该因素本⾝的值(下⾯的数字,花括号内)。

_________________________________________________________________________________________决策树形图:按照当前数据集的不同属性特征将其划分为不同分⽀节点(数据⼦集),直到每⼀个节点的所有样本数据都属于同⼀类别分⽀属性停⽌划分,最终形成“树状”分⽀结构图形。

蒙特卡罗算法举例

蒙特卡罗算法举例

蒙特卡罗算法举例
蒙特卡罗算法(Monte Carlo algorithm)是一种基于随机样本的计算方法,它通过模拟大量的随机数据来获得问题的概率性结果。

这种算法可以用于估计数学问题、物理问题、金融问题以及其他实际应用中的复杂问题的解。

下面将以几个实际例子来说明蒙特卡罗算法的应用。

例1:估计圆周率π的值
具体步骤:
1.在正方形内生成大量均匀分布的随机点。

2.统计落入圆形内的点的数量。

3.通过落入圆形的点的数量与总点数的比例来估计π的值。

例2:绘制希腊国旗
具体步骤:
1.建立一个正方形区域。

2.在正方形区域内随机生成大量的点。

3.统计每个小正方形内的点的数量。

4.将每个小正方形的点的数量转化为绘制像素点的比例。

例3:计算投资回报率的概率分布
具体步骤:
1.建立资产的收益率分布模型,可使用历史数据进行参数估计。

2.随机生成资产的未来收益率。

3.根据资产的权重计算投资组合的回报率。

4.迭代多次,统计投资组合回报率的概率分布。

例4:模拟森林火灾蔓延的概率
具体步骤:
1.建立一个森林地区的模型,包括地形、植被分布等信息。

2.随机生成火源的起始位置。

3.模拟火势的蔓延规律,考虑风向、植被密度等因素。

4.统计火灾烧毁的面积。

以上是几个蒙特卡罗算法的应用示例。

蒙特卡罗算法的优点是可以解决复杂问题,并提供概率性结果。

但需要注意的是,结果的准确性受到样本数量的影响,样本数量越大,结果越接近真值。

此外,算法的运行效率也是一个需要考虑的因素。

MonteCarlo模拟

MonteCarlo模拟
② float lewis(){ static long double seed=12345; seed=fmod(seed*16807., 2147483647.); return(seed/2147483647.);}
Lewis算法既通过了直方图检验,又通过了相关性检验。
13
三、按概率分布抽样
模 拟
模拟次数k:如1000次。
19
五、Monte Carlo模拟结果的分析
描述n的概率分布情况:
平均值、标准方差、分布密度、分布函数
✓ 期望,用所有的n的和除以n的个数,则得n的平均值。 类似的方法可求得方差。
✓ 分布密度和分布函数可由直方图得到。
✓ 直方图:分成若干个小区间,如100~109,110~119,
落入不规则图形内的飞镖数与落入正方形内的总飞镖数的比 值就越接近μ。
8
Monte Carlo模拟依靠计算机产生的随机数来模拟实际系统。
产生[0,1]区间内均匀分布的随机数。用两个随机数表示一 个点在正方形上的具体位置,判断该点是否落在不规则图形 内。记录落在不规则图形内部的点数和试验的总次数,两者 比值就是μ。
6
什么是Monte Carlo模拟? 随机数生成器 按概率分布抽样 Monte Carlo模拟的流程 Monte Carlo模拟结果的分析 编程模拟
7
一、什么是Monte Carlo模拟?
例 计算一个正方形中的不规则图形的面积。
模型:Ai = μAs = μs2,其中0≤μ≤1。 Monte Carlo方法的本质:在随机情况下,如果投的足够多,
采用Monte Carlo模拟,获得n的概率密度函数和分布函 数,并计算n的平均值和标准方差。
比较这三种方法的结果,并比较每种方法的精度及 其能够提供的信息。

