合成孔径雷达差分干涉测量

合集下载

合成孔径雷达差分干涉测量

合成孔径雷达差分干涉测量
Radar,简称InSAR)是SAR的新发展,是最新发展起来的 一种空间对地观测技术。它是把合成孔径雷达产生的单视 复数图像中的相位提取出来,进行干涉处理而得到目标点 三维信息的一种新技术
2
差分干涉测量的原理
基本原理 合成孔径雷达干涉测量原理在很
多文献中已有详细介绍。现在将以星 载重复轨道为例简要介绍差分合成孔 径雷达干涉基本原理。
缺点:已知DEM与InSAR干涉图像的配准存 在很大 困难。
9
三种方法比较
三轨法
优点:无需知道外部DEM就可以得到地面位移引起 的相位差,特别是适用于缺少高精度DEM数据的 地区。与四轨法相比的优点是,由于几何参数相 同,故不需要考虑另外的匹配和重采样。
缺点:地形对需要相位解缠,其解缠精度的优劣直 接影响到后续的处理。13源自差分干涉测量在地震监测的应用
14
差分干涉测量地震监测的应用
15
差分干涉测量地震监测的应用
地震可以引起电离层异常
16
差分干涉测量在地表沉降监测的应用
17
谢谢观赏
WPS Office
Make Presentation much more fun
18
感谢您的阅读收藏,谢谢!
3
差分干涉测量的原理
如图所示,S.、S2和 S3分别为卫星三次对同一地 区成像的位置(即成像时雷达 天线的位置)。则经相位干涉 处理,由S。和S2可生成一 幅干涉图,s,和S 可生成 另一幅干涉图,利用这两幅 干涉图进行差分处理,即所 谓的差分雷达干涉测量。
4
差分干涉测量的原理
两轨法 其基本思想是利用已知的外部DEM
来消除地形相位。 在两轨法中,外部DEM的精度、空
间分辨率、插值方法及干涉基线对形 变量的精度都有显著的影响。

合成孔径雷达干涉测量概述

合成孔径雷达干涉测量概述

合成孔径雷达⼲涉测量概述合成孔径雷达⼲涉测量(InSAR)简述摘要:本⽂主要介绍了合成孔径雷达⼲涉测量技术的发展简史、基本原理、及其3种基本模式,并且对其数据处理的基本步骤进⾏了概述。

最后,还讲述合成孔径雷达⼲涉测量的主要应⽤,并对其未来发展进⾏了展望。

关键字:合成孔径雷达合成孔径雷达⼲涉测量微波遥感影像1.发展简史合成孔径雷达(Synthetic Aperture Radar,SAR)是⼀种⾼分辨率的⼆维成像雷达。

它作为⼀种全新的对地观测技术,近20年来获得了巨⼤的发展,现已逐渐成为⼀种不可缺少的遥感⼿段。

与传统的可见光、红外遥感技术相⽐,SAR 具有许多优越性,它属于微波遥感的范畴,可以穿透云层和甚⾄在⼀定程度上穿透⾬区,⽽且具有不依赖于太阳作为照射源的特点,使其具有全天候、全天时的观测能⼒,这是其它任何遥感⼿段所不能⽐拟的;微波遥感还能在⼀定程度上穿透植被,可以提供可见光、红外遥感所得不到的某些新信息。

随着SAR 遥感技术的不断发展与完善,它已经被成功应⽤于地质、⽔⽂、海洋、测绘、环境监测、农业、林业、⽓象、军事等领域。

L. C. Graham 于1974 年最先提出了合成孔径雷达⼲涉测量(InSAR )三维成像的概念,并⽤于⾦星测量和⽉球观察。

后来Zebker、G. Fornaro及A. Pepe 等做出了进⼀步的研究,以解决InSAR 处理系统中有关基线估计、SAR 图像配准、相位解缠及DEM ⽣成等⽅⾯的问题。

⾃1991 年7 ⽉欧空局发射载有C 波段SAR 的卫星ERS- 1 以来,极⼤地促进了有关星载SAR 的InSAR 技术研究与应⽤。

由于有了优质易得的InSAR 数据源,⼤批欧洲研究者加⼊到这个领域,亚洲(主要是⽇本)的⼀些研究者也开展了这⽅⾯的研究。

⽇本于1992 年2 ⽉发射了JERS- 1,加拿⼤于1995 年初发射了RADARSAT,特别是1995 年ERS- 2 发射后,ERS- 1 和ERS- 2 的串联运⾏极⼤地扩展了利⽤星载SAR ⼲涉的机会,为InSAR 技术的研究提供了数据保证。

PS_InSAR技术及其在地表沉降中的应用

PS_InSAR技术及其在地表沉降中的应用

2010 NO.19SCIENCE & TECHNOLOGY INFORMATION高 新 技 术InSAR(Interferometric synthetic ap-erture radar,InSAR)结合了合成孔径雷达成像技术和干涉测量技术,利用传感器的系统参数和成像几何关系等精确测量地表某一点的三维空间位置及微小变化的测绘技术。

合成孔径雷达差分干涉测量技术(DInSAR)是以合成孔径雷达复数影像的相位信息获取地表变化信息的技术,是InSAR 技术应用的一个拓展。

在实际应用中,相干雷达波由于在传递的过程中受大气效应影响,以及地表变化造成的时间去相关和长基线引起的空间去相关,严重地制约常规DInSAR在区域地表形变监测方面的应用,尤其对于地表沉降这种缓慢累积形变监测来说,时间失相关问题更为突出。

为了克服常规DInSAR的局限性,近年来国际上少研究者提出了基于部分相位稳定的雷达散射目标,即永久散射体(PS)进行差分干涉相位处理达到监测区域地表形变的目的,这种方法被称为永久散射体差分干涉测量技术(P S-I n S A R),是对传统的I n S A R和D-InSAR技术的扩展应用,可以突破时间、空间失相关和大气延迟的影响,可以提高数据的利用率,提取长时间、大范围的地表形变信息。

