核磁共振原理及图谱分析技巧
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪 3. 氢的化学位移 4. 影响化学位移的因素 5. 各类质子的化学位移 6. 自旋偶合和自旋裂分 7.偶合常数与分子结构的关系 8. 常见的自旋系统 9. 简化1H1 NMR谱的实验方法 10. 核磁共振氢谱解析
一. 核磁共振的基本原理
• NMR:磁性核受幅射而发生跃迁所形成的吸收光谱。 是研究分子结构、构型构象等的重要方法。 核磁共振的研究对象:磁性核 磁性核:具有磁矩的原子核。 磁矩是由于核的自旋运动产生的。 并非所有同位素的原子核都具有自旋运动。 原子核的自旋运动与自旋量子数(I)有关。
当自旋核处在外磁场B0中时,除自旋外(自旋轴的方 向与 一致),还会绕B0进动,称Larmor进动,类似 于陀螺在重力场中的进动。
旋进轨道 自旋轴
自旋的质子
H0 BO
B0 回旋轴
B0
核磁距 回旋轴 自旋轴
自旋轴 核磁距
I = 1/2
I =1/2
自旋核在BO场中的进动
E
B0
E1
化学键的各向异性,导致与其相连的氢核的化学位移
不同。
例如: δ(ppm):
CH3CH3 0.86
CH2=CH2 5.25
HC≡CH 1.80
sp杂化碳原子上的质子:叁键碳 碳碳叁键:直线构型,π 电子云呈 圆筒型分布,形成环电流,产生 的感应磁场与外加磁场方向相反。
H质子处于屏蔽区,屏蔽效应强, 共振信号移向高场, δ减小。
I=0:
12C 6 16O 8 32S 16
磁矩() 磁旋比( ):核的特征常数 自旋角动量(P ) 自旋量子数(I )
• I = 0: P=0,无自旋,不产生共振信号。
• I≠0 : P≠0 ,具有自旋现象。 I=1/2,核电荷在核表面均匀分布。 核磁共振谱线窄,有利于核磁共振检测。
I=1/2:
实际上多用后者。 对于1H 核,不同的频率对应的磁场强度: 射频(MHZ) 60 100 200 300 500 磁场强度(特斯拉) 1.4092 2.3500 4.7000 7.1000 11.7500
饱和与弛豫
饱和: 在外磁场作用下,1H 倾向于与外磁场相同取向的排 列。处于低能态的核数目多,由于能级差很小,只 占微弱的优势。
N hn N+ Relaxation
二、核磁共振仪
磁体:永久磁体、电磁体 (低频谱仪)
超导磁体(高频谱仪)
射频频率:60,80,100,300,400,600MHz
射频源:连续波波谱仪,脉冲傅立叶变换波谱仪
脉冲傅立叶变换核磁共振仪
— 固定磁场:超导磁体(含铌合金在液氮温度下
的超导性质。
— 脉冲方波 (强而短的频带,一个脉冲中同时 包含了一定范围的各种射频的电磁波) 可将样品中所有的核激发。 — 自由感应衰减信号(FID信号)
H OH C=O
H
H
H
7.27
5.25 H H C=C H H
6.73
4.03 H C=C H
7.81
CH3 6.27 H C=O C=C H H
OCH3 H
7.78
Ha
6.70
OCH3 Hb
8.58
Ha1 O COCH3
Hb A OCH3 B Ha2 C
8.08
7.94
4.3 化学键的各向异性效应 各向异性效应:氢核与某功能基因空间位置不同, 受到屏蔽作用不同,导致其化学位移不同。 原因:在外磁场的作用下,由电子构成的化学键 会产生一个各向异性的附加磁场,使得某些位置的 核受到屏蔽,而另一些位置上的核则为去屏蔽。
反映了体系和环境的能量交换。“晶格”泛指
“环境”。高能态的自旋核将能量转移至周围的分 子(固体的晶格、液体中同类分子或溶剂分子)而转变 为热运动,结果是高能态的核数目有所下降。 2、自旋-自旋弛豫(横向弛豫):
反映核磁矩之间的相互作用。高能态的自旋核
把能量转移给同类低能态的自旋核,结果是各自旋
态的核数目不变,总能量不变。
(1)屏蔽效应强,共振信号在高场区,绝大多数吸收峰 均出现在它的左边。
(2)结构对称,是一个单峰。 (3)容易回收(b.p低),与样品不反应、不缔合。 低场 9 高场
8 7 6 6 5 4 3 2 1 零 点 -1 -2 -3
TMS
化学位移用表示,以前也用表示, 与的关系为: = 10 -
1H
1
13C
6
15N
7
19F
9
31P
15
2、自旋核在磁场中的取向和能级
• 无外磁场(B0)时,磁矩 的取向是任意的。 • 在B0中,I 0的自旋核,磁矩的取向不是任意的, 而是量子化的,共有(2I + 1)种取向。可用磁量子 数m表示:m:I,I-1,I-2,1 ,-I.