Monte-Carlo模拟教程

Monte-Carlo模拟教程

举例
例1 在我方某前沿防守地域,敌人以一个炮排(含两门火炮) 为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地 进行了伪装并经常变换射击地点.
经过长期观察发现,我方指挥所对敌方目标的指示有50%是准 确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁 伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮.
蒙特卡罗方法的关键步骤在于随机数的产生, 计算机产生的随机数都不是真正的随机数(由算 法确定的缘故),如果伪随机数能够通过一系列 统计检验,我们也可以将其当作真正的随机数 使用。
rand('seed',0.1);
rand(1) %每次运ra行nd程('s序tat产e',s生um的(1值00*是clo相ck同)*r的and);
E = P(A0) = P(j=0)P(A0∣j=0) + P(j=1)P(A0∣j=1)
= 1 0 1 1 0.25 2 22
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1)
= 10 11 1 2 23 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
非常见分布的随机数的产生
• 逆变换方法
由定理 1 ,要产生来自 F(x) 的随机数,只要先 产生来自U (0,1) 随机数 u ,然后计算 F 1(u) 即 可。具体步骤如下:
(1) 生成 (0,1)上 均匀分布的随机数U。
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
蒙特卡罗方法的基本思想很早以前就被人们所发现和 利用。早在17世纪,人们就知道用事件发生的“频率” 来决定事件的“概率”。19世纪人们用蒲丰投针的方法 来计算圆周率π,上世纪40年代电子计算机的出现,特别 是近年来高速电子计算机的出现,使得用数学方法在计算 机上大量、快速地模拟这样的试验成为可能。

马尔科夫计算例题

马尔科夫计算例题

马尔科夫计算例题
马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)是一种统计模拟方法,用于从复杂的分布中抽样。

以下是一个简单的马尔科夫链蒙特卡洛计算例题:
假设我们有一个随机变量 \(X\),其分布是 \(P(X)\)。

我们的目标是计算
\(P(X)\) 的期望值,也就是:
\(\text{E}[X] = \int x P(x) dx\)
但是,直接计算这个积分是非常困难的。

因此,我们使用马尔科夫链蒙特卡洛方法来近似这个积分。

步骤如下:
1. 初始化一个随机数 \(x_0\) 作为当前状态。

2. 生成一个随机数 \(r\) 服从均匀分布 \(U(0,1)\)。

3. 计算接受率 \(A = \min(1, \frac{P(x_i)}{P(x_j)})\),其中 \(j\) 是 \(r\) 落入的区间中的状态。

4. 以概率 \(A\) 接受 \(x_j\) 作为新的状态 \(x_{i+1}\)。

5. 如果接受,回到步骤 2;否则,令 \(i = i+1\) 并回到步骤 2。

6. 重复步骤 2-5,直到达到足够的样本数量。

然后,我们可以用这些样本的平均值来近似期望值。

这是一个简单的例子,实际上马尔科夫链蒙特卡洛方法可以用于更复杂的问题,如高维积分、优化问题等。

蒙特卡洛算法

蒙特卡洛算法

引言最近在和同学讨论研究Six Sigma(六西格玛)软件开发方法及CMMI相关问题时,遇到了需要使用Monte-Carlo算法模拟分布未知的多元一次概率密度分布问题。

于是花了几天时间,通过查询相关文献资料,深入研究了一下Monte-Carl o算法,并以实际应用为背景进行了一些实验。

在研究和实验过程中,发现Monte-Carlo算法是一个非常有用的算法,在许多实际问题中,都有用武之地。

目前,这个算法已经在金融学、经济学、工程学、物理学、计算科学及计算机科学等多个领域广泛应用。

而且这个算法本身并不复杂,只要掌握概率论及数理统计的基本知识,就可以学会并加以应用。

由于这种算法与传统的确定性算法在解决问题的思路方面截然不同,作为计算机科学与技术相关人员以及程序员,掌握此算法,可以开阔思维,为解决问题增加一条新的思路。

基于以上原因,我有了写这篇文章的打算,一是回顾总结这几天的研究和实验,加深印象,二是和朋友们分享此算法以及我的一些经验。

这篇文章将首先从直观的角度,介绍Monte-Carlo算法,然后介绍算法基本原理及数理基础,最后将会和大家分享几个基于Monte-Carlo方法的有意思的实验。

所以程序将使用C#实现。

阅读本文需要有一些概率论、数理统计、微积分和计算复杂性的基本知识,不过不用太担心,我将尽量避免过多的数学描述,并在适当的地方对于用到的数学知识进行简要的说明。

Monte-Carlo算法引导首先,我们来看一个有意思的问题:在一个1平方米的正方形木板上,随意画一个圈,求这个圈的面积。

我们知道,如果圆圈是标准的,我们可以通过测量半径r,然后用S = pi * r^2 来求出面积。

可是,我们画的圈一般是不标准的,有时还特别不规则,如下图是我画的巨难看的圆圈。

图1、不规则圆圈显然,这个图形不太可能有面积公式可以套用,也不太可能用解析的方法给出准确解。

不过,我们可以用如下方法求这个图形的面积:假设我手里有一支飞镖,我将飞镖掷向木板。

蒙特卡洛方法模拟小例子

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点.经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮.现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。

