正切 余切图像的性质 反三角函数

合集下载

三角函数公式及图像

三角函数公式及图像

锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·s inγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2si nαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角、反三角函数图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数 y=sinx y=cosx y=tanx y=cotx定义域RR{x |x ∈R 且x≠kπ+2π,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z }值域[-1,1]x=2kπ+2π 时y max =1 x=2kπ-2π时y min =-1[-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1R无最大值 无最小值R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z).反三角函数:arcsinx arccosx名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数。

常见三角函数图像及其性质

常见三角函数图像及其性质

常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。

函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。

六种三角函数性质

六种三角函数性质

六种三角函数性质、公式三角函数包括。

它包含六种基本函数:正弦、余弦、正切、余切、正割、余割1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx.反三角函数:arcsinx arccosxarctanx arccotx函数y=sinx y=cosx y=tanx y=cotx定义域R R{x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]在[2kπ-π,2kπ]上都是增在(kπ-2π,在(kπ,kπ+π)内都是y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.(5)正割与余弦互为倒数;余割与正弦互为倒数;(6)正割函数无限趋于直线x=π/2+Kπ;(7) 正割函数是无界函数;(8)正割函数的导数:(secx)′=secx×tarx;(9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+Cy=cscx的性1、定义域:{x|x≠kπ,k∈Z}2、值域:{y|y≤-1或y≥1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^( n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sin α/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-si nα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1 -tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)=sinα/(1-cosα) ·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^( n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinαsec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-si nα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1 -tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30tanα+cotα=2/sin2αtanα-cotα=-2cot21+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2。

全部反三角函数

全部反三角函数

全部反三角函数
反三角函数是数学中非常重要的一类函数,它们是三角函数的反函数。

在一些数学问题中,使用反三角函数可以简化计算,同时也有一些实际应用。

本文将介绍全部的反三角函数,包括正弦函数的反函数arcsin(x),余弦函数的反函数arccos(x),正切函数的反函数arctan(x),余切函数的反函数arccot(x),正割函数的反函数arcsec(x),余割函数的反函数arccsc(x)。

同时,本文将讨论这些函数的性质和图像,以及它们在实际问题中的应用。

希望读者通过本文的学习,能够更好地理解反三角函数,并能够熟练运用它们解决实际问题。

- 1 -。

三角函数及反三角函数图像性质、知识点总结

三角函数及反三角函数图像性质、知识点总结

千里之行,始于足下。

三角函数及反三角函数图像性质、知识点总结三角函数是数学中的重要概念,它研究角和三角形之间的关系。

在解决各种几何和物理问题时,三角函数经常被用于描述和计算角度的大小和位置,具有广泛的应用。

而反三角函数则是对三角函数的运算结果进行逆运算,可以将三角函数的值转化为角度的大小。

三角函数包括正弦函数、余弦函数、正切函数等。

它们的图像性质对于理解和使用三角函数非常重要。

首先,正弦函数的图像为一条连续的曲线,其振幅为1,但其值域在[-1, 1]之间变化。

在0到2π的区间上,正弦函数的图像呈现周期性变化,即在每个周期内重复出现相同的形状。

正弦函数在0、π、2π等处的值为0,而在π/2和3π/2等处的值达到最大值1和最小值-1。

余弦函数的图像与正弦函数非常相似,也是连续的曲线,振幅为1,值域在[-1, 1]之间变化。

与正弦函数不同的是,余弦函数在0处达到最大值1,在π/2和3π/2处达到最小值-1,并且在π处到达最小值-1时的斜率大于其他点。

正切函数的图像则比正弦函数和余弦函数复杂一些。

正切函数的值在整个实数轴上变化,但在某些点上出现垂直渐近线。

正切函数在0处为0,并且在π/2处存在一个不可取的点,其他点上的斜率变化也比较剧烈。

反三角函数是三角函数的逆运算。

对于给定的角度值,反三角函数可以计算出与之对应的三角函数的值。

反正弦函数、反余弦函数和反正切函数是最常用的反三角函数。

第1页/共2页锲而不舍,金石可镂。

反正弦函数的图像是一段弧线,其定义域为[-1, 1],值域为[-π/2, π/2]。

在定义域范围内的每个值,它的反正弦函数都会返回一组对应的弧度值。

反余弦函数的图像也是一段弧线,其定义域为[-1, 1],值域为[0, π]。

与反正弦函数不同,反余弦函数的值域比较大,因此可以返回更多的角度值。

反正切函数的图像是一条连续的曲线,其定义域为整个实数轴,值域为(-π/2, π/2)。

反正切函数的图像在x轴与正y轴的交点是原点,其斜率在各点上的变化没有正切函数那么剧烈。

三角函数与反三角函数的图像与性质

三角函数与反三角函数的图像与性质

三角函数与反三角函数的图像与性质一、三角函数的图像和性质
R R
-1,1-1,1
x = + 2 k 时, y= 1,k Z x = -+ 2k时, y最小= -1,k Z x = 2k 时, y= 1,k Z x = + 2 k 时, y = - 1,k Z
在每个[-+2k,+2k]上递增在每个[+ 2k, 3+ 2k]上递减k Z 在每个[-+ 2k, 2k]上递增在每个[2k, + 2k]上递减
k Z
是周期函数,2为最小正周期是周期函数,2为最小正周期
对称中心(k, 0) ,对称轴:x = +k,(k Z)对称中心(+ k, 0) ,对称轴: x = k,(k Z)
{x| x R且x +k,k Z}{x| x R且x+k,k Z} R R
在每个(-+k,+k)上递增
k Z 在每个(k,+ k)上递减
k Z
是周期函数,为最小正周期是周期函数,为最小正周期对称中心(k2,0)对称中心(k2,0)
二、反三角函数的图像与性质
反正弦函数y= arcsin x
是y=sin x,x-2,2的反函数反余弦函数y= arccos x 是y = cos x,x0,的反函数
-1,1-1,1
0,
对称中心(0,)
2. 反正切与反余切函数的图像与性质
反正切函数y= arctan x
是y = tan x,x(-,) 的反函数
22反余切函数y= arccot x
是y = cot x,x(0,)的反函数
(-,+,)(-,+,)
(0,)
在(-,+,)上递增在(-,+,)上递减
对称中心(0,)。