z z z
B0
m = +1/2
δ = 1.8~3
H-C≡C-H: 1.8
+:屏蔽区;-:去屏蔽区
sp2杂化碳原子上的质子:双键、苯环
sp
去屏蔽效应:核外电子产生的感应磁场与外加磁场
规定:以四甲基硅(TMS)为标准物质,其化学位移为零,
根据其它吸收峰与零点的相对距离来确定化学位移值。
试样的共振频率
TMS的共振频率
n 试样 n TMS 6 10 n0
化学位移
仪器的射频频率
感生磁场 H'非常小,只有 外加磁场的百万分之几, 为方便起见,故 × 106
单位:ppm
选用TMS(四甲基硅烷)作为标准物质的原因?
— 经傅立叶变换得到NMR图谱。
脉冲
照射
自旋核
共振
FID
傅立叶变换
谱图
• 在核磁共振实验中,由于原子核所处的电子环境 不同,而具有不同的共振频率。 NMR信号包含许多共振频率的复合信号,分析困难。
• 傅立叶转换(FT):将时域信号转换成频域信号。 在频域信号的图谱中,峰高包含原子核数目的信息, 位置则揭示原子核周围电子环境的信息。
产生NMR条件
(1) I 0 的自旋核 (2) 外磁场 B0 (3) 与 B0 相互垂直的射频场B1
n射 = ——
2π
B0
信号 吸 收 能 量 0 低 场 H0 高 场
要满足核磁共振条件,可通过二种方法来实现:
扫频 — 固定磁场强度,改变射电频率对样品扫描 扫场 — 固定射电频率,改变磁场强度对样品扫描
σ 为屏蔽常数
· B0(1-σ) 核的共振频率为: n = 2
• 核外电子云密度高,屏蔽作用大(σ 值大),核的 共振吸收向高场(或低频)移动,化学位移减小。 • 核外电子云密度低,屏蔽作用小(σ 值小) ,核的
共振吸收向低场(或高频)移动,化学位移增大。
3.3 化学位移的表示方法: 化学位移的差别很小,精确测量十分困难,并因仪器 不同(Bo)而不同,现采用相对数值。
1H-NMR的讯号依靠这些微弱过剩,低能态核吸收电
磁辐射跃迁到高能级而产生信号。
如果高能态核无法返回到低能态,那末随着跃迁的 不断进行,这种微弱的优势将进一步减弱直至消失, 处于低能态的1H核数目与处于高能态1H核数目相等, 与此同步,NMR的讯号也会逐渐减弱直至最后消失。 上述这种现象称为饱和。
核弛豫:1H 核可以通过非辐射的方式从高能态转 变为低能态。 只有当激发和辐射的几率相等时,才能维持 Boltzmann分布,不会出现饱和现象,可以连续观 测到光谱信号。
FT
time
frequency
• 在PFT-NMR中,增设脉冲程序控制器和数据采集及处理系统。 • 脉冲发射时,待测核同时被激发,脉冲终止时,启动接收系统, 被激发的核通过弛豫过程返回。 • 有很强的累加信号的能力,信噪比高(600:1),灵敏度高, 分辨率好(0.45Hz)。
三、 氢的化学位移
CH3Cl 3.05
CH2Cl2 5.33
CHCl3 7.27
化合物 电负性 δ
C-CH3 C: 2.52.5 0.7~1.9
N-CH3 N: 3.0 2.1~3.1
O-CH3 O: 3.5 3.2~4.2
CH3—CH2—CH2—X
γ β α
0.93 1.53 3.49 —OH
1.06 1.81 3.47
甲基与苯环质子的积分曲线高度比为 3:2
图3-5 乙醚CH3CH2OCH2CH3 的氢核磁共振谱
四、影响化学位移的因素
氢核受到的屏蔽作用越大,峰越在高场出现,δ越小。
诱导效应 共轭效应
各向异性效应
Van der Waals效应
氢键效应和溶剂效应
4.1 诱导效应: Y-H中Y的电负性越大,1H周围电子云密度越低, 屏蔽效应越小,越靠近低场出峰,δ值越大。
化合物 电负性 δ CH3F 4.0 4.26 CH3OH 3.5 3.14 CH3Cl 3.0 3.05 CH3Br 2.8 2.68 CH3I 2.5 2.16 CH4 2.1 0.23 TMS 1.8 0
拉电子基团:去屏蔽效应,化学位移增大 推电子基团:屏蔽效应,化学位移减小
化合物 δ
CH4 0.23
E2