使用蒙特卡洛方法模拟50次打击结果:function [out1 out2 out3 out4]=Msc(N)% N开炮次数% out1射中概率% out2平均每次击中次数% out3击中敌人一门火炮的射击总数% out4击中敌人2门火炮的射击总数k1=0;k2=0;k3=0;for i=1:Nx0=randperm(2)-1;y0=x0(1);if y0==1fprintf('第%d次:指示正确||',i);x1=randperm(6);y1=x1(1);if y1==1|y1==2|y1==3fprintf('第%d次:击中0炮||',i);k1=k1+1;elseif y1==4|y1==5fprintf('第%d次:击中1炮||',i);k2=k2+1;elsefprintf('第%d次:击中2炮||',i);k3=k3+1;endelsefprintf('第%d次:指示错误,击中0炮||',i);k1+1;endfprintf('\n');endout1=(k2+k3)/N;out2=(0*k1+k2+2*k3)/20;out3=k2/N;out4=k3/N;运行:1.[out1 out2 out3 out4]=Msc(50)结果:1.第1次:指示正确||第1次:击中2炮||2.第2次:指示错误,击中0炮||3.第3次:指示错误,击中0炮||4.第4次:指示正确||第4次:击中0炮||5.第5次:指示错误,击中0炮||6.第6次:指示正确||第6次:击中1炮||7.第7次:指示正确||第7次:击中0炮||8.第8次:指示错误,击中0炮||9.第9次:指示正确||第9次:击中2炮||10.第10次:指示正确||第10次:击中1炮||11.第11次:指示正确||第11次:击中1炮||12.第12次:指示正确||第12次:击中2炮||13.第13次:指示错误,击中0炮||14.第14次:指示正确||第14次:击中1炮||15.第15次:指示错误,击中0炮||16.第16次:指示错误,击中0炮||17.第17次:指示正确||第17次:击中0炮||18.第18次:指示错误,击中0炮||19.第19次:指示正确||第19次:击中1炮||20.第20次:指示错误,击中0炮||21.第21次:指示正确||第21次:击中0炮||22.第22次:指示正确||第22次:击中1炮||23.第23次:指示正确||第23次:击中0炮||24.第24次:指示错误,击中0炮||25.第25次:指示正确||第25次:击中1炮||26.第26次:指示错误,击中0炮||27.第27次:指示正确||第27次:击中1炮||28.第28次:指示正确||第28次:击中0炮||29.第29次:指示正确||第29次:击中0炮||30.第30次:指示正确||第30次:击中0炮||31.第31次:指示错误,击中0炮||32.第32次:指示错误,击中0炮||33.第33次:指示正确||第33次:击中0炮||34.第34次:指示错误,击中0炮||35.第35次:指示正确||第35次:击中0炮||36.第36次:指示正确||第36次:击中0炮||37.第37次:指示错误,击中0炮||38.第38次:指示正确||第38次:击中0炮||39.第39次:指示错误,击中0炮||40.第40次:指示正确||第40次:击中0炮||41.第41次:指示正确||第41次:击中1炮||42.第42次:指示正确||第42次:击中0炮||43.第43次:指示错误,击中0炮||44.第44次:指示正确||第44次:击中1炮||45.第45次:指示正确||第45次:击中0炮||46.第46次:指示错误,击中0炮||47.第47次:指示错误,击中0炮||48.第48次:指示错误,击中0炮||49.第49次:指示正确||第49次:击中0炮||50.第50次:指示正确||第50次:击中1炮||51.52.out1 =53.54. 0.280055.56.57.out2 =58.59. 0.850060.61.62.out3 =63.64. 0.220065.66.67.out4 =68.69. 0.0600一位朋友说要贴出Monte Carlo计算积分的源程序,我就随便做一个简单的吧,复杂的程序完全可以从这个来演化,我想Monte Carlo积分的最大优势就在于高维积分,以及不规则区域,可以节约很多计算机时。