1 PS-InSAR技术1.1PS-InSAR的基本原理PSInSAR技术的基本原理就是利用多景同一地区的SAR影像,影像数目根据图像相干性情况而定,一般数目要大于20幅。

通过统计分析所有影像的幅度信息或者相位信息,找出不受时间、空间和大气效应影响的永久散射体。

然后利用选择的PS点建立关于变形和相位差的函数关系,而在PS 点上地形数据误差和大气延迟误差等通过外部数据或者相关的处理方法而被分离,从而可以获得PS点上地表形变信息。

由于选取的PS点在一段时间内具有很好的稳定性,可以通过这些稳定点内插出其他低信噪比点的形变信息,获取该地区的形变信息。

合成孔径雷达干涉测量(INSAR)技术原理及应用发展

合成孔径雷达干涉测量(INSAR)技术原理及应用发展

合成孔径雷达干涉测量(INSAR)技术原理及应用发展作者:刘曦霞来源:《科技创新与应用》2015年第20期摘要:合成孔径雷达干涉测量(InSAR)技术近年来得到了较快的发展,这一技术也广泛的应用于国防建设与国民经济建设中。

文章结合作者实际研究,从InSAR技术的自身优势与发展潜力出发,分析了其基本技术原理,并就InSAR技术在各个领域的实际应用进行了探讨,最后总结了其未来发展。

关键词:合成孔径雷达;INSAR;技术原理;应用1 InSAR技术的优势与潜力合成孔径雷达干涉测量技术是近年来发展起来的空间对地观测新技术,这一技术主要是借助于合成孔径雷达SAR朝目标位置发射微波,之后接收目标反射回波,从而获得目标位置成像的SAR复图像对,如果复图像之间有相干条件,SAR复图像对共轭相乘后能够得到干涉图,结合干涉图相位值可以获得两次成像中存在的微波路程差,进而准确获得目标位置的地形地貌等情况。

利用InSAR技术成像的优势在于连续观测能力强、成像分辨率和精度高、覆盖范围较广、技术成本低等,在各个领域的应用也非常广泛,比如说DEM生成、地面沉降监测、火山或地震灾害监测、海洋测绘、国防军事等。

但是InSAR技术测量的精准度往往会受到大气效应的影响,近年来新提出的散射体PS技术逐渐被越来越多的应用到其干涉处理的过程中,PS 技术分析能够在长时间内保持相对稳定的散射体相位变化,即便是难以获得干涉条纹的状况下,也可以获得毫米级的测量精度,在很大程度上提高了干涉测量技术的环境适应能力,这也是这一技术研究过程中的一个重大突破,其拥有非常高的开发应用价值[1]。

2 InSAR技术的基本原理分析合成孔径雷达干涉测量技术是按照复雷达图像的相位值来计算出地面目标空间信息的技术,它的基本思想是:借助两幅天线进行同时成像或者单幅天线间隔一定时间重复成像,进而得到同一位置的复雷达图像对,因为两幅天线和地面目标之间的距离不一致,因此在复雷达图像对同名象点之间出现相位差,进而产生干涉纹图,其中的相位值代表两次成像的相位差测量值,两次成像的相位差和地面目标的空间位置之间的几何关系,结合飞行轨道的具体参数,便能够准确的计算出地面目标的具体坐标,进而让我们获得具有较强精准度的大范围数字高程模型。

INSAR复习资料

INSAR复习资料

一、概论1、合成孔径雷达干涉测量技术(INSAR):利用雷达成像传感器获取被测对象具有相干性的复数图像信息,并通过图像配准、干涉图滤波、相位解缠、基线估算、相位高程转换等处理环节,由干涉相位反演地形信息或形变信息的理论和技术。

2、INSAR技术的应用:地形测绘、城市目标显示和城市形态分析、海洋表面状态监测、极地冰况监测(冰川研究)、农业和资源调查、地表变形监测等。

二、合成孔径雷达遥感基础3、平行于飞行方向,也就是沿航线方向上的分辨率称为方位向分辨率。

斜距:雷达到目标的距离方向,雷达探测斜距方向的回波信号。

地距:将斜距投影到地球表面,是地面物体间的真实距离。

4、SAR成像几何的参数:(1)入射角θ:雷达入射波束与当地大地水准面垂线的夹角。

局部入射角θ1:雷达入射波束与地面散射表面法线之间的夹角。

(2)视角φ:天线朝地面的垂直方向与天线朝入射点方向的夹角。

(3)俯角θd:天线沿水平方向与天线朝入射点的方向之间的夹角。

5、SAR影像的主要特性:(1)斑点噪声(2)多视处理(3)穿透性(4)具有几何特征由两个或两个以上频率相同、振动方向相同、相位差恒定的相干电磁波在空间叠加时,合成振幅为各个波的振幅的矢量和。

因此,会出现交叠区某些地方振动加强,某些地方振动减弱或完全抵消的现象,称之为干涉。

6、侧视成像的几何特征:阴影、透视收缩、顶底倒置透视收缩:到达斜面顶部的斜距与到达底部的斜距之差△R往往比地距之差(即水平距离之差)△X要小,在影像中斜面的长度被缩短了,这种现象称为透视收缩。

顶底倒置:从底部返回的信号先于顶部的信号部,相互位置互换,称为顶底倒置。

阴影:当雷达波束照射到有起伏的地面时,斜面的背后往往存在电磁波不能到达的区域,传感器也接受不到后向散射信号。

在影像中表现的亮度很低,称为阴影。

三、雷达干涉测量概述1、INSAR的基本原理:通过两幅天线同时观测(单轨道双天线模式),或两次平行的观测(单天线重复轨道模式),获得同一区域的重复观测数据,即单视复数(SLC)影像对;由于两副天线和观测目标之间的几何关系,同一目标对应的两个回波信号之间产生了相位差,由此得到的相位差影像通常称为干涉图,再结合观测平台的轨道参数和传感器参数等可以获得高精度、高分辨率的地面高程信息。