三角函数公式、图像大全

三角函数公式、图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα三角函数的性质函数y=sinx y=cosx y=tanx y=cotx{x|x∈R 且{x|x∈R 且定义域R R x≠kπ+2Z},k∈x≠kπ∈,kZ }值域[-1,1][-1,1]x=2kπ+y =1maxx=2k -π2时x=2k π时2y max =1时y min =-1x=2k π+π时y min =-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数在[2kπ-2 ,2k π+2]在[2kπ-π,2kπ]上都是增在(k π-2,在(k π,kπ+π)内都是减函单调性上都是增函数;在[2kπ+22,2k π+3π]函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z)kπ+)内都是2增函数(k∈Z)数(k ∈Z) 上都是减函数(k∈Z)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数y=sinx(x ∈〔- ,〕的反2 2函数,叫做反正y=cosx(x ∈〔0, π〕)的反函数,叫做反余弦函数,记作y=tanx(x ∈(- ,2)的反函数,叫2y=cotx(x ∈(0, π的))反函数,叫做反余切函数,记作定义弦函数,记作x=arccosy x=arccoty做反正切函数,记作x=arctany x=arsinyarcsinx 表示属于arccosx 表示arctanx 表示属于arccotx 表示属[-, ]2 2 属于[0,π],且余弦值等于(-2,2),且正切于(0,π)且余切值等于x 的角且正弦值等于x 值等于x 的角x 的角理解的角定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[- ][0,π](-,,) (0,π)2 2 2 2性在〔-1,1〕上是在[-1,1]上在(-∞,+∞)上是增在(-∞,+∞)上单调性质增函数是减函数数是减函数奇偶性a rcsin(-x)=-arcsinxarccos(-x)= π-arccosxarctan(-x)=-arctanxarccot(- x)= π-arccotx周期性都不是同期函数sin(arcsinx)=x(x cos(arccosx)= tan(arctanx)=x(x cot(arccotx)=x∈[-1,x(x∈[-1,1]) (x∈R)∈恒等式1])arcsin(sinx)])=x(x∈[- ,2 2 a rccos(cosx)=x(x∈[0, π])R)arctan(tanx)=x(x∈(-, ))2 2a rccot(cotx)=x(x∈(0, π))互余恒等式arcsinx+arccosx= (x∈[-1,1]) arctanx+arccotx= (X∈R)2 2三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) = tanA tanB1- tanAtanBtan(A-B) = tanA tanB1 tanAtanBcot(A+B) = cotAcotB-1 cotB cotAcot(A-B) = cotAcotBcotB cotA1 倍角公式tan2A =1 2tanA tan2ASin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式3sin3A = 3sinA-4(sinA)cos3A = 4(cosA)3-3cosAtan3a = tana·tan( +a)·tan( -a)3 3半角公式sin( A2 )=1 cos A2cos( A2 )= 1 cos A2tan( A2 )= 11coscosAAcot( A2 )= 11coscosAAtan( A2 )= 1 cossin AA=1sinAcosA和差化积a b a b sina+sinb=2sin cos2 2a sina-sinb=2cosb a bsin2 2 acosa+cosb = 2cosb a bcos2 2a cosa-cosb = -2sinb a bsin2 2sin(cos tana+tanb=aab)cos b积化和差sinasinb = - 12[cos(a+b)-cos(a-b)]cosacosb = 12[cos(a+b)+cos(a-b)]sinacosb = 12[sin(a+b)+sin(a-b)]1 2 [sin(a+b)-sin(a-b)]cosasinb =sin(-a) = -sina cos(-a) = cosasin( -a) = cosa2cos( -a) = sina2sin( +a) = cosa2cos( +a) = -sina2sin( -πa) = sina cos( π-a) = -cosa sin( π+a)-s=ina cos( π+a)-=cosatgA=tanA = sincos a a万能公式sina=a 2 tan2a1 (tan22)1 (tan1 cosa=(tan a2a2 ) 22 )tana=2 tan1 (tan a2 a22 )a?sina+bc?osa= (a 2 b 2 ) ×sin(a+c) [其中tanc= ba]a?sin(a-) b?cos(a) = (a 2 b 2 ) ×cos(a-c) [其中tan(c)= ab]1+sin(a) =(sin a2 +cos a22)1-sin(a) = (sin a2a2 -cos2)其他非重点三角函数1csc(a) =sina1sec(a) =cosa双曲函数sinh(a)=ae -2-aeaecosh(a)= 2-a etg h(a)= sinh( cosh(a)a)公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sin αcos(2kπ+α)= cos αtan(2kπ+α)= tan αcot(2kπ+α)= cot α设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= - s in αcos(π+α)= - cosαtan(π+α)= tan αcot(π+α)= cot α公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sin αcos(-α)= cos αtan(-α)= -tan αcot(-α)= -cot α公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sin αcos(π-α)= - cosαtan(π-α)= - t an αcot(π-α)= - c ot α公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sin αcos(2π-α)= cos αtan(2π-α)= -tan αcot(2π-α)= -cot α2 ±α及3 2±α与 α的三角函数值之间的关系:+α)= cos αsin (2cos ( +α)= - s in α2tan ( +α)= - c ot α2cot ( +α)= - t an α2sin ( -α)= cos α2cos ( -α)= sin α2tan ( -α)= cot α2cot ( -α)= tan α 2 sin (3 2+α)= - cos αcos ( 3 2+α)= sinαtan ( 3 2 +α)= - c ot α cot ( 3 2+α)= - t an αsin (3 2 -α)= -cos α cos (3 2-α)= - s in αtan ( 3 2 -α)= cot αcot (3 2-α)= tan α(以上 k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用22A?sin( ωt+ θ)+ B?sin( ωt+A φ) =2cos() ×BABsin tarcsin[(As 2 A 2B 2 in AB Bsin cos( ))三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| ≤|a|+|b||a-b| ≤|a|+|b||a| ≤ b <-=b>≤a≤ b|a-b| ≥-|a|b||-|a| ≤a≤|a|一元二次方程的解- b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)= √-(c(1osA)/2) sin(A/2)=- √((1-cosA)/2)cos(A/2)= √((1+cosA)/2) cos(A/2-)√= ((1+cosA)/2)tan(A/2)= √-(c(1osA)/((1+cosA)) tan(A/2)=- √((1-cosA)/((1+cosA))ctg(A/2)= √((1+cosA)/-(c(1osA)) ctg(A/2)=- √((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n 项和1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯+(2n-1)=n22+4+6+8+10+12+14+⋯+(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+⋯n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+ ⋯+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角 B 是边c的夹角a和边正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2pyWORD格式直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0WORD格式扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L 是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2hWORD格式-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到 2 组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到 2 组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负WORD格式.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA ta·nB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2) sin(·B/2) si·n(C/2)+1(4)sin2A+sin2B+sin2C=4sinA sin·B s·inC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sin α=m sin( α+2β), |m求|<证1, tan( α+β)=(1+m)-/(m1)tanβ解:sin α=m sin( α+2β)sin(a+ -ββ)=msin(a+ β+β)sin(a+ β)co- s c oβs(a+ β)sin β=msin(a+ β)cos β+mcos(a+β)sin βsin(a+ β)cos-βm)(=1cos(a+ β)sin β(m+1)tan( α+β)=(1+m-)/m(1)tan β专业分享。