蒙特卡洛方法例题

蒙特卡洛方法例题

蒙特卡洛方法例题
蒙特卡洛方法是一种基于随机抽样的数值计算方法,它通过大量模拟实验来近似求解问题。

这种方法在20世纪40年代由美国物理学家蒙特卡洛提出,如今已经在各个领域得到了广泛的应用。

蒙特卡洛方法的原理很简单,关键是确定概率模型。

首先,我们需要建立一个与问题相关的概率模型,然后生成一系列随机数,根据这些随机数计算出对应的数值结果,最后对结果进行统计分析,以得到问题的近似解。

下面我们通过一个例子来说明蒙特卡洛方法的具体应用。

例题:设随机变量X服从正态分布,即X ~ N(μ, σ^2),求X的期望值和方差。

解:我们可以使用蒙特卡洛方法来求解这个问题。

1.确定概率模型:我们已经知道随机变量X服从正态分布,所以概率模型为X = μ + σZ,其中Z ~ N(0, 1)。

2.生成随机数:生成一个标准正态分布的随机数Z1。

3.计算累积概率:根据正态分布表,查找Z1对应的概率值。

4.计算X的期望值和方差:根据概率模型,计算X的期望值μ"和方差σ"。

通过大量的蒙特卡洛模拟实验,我们可以得到X的期望值和方差的近似值。

蒙特卡洛方法在实际应用中具有广泛的应用价值,例如求解复杂数学问题、线性方程组、非线性方程或方程组、进行参数估计和假设检验等。

然而,
它也存在一定的局限性,如计算速度较慢、对采样点的数量要求较高等。

总之,蒙特卡洛方法是一种实用且高效的数值计算方法,在各个领域都取得了显著的成果。

蒙特卡洛

蒙特卡洛

在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。

单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。

只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。

怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。

将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。

P落在扇形内的充要条件是x^2+y^2<=1。

蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。

此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

蒙特卡罗方法的基本原理及思想如下:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。

蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。

当你的豆子越小,撒的越多的时候,结果就越精确。

在这里我们要假定豆子都在一个平面上,相互之间没有重叠。

蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。

它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。

Monte-Carlo(蒙特卡洛方法)解析

Monte-Carlo(蒙特卡洛方法)解析
2. 线性同余器可以达到的最长周期为 m 1 ,我们 可以通过适当的选择 m 和 a ,使无论选取怎样的 初值 x0 都可以达到最大周期(一般选取 m 为质数)
常用的线性同余生成器
Modulus m 2^31-1
=2147483647
2147483399 2147483563
Multiplier a 16807
在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P(A) 的估计,即 pˆ fn ( A) 。
然后取 ˆ
2l afn ( A)
作为
的估计。根据大数定律,当 n 时,

fn ( A) a.s.
p.
从而有ˆ 2l P 。这样可以用随机试验的方法求得 的估计。历史上 afn ( A)
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
例 1 :设 X ~ U (a,b) ,则其分布函数为
0
F
(
x)
x b
a a
1,
xa a xb
xb
F -1( y) a (b a) y , 0 y 1
生成 U (0,1) 随机数 U,则 a (b - a)U 是来自
算法实现
许多程序语言中都自带生成随机数的方法, 如 c 中的 random() 函数, Matlab中的rand()函数等。 但这些生成器生成的随机数效果很不一样, 比如 c 中的函数生成的随机数性质就比较差, 如果用 c , 最好自己再编一个程序。Matlab 中的 rand() 函数, 经过了很多优化。可以产生性质很好的随 机数, 可以直接利用。
U (a,b) 的随机数。
例 2:
设 X ~ exp( ) 服从指数分布,则 X 的分布函数为:

蒙特卡罗模型例子

蒙特卡罗模型例子

蒙特卡罗模型例子1.引言1.1 概述概述部分的内容可能如下:在实际生活和工作中,我们常常需要面对各种不确定性和风险。

为了能够更好地应对未知的挑战和做出明智的决策,人们开发了各种数学模型和方法来模拟和预测可能的情景和结果。

其中,蒙特卡罗模型作为一种常用的计算机模拟方法,被广泛地应用于金融、工程、科学和其他领域。

蒙特卡罗模型的基本思想是通过随机抽样和概率分析,通过大量的随机模拟实验来估计和推断目标系统的特性和结果。

它的名称来自于蒙特卡罗赌场,在那里随机性是主要的特点,正是因为如此,这种模型也特别适用于模拟和分析那些具有不确定性和随机性的问题。

通过使用蒙特卡罗模型,我们可以在不知道确切数值的情况下,进行数值计算和分析。

它可以帮助我们做出更加全面和科学的决策,并且可以提供决策风险评估和结果的可信度。

蒙特卡罗模型的应用非常广泛,例如在金融领域,我们可以使用蒙特卡罗模型来估计投资组合的绩效和风险;在工程领域,我们可以用它来模拟建筑结构的可靠性和抗震性能;在科学研究中,我们可以使用蒙特卡罗模型来模拟分子动力学和天体运动等复杂系统。