合成孔径雷达差分干涉测量

合成孔径雷达差分干涉测量
基于三种假设:
1. 只有形变对干涉图收到形变的影响; 2. 形变对于干涉图中形变不会影响有地面高程产生
的相位发生跳跃; 3. 地形对干涉图可以获得精确的DEM。
差分干涉测量的原理
四轨法
基本思想是选择四幅SAR图像,用其中 的两幅来生成DEM,另外两幅作变形监测。
三种方法比较
两轨法
优点:不需要相位解缠,减少了数据处理 的工作 量;避免了相位解缠引入的误差。
来消除地形相位。 在两轨法中,外部DEM的精度、空
间分辨率、插值方法及干涉基线对形 变量的精度都有显著的影响。
差分干涉测量的原理
三轨法
是由1994年由Zebker等人提出的,由 于该方法可以直接从SAR图像中提取出地 表形变信息,被认为是差分干涉模型最经 典的方法。
差分干涉测量的原理
三轨法
原理是采用三幅SAR图像,以其中的一幅作 为主图像,另外两幅作为从图像,可与主图像分 别生成两幅干涉图。
差分干涉测量在地震监测的应用
差分干涉测量地震监测的应用
差分干涉测量地震监测的应用
地震可以引起电离层异常
差分干涉测量在地表沉降监测的应用
谢谢观赏
WPS Office
Make Presentation much more fun
合成孔径雷 达差分干涉
测量
引言
合成孔径雷达(Synthetic Aperture Radar,简称SAR),是一
种工作在微波波段的主动式微波成像传感器。它有效地解 决了雷达设计中高分辨率要求与大天线、短波长之间的矛 盾,使分辨率提高了数百倍。
合成孔径雷达干涉测量(Interferometric Synthetic Aperture
缺点:已知DEM与InSAR干涉图像的配准存 在很大 困难。

RADARSAT-2雷达卫星数据D-InSAR处理报告

RADARSAT-2雷达卫星数据D-InSAR处理报告

相干系数 越大表示干涉图质量越高,条纹越清晰,相干系数接近于零时表示两期影像完
全失相干。
2.4 基线估计
平行基线和垂直基线分量的估计精度对平地相位的计算和地形相位的模拟至关重要, 地表微小形变的监测依赖于高精度的基线参数,而目前卫星系统提供的精密轨道信息精度 不高甚至没有提供精密轨道信息,导致基线的估计精度偏低,出现系统性误差;目前常用 的基线估计方法有轨道法、条纹频率法和基于地面控制点的基线精化估计等。
orb ,忽略atm 和 n 的影响,可以得到雷达视线方向上地面形变造成的相位。根据雷达视
线方向上地面形变造成的相位与地表沉降量 r 的关系,获取地表沉降量 r 。
def

-
4
r
前述分析表明,形变相位包含于干涉相位之中,要获取形变相位就必须从干涉相位中
除去平地相位、地形相位以及大气延迟和热噪声相位。
由前面原理可知,二轨法主要处理流程如图 3 所示,主要包括:主辅影像预处理、影 像配准及重采样、干涉图生成、滤波、地形相位差分、相位解缠、地理编码等。
2.1 主辅影像预处理
预处理包括主辅影像的读取、成像、轨道数据的读入及前置滤波等,前置滤波是指通 过带通滤波器将主辅影像的频谱非重叠部分滤除,在距离向和方位向分别进行,可以提高 后续配准精度。
号可用复数分别表示为:
S(R1) A(R1) exp(i (R1)) S(R2 ) A(R2 ) exp(i (R2 ))
(1-2)
其中,A(R1)、A(R2)为两回波的振幅,ψ(R1)、ψ(R2)
为回波相位。从式(1-2)可以看出,雷达回波的振幅与相位都是雷达天线到目标 P 的路
径的函数。雷达卫星以复数形式记录下回波信号并处理成影像,这种影像叫做 SAR 单视

DInSAR技术资料整理

DInSAR技术资料整理

DInSAR全称Differential Interferometric Synthetic Aperture Radar,合成孔径雷达差分干涉测量技术。

➢InSAR技术提取地表DEM,需要假设两次成像期间,地表没有发生变化,地物产生的随机相位也是不变的。

➢而DInSAR则是一种根据多期SAR数据,获取地表形变信息的方法之一。

根据差分干涉所需影像的多少,DInSAR可以分为:二轨法,三轨法和四轨法。

⏹二轨法:利用两景影像,主影像为形变后获取的数据,辅影像为地表形变前获取的数据。

将两者进行干涉处理,生成干涉图,干涉图中包括地形相位和形变相位,然后引入外部DEM数据,将DEM数据模拟成地形相位,从干涉图中减去,即可得到地表的形变相位。

优点:所需SAR数据少缺点:外部引入的DEM包含的误差会影响最终的差分干涉结果流程图:⏹三轨法:利用三景影像,其中两景是形变发生前获取的数据,另一景是形变后获得的,选区形变前后两景影像中的一景为主影像,其余为辅影像,分别和主影像进行配准,这样便生成两组干涉相位,一组是形变前的,只有地形信息;一组是形变后的,包含形变信息和地形信息;然后将形变后干涉相位减去已经解缠的形变前的相位,得到只含有形变信息的干涉相位,最后进行相位解缠,相位转高程和地理编码,获取地表的形变信息。

优点:无需外部DEM数据及其引入的DEM误差;缺点:需要进行相位解缠,解缠结果的好坏直接影响差分的结果;流程图:四轨法:与二轨法类似,但是不需要外部引入的DEM数据,需要四景影像;基本思路是将形变发生前获取的两幅影像进行干涉处理,得到形变前的干涉相位,只包含地形信息;然后将形变后的两景影像进行干涉处理,得到形变后的干涉相位。