h ⊿E = —— B0 2π
3、核磁共振
在垂直于B0的方向加一个射频场B1,其频率为n射, 当E射= hn射 = ⊿E时,自旋核会吸收射频的能量, 由低能态跃迁到高能态(核自旋发生反转)。 h ⊿E = —— B0 2π
n射 = ——
2π
B0
• 磁场强度与射频频率成正比。 • 仪器的射频频率越大,磁场强度越大,谱图分辨率 越高。
D2O
C6D6
4.7(s)
7.3(s)
积分曲线 (integration line)
1H NMR谱中的峰面积 (peak area) 正比于等价质
子的数目
用积分曲线表示峰面积。积分曲线的高度与峰面
积成正比关系。
例:乙醇CH3CH2OH
3 组质子的积分曲线高度比为 3:2:1
积分曲线 (integration line)
3.1 化学位移的定义: 氢核由于在分子中的化学环境不同而在不同共振 磁场强度下显示吸收峰,称为化学位移。 3.2 化学位移的由来 :
核外电子的屏蔽效应
在外加磁场作用下,由
于核外电子在垂直于外加磁
场的平面绕核旋转,从而产 生与外加磁场方向相反的感 生磁场B’。
H核的实际感受到的磁场强度为:
Beff = B0 -σ· B0 = Bo(1-σ)
例:在60MHz的仪器上,测得CHCl3与TMS间吸收 频率之差为437Hz,则CHCl3中1H的化学位移为:
n 样品-n 标样 437 6 6 10 = 10 =7.28 6 n0 60 10
3.4 核磁共振波谱的测定
样品:纯度高,固体样品和粘度大的 液体样品必须溶解。
溶剂:氘代试剂。
—Cl
试比较下面化合物分子中 Ha Hb Hc 值的大小。
CH3 CH3-O-CH2-C-CH3
a b
Cl
c
b>a>c
4.2 共轭效应
7.11 6.86 6.81 OR NH2 <7.27 7.45 7.66 7.27 >7.27 8.21 NO 2 COR
• 供电子共轭效应,苯环电子云密度增大。 • 氢核电子云密度增大,屏蔽作用增大,向高场移动, δ值减小。
自旋量子数 I 值与原子核的质量数A和核电荷数 Z
(质子数或原子序数)有关。 质量数 核电荷数 I NMR信号 电荷分布
偶数
偶数 奇数
偶数
奇数
0
1, 2, 3, …
无
有 有 有
均匀
不均匀 均匀 不均匀
1/2 奇数或偶数 3/2, 5/2, …
= · P h P = 2 I ( I 1)
标准:四甲基硅烷(内标法,外标法) 记录纸:
3.5 NMR谱的结构信息
化学位移 积分高度 偶合常数 积分高度
化学位移
偶合wenku.baidu.com数
氘代溶剂的干扰峰
CDCl3 7.27(s)
CD3CN
CD3OD
2.0
3.3(5), 4.5(OH)
CD3COCD3 2.1(5) , 2.7(水)
CD3SOCD3 2.5 (5), 3.1(水)
Boltzmann分布(低能态的核数>高能态的核数):
N-/N+ = 1-E/KT= 1–( γh/2 )B0/KT
N+---- 低能态的核数 N- ---- 高能态的核数 k ----- Boltzmann 常数 T ----- 绝对温度
B0越大, N-/N+越大,即低能态的核数越多。
弛豫方式: 1、自旋-晶格弛豫(纵向弛豫):
m =+1 m =
m = m = m = m = 1
m = 1/2
m = 1
m = 2 I=2
I = 1/2
I=1
对于1H1原子核:I =1/2
共有2种取向:(+1/2,-1/2)
磁诱导产生自旋核的能级分裂:
m = -1/2
m = 1/2
自旋核在B0场中的进动
1. 核磁共振的基本原理 2. 核磁共振仪 3. 氢的化学位移 4. 影响化学位移的因素 5. 各类质子的化学位移 6. 自旋偶合和自旋裂分 7.偶合常数与分子结构的关系 8. 常见的自旋系统 9. 简化1H1 NMR谱的实验方法 10. 核磁共振氢谱解析
一. 核磁共振的基本原理