本文将介绍蒙特卡罗模型的基本原理和方法,并通过一些具体例子来展示其在实际中的应用。

通过深入了解和学习蒙特卡罗模型,我们可以更好地应对未知和风险,为我们的决策提供科学的依据和支持。

同时,本文还将对蒙特卡罗模型的发展和应用进行展望,探讨其未来的研究和应用前景。

1.2文章结构文章结构部分的内容应包括以下方面:在文章结构部分,我们将对整篇文章的组织和内容进行介绍和概述。

文章由引言、正文和结论三个部分组成。

首先,引言部分将对蒙特卡罗模型例子的背景和意义进行概述。

我们会解释蒙特卡罗模型的定义以及其在不同领域中的应用。

引言部分的目的旨在引起读者的兴趣,并让他们了解文章的主要内容和目标。

接下来,正文部分将深入介绍蒙特卡罗模型。

我们会从基本概念开始,解释蒙特卡罗模型的原理和相关算法。

我们将介绍蒙特卡罗模型的核心思想以及如何使用概率和随机性来模拟实际问题。

蒙特卡洛方法

蒙特卡洛方法

蒙特卡洛方法蒙特卡洛方法是一种以随机数代替确定性答案的方法,用来解决难以用传统数学方法求解的计算问题。

它的名字来自于摩纳哥的蒙特卡洛市,因为在二战时期,美国的原子弹计划曾在那里进行过试验。

现在,蒙特卡洛方法已经广泛应用于各种领域,包括统计学、计算机科学、物理学、金融等。

我们来举一个简单的例子来解释蒙特卡洛方法的基本原理。

假设我们要计算正方形中圆的面积,这个问题可以用传统的数学方法求解,而且结果是$π/4$。

但是,如果我们用蒙特卡洛方法求解这个问题,我们可以在正方形中随机生成很多点,并统计其中多少点在圆内。

如果我们生成的点足够多,那么圆内点的数量与总点数的比例就可以近似表示圆的面积与正方形面积之比,也就是$π/4$。

这种方法的优点在于,我们不需要事先知道圆的半径或面积,只需要用随机数模拟出圆内外的点,就可以得到一个近似的答案。

当然,随机生成的点的数量越多,计算结果就越精确。

蒙特卡洛方法的应用非常广泛,下面介绍几个例子:1. 在金融领域,蒙特卡洛方法被用来计算复杂的金融衍生品的价格。

金融衍生品是一种金融工具,其价值的变化受到其他金融资产的价格波动的影响。

这些衍生品的价格无法用传统的数学方法精确计算,因为它们涉及到多种不确定因素,如未来市场价格的波动、利率和货币汇率的变化等。

利用蒙特卡洛方法,可以在一个随机模拟的框架下,通过很多次模拟(通常是几千次)来计算期权的价格和各种可能结果出现的概率。

这些结果可以用来帮助投资者评估一种衍生品的实际价值。

2. 在科学计算中,蒙特卡洛方法可以用来求解很多复杂的数学问题,如高维积分、求解微分方程、求解偏微分方程等。

一个著名的例子就是蒙特卡洛积分法,它可以用来求解高维积分。

在这种方法中,我们首先确定积分范围(即多维空间中的一个区域),然后在这个区域中随机生成很多点,最后根据这些点的分布来估计积分的大小。

蒙特卡洛积分法的优点在于,它适用于复杂的积分问题,且收敛速度比传统的数值积分方法要快得多。

Monte Carlo(蒙特卡洛方法)解析

Monte Carlo(蒙特卡洛方法)解析
l 于是针与平行线相交的充要条件为 X 2 sin , l 即相交 A { : X 2 sin }.
于是有: l p P( X sin ) 2 0

l sin 2

0
2 2l dxd a a
2l ap
若我们独立重复地作 n 次投针试验,记 n ( A) 为 A 发生的次数。 fn ( A) 为 A
U(0,1)随机数的生成
乘同余法:
xi 1 axi
mod m
ui 1 xi 1 / m 其中 xi , a, m 均为整数, x0 可以任意选取。
x0称为种子,a 是乘因子,m是模数
一个简单的例子
当 x0 1 时,得到序列: 1,6,3,7,9,10,5,8,4,2,1,6,3......
1 确定行为的模拟
例:曲线下的面积
本节以曲线下的面 积为例说明蒙特卡罗 模拟在确定行为建模 中的应用.
下面的算法给出了用蒙特卡罗方法求曲线下面积 的计算机模拟的计算格式.
在给定区间上曲线y=cosx下面积的真值是2.注意到即使对 于产生的相当多的点数,误差也是可观的.对单变量函数,一般 说来,蒙特卡罗方法无法与在数值分析中学到的积分方法相比, 没有误差界以及难以求出函数的上界M也是它的缺点.然而,蒙 特卡罗方法可以推广到多变量函数,在那里它变得更加实用.
ˆ f n ( A) 。 在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P( A) 的估计,即 p
ˆ 然后取 2l a.s. ˆ fn ( A) 作为 的估计。根据大数定律,当 n 时, p p. af n ( A) 2l P 。这样可以用随机试验的方法求得 的估计。历史上 af n ( A)