高中数学必修一-三角函数图像性质总结(精华版)

高中数学必修一-三角函数图像性质总结(精华版)

(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。

(工 W R )7Tcos 卯=。

=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。

5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。

(完整版)三角函数公式和图像大全(最新整理)

(完整版)三角函数公式和图像大全(最新整理)

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscαcosα·secαtanα·cotα反三角函数的图形设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

三角、反三角函数图像的解析

三角、反三角函数图像的解析

三角、反三角函数整理Sin a , CSC a三角函数的图像和性质:三角函数值在每个象限的符号:COS a° Sec a tan a , cot a* y=ta nx1!y111t/IJ/3JI{i■o万2A耳JF{1I函数y=s inx y=cosx y=ta nx y=cotxy=sec x y=cscx疋义域R R{x | x € R 且JIx 丰 k nJ ,k € Z}{x | x € R 且x 丰 k n€,IZ }{x| x 工kn + n/2(k € Z)}{x|x 工k n ,k € Z}值域[-1, 1:JIx=2k n +2时y max=1JIx=2k n 一2时y min =-1[-1,1 ]x=2k n时y max = 1 x=2k n+ 时y min =-1R无最大值无最小值R无最大值无最小值y > 1 或yw -1{y|y > 1 或y w -1}周期性周期为2n周期为2n周期为n周期为nT=2 n 2 n奇偶性奇函数偶函数奇函数奇函数偶函数奇函数单调性在Jl[2k n——22,2JIk n+一 :上2都是增函数;在JI[2k n + —22,2k n+ n]3 上都是减函数(k €在]2k n- n, 2k n上都是增函数;在:2k n,2k n +]n上都是减函数(k € Z)在(k n 一,2Ttk n+亍)内都是增函数(k € Z)在(k n, k n + n)内都是减函数(k € Z)一般不讨论一般不讨论角函数的诱导公式(六公式)公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin( a +k*2 n )=sin a k 为整数)COS(a +k*2 n )=cos a k 为整数)tan( a +k*2 n )=tan (a 为整数)公式二设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin[(2k+1) n +a-S=n aCOS[(2k+1) n +a 抬OS atan[(2k+1) n + a ]=tan aCOt[(2 k+1) n + a ]=COt a公式三任意角a与-a的三角函数值之间的关系:sin(2k- a )=sin acos(2k- a )=COs atan(2k- a )=tan aCOt(2k- a )=COt a公式四利用公式二和公式三可以得到n- a与a的三角函数值之间的关系sin[ (2k+1) na ]=sin aCOS[(2k+1) n a ]=COS atan[ (2k+1) na ]=tan aCOt[(2k+1) na ]=COt a公式五:利用公式一和公式三可以得到2n- a与a的三角函数值之间的关系:sin(2k n a )=sin aC0S(2k n- a )=COS atan(2k n a )=tan aC0t(2k n a )=C0t a公式六:n /2 ±4a a的三角函数值之间的关系:Sin( n /2+ a )=C0S acos( n /2+ a -sin atan( n /2+ a -Cot aC0t( n /2+ a-)=n asin( n 2 )=C0S aC0S( n /2 a )=Sin atan( n /2a )=C0t aC0t( n /2a )=tan a诱导公式记背诀窍:奇变偶不变,符号看象限。

反正割函数的定义和性质

反正割函数的定义和性质

反正割函数的定义和性质反正割函数是高中数学课程中常见的一类三角函数,也被称为余切函数或余切,记作cot(x)。

与正切函数相似,它是一个周期函数,可以用于解决几何问题和物理问题等。

本文将详细介绍反正割函数的定义和性质。

一、反正割函数的定义在三角函数中,正切函数tan(x)的定义是:tan(x) = sin(x) /cos(x)。

反正割函数cot(x)的定义则与正切函数有关,为tan的倒数:cot(x) = cos(x) / sin(x)。

在这个定义中,x是角度(以弧度表示)。

从这个定义可以看出,cot(x)的定义域是在所有cos(x)不为0的x上,也就是除了整数倍的π之外的所有实数。

因为sin(x)和cos(x)的关系很密切,所以cot(x)有和tan(x)相同周期2π的周期性。

cot(x)的图像如下所示,可以看出其呈现出一种周期性:[图1] 图1:cot(x)的图像二、反正割函数的性质有几个有用的性质可以帮助我们更好地理解反正割函数,以及在进行解题时使用它。

1、余切的关系式由于cot(x) = cos(x)/sin(x),可以将它表示为sin(x)/cos(x)的倒数。

因此,余切的关系式如下:cot(x) = 1 / tan(x) = cos(x) / sin(x)2、函数的奇偶性从定义上看,余切是一个奇函数。

也就是说,cot(-x) = -cot(x)。

这一特性与第一象限内的余切函数呈现出的对称性相符。

3、反正割函数的零点正切函数的零点是由sin(x) 和cos(x) 的交点决定的,因此cot(x)的零点则由cos(x) 和sin(x) 的交点决定。

由于sin(x) 和cos(x) 的交点分布在第一、第二和第四象限,cot(x)的零点也分别位于这些象限中,为π的倍数。

具体如下:cot(0) = ∞ [ 又cot(x) = cos(x) / sin(x) ,当x = kπ(k = 0, ±1,±2, …)时,sin(x) = 0,所以cot(x)不存在 ]cot(π/2) = 0 [ 又cot(x) = cos(x) / sin(x) ,当x = kπ ± π/2(k为整数)时,cos(x) = 0,所以cot(x)不存在 ]cot(π) = -∞ [ 又cot(x) = cos(x) / sin(x) ,当x = kπ(k = 0, ±1,±2, …)时,sin(x) = 0,所以cot(x)不存在 ]cot(3π/2) = 0 [ 又cot(x) = cos(x) / sin(x) ,当x = kπ ± π/2(k为整数)时,cos(x) = 0,所以cot(x)不存在 ]cot(π/4) = 1cot(3π/4) = -1cot(5π/4) = 1cot(7π/4) = -1除了上面列出的特殊情况,cot(x)是一个无界的函数。