• NMR:磁性核受幅射而发生跃迁所形成的吸收光谱。 是研究分子结构、构型构象等的重要方法。 核磁共振的研究对象:磁性核 磁性核:具有磁矩的原子核。 磁矩是由于核的自旋运动产生的。 并非所有同位素的原子核都具有自旋运动。 原子核的自旋运动与自旋量子数(I)有关。
当自旋核处在外磁场B0中时,除自旋外(自旋轴的方 向与 一致),还会绕B0进动,称Larmor进动,类似 于陀螺在重力场中的进动。
旋进轨道 自旋轴
自旋的质子
H0 BO
B0 回旋轴
B0
核磁距 回旋轴 自旋轴
自旋轴 核磁距
I = 1/2
I =1/2
自旋核在BO场中的进动
E
B0
E1
化学键的各向异性,导致与其相连的氢核的化学位移
不同。
例如: δ(ppm):
CH3CH3 0.86
CH2=CH2 5.25
HC≡CH 1.80
sp杂化碳原子上的质子:叁键碳 碳碳叁键:直线构型,π 电子云呈 圆筒型分布,形成环电流,产生 的感应磁场与外加磁场方向相反。
H质子处于屏蔽区,屏蔽效应强, 共振信号移向高场, δ减小。
I=0:
12C 6 16O 8 32S 16
磁矩() 磁旋比( ):核的特征常数 自旋角动量(P ) 自旋量子数(I )
• I = 0: P=0,无自旋,不产生共振信号。
• I≠0 : P≠0 ,具有自旋现象。 I=1/2,核电荷在核表面均匀分布。 核磁共振谱线窄,有利于核磁共振检测。
I=1/2:
实际上多用后者。 对于1H 核,不同的频率对应的磁场强度: 射频(MHZ) 60 100 200 300 500 磁场强度(特斯拉) 1.4092 2.3500 4.7000 7.1000 11.7500
饱和与弛豫
饱和: 在外磁场作用下,1H 倾向于与外磁场相同取向的排 列。处于低能态的核数目多,由于能级差很小,只 占微弱的优势。
N hn N+ Relaxation
二、核磁共振仪
磁体:永久磁体、电磁体 (低频谱仪)
超导磁体(高频谱仪)
射频频率:60,80,100,300,400,600MHz
射频源:连续波波谱仪,脉冲傅立叶变换波谱仪
脉冲傅立叶变换核磁共振仪
— 固定磁场:超导磁体(含铌合金在液氮温度下
的超导性质。
— 脉冲方波 (强而短的频带,一个脉冲中同时 包含了一定范围的各种射频的电磁波) 可将样品中所有的核激发。 — 自由感应衰减信号(FID信号)
H OH C=O
H
H
H
7.27
5.25 H H C=C H H
6.73
4.03 H C=C H
7.81
CH3 6.27 H C=O C=C H H
OCH3 H
7.78
Ha
6.70
OCH3 Hb
8.58
Ha1 O COCH3
Hb A OCH3 B Ha2 C
8.08
7.94
4.3 化学键的各向异性效应 各向异性效应:氢核与某功能基因空间位置不同, 受到屏蔽作用不同,导致其化学位移不同。 原因:在外磁场的作用下,由电子构成的化学键 会产生一个各向异性的附加磁场,使得某些位置的 核受到屏蔽,而另一些位置上的核则为去屏蔽。
反映了体系和环境的能量交换。“晶格”泛指
“环境”。高能态的自旋核将能量转移至周围的分 子(固体的晶格、液体中同类分子或溶剂分子)而转变 为热运动,结果是高能态的核数目有所下降。 2、自旋-自旋弛豫(横向弛豫):
反映核磁矩之间的相互作用。高能态的自旋核
把能量转移给同类低能态的自旋核,结果是各自旋
态的核数目不变,总能量不变。
(1)屏蔽效应强,共振信号在高场区,绝大多数吸收峰 均出现在它的左边。
(2)结构对称,是一个单峰。 (3)容易回收(b.p低),与样品不反应、不缔合。 低场 9 高场
8 7 6 6 5 4 3 2 1 零 点 -1 -2 -3
TMS
化学位移用表示,以前也用表示, 与的关系为: = 10 -
1H
1
13C
6
15N
7
19F
9
31P
15
2、自旋核在磁场中的取向和能级
• 无外磁场(B0)时,磁矩 的取向是任意的。 • 在B0中,I 0的自旋核,磁矩的取向不是任意的, 而是量子化的,共有(2I + 1)种取向。可用磁量子 数m表示:m:I,I-1,I-2,1 ,-I.