统计方法4 随机模拟2

统计方法4 随机模拟2

统计方法4 随机模拟随机模拟(random simulation)方法,又称为蒙特卡洛(Monte Carlo,MC )方法。

它的基本思想是为了求解实践中问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解,然后通过对模型的抽样试验获得这些参数的统计特征,最后给出解的近似值。

解的精确度由估计值得标准误差来表示。

其基本数学原理为强大数定律。

Monte Carlo 方法最早产生于二战期间美国研发原子弹的曼哈顿工程。

电子计算机的出现使得模拟随机试验成为了重要的科学方法。

图:赌城Monte CarloMonte Carlo 方法可以处理的问题基本可以可以分为两类:第一类是随机性的问题。

这一类问题往往直接利用概率法则通过随机抽样进行模拟。

如核物理问题,随机服务系统中的排队问题,生物种群的繁衍与竞争,传染病的传播等都属于这一问题。

第二类是确定性的问题。

首先建立一个与所求问题有关的概率模型,使所求解是该概率模型中的概率分布或者数学期望。

然后对这个模型进行随机抽样。

用算术平均值作为所求解的估计值。

如求解多重积分,解线性方程组,解偏微分方程积分方程等复杂数学问题。

第一节 生成随机数 1.生成随机数的基本数学原理较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。

以某种方法选取0x ,并按照)(1k k x g x =+产生下一个随机数。

最一般的方程)(x g 具有如下形式:c ax x g mod)()(+= (8.1)其中0x 初始值或种子(00>x )=a 乘法器(0≥a )=c 增值(0≥c )=m 模数对于t 数位的二进制整数,其模数通常为t 2。

例如,对于31位的计算机m 即可取1312-。

这里a x ,0和c 都是整数,且具有相同的取值范围0,,x m c m a m >>>。

所需的随机数序{}n x 便可由下式得m c ax x n n mod )(1+=+ (8.2) 该序列称为线性同余序列。

计算材料学概述 之 蒙特卡洛方法.详解

计算材料学概述 之  蒙特卡洛方法.详解

随机数产生的办法
关于随机数的几点注意
注1 由于均匀分布的随机数的产生总是采用某个确定 的模型进行的,从理论上讲,总会有周期现象出现的。 初值确定后,所有随机数也随之确定,并不满足真正 随机数的要求。因此通常把由数学方法产生的随机数 成为伪随机数。 但其周期又相当长,在实际应用中几乎不可能出 现。因此,这种由计算机产生的伪随机数可以当作真 正的随机数来处理。 注2 应对所产生的伪随机数作各种统计检验,如独 立性检验,分布检验,功率谱检验等等。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规 则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机 地”投掷N个点,若有M个点落于“图形”内,则该“图形” 的面积近似为M/N。
用该方法计算π的基本思路是: 1 、根据圆面积的公式: s=πR^2 ,当R=1时,
11
面积的计算
辛普逊方法
蒙特-卡洛方法
在长方形中均匀投N0组(x,y) 如 y<f(x), 则 N=N+1
I = ΣSn
f (x)
Hale Waihona Puke I =(N/N0)×S0f (x)
S0
S
x x
MC 的优点 MC与传统数学方法相比,具有直观性强,简便易行的优点,该方
法能处理一些其他方法无法解决的负责问题,并且容易在计算机 上实现,在很大程度上可以代替许多大型、难以实现的复杂实验 和社会行为。无污染、无危险、能摆脱实验误差。
Monte Carlo方法之随机数的产生
许多计算机系统都有随机数生成函数 F90: call random_seed
call random_number(a) 2、ISEED=RTC()