三角函数公式、图像大全

三角函数公式、图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

《反三角函数》 讲义

《反三角函数》 讲义

《反三角函数》讲义一、引言在数学的广袤天地中,三角函数是一颗璀璨的明星,而反三角函数则是它的奇妙延伸。

反三角函数的出现,为我们解决许多数学问题提供了有力的工具。

接下来,让我们一同走进反三角函数的世界。

二、反三角函数的定义反三角函数是一种基本初等函数。

它是反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数和反余割函数的统称。

反正弦函数:记为 y = arcsin x ,定义域为-1, 1,值域为π/2, π/2。

它表示一个角,其正弦值等于 x 。

反余弦函数:记为 y = arccos x ,定义域为-1, 1,值域为0, π。

表示一个角,其余弦值等于 x 。

反正切函数:记为 y = arctan x ,定义域为 R ,值域为(π/2, π/2)。

表示一个角,其正切值等于 x 。

反余切函数:记为 y = arccot x ,定义域为 R ,值域为(0, π)。

表示一个角,其余切值等于 x 。

反正割函数:记为 y = arcsec x ,定义域为(∞,-1∪1, +∞),值域为0, π/2)∪(π/2, π。

反余割函数:记为 y = arccsc x ,定义域为(∞,-1∪1, +∞),值域为π/2, 0)∪(0, π/2。

三、反三角函数的图像1、反正弦函数 y = arcsin x 的图像反正弦函数的图像是关于原点对称的,是正弦函数 y = sin x 在π/2, π/2上的反函数。