从形变后的干涉相位中减去形变前的干涉相位,得到地表的形变相位,然后相位解缠,得到差分干涉图。

流程图:InSAR获取DEM条件:两期影像获取期间地物没有明显的形变,且地物产生的随机相位是相同的;流程图:。

空间大地测量(sar和insar)

空间大地测量(sar和insar)

关于InSAR和D-InSAR的数据处理一、合成孔径雷达干涉技术(InSAR)合成孔径雷达干涉技术出现于20世纪60年代末.它是SAR与射电天文学干涉测量技术结合的产物。

当SAR扫过地面同一目标区域时,利用成像几何关系,通过成像、一些特殊的数据处理和几何转换,即可提取地表目标区域的高程信息和形变信息。

由于InSAR 技术有效利用了SAR的回波相位信息,测高精度为米级甚至亚米级,而一般雷达立体测量方法只利用灰度信息来实现三维制图,测高精度仅能达到数十米,因此该技术迅速引起了地学界及相关领域科研工作者的极大兴趣,现已成为微波遥感领域的研究热点.干涉合成孔径雷达利用多个接收天线观测得到的回波数据进行干涉处理,可以对地面的高程进行估计,对海流进行测高和测速,对地面运动目标进行检测和定位。

接收天线相位中心之间的连线称为基线,按照基线和航向的夹角,人们将InSAR分为基线垂直于航向的切轨迹干涉和沿航向的顺轨迹干涉。

切轨迹干涉可以快速提取地面的三维信息,顺轨迹干涉主要用于动目标检测和海洋水流与波形测量。

二、InSAR 基本原理InSAR 测量模式主要有两种:一种是双天线单轨(Single Pass)模式,主要用来生成数字高程模型,一般用于机载SAR;另一种是双轨(Two Pass) 模式,主要用于获取地表变形,一般用于星载SAR.下面以重复轨道干涉测量为例,简要介绍InSAR 技术的基本原理(见图1).假设卫星以一定的时间间隔和轨道偏离(通常为几十米到1km 左右)重复对某一区域成像,并在两次飞行过程中处于不同的空间位置1S 和2S ,则空间干涉基线向量为B,长度为B;基线向量B 与水平方向的夹角为基线倾角α。

1S 和2S 至地面点P 的斜距分别为R 和R+△R;将基线沿视线方向分解,得到平行于和垂直于视线向的分量||B 、'B ;H 为1S 到参考面的高度;从1S 发射波长为λ的信号经目标点P 反射后被1S 接收,得到测量相位1ϕ,114arg{}R u πϕλ=+(1)同样,另一空间位置2S 上测量到相位2ϕ,224()arg{}R R u πϕλ=+∆+(2)式中,arg{1u }和arg{2u }表示不同散射特性造成的随机相位.假设两幅图中随机相位的贡献相同,则1S 和2S 关于目标P 点的相位差124R πφϕϕλ=-=-∆(3) 也称为干涉相位,可由经过配准的两幅SAR SLC 图共扼相乘得到.根据图1中的几何关系并利用余弦定理可得: 222()sin()2R B R R RBθα+-+∆-=(4) cos h H R θ=-(5)由于R R ∆且R B ,则||sin()R B B θα∆≈-=(6) (4)、(5) 两式即为In SAR 确定高程的原理性公式.三、合成孔径雷达差分干涉测量(D-InSAR)D-InSAR 技术是在主动式微波合成孔径雷达 SAR 相干成像基础上发展起来的,它以合成孔径雷达复数据提供的相位信息为信息源,可从包含目标区域地形和形变等信息的一幅或多幅干涉纹图中提取地面目标的微小形变信息。

DInSAR技术资料整理

DInSAR技术资料整理

DInSAR全称Differential Interferometric Synthetic Aperture Radar,合成孔径雷达差分干涉测量技术。

➢InSAR技术提取地表DEM,需要假设两次成像期间,地表没有发生变化,地物产生的随机相位也是不变的。

➢而DInSAR则是一种根据多期SAR数据,获取地表形变信息的方法之一。

根据差分干涉所需影像的多少,DInSAR可以分为:二轨法,三轨法和四轨法。

⏹二轨法:利用两景影像,主影像为形变后获取的数据,辅影像为地表形变前获取的数据。

将两者进行干涉处理,生成干涉图,干涉图中包括地形相位和形变相位,然后引入外部DEM数据,将DEM数据模拟成地形相位,从干涉图中减去,即可得到地表的形变相位。

优点:所需SAR数据少缺点:外部引入的DEM包含的误差会影响最终的差分干涉结果流程图:⏹三轨法:利用三景影像,其中两景是形变发生前获取的数据,另一景是形变后获得的,选区形变前后两景影像中的一景为主影像,其余为辅影像,分别和主影像进行配准,这样便生成两组干涉相位,一组是形变前的,只有地形信息;一组是形变后的,包含形变信息和地形信息;然后将形变后干涉相位减去已经解缠的形变前的相位,得到只含有形变信息的干涉相位,最后进行相位解缠,相位转高程和地理编码,获取地表的形变信息。

优点:无需外部DEM数据及其引入的DEM误差;缺点:需要进行相位解缠,解缠结果的好坏直接影响差分的结果;流程图:四轨法:与二轨法类似,但是不需要外部引入的DEM数据,需要四景影像;基本思路是将形变发生前获取的两幅影像进行干涉处理,得到形变前的干涉相位,只包含地形信息;然后将形变后的两景影像进行干涉处理,得到形变后的干涉相位。

从形变后的干涉相位中减去形变前的干涉相位,得到地表的形变相位,然后相位解缠,得到差分干涉图。

流程图:InSAR获取DEM条件:两期影像获取期间地物没有明显的形变,且地物产生的随机相位是相同的;流程图:。

科技成果——矿山边坡合成孔径雷达监测预警系统

科技成果——矿山边坡合成孔径雷达监测预警系统

科技成果——矿山边坡合成孔径雷达监测预警系统技术开发单位中国安全生产科学研究院研发中心适用范围边坡合成孔径雷达监测预警系统(简称边坡雷达或S-SAR)基于地基合成孔径雷达差分干涉测量技术,能够对地表微小形变进行高精度测量。