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。

对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。

估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。

蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。

兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。

简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。

在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。

模拟的一个替代方法是极其复杂的随机闭合数学模型。

对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。

一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。

任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。

此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。

那么,到底什么是蒙特卡罗模拟以及它是怎么工作的?什么是蒙特卡罗模拟?今天,高速计算机使许多过去看来棘手的复杂计算成为可能。

对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。

结果通过编译后用于决策。

这就是蒙特卡罗模拟的全部内容。

形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。

python蒙特卡罗方法求解π的方法

python蒙特卡罗方法求解π的方法

python蒙特卡罗方法求解π的方法Python蒙特卡罗方法求解π的方法引言蒙特卡罗方法是一种基于随机采样的数值计算方法,可以用来估计无法通过解析方法求解的问题。

其中,利用蒙特卡罗方法求解圆周率π的方法是常见且经典的例子。

本文将详细介绍多种使用Python 实现的求解π的方法。

方法一:随机投点法1.设置一个正方形,内切一个半径为1的圆。

2.在正方形内随机生成大量的点。

3.统计落入圆内点的数量和总点数。

4.利用统计数据,计算得到π的近似值。

方法二:蒙特卡罗法1.思路与方法一相同,区别在于生成的点落在一个区间内。

2.垂直投影的线段长度为1,将其看作区间长度。

3.将模拟投点法应用于这个区间,得到的结果进行比例缩放。

4.根据缩放比例得到π的近似值。

方法三:生成一个单位半径的圆1.利用matplotlib库生成一个单位半径的圆。

2.通过生成的圆,计算圆的面积。

3.利用面积公式计算得到π的近似值。

方法四:改进的投点法1.类似于方法三,使用matplotlib库生成一个圆。

2.通过生成的圆,计算圆的面积。

3.利用统计学的SRSWOR(Simple Random Sampling WithoutReplacement)方法,生成均匀分布的点。

4.统计落入圆内点的数量和总点数。

5.根据统计数据,计算得到π的近似值。

总结蒙特卡罗方法作为一种随机采样的数值计算方法,非常适合用于求解π的问题。

本文介绍了四种方法,分别是随机投点法、蒙特卡罗法、生成单位半径的圆和改进的投点法。

通过这些方法,我们可以得到π的近似值,并且精度可以通过增加采样点的数量来提高。

以上就是使用Python蒙特卡罗方法求解π的方法的详细介绍。

希望本文能对你理解蒙特卡罗方法及其在求解π问题中的应用有所帮助。

引言蒙特卡罗方法是一种基于随机采样的数值计算方法,可以用来估计无法通过解析方法求解的问题。

其中,利用蒙特卡罗方法求解圆周率π的方法是常见且经典的例子。

蒙特卡洛方法及其应用

蒙特卡洛方法及其应用

【最新资料,WORD文档,可编辑修改】蒙特卡洛方法及其应用1风险评估及蒙特卡洛方法概述1.1蒙特卡洛方法。

蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。

它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。

蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。

通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。

当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。

蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间范围及分布规律。

1.2风险评估概述。

风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。

正是因为未来的不确定性使得每一个项目都存在风险。

对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。

因此,对于风险的测量以及控制是非常重要的一个环节。

风险评估就是量化测评某一事件或事物带来的影响的可能程度。

根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。

当评价风险大小时,常有两种评价方式:定性分析与定量分析法。

定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。

这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点.
经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮.
现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。