图像呈现出一种逐渐上升的趋势,从(-1, π/2)到(1, π/2)。

2、反余弦函数 y = arccos x 的图像反余弦函数的图像是关于 y 轴对称的,是余弦函数 y = cos x 在0, π上的反函数。

图像从(1, 0)开始逐渐下降到(-1, π)。

3、反正切函数 y = arctan x 的图像反正切函数的图像是关于原点对称的,定义域为 R 。

图像呈现出一种逐渐逼近但永远不会达到π/2 和π/2 的趋势。

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4.7 三角函数的图象与性质-重难点题型精讲1.正弦函数与余弦函数的图象(1)正弦函数的图象①根据三角函数的定义,利用单位圆,我们可以得到函数y=,x∈[0,2π]的图象,如图所示.②五点法观察图,在函数y=,x∈[0,2π]的图象上,以下五个点:,1),( π,0),(-1),(2π,0)在确定图象形状时起关键作用.描出这五个点,函数y=,x∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图的方法叫做“五点(画图)法”.(2)余弦函数的图象①图象变换法作余弦函数的图象由诱导公式六,我们知道,而函数x∈R的图象可以通过正弦函数y=,x∈R的图象向左平移个单位长度而得到.所以将正弦函数的图象向左平移个单位长度,就得到余弦函数的图象,如图所示.②五点法作余弦函数的图象类似于正弦函数图象的作法,从余弦函数y=,x∈R的图象可以看出,要作出函数y=在[0,2]上的图象,起关键作用的五个点是:(0,1),(,0),(,-1),(,0),(2,1).先描出这五个点,然后把这五个点用一条光滑的曲线连接起来就得到了函数y=在[0,2]上的简图,再通过左右平移(每次移动2个单位长度)即可得到余弦函数y=,x∈R的图象.(3)正弦曲线、余弦曲线正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.它们是具有相同形状的“波浪起伏”的连续光滑曲线.2.正弦函数与余弦函数的性质(1)周期函数①定义:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.(2)正弦函数与余弦函数的性质正弦函数与余弦函数的图象与性质如下表:3.正弦型函数的性质的性质4.正切函数的性质与图象(1)正切函数的图象及性质(2)三点两线法作正切曲线的简图类比于正、余弦函数图象的五点法,我们可以采用三点两线法作正切函数的简图.“三点”是指点(-,-1),(0,0),(,1);“两线”是指直线x=-和x=.在三点、两线确定的情况下,可以大致画出正切函数在区间(-上的简图.5.余切函数的图象及性质正切函数的图象及性质:的图象先向右平移个单位长度,再以x轴为对称轴上下翻折,可得的图象.余切函数的图象与性质如下表:【题型1 三角函数的定义域和值域(最值)】【方法点拨】求与三角函数有关的函数的值域(最值)的常用方法有:(1)借助三角函数的有界性、单调性求解;(2)转化为关于的二次函数求解.注意求三角函数的最值对应的自变量x的值时,要考虑三角函数的周期性.【例1】(2022·甘肃·高二开学考试)函数f(x)=tan(x+π4)的定义域为()A.{x|x≠kπ+π4,k∈Z}B.{x|x≠2kπ+π4,k∈Z}C.{x|x≠kπ−π4,k∈Z}D.{x|x≠kπ,k∈Z}【解题思路】根据正切函数的定义域可得结果.【解答过程】因为x+π4≠kπ+π2,k∈Z,所以x≠kπ+π4,k∈Z.故f(x)的定义域为{x|x≠kπ+π4,k∈Z}.故选:A.【变式1-1】(2022·四川省高三阶段练习(理))若x∈[π4,2π3],则函数f(x)=3sin x cos x+√3sin2x的值域为( ) A .[0,3√32]B .[0,√32] C .[0,√3]D .[0,3+√3]【解题思路】利用二倍角公式和辅助角公式化简原式为f (x )=√3sin(2x -π6)+√32,结合正弦函数的图像和性质,求解即可. 【解答过程】由题意,f (x )=3sin x cos x +√3sin 2x =32sin2x +√32(1-cos2x )=√3×(√32sin2x -12cos2x )+√32=√3×(cos π6sin2x -sin π6cos2x )+√32=√3sin(2x -π6)+√32,当x ∈[π4,2π3]时,有2x -π6∈[π3,7π6],当2x -π6=π2,即x =π3时,f (x )max =f (π3)=√3+√32=3√32; 当2x -π6=7π6,即x =2π3时,f (x )min =f (2π3)=0.即函数f (x )的值域为[0,3√32].故选:A.【变式1-2】(2022·福建省高二阶段练习)函数f (x )=sinx +cos (x +π6)的值域为( ) A .[−2,2]B .[−√3,√3]C .[−1,1]D .[−√32,√32] 【解题思路】利用两角和的余弦公式和辅助角公式进行化简,即可得到答案 【解答过程】解:函数f (x )=sinx +cos (x +π6)=sinx +√32cosx −12sinx =√32cosx +12sinx =cos (x −π6),∵x ∈R ,∴cos (x −π6)∈[−1,1],∴函数的值域为[−1,1], 故选:C .【变式1-3】(2022·全国·高一单元测试)若x ∈[−π3,2π3],则函数y =cos 2(x +π6)+sin (x +2π3)的最大值与最小值之和为( )A .12B .1C .74D .√2【解题思路】利用诱导公式可化简函数为y =(cos (x +π6)+12)2−14,根据余弦型函数值域的求法可求得cos(x+π6)∈[−√32,1],结合二次函数最值的求法可求得y的最大值和最小值,加和即可求得结果.【解答过程】y=cos2(x+π6)+sin(x+2π3)=cos2(x+π6)+sin(π2+x+π6)=cos2(x+π6)+cos(x+π6)=(cos(x+π6)+12)2−14,当x∈[−π3,2π3]时,x+π6∈[−π6,5π6],∴cos(x+π6)∈[−√32,1],∴当cos(x+π6)=1时,y max=94−14=2;当cos(x+π6)=−12时,y min=−14;∴y max+y min=2−14=74.故选:C.【方法点拨】证明一个函数是否为周期函数或求函数周期的大小常用以下方法:(1)定义法:即对定义域内的每一个x值,看是否存在非零常数T使f(x+T)=f(x)成立,若成立,则函数是周期函数且T是它的一个周期.(2)公式法:利用三角函数的周期公式来求解.(3)图象法:画出函数的图象,通过图象直观判断即可.【例2】(2023·广东·高三学业考试)函数f(x)=sin(x2−π4)的最小正周期是()A.π2B.πC.2πD.4π【解题思路】利用正弦函数的周期求解.【解答过程】f(x)的最小正周期为T=2π12=4π.故选:D.【变式2-1】(2023·广东·高三学业考试)函数f(x)=cos(12x+π6)的最小正周期为()A.π2B.πC.2πD.4π【解题思路】利用余弦型函数的周期公式进行求解.【解答过程】∵f(x)=cos(12x+π6),∴f(x)最小正周期T=2π12=4π.故A,B,C错误.故选:D.【变式2-2】(2022·甘肃临夏·高二期末(理))函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π,则f(π2)=()A.−√32B.−12C.12D.√32【解题思路】由周期求出ω,从而可求出f(x),进而可求出f(π2).【解答过程】因为函数f(x)的最小正周期为π,ω>0,所以ω=2ππ=2,得f(x)=cos(2x+π6),所以f(π2)=cos(2×π2+π6)=−cosπ6=−√32.故选:A.【变式2-3】(2022·广东佛山·高三阶段练习)在下列函数中,最小正周期为π且在(0,π2)为减函数的是()A.f(x)=sin|2x|B.f(x)=cos(2x+π6)C.f(x)=|cosx|D.f(x)=tan(2x−π4)【解题思路】根据三角函数的图像性质,逐个选项进行判断即可得出答案.【解答过程】对于A,f(x)=sin|2x|的图像关于y轴对称,在(0,π2)为增函数,不符题意,故A错;对于B,f(x)=cos(2x+π6)的最小正周期为π,x∈(0,π2),2x+π6∈(π6,7π6),不是减函数,不符题意,故B错;对于C,f(x)=|cosx|的最小正周期为π,在(0,π2)为减函数,符合题意,故C对;对于D,f(x)=tan(2x−π4)的最小正周期为π2,不符题意,故D错;故选:C.【题型3 三角函数的奇偶性】【方法点拨】掌握正弦、余弦、正切函数的奇偶性相关知识,结合具体题目,灵活求解.【例3】(2022·广东·高三学业考试)若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为()A.−πB.−π2C.π4D.2π【解题思路】根据偶函数的定义得φ=kπ+π2,k∈Z,结合选项可确定答案.【解答过程】∵函数f(x)=sin(x+φ)是偶函数,∴f(−x)=f(x),即sin(−x+φ)=sin(x+φ).∴−x+φ=x+φ+2kπ或−x+φ+x+φ=π+2kπ,k∈Z.当−x+φ=x+φ+2kπ时,可得x=−kπ,不满足函数定义.当−x+φ+x+φ=π+2kπ时,φ=kπ+π2,k∈Z,若φ=kπ+π2=−π,解得k=−32∉Z,故A错误;若φ=kπ+π2=−π2,解得k =−1∈Z ,故B 正确; 若φ=kπ+π2=π4,解得k =−14∉Z ,故C 错误;若φ=kπ+π2=2π,解得k =32∉Z ,故D 错误;故选:B.