该系统能够对露天矿边坡、排土场边坡、尾矿库坝坡、水电库岸和坝体边坡、山体滑坡、大型建筑物的形变、沉降等实施大范围连续监测,可广泛用于重要工程安全保障、健康评估和应急抢险,对各种坍塌灾害进行预警预报。

和传统的全站仪、GPS等监测手段相比,具有全天时、全天候、大范围区域、远程、高精度监测的技术优势,开创了全新的边坡位移形变监测方式,具有十分广阔的推广应用前景。

成果简介边坡雷达的基本原理是基于地基合成孔径雷达差分干涉测量技术。

通过地基合成孔径雷达技术,在距离向利用脉冲压缩实现高分辨率,在方位向通过波束锐化实现高分辨率,从而获取观测区域的二维高分辨率图像。

通过差分干涉测量技术,把同一目标区域、不同时间获取的二维高分辨率图像结合起来,利用各像素点的相位差反演获得被测区域的高精度形变信息。

再利用网络远程控制系统实现全天候自动监测,当边坡变形量和变形速率达到预警级别时,提前发出灾害预警。

关键技术关键技术一:高可靠自动化运行的高精度雷达系统技术。

采用双通道一次变频,减少中间环节的噪声影响;采用具有镜频抑制能力的混频方案,减少前端滤波环节,降低噪声系数;采用高稳定时基,优化本振设计,提高频谱纯度指标;使得雷达在实现大带宽的同时,将雷达长期幅相误差控制到0.3dB和1°以内,满足了亚毫米级形变监测要求,突破了高稳定的宽频带雷达收发测量这一技术难题。

相较于星载、机载雷达测绘应用,同时兼顾近、远距的边坡监测需要是边坡监测雷达需要进一步解决特殊问题,提高隔离度和接收灵敏度,提高相位的同步性和处理速度。

对运动控制系统、雷达系统及数据处理系统进行了高可靠集成,引入同步反馈控制机制,实现高精度运动系统和雷达系统的同步集成控制;通过系统微型化、模块化设计,提高边坡雷达系统的可靠性和易维修性;采用全封闭结构设计,增强了可靠性和环境适应性。

雷达InSAR技术

雷达InSAR技术
Radar,简称InSAR)是SAR的新发展,是最新发展起来的 一种空间对地观测技术。它是把合成孔径雷达产生的单视 复数图像中的相位提取出来,进行干涉处理而得到目标点 三维信息的一种新技术
差分干涉测量的原理
基本原理 合成孔径雷达干涉测量原理在很
多文献中已有详细介绍。现在将以星 载重复轨道为例简要介绍差分合成孔 径雷达干涉基本原理。
h ? H ? R1 cos?
可知,如果知道天线位置(H 、B、 a )和雷达系统参数就能计算高程值,
进而生成DEM 。
? InSAR 数据处理的一般流程包括:影像配准,干涉 图生成,噪声滤除,基线估算,平地效应消除,相 位解缠,高程计算和纠正(地图编码处理)等等。
? 原理:在参考影像和输入影像之间找到足够多的同 名点,用同名点作为控制点确定影像之间的相对几 何变换模型,然后利用几何变换模型对输入影像进 行重新采样(相对纠正)。
基于三种假设:
只有形变对干涉图收到形变的影响; 形变对于干涉图中形变不会影响有地面高程产生的
相位发生跳跃; 地形对干涉图可以获得精确的 DEM。
差分干涉测量的原理
四轨法
基本思想是选择四幅SAR图像,用其中 的两幅来生成DEM,另外两幅作变形监测。
三种方法比较
两轨法
优点:不需要相位解缠,减少了数据处理 量;避免了相位解缠引入的误差。
三种方法比较
四轨法
优点:弥补了三轨法有时不能生成 DEM或者图像相 关性差的不足。
缺点:由于使用两个独立的干涉对(需要四景数 据),故数据选择受到限制。
差分干涉测量的原理
差分干涉方 法
两轨法
三轨法
四轨法
所需数据
两景图像和一个 DEM
三景SAR图像

(完整版)InSAR基本原理及其误差来源

(完整版)InSAR基本原理及其误差来源

InSAR 基本原理及其误差来源合成孔径雷达干涉测量技术(synthetic aperture radar interferometry, InASR )将合成孔径雷达成像技术与干涉测量技术成功地进行了结合,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确的测量出图像上每一点的三维位置和变化信息。

合成孔径雷达干涉测量技术是正在发展中的极具潜力的微波遥感新技术,其诞生至今已近30年。

起初它主要应用于生成数字高程模型(DEM)和制图,后来很快被扩展为差分干涉技术 ( differential InSAR , DInSAR)并应用于测量微小的地表形变,它已在研究地震形变、火山运动、冰川漂移、城市沉降以及山体滑坡等方面表现出极好的前景。

特别,DInSAR 具有高形变敏感度、高空间分辨率、几乎不受云雨天气制约和空中遥感等突出的技术优势,它是基于面观测的空间大地测量新技术,可补充已有的基于点观测的低空间分辨率大地测量技术如全球定位系统(GPS)、甚长基线干涉 (VLBI)和精密水准等。

尤其InSAR 在地球动力学方面的研究最令人瞩目。

随着InSAR 应用的广泛开展,尤其是在长时间序列的缓慢地表形变监测方面的深入应用,发现传统InSAR 技术存在不可客服的局限,主要表现在以下几个方面:(1)长时间序列上的时间去相干问题,特别是重复轨道观测的InSAR 处理。