z z z
B0
m = +1/2
δ = 1.8~3
H-C≡C-H: 1.8
+:屏蔽区;-:去屏蔽区
sp2杂化碳原子上的质子:双键、苯环
sp
去屏蔽效应:核外电子产生的感应磁场与外加磁场
规定:以四甲基硅(TMS)为标准物质,其化学位移为零,
根据其它吸收峰与零点的相对距离来确定化学位移值。
试样的共振频率
TMS的共振频率
n 试样 n TMS 6 10 n0
化学位移
仪器的射频频率
感生磁场 H'非常小,只有 外加磁场的百万分之几, 为方便起见,故 × 106
单位:ppm
选用TMS(四甲基硅烷)作为标准物质的原因?
— 经傅立叶变换得到NMR图谱。
脉冲
照射
自旋核
共振
FID
傅立叶变换
谱图
• 在核磁共振实验中,由于原子核所处的电子环境 不同,而具有不同的共振频率。 NMR信号包含许多共振频率的复合信号,分析困难。
• 傅立叶转换(FT):将时域信号转换成频域信号。 在频域信号的图谱中,峰高包含原子核数目的信息, 位置则揭示原子核周围电子环境的信息。
产生NMR条件
(1) I 0 的自旋核 (2) 外磁场 B0 (3) 与 B0 相互垂直的射频场B1
n射 = ——
2π
B0
信号 吸 收 能 量 0 低 场 H0 高 场
要满足核磁共振条件,可通过二种方法来实现:
扫频 — 固定磁场强度,改变射电频率对样品扫描 扫场 — 固定射电频率,改变磁场强度对样品扫描
σ 为屏蔽常数
· B0(1-σ) 核的共振频率为: n = 2
• 核外电子云密度高,屏蔽作用大(σ 值大),核的 共振吸收向高场(或低频)移动,化学位移减小。 • 核外电子云密度低,屏蔽作用小(σ 值小) ,核的
共振吸收向低场(或高频)移动,化学位移增大。
3.3 化学位移的表示方法: 化学位移的差别很小,精确测量十分困难,并因仪器 不同(Bo)而不同,现采用相对数值。
1H-NMR的讯号依靠这些微弱过剩,低能态核吸收电
磁辐射跃迁到高能级而产生信号。
如果高能态核无法返回到低能态,那末随着跃迁的 不断进行,这种微弱的优势将进一步减弱直至消失, 处于低能态的1H核数目与处于高能态1H核数目相等, 与此同步,NMR的讯号也会逐渐减弱直至最后消失。 上述这种现象称为饱和。
核弛豫:1H 核可以通过非辐射的方式从高能态转 变为低能态。 只有当激发和辐射的几率相等时,才能维持 Boltzmann分布,不会出现饱和现象,可以连续观 测到光谱信号。
FT
time
frequency
• 在PFT-NMR中,增设脉冲程序控制器和数据采集及处理系统。 • 脉冲发射时,待测核同时被激发,脉冲终止时,启动接收系统, 被激发的核通过弛豫过程返回。 • 有很强的累加信号的能力,信噪比高(600:1),灵敏度高, 分辨率好(0.45Hz)。
三、 氢的化学位移
CH3Cl 3.05
CH2Cl2 5.33
CHCl3 7.27
化合物 电负性 δ
C-CH3 C: 2.52.5 0.7~1.9
N-CH3 N: 3.0 2.1~3.1
O-CH3 O: 3.5 3.2~4.2
CH3—CH2—CH2—X
γ β α
0.93 1.53 3.49 —OH
1.06 1.81 3.47
甲基与苯环质子的积分曲线高度比为 3:2
图3-5 乙醚CH3CH2OCH2CH3 的氢核磁共振谱
四、影响化学位移的因素
氢核受到的屏蔽作用越大,峰越在高场出现,δ越小。
诱导效应 共轭效应
各向异性效应
Van der Waals效应
氢键效应和溶剂效应
4.1 诱导效应: Y-H中Y的电负性越大,1H周围电子云密度越低, 屏蔽效应越小,越靠近低场出峰,δ值越大。
化合物 电负性 δ CH3F 4.0 4.26 CH3OH 3.5 3.14 CH3Cl 3.0 3.05 CH3Br 2.8 2.68 CH3I 2.5 2.16 CH4 2.1 0.23 TMS 1.8 0