【变式3-1】(2022·全国·高一)下列函数中,在其定义域上是偶函数的是( ) A .y =sinxB .y =|sinx |C .y =tanxD .y =cos (x −π2)【解题思路】根据奇偶性定义,结合三角函数的奇偶性可直接得到结果.【解答过程】对于A ,∵y =sinx 定义域为R ,sin (−x )=−sinx ,∴y =sinx 为奇函数,A 错误;对于B ,∵y =|sinx |定义域为R ,|sin (−x )|=|−sinx |=|sinx |,∴y =|sinx |为偶函数,B 正确;对于C ,∵y =tanx 定义域为(kπ−π2,kπ+π2)(k ∈Z ),即定义域关于原点对称,tan (−x )=−tanx ,∴y =tanx 为奇函数,C 错误;对于D ,∵y =cos (x −π2)=sinx 定义域为R ,sin (−x )=−sinx ,∴y =cos (x −π2)为奇函数,D 错误. 故选:B.【变式3-2】(2022·北京高三阶段练习)函数f (x )=cos x +cos2x 是( ) A .奇函数,且最大值为2 B .偶函数,且最小值为-98 C .奇函数,且最小值为-98D .偶函数,且最大值为98【解题思路】利用函数奇偶性的定义可判断出函数f (x )的奇偶性,利用二次函数的基本性质可求得函数f (x )的最值.【解答过程】函数f (x )的定义域为R ,f (-x )=cos (-x )+cos (-2x )=cos x +cos2x =f (x ), 故函数f (x )为偶函数,因为-1≤cos x ≤1,则f (x )=2cos 2x +cos x -1=2(cos x +14)2-98, 所以,f (x )min =-98,f (x )max =2+1-1=2.故选:B.【变式3-3】(2022·广西·模拟预测(理))若将函数f (x )=sin2x −√3cos2x 的图象向右平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A .π6B .π3C .2π3D .5π6【解题思路】首先对f (x )化简得到f (x )=2sin (2x −π3),再写出平移后的解析式y =2sin (2x −2m −π3),因为其为奇函数,则−2m −π3=k π,k ∈Z ,解出m 即可得到最小值.【解答过程】f (x )=sin2x −√3cos2x =2(12sin2x −√32cos2x)=2sin (2x −π3),向右平移m(m >0)个单位后得到函数y =2sin [2(x −m )−π3]=2sin (2x −2m −π3),由于是奇函数,因此,得−2m −π3=k π,k ∈Z ,m =−π6−k π2,k ∈Z.又∵m >0,则当k =−1时,m 的最小值是π3,故选:B.【方法点拨】掌握正弦、余弦、正切函数的对称性相关知识,结合具体题目,灵活求解.【例4】(2022·安徽·高三开学考试)函数f (x )=tan (2x −π3)的图象的一个对称中心为( ) A .(π12,0)B .(7π12,0)C .(−5π12,0)D .(−π12,0)【解题思路】根据正切型函数的对称中心为(k π2,0) k ∈Z ,求解即可. 【解答过程】由2x −π3=k π2,k ∈Z ,可得x =k π4+π6,k ∈Z ,当k =0时,x =π6,当k =1时,x =π4+π6=5π12,当k =2时,x =8π12=23π, 当k =−1时,x =−π4+π6=−π12, 当k =−2时,x =−4π12=−13π, 当k =−3时,x =−7π12,所以(−π12,0)为f (x )图象的一个对称中心, 故选:D.【变式4-1】(2022·河南·高三阶段练习(理))已知函数f (x )=2cos (ωx −π6)(ω>0)在[0,2π]内恰有三条对称轴,则ω的取值范围是( ) A .[43,116)B .(43,116]C .[1312,1912)D .(1312,1912]【解题思路】根据余弦函数的性质可得2π≤2ωπ−π6<3π,进而即得. 【解答过程】因为0≤x ≤2π, 所以−π6≤ωx −π6≤2ωπ−π6, 所以2π≤2ωπ−π6<3π, 解得1312≤ω<1912.故选:C.【变式4-2】已知函数f(x)=sin (12x −π6),则结论正确的是( )A .f (x )的图象关于点(5π3,0)中心对称B .f (x )的图象关于直线x =−π3对称C .f (x )在区间(−π,π)内有2个零点D .f (x )在区间[−π2,0]上单调递增【解题思路】A 、B 应用代入法判断对称轴和对称中心;C 、D 根据给定区间求12x −π6的范围,结合正弦型函数的性质求零点和单调性. 【解答过程】A :f(5π3)=sin (12×5π3−π6)=sin2π3≠0,故(5π3,0)不是对称中心,错误;B :f(−π3)=sin[12×(−π3)−π6]=−sin π3≠±1,故x =−π3不是对称轴,错误;C :在x ∈(−π,π),则12x −π6∈(−2π3,π3),故f(x)=0,可得12x −π6=0,所以x =π3为f (x )在(−π,π)内的唯一零点,错误;D :在x ∈[−π2,0],则12x −π6∈[−5π12,−π6],故f(x)=sin (12x −π6)递增,正确. 故选:D.【变式4-3】(2022·贵州·高三阶段练习(文))已知函数f (x )=2cos (ωx +φ)(ω>0,0<φ<π)的相邻两条对称轴之间的距离为2π,且为奇函数,将f (x )的图象向右平移π3个单位得到函数g (x )的图象,则函数g (x )的图象( ) A .关于点(−5π3,0)对称B .关于点(π2,0)对称 C .关于直线x =−π3对称D .关于直线x =π2对称【解题思路】两个相邻对称轴的为半个周期,奇函数可以确定f (x )为正弦函数,由此条件得出f (x )的解析式,再根据平移得出g (x )的解析式,根据解析式写出对称中心和对称轴的通式即可得出答案.【解答过程】由相邻两条对称轴之间的距离为2π可知T2=2π,即T =4π,ω=2πT ,ω=12, 因为f (x )为奇函数,根据0<φ<π可知φ=π2,f (x )=2sin 12x , g (x )=2sin (12(x −π3))=2sin (12x −π6),对称中心:12x −π6=k π(k ∈Z ),x =2k π+π3(k ∈Z ),故A 正确,B 错误;对称轴:12x −π6=π2+k π(k ∈Z ),x =2k π+4π3(k ∈Z ),故C 、D 错误;故选:A.【方法点拨】三角函数的单调性问题主要有:三角函数的单调区间的求解、比较函数值的大小、根据三角函数的单调性求参数;结合具体条件,根据三角函数的图象与性质进行求解即可.【例5】(2022·江西·高三阶段练习(理))函数y =sin (π6−2x)(x ∈[0,π])为增函数的区间是( ) A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]【解题思路】根据三角函数单调性的求法求得正确答案. 【解答过程】y =sin (π6−2x)=−sin (2x −π6),2k π+π2≤2x −π6≤2k π+3π2,k π+π3≤x ≤k π+5π6,k ∈Z , 令k =0可的y =sin (π6−2x)(x ∈[0,π])的递增区间为[π3,5π6]. 故选:C.【变式5-1】(2022·河南信阳·一模(理))已知函数f (x )=2√3cos (x -π2)cos x -2sin 2x ,若f (x )在区间[m ,π4]上单调递减,则实数m 的取值范围( )A .[π6,π4]B .[π3,π2]C .[π6,π4)D .[π6,π3)【解题思路】利用三角恒等变换,化简三角函数,利用正弦型函数的单调性,建立不等式组,可得答案.【解答过程】f (x )=2√3cos (x -π2)cos x -2sin 2x =2√3sin x cos x -2·1-cos2x 2=√3sin2x -1+cos2x=2(√32sin2x +12cos2x)-1 =2sin (2x +π6)-1,由x ∈[m ,π4],则2x +π6∈[2m +π6,2π3],由题意,[2m +π6,2π3]⊆[π2,3π2],则π2≤2m +π6<2π3,解得π6≤m <π4. 故选:C.【变式5-2】(2022·江苏·高三阶段练习)已知a =log 168,b =πln0.8,c =sin2.5,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .a <b <cD .a <c <b【解题思路】由对数的运算法则求出a ,又πln0.8,sin2.5分别可看做y =πx ,y =sinx 的函数值,考虑构造指数函数和正弦函数,利用函数的单调性对其值进行估计,又因为ln0.8估值困难,故考虑利用与函数y =lnx 近似的有理函数y =1−1x 对其大小进行估值,最后求得答案.【解答过程】由题意,a =log 168=log 2423=34=0.75, 设f (x )=lnx +1x −1,则f ′(x )=1x −1x 2=x−1x 2,当0<x <1时,f ′(x )<0,函数f (x )在(0,1)上单调递减,当x >1时,f ′(x )>0,函数f (x )在(1,+∞)上单调递增,所以f (0.8)>f (1),即ln0.8+54−1>0,所以ln0.8>−14,因为函数y =πx 在(−∞,+∞)上单调递增,所以πln0.8>π−14,又(π−14)−4=π,(34)−4=25681≈3.16,所以(34)−4>(π−14)−4,因为y =x−4在(0,+∞)单调递减,所以34<π−14,所以πln0.8>34,故b >a , 因为3π4<2.5<5π6,函数y =sinx 在(π2,π)上单调递减,所以sin 5π6<sin2.5<sin3π4,所以12<sin2.5<√22,所以sin2.5<34,即c <a ,所以c <a <b , 故选:A.