地物在时间序列上的变化导致其散射特性的变化,从而大大降低地物在不同时间上的相干性,导致InSAR 处理的失效。

(2)传统DInSAR 侧重于单次形变的研究,使用到的SAR 图像少,而且对SAR 图像的要求非常高,通常要保证两次卫星的基线距比较小,否则会引入严重的几何去相干问题,这大大限制可被利用于感兴趣区的InSAR 监测图像质量。

(3)大气相位的不均匀延时影响,由于大气本身的非均质性和不同时刻大气状况的迥异,尤其对于不同季节的干涉图像对,大气相位成为传统InSAR 处理干涉相位中不可避免的信号之一,严重的影响了所获得的DEM 和地表形变的精度。

合成孔径雷达干涉测量(INSAR)技术原理及应用发展

合成孔径雷达干涉测量(INSAR)技术原理及应用发展

合成孔径雷达干涉测量(INSAR)技术原理及应用发展合成孔径雷达干涉测量(InSAR)技术近年来得到了较快的发展,这一技术也广泛的应用于国防建设与国民经济建设中。

文章结合作者实际研究,从InSAR 技术的自身优势与发展潜力出发,分析了其基本技术原理,并就InSAR技术在各个领域的实际应用进行了探讨,最后总结了其未来发展。

标签:合成孔径雷达;INSAR;技术原理;应用1 InSAR技术的优势与潜力合成孔径雷达干涉测量技术是近年来发展起来的空间对地观测新技术,这一技术主要是借助于合成孔径雷达SAR朝目标位置发射微波,之后接收目标反射回波,从而获得目标位置成像的SAR复图像对,如果复图像之间有相干条件,SAR复图像对共轭相乘后能够得到干涉图,结合干涉图相位值可以获得两次成像中存在的微波路程差,进而准确获得目标位置的地形地貌等情况。

利用InSAR技术成像的优势在于连续观测能力强、成像分辨率和精度高、覆盖范围较广、技术成本低等,在各个领域的应用也非常广泛,比如说DEM生成、地面沉降监测、火山或地震灾害监测、海洋测绘、国防军事等。

但是InSAR 技术测量的精准度往往会受到大气效应的影响,近年来新提出的散射体PS技术逐渐被越来越多的应用到其干涉处理的过程中,PS技术分析能够在长时间内保持相对稳定的散射体相位变化,即便是难以获得干涉条纹的状况下,也可以获得毫米级的测量精度,在很大程度上提高了干涉测量技术的环境适应能力,这也是这一技术研究过程中的一个重大突破,其拥有非常高的开发应用价值[1]。

2 InSAR技术的基本原理分析合成孔径雷达干涉测量技术是按照复雷达图像的相位值来计算出地面目标空间信息的技术,它的基本思想是:借助两幅天线进行同时成像或者单幅天线间隔一定时间重复成像,进而得到同一位置的复雷达图像对,因为两幅天线和地面目标之间的距离不一致,因此在复雷达图像对同名象点之间出现相位差,进而产生干涉纹图,其中的相位值代表两次成像的相位差测量值,两次成像的相位差和地面目标的空间位置之间的几何关系,结合飞行轨道的具体参数,便能够准确的计算出地面目标的具体坐标,进而让我们获得具有较强精准度的大范围数字高程模型。

《第六章差分干涉DInSAR和相干目标干涉测量》

《第六章差分干涉DInSAR和相干目标干涉测量》

InSAR基本原理
模糊高度:相位变化2π对应的高程变化
• 模糊高度越小,反演DEM的高程精度越高;模糊高度越大,反演DEM的高程精度越低。 • 模糊高度与垂直基线距成反比:垂直基线距越大,模糊高度越小;垂直基线距越小,模
糊高度越大。但实际上垂直基线距不可能无限大,因为存在极限基线距的限制 • 模糊高度与雷达波长成正比:波长越小,模糊高度越小;波长越大,模糊高度越大
InSAR的作用
获取地形高程信息,DEM; 测量地表微小形变
——火山,地震,滑坡,冰川监测
差分干涉SAR测量(DInSAR)
S
A
R 差 分 干 涉 测 量
平地
地形 地表形变
def
4
d
在InSAR处理基础之上,消除地形相位,获得地 表形变相位信息。
两轨法,外来DEM模拟干涉相位,获得地形相位信息
在DEM和主辅图象轨道参数的支持下,进行干涉相位的模拟。
41
A2 B||
B
A1
α1
α2
A3 B'
R2
1
4
B||
4
Rd
4
B sin(1
1)
4
Rd
2
4
B||
4
B sin( 2
2)
R3
Z
R1
P
三轨法
d
1
B|| B||
2
4
Rd
用“去平地”相位重新表示得
d
f1
B B
f2
张北-尚义地震
About 80% houses in VIII intensity region were destroyed due to their poor quality of constructions, which were mostly made of rubles or adobe walls.

InSAR干涉测量

InSAR干涉测量

三、InSAR在摄影测量与遥感中的应用
InSAR、D-InSAR在地面沉降监测中的应用
作为一种新兴的地面形变研究方法,InSAR技术在地面沉降监测 方面发挥了愈来愈明显的作用,国内外已有诸多实例。Biegert等 (1997)应用不同卫星在美国加利福尼亚州Belridge和Lost山油田重复 测量的合成孔径雷达数据对该区的地面沉降进行了研究,结果显示70天 内沉降量达到6厘米,此结果与该区每年30厘米的地面沉降速率相吻合。 Marco van der (2001)对该油田地面沉降的研究也证明了InSAR技术用 于地面沉降的可行性。李德仁等(2000)利用欧空局ERS-1和ERS-2相隔 1天的重复轨道SAR数据,经过差分处理对天津市地面沉降进行研究,得 到反映地面沉降大小及分布的干涉条纹图。此图与1995~1997年重复水 准测量求得的地面沉降等值线图比较,具有明显的一致性和相似性。
一、InSAR概述
D-InSAR
D-InSAR(Different InSAR,差分干涉)技术是在InSAR的基础上发 展起来的,它以合成孔径雷达复数据提供的相位信息为信息源,可从包含 日标区域地形和形变等信息的一幅或多幅干涉纹图中提取地面目标的微小 形变信息。D-InSAR具有高形变敏感度、高空间分辨率、几乎不受云雨天 气制约和空中遥感等突出的技术优势,因而有人认为它是独特的基于面观 测的空间大地测量新技术,可补充已有的基于点观测的低空间分辨率大地 测量技术如全球定位系统(GPS)、甚长基线干涉(VLBI)和精密水准等 ,从而可以揭示出更多的地球物理现象,最终为地球物理学提供一种全新 的动态研究途径。
三、InSAR在摄影测量与遥感中的应用
高分三号卫星
不同于高分一号、高分二号等光学卫星,高分三号是一 颗合成孔径雷达卫星,它搭载的合成孔径雷达可以克服风雨云雾、 黑夜的不利影响,对地面和海洋实施全天时、全天候成像。按照 设计,高分三号运行在太阳同步极地轨道,其精良的载荷设备可 以实现卫星影像分辨率和成像幅宽的良好平衡,可对疑似区域先 进行大范围普查,再进行小范围详查,将在未来的海上搜救中发 挥重要作用。