拉电子基团:去屏蔽效应,化学位移增大 推电子基团:屏蔽效应,化学位移减小
化合物 δ
CH4 0.23
E2
h ⊿E = —— B0 2π
3、核磁共振
在垂直于B0的方向加一个射频场B1,其频率为n射, 当E射= hn射 = ⊿E时,自旋核会吸收射频的能量, 由低能态跃迁到高能态(核自旋发生反转)。 h ⊿E = —— B0 2π
n射 = ——
2π
B0
• 磁场强度与射频频率成正比。 • 仪器的射频频率越大,磁场强度越大,谱图分辨率 越高。
D2O
C6D6
4.7(s)
7.3(s)
积分曲线 (integration line)
1H NMR谱中的峰面积 (peak area) 正比于等价质
子的数目
用积分曲线表示峰面积。积分曲线的高度与峰面
积成正比关系。
例:乙醇CH3CH2OH
3 组质子的积分曲线高度比为 3:2:1
积分曲线 (integration line)
3.1 化学位移的定义: 氢核由于在分子中的化学环境不同而在不同共振 磁场强度下显示吸收峰,称为化学位移。 3.2 化学位移的由来 :
核外电子的屏蔽效应
在外加磁场作用下,由
于核外电子在垂直于外加磁
场的平面绕核旋转,从而产 生与外加磁场方向相反的感 生磁场B’。
H核的实际感受到的磁场强度为:
Beff = B0 -σ· B0 = Bo(1-σ)
例:在60MHz的仪器上,测得CHCl3与TMS间吸收 频率之差为437Hz,则CHCl3中1H的化学位移为:
n 样品-n 标样 437 6 6 10 = 10 =7.28 6 n0 60 10
3.4 核磁共振波谱的测定
样品:纯度高,固体样品和粘度大的 液体样品必须溶解。
溶剂:氘代试剂。
—Cl
试比较下面化合物分子中 Ha Hb Hc 值的大小。
CH3 CH3-O-CH2-C-CH3
a b
Cl
c
b>a>c
4.2 共轭效应
7.11 6.86 6.81 OR NH2 <7.27 7.45 7.66 7.27 >7.27 8.21 NO 2 COR
• 供电子共轭效应,苯环电子云密度增大。 • 氢核电子云密度增大,屏蔽作用增大,向高场移动, δ值减小。
自旋量子数 I 值与原子核的质量数A和核电荷数 Z
(质子数或原子序数)有关。 质量数 核电荷数 I NMR信号 电荷分布
偶数
偶数 奇数
偶数
奇数
0
1, 2, 3, …
无
有 有 有
均匀
不均匀 均匀 不均匀
1/2 奇数或偶数 3/2, 5/2, …
= · P h P = 2 I ( I 1)
标准:四甲基硅烷(内标法,外标法) 记录纸:
3.5 NMR谱的结构信息
化学位移 积分高度 偶合常数 积分高度
化学位移
偶合wenku.baidu.com数
氘代溶剂的干扰峰
CDCl3 7.27(s)
CD3CN
CD3OD
2.0
3.3(5), 4.5(OH)
CD3COCD3 2.1(5) , 2.7(水)
CD3SOCD3 2.5 (5), 3.1(水)
Boltzmann分布(低能态的核数>高能态的核数):
N-/N+ = 1-E/KT= 1–( γh/2 )B0/KT
N+---- 低能态的核数 N- ---- 高能态的核数 k ----- Boltzmann 常数 T ----- 绝对温度
B0越大, N-/N+越大,即低能态的核数越多。
弛豫方式: 1、自旋-晶格弛豫(纵向弛豫):
m =+1 m =
m = m = m = m = 1
m = 1/2
m = 1
m = 2 I=2
I = 1/2
I=1
对于1H1原子核:I =1/2
共有2种取向:(+1/2,-1/2)
磁诱导产生自旋核的能级分裂:
m = -1/2
m = 1/2
自旋核在B0场中的进动