【变式5-3】(2022·内蒙古·高三阶段练习(文))若函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则ω的最大值为( )A .37 B .34C .14D .1【解题思路】由题知ωx +π4∈(π4,7π4ω+π4),再根据函数y =√2cosx 在(0,π)上单调递减可得7π4ω+π4≤π,进而解不等式求解即可.【解答过程】解:因为函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,所以7π4≤12T =πω,解得0<ω≤47,因为x ∈(0,7π4),所以ωx +π4∈(π4,7π4ω+π4),因为函数y =√2cosx 在(0,π)上单调递减, 所以,函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则有7π4ω+π4≤π,解得ω≤37,所以ω的取值范围是ω∈(0,37],即ω的最大值为37. 故选:A.【方法点拨】解决正(余)弦型函数性质的综合应用问题的思路: (1)熟练掌握函数或的图象,利用基本函数法得到相应的函数性质,然后利用性质解题.(2)直接作出函数图象,利用图象形象直观地分析并解决问题. 【例6】已知函数f (x )=4sinxcos (x +π6)+1.(1)求f (x )的最小正周期及单调区间; (2)求f (x )在区间[−π6,π4]上的最大值与最小值.【解题思路】(1)先利用三角恒等变换化简得到f (x )=2sin (2x +π6),从而利用T =2π|ω|求出最小正周期,再利用整体法求解函数的单调区间;(2)根据x ∈[−π6,π4]求出2x +π6∈[−π6,2π3],从而结合函数图象求出最大值为2,最小值为−1.【解答过程】(1)因为f (x )=4sinx (cosxcos π6−sinxsin π6)+1=2√3sinxcosx −2sin 2x +1 =√3sin2x +cos2x =2sin (2x +π6) 所以f (x )的最小正周期T =2π2=π;令−π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得:[−π3+k π,π6+k π],k ∈Z , 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得:[π6+k π,2π3+k π],k ∈Z ,单调增区间为[−π3+k π,π6+k π],k ∈Z ,单调减区间为[π6+k π,2π3+k π],k ∈Z ;(2)已知x ∈[−π6,π4],所以2x +π6∈[−π6,2π3],当2x +π6=π2,即x =π6时,f (x )取得最大值,最大值为2, 当2x +π6=−π6,即x =−π6时,f (x )取得最小值,最小值为-1, 所以f (x )在区间[−π6,π4]上的最大值为2,最小值为−1.【变式6-1】(2022·陕西·高三阶段练习(文))已知函数f (x )=4sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴为直线x =−π12,这条对称轴与相邻对称中心之间的距离为π8.(1)求f (x );(2)求f (x )在[−π24,π4]上的值域.【解题思路】(1)先求出周期,由此求出ω的值,利用对称轴方程求出φ,即可得到函数的解析式;(2)根据自变量的范围求得4x −π6∈[−π3,5π6],根据正弦函数的取值求得函数的值域【解答过程】(1)因为函数f(x)图象的对称轴与相邻对称中心之间的距离为π8, 所以T =π2,故ω=2πT=4,又f(x)的图象的一条对称轴方程为x =−π12, 则4×(−π12)+φ=π2+k π,k ∈Z ,即φ=5π6+k π,k ∈Z ,又|φ|<π2,所以φ=−π6, 故f(x)=4sin (4x −π6);(2)因为x ∈[−π24,π4],所以4x −π6∈[−π3,5π6],所以sin (4x −π6)∈[−√32,1],所以4sin (4x −π6)∈[−2√3,4], 故f (x )在[−π24,π4]上的值域为[−2√3,4].【变式6-2】(2021·天津·高一期末)已知函数f (x )=2√3cos 2(π2+x)-2sin(π+x )cos x -√3 (1)求f (x )的最小正周期及单调递减区间; (2)求f (x )在区间[π4,π2]上的最值;(3)若f (x 0-π6)=1013,x 0∈[3π4,π],求sin2x 0的值.【解题思路】(1)根据三角恒等变换可得f (x )=2sin (2x -π3),然后根据三角函数的性质即得;(2)根据正弦函数的性质即得;(3)由题可得sin (2x 0-2π3)=513,然后根据同角关系式及和差角公式即得. 【解答过程】(1)因为f (x )=2sin x cos x +2√3sin 2x -√3 =sin2x -√3cos2x =2sin (2x -π3). 所以f (x )的最小正周期T =2π2=π,∵π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,∴5π12+k π≤x ≤11π12+k π,所以f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z);(2)由(1)知f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z),∵x ∈[π4,π2],∴f (x )在[π4,5π12]上单调递增,在[5π12,π2]上单调递减,又f (5π12)=2sin π2=2,f (π4)=2sin π6=1,f (π2)=2sin2π3=√3,故f (x )min =1,f (x )max =2; 另解:∵x ∈[π4,π2], ∴t =2x -π3∈[π6,2π3],∵y =sin t 在t ∈[π6,π2]单调递增,在[π2,2π3]上单调递减, ∴当t =π2时,(sin t )max =1,f (x )max =2×1=2, ∴当t =π6时,(sin t )min =12,f (x )min =2×12=1; (3)∵f (x 0-π6)=1013,∴sin (2x 0-2π3)=513, 由x 0∈[3π4,π],得2x 0-2π3∈[5π6,4π3],∴cos (2x 0-2π3)=-1213, ∴sin2x 0=sin [(2x 0-2π3)+2π3]=sin (2x 0-2π3)cos2π3+cos (2x 0-2π3)sin 2π3=513×(-12)+(-1213)×√32=-5+12√326. 【变式6-3】(2022·黑龙江·高三阶段练习)已知函数f (x )=[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]. (1)求f (x )的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足f (3A4)=-1,求四边形ABCD 面积S 的取值范围.【解题思路】(1)利用三角函数恒等变换公式对函数化简变形得f (x )=√2cos (2x +π4),从而可求出最小正周期,再由2kπ≤2x +π4≤2kπ+π(k ∈Z )求出其单调区间,(2)由f (3A4)=-1,求得A =π3,再由圆的性质可得C =2π3,设AB =a ,AD =b ,BC =c ,CD =d ,分别在△ABD 和△CBD 中利用余弦定理结合基本不等式可得0<ab ≤4,0<cd ≤43,从而可求出四边形ABCD 面积S 的取值范围.【解答过程】(1)[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]=[(sin x -cos x )+√2sin x]⋅[(sin x -cos x )-√2sin x]=(sin x -cos x )2-2sin 2x =sin 2x -2sin x cos x +cos 2x -2sin 2x=1-2sin 2x -sin2x =cos2x -sin2x=√2cos (2x +π4), ∴f (x )=√2cos (2x +π4) ∴T =π.由2kπ≤2x +π4≤2kπ+π(k ∈Z ),得kπ-π8≤x ≤kπ+3π8(k ∈Z ),所以f (x )单调递减区间为[kπ-π8,kπ+3π8](k ∈Z ). (2)由于f (3A4)=-1,根据(1)得√2cos (2×3A 4+π4)=-1,∵0<A <π2,∴A =π3,C =2π3.分别设AB =a ,AD =b ,BC =c ,CD =d .因BD =2,分别在△ABD 和△CBD 中由余弦定理得a 2+b 2-2ab cos π3=4,c 2+d 2-2cd cos2π3=4,∴a 2+b 2=4+ab ,c 2+d 2=4-cd .∵a 2+b 2≥2ab ,c 2+d 2≥2cd ,等号在a =b =2,c =d =2√33时成立,∴4+ab ≥2ab ,4-cd ≥2cd ,解得0<ab ≤4,0<cd ≤43. ∴0<ab +cd ≤163.等号在a =b =2,c =d =2√33时成立,∵S =12ab sin A +12cd sin C =√34(ab +cd ), 所以S 的取值范围是(0,4√33].。