合成孔径雷达干涉测量及若干关键技术研究

合成孔径雷达干涉测量及若干关键技术研究

合成孔径雷达干涉测量及若干关键技术研究合成孔径雷达干涉测量及若干关键技术研究引言:合成孔径雷达干涉测量(InSAR)技术是一种通过对两幅或多幅雷达影像的干涉分析来获取地表形变和高程信息的遥感技术。

它利用雷达的发射和接收系统形成的合成孔径,通过比较不同时刻或不同视角的雷达图像,可以测量出地表的微小变化。

这项技术可广泛应用于环境监测、地质灾害预警等领域,具有广阔的应用前景。

本文将着重介绍合成孔径雷达干涉测量技术的原理以及相关的关键技术研究进展。

一、合成孔径雷达干涉测量原理合成孔径雷达干涉测量是通过对两幅或多幅雷达图像进行干涉分析来得到地表形变和高程信息的技术。

其原理主要包括以下几个方面:1. 合成孔径:合成孔径是通过雷达系统来形成的一种虚拟孔径,其大小远远大于实际的天线孔径。

通过合成孔径,可以提高雷达的方向性和分辨率。

2. 干涉分析:干涉分析是通过对不同时刻或不同视角的雷达图像进行相位差分析来得到地表形变和高程信息的算法。

当地表发生形变时,会导致相位改变,通过对两幅雷达图像的相位进行差分,可以得到地表形变信息。

3. 分析和解算:经过干涉分析后,得到的相位差图像需要进行进一步的分析和解算,才能得到可靠的地表形变和高程信息。

其中包括相位解缠、轨道参数精确校正、大气湿延伸校正等过程。

二、关键技术研究进展合成孔径雷达干涉测量是一项复杂的技术,需要借助多个关键技术的支持才能实现。

以下将介绍目前一些主要的关键技术研究进展:1. 相位解缠技术:相位解缠是解决差分相位包裹问题的关键技术。

相位包裹是指相位在空间上发生突变,导致相位差无法直接表示地表形变。

相位解缠技术通过利用多余的信息,将相位包裹进行去除,得到连续的相位图像,从而获得准确的形变信息。

2. 轨道参数精确校正技术:由于合成孔径雷达干涉测量需要对不同时刻或不同视角的雷达图像进行干涉分析,所以需要对雷达系统的轨道参数进行精确校正。

轨道参数精确校正技术可以通过星载GPS等方式获取高精度的轨道参数,从而提高干涉测量的精度。

InSAR技术和InSAR原理

InSAR技术和InSAR原理

北京揽宇方圆信息技术有限公司InSAR技术和InSAR原理卫星合成孔径雷达干涉测量技术(InSAR)通过对地面同一地区进行两次或多次平行观测,得到复图象对,从复图像对中提取相位信息,作为获取地表三维信息和变化信息的信息源,用以获取DEM和监测地表面的变化。

InSAR最初设计是用来对地球表面测图,目前InSAR技术的应用已不仅仅涉及地形测图,还广泛应用在数字高程模型、洋流、水文、森林、海岸带、变化监测、地面沉降、火山灾害、地震活动、极地研究等诸多领域。

其主要应用领域包括以下四大方面:1.数字高程模型(DEM)的获取。

InSAR技术可以全天候、全天时、大面积、高精度、快速准确地获取覆盖全世界的数字高程图,特别是在某些困难地区用传统测量方法无法涉及的地方,优势更为明显。

2.地图测绘。

利用传统测绘方法测图不仅费时费力,而且高程精度不高。

利用InSAR技术可以解决这一问题,现在利用InSAR技术在平坦地区可以取得2m左右的高程精度,地形起伏较大的地区高程精度可以达到5m左右,完全可以满足实际需要。

3.海洋应用。

利用InSAR可以测量海浪方向和海表面流速,还可测量海面高度,进而计算海浪高度,此外,InSAR还可用于舰船监测、海岸线的动态监测。

4.地球动力学应用。

InSAR技术在地球动力学方面的应用最令人瞩目,主要包括以下几个方面:(1)地震形变研究,包括同震、震间、震后的机理研究。

(2)火山的下陷与抬升研究,通过对火山的运动规律分析,进行火山爆发的预测研究。

(3)冰川研究,通过InSAR技术获取完整的、高分辨率的、高精度的地形数据,并测量冰流和其他变化。

(4)细微地形变化,主要包括滑坡、地面沉降等地表形变。

机载或星载SAR系统所获取的影像中每一像素既包含地面分辨元的雷达后向散射强度信息,也包含与斜距(从雷达平台到成像点的距离)有关的相位信息。

将覆盖同一地区的两幅雷达图像对应像素的相位值相减可得到一个相位差图,即所谓干涉相位图(Interferogram)。

基于INSAR技术的沉降监测

基于INSAR技术的沉降监测

基于永久散射体雷达干涉测量技术的沉降监测一、永久散射体雷达干涉测量技术(PSI)简介合成孔径雷达干涉测量(InSAR)是一种使用微波探测目标的成像技术,可将复图像进行相位干涉和差分处理,从中提取地表移动变形信息,从而对地面沉降变形进行监测。