使用蒙特卡洛方法模拟50次打击结果:
function [out1 out2 out3 out4]=Msc(N)
% N开炮次数
% out1射中概率
% out2平均每次击中次数
% out3击中敌人一门火炮的射击总数
% out4击中敌人2门火炮的射击总数
k1=0;
k2=0;
k3=0;
for i=1:N
x0=randperm(2)-1;
y0=x0(1);
if y0==1
fprintf('第%d次:指示正确||',i);
x1=randperm(6);
y1=x1(1);
if y1==1|y1==2|y1==3
fprintf('第%d次:击中0炮||',i);
k1=k1+1;
elseif y1==4|y1==5
fprintf('第%d次:击中1炮||',i);
k2=k2+1;
else
fprintf('第%d次:击中2炮||',i);
k3=k3+1;
end
else
fprintf('第%d次:指示错误,击中0炮||',i);
k1+1;
end
fprintf('\n');
end
out1=(k2+k3)/N;
out2=(0*k1+k2+2*k3)/20;
out3=k2/N;
out4=k3/N;
运行:
1.[out1 out2 out3 out4]=Msc(50)
结果:
1.第1次:指示正确||第1次:击中2炮||
2.第2次:指示错误,击中0炮||
3.第3次:指示错误,击中0炮||
4.第4次:指示正确||第4次:击中0炮||
5.第5次:指示错误,击中0炮||
6.第6次:指示正确||第6次:击中1炮||
7.第7次:指示正确||第7次:击中0炮||
8.第8次:指示错误,击中0炮||
9.第9次:指示正确||第9次:击中2炮||
10.第10次:指示正确||第10次:击中1炮||
11.第11次:指示正确||第11次:击中1炮||
12.第12次:指示正确||第12次:击中2炮||
13.第13次:指示错误,击中0炮||
14.第14次:指示正确||第14次:击中1炮||
15.第15次:指示错误,击中0炮||
16.第16次:指示错误,击中0炮||
17.第17次:指示正确||第17次:击中0炮||
18.第18次:指示错误,击中0炮||
19.第19次:指示正确||第19次:击中1炮||
20.第20次:指示错误,击中0炮||
21.第21次:指示正确||第21次:击中0炮||
22.第22次:指示正确||第22次:击中1炮||
23.第23次:指示正确||第23次:击中0炮||
24.第24次:指示错误,击中0炮||
25.第25次:指示正确||第25次:击中1炮||
26.第26次:指示错误,击中0炮||
27.第27次:指示正确||第27次:击中1炮||
28.第28次:指示正确||第28次:击中0炮||
29.第29次:指示正确||第29次:击中0炮||
30.第30次:指示正确||第30次:击中0炮||
31.第31次:指示错误,击中0炮||
32.第32次:指示错误,击中0炮||
33.第33次:指示正确||第33次:击中0炮||
34.第34次:指示错误,击中0炮||
35.第35次:指示正确||第35次:击中0炮||
36.第36次:指示正确||第36次:击中0炮||
37.第37次:指示错误,击中0炮||
38.第38次:指示正确||第38次:击中0炮||
39.第39次:指示错误,击中0炮||
40.第40次:指示正确||第40次:击中0炮||
41.第41次:指示正确||第41次:击中1炮||
42.第42次:指示正确||第42次:击中0炮||
43.第43次:指示错误,击中0炮||
44.第44次:指示正确||第44次:击中1炮||
45.第45次:指示正确||第45次:击中0炮||
46.第46次:指示错误,击中0炮||
47.第47次:指示错误,击中0炮||
48.第48次:指示错误,击中0炮||
49.第49次:指示正确||第49次:击中0炮||
50.第50次:指示正确||第50次:击中1炮||
51.
52.out1 =
53.
54. 0.2800
55.
56.
57.out2 =
58.
59. 0.8500
60.
61.
62.out3 =
63.
64. 0.2200
65.
66.
67.out4 =
68.
69. 0.0600
一位朋友说要贴出Monte Carlo计算积分的源程序,我就随便做一个简单的吧,复杂的程序完全可以从这个来演化,我想Monte Carlo积分的最大优势就在于高维积分,以及不规则区域,可以节约很多计算机时。

下面只是演示一个2重积分,可以扩展到20维的只要添加相应的loop项。

被积函数: exp(sqrt(x^2+y^2));
x 上下限:x^2 < sin(y)
y 上下限: y^2<cos(x)
1.% MONTE CARLO INT
2.% by caoer
3.clear all
4.N =100000;
5.
6.x = 2*rand(N,1)-1;
7.y = rand(N,1);
8. f = 0;
9.fsq = 0;
10.n = 0;
11.for i=1:N
12. if x(i)^2 < sin(y(i)) & y(i)^2<cos(x(i))
13.n=n+1;
14.f=f+exp(sqrt(x(i)^2+y(i)^2));
15.x_plot(n) = x(i);
16.y_plot(n) = y(i);
17. end
18.end
19.f = f/N;
20.p=n/N;
21.a = 2*1;
22.I1 = f*a; %
23.I2 = a*p; %interesting area
24.I = I1/I2
25.
26.plot(x_plot,y_plot,'o')
复制代码
蒙特卡洛法用于求积分时,与积分重数无关,这点非常重要。

虽然四维以下的积分用蒙特卡洛法效率可能不如传统的一些数值积分方法,但是维数高的时候,蒙特卡洛法比传统方法要有效的多,而且实现起来也非常容易。

可以说,计算高维积分是蒙特卡洛方法最成功和典型的应用。

基本的蒙特卡洛法具有计算不可重复性的缺点。

这里共享采用等序列分布的蒙特卡洛法等分布序列Monte Carlo积分.doc(92.5 KB, 下载次数: 24)
,具有计算可重复性,误差阶比采用基本蒙特卡洛法好的优点。

就基本的蒙特卡洛法求积分来说,不管积分重数多少,基本上是计算规模增加100倍,精度提高10倍。

相关文档
最新文档