目前,合成孔径雷达差分干涉测量(D-InSAR)技术作为一种重要的地面沉降监测技术,应用已比较广泛,在进行地表形变监测时,理论上能达到mm级精度。

但其受时间、空间去相关以及大气延迟的影响十分严重:时间的去相关主要是指图像分辨单元内物体在图像获得的时间间隔内散射特性发生变化,从而导致所获得的图像对之间失去相关性;几何去相关性主要是指由于成像卫星观测位置不同而导致接收信号时的入射角的不一致,使得物体在图像分辨单元内发生空间变化而导致的去相关性;此外大气的不均匀所产生的大气相位以及不同成像时期大气的不同延时作用也将破坏所获得干涉相位的精确性。

Ferretti等人在2000年提出了一种称为“永久散射体”(Permanent Scatterer)的新技术,它利用从时间序列的SAR图像集中选取那些保持高相关性的点,利用他们的散射特性在长时间上保持的稳定性,获得可靠的相位信息。

因此,永久散射体干涉测量技术(PSI)应运而生,PSI技术的目的是解决D-InSAR中时间、空间的去相关和大气效应等限制测量精度的问题。

与传统方法比较而言,该技术真正实现了生成m级的DEM和mm 级地表形变监测,所获得的永久散射体(PS)可被用作构成一个“天然”的角反射器网,可以高精度地监测城市沉降、滑坡、地震断层和火山地区等地表形变。

同时,由于PS 点不受时间和空间去相关的影响,使可利用的SAR影像突破了已有的时间和空间基线的极限限制,大大增加了SAR影像的可用数量。

二、作业原理PSI技术的基本原理是利用多景(一般要求大于25景)同一地区的SAR影像,通过统计分析所有影像的幅度信息,查找不受时间、空间基线去相关和大气效应影响的永久散射体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-- 精品--
差分干涉测量的原理
三轨法
原理是采用三幅SAR图像,以其中的一幅作 为主图像,另外两幅作为从图像,可与主图像分 别生成两幅干涉图。
基于三种假设:
1. 只有形变对干涉图收到形变的影响; 2. 形变对于干涉图中形变不会影响有地面高程产生
的相位发生跳跃; 3. 地形对干涉图可以获得精确的DEM。
--图所示,S.、S2和 S3分别为卫星三次对同一地 区成像的位置(即成像时雷达 天线的位置)。则经相位干涉 处理,由S。和S2可生成一 幅干涉图,s,和S 可生成 另一幅干涉图,利用这两幅 干涉图进行差分处理,即所 谓的差分雷达干涉测量。
-- 精品--
差分干涉测量的原理
-- 精品--
差分干涉测量的原理
四轨法
基本思想是选择四幅SAR图像,用其中 的两幅来生成DEM,另外两幅作变形监测。
-- 精品--
三种方法比较
两轨法
优点:不需要相位解缠,减少了数据处理 的工作 量;避免了相位解缠引入的误差。
缺点:已知DEM与InSAR干涉图像的配准存 在很大 困难。
-- 精品--
合成孔径雷达差分干涉测量原理
黑龙江工程学院 测绘学院
摄影测量与遥感系
引言
合成孔径雷达(Synthetic Aperture Radar,简称SAR),是一
种工作在微波波段的主动式微波成像传感器。它有效地解 决了雷达设计中高分辨率要求与大天线、短波长之间的矛 盾,使分辨率提高了数百倍。
合成孔径雷达干涉测量(Interferometric Synthetic Aperture
三种方法比较
三轨法
优点:无需知道外部DEM就可以得到地面位移引起 的相位差,特别是适用于缺少高精度DEM数据的 地区。与四轨法相比的优点是,由于几何参数相 同,故不需要考虑另外的匹配和重采样。
缺点:地形对需要相位解缠,其解缠精度的优劣直 接影响到后续的处理。
-- 精品--
三种方法比较
四轨法
优点:弥补了三轨法有时不能生成DEM或者图像相 关性差的不足。
差分干涉测量地震监测的应用
-- 精品--
差分干涉测量地震监测的应用
地震可以引起电离层异常
-- 精品--
差分干涉测量在地表沉降监测的应用
-- 精品--
谢谢观赏
WPS Office
Make Presentation much more fun
-- 精品--
缺点:由于使用两个独立的干涉对(需要四景数 据),故数据选择受到限制。
-- 精品--
差分干涉测量的原理
-- 精品--
差分干涉测量的应用
目前D-InSAR的应用主要集中在地震 同震形变场的监测、火山形变的监测、冰 川运动的监测、地面沉降的监测等领域。
-- 精品--
差分干涉测量在地震监测的应用
-- 精品--
两轨法 其基本思想是利用已知的外部DEM
来消除地形相位。 在两轨法中,外部DEM的精度、空
间分辨率、插值方法及干涉基线对形 变量的精度都有显著的影响。
-- 精品--
差分干涉测量的原理
三轨法
是由1994年由Zebker等人提出的,由 于该方法可以直接从SAR图像中提取出地 表形变信息,被认为是差分干涉模型最经 典的方法。
Radar,简称InSAR)是SAR的新发展,是最新发展起来的 一种空间对地观测技术。它是把合成孔径雷达产生的单视 复数图像中的相位提取出来,进行干涉处理而得到目标点 三维信息的一种新技术
-- 精品--
差分干涉测量的原理
基本原理 合成孔径雷达干涉测量原理在很
多文献中已有详细介绍。现在将以星 载重复轨道为例简要介绍差分合成孔 径雷达干涉基本原理。
相关文档
最新文档