反三角函数图像

反三角函数图像

.反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为拐点(同曲线对称中心): 11该点切线斜率为-,反正切曲线图像与特征反余切曲线图像与特征拐点:,该点切线斜率:(同曲线对称中心)拐点 1为,该点切线斜率为-1渐近线:渐近线:反正割曲线反余割曲线名称1 / 4.方程图顶点渐近线反三角函数的定义域与主值范围主值范定义函主值记反正弦,则若反余弦若,则反正切,则若反余切,则若反正割若,则反余割若,则为式中一般反三角函数与主值的关系为n任意数百科名片是个多值是一种数学术语。

反,并不能狭义的理解为三角函数的反函数三角函数rccot xrctan x正切rccos x反余弦rcsin x反正弦函数。

它是a,a,反a,反a余切x这些函数的统称,各自表示其正弦、余弦、正切、余切为的角。

数学术语2 / 4.作为将y限在-π/2≤y≤π/2,为限制反三角函数为单值函数,将反正弦函数的值y的主值限y=arcsin x;相应地,反余弦函数y=arccos x,记为反正弦函数的主值y=arccot xπ/2<y<π/2;反余切函数在0≤y≤π;反正切函数y=arctan x的主值限在-实际上并不能叫做函数,因为它并不满足反三角函数的主值限在0<y<π。

对称。

对应一个函数值的要求,图与其原函数关于函数y=一自变函数名】的形式表示反三角函数概念首先欧提出,并且首先使用了arc+反正弦π/2,π/2]上的反函数,叫做⑴正弦函数y=sin x在[-而不是f-1(x)。

【图,π/2]区间内。

xarcsin x表示一个正弦值为的角,该角的范围在[-π/2函数。

arccos π]上的反函数,叫做反余弦函数。

⑵余弦函数y=cos x在[0,中红线】⑶x的角,该角的范围在[0,π]区间内。

【图中蓝线】x表示一个余弦值为表示一π/2)上的反函数,叫做反正切函数。

arctan x正切函数y=tan x在(-π/2,注释:π/2,π/2)区间内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正切、余切函数图象和性质反三角函数
[知识要点]
1.正切函数、余切函数的图象与性质
2.反三角函数的图象与性质
3.已知三角函数值求角
[目的要求]
1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点.
2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质.
3.能熟练运用正、余弦函数性质解决问题.
4.能用反三角函数值表示不同范围内的角.
[重点难点]
1.正切函数图象与性质2.已知三角函数值求角
[内容回顾]
一、正切函数与余切函数图象
由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象.
作三角函数图象的一般方法,有描点法和平移三角函数线法.
与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函
数在区间上的简图,不妨称之为“三点两线法”.
若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案.
二、正、余切函数的性质
由图象可得:
y=tanx y=cotx
定义域
值域R R
单调性
在上单增(k∈Z)
在上单减(k∈Z)
周期性T=π T=π
对称性
10对称中心,奇函数(k∈Z) 20对称轴;无10对称中心,奇函数(k∈Z) 20对称轴;无
注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点).
2、每个单调区间一定是连续的.
3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内.
三、反三角函数的概念和图象
四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义:
1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数.
y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.
y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象
由互为反函数的两个函数图象间的关系,可作出其图象.
注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是
(2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和.
(4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π.
四、反三角函数的性质由图象,有
y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R
值域[0, π] (0, π)
单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减
对称性10对称中心
(0,0)奇函数
20对称轴;无
10对称中心
非奇非偶
20对称轴;无10对称中心
(0,0)奇函数
20对称轴;无
10对称中心
非奇非偶
20对称轴;无
周期性无无无无另外:
1.三角的反三角运算
arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π])
arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π))
2.反三角的三角运算
sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])
tan(arctanx)=x (x∈R)cot(arccotx)=x (x∈R)
3.x与-x的反三角函数值关系
arcsin(-x)=-arcsinx(x∈[-1,1])
arccos(-x)=π-arccosx (x∈[-1,1])
arctan(-x)=-arctanx (x∈R)
arccot(-x)=π-arccotx(x∈R)
4.
五、已知三角函数值求角
1. 若sinx=a (|a|≤1),则x=kπ+(-1)k arcsina(k∈Z)
2. 若cosx=a (|a|≤1),则x=2kπ±arccosa(k∈Z)
3. 若tanx=a (a∈R), 则x=kπ+arctana (k∈Z)
4. 若cotx=a (a∈R), 则x=kπ+arccota(k∈Z)
具体计算和表示时,应根据x的范围来确定x的个数.
[典型例题分析]
例1.比较大小:
(1) (2)
分析:不在余切函数的同一单调区间内,应利用诱导公式设法将其化到同一单调区间内,再利用单调性来比较大小.
解:(1)∵,
而,由余切函数在(0,π)上的单减性,有
,∴
(2)∵
∴.
例2.写出下列函数的单调区间
(1)(2)(3)y=|tanx|
分析:(1)若设,则原函数可看作是由y=tanu, 复合而成的复合函数,由于在R上单增,由复合函数的单调性确定法则,可解决之.类似地,可解决(2).
解:(1)∵上单增,(k∈Z)
此时,(k∈Z)
解之得(k∈Z)
∴在区间上单增(k∈Z)
(2)∵原函数由y=cotu, 复合而成,而在R上单减,
又y=cotu在(k∈Z)上单减,
此时,(k∈Z)
解之得(k∈Z)
即(k∈Z)
∴在区间(k∈Z) 上单增.
(3)分析:由y=tanx图象作翻折可得y=|tanx|的图象,由图象即可得其单调区间.
∴y=|tanx|的单增区间是(k∈Z),单减区间是(k∈Z).
例3.求函数的值域.
分析:考虑到最简原则,将sec2x化为tan2x+1,这样去分母,作变形,就可以得到关于tanx 的二次型方程,而tanx∈R,可考虑用判别式法求值域.有
法一:∵,∴(y-1)tan2x+(1+y)tanx+(y-1)=0
当y≠1时,,∴,
当y=1时,tanx=0∈R综上,所求值域为.
法二:另分析,先对解析式变形“切割化弦”
有 (1)
∵, ∴
∴,∴.
法三:也可由(1)式得,
解不等式,亦可得.
例4.设,它们有相同最小正周期T,且a,b∈(0,1),若f(1)=g(1),求f(x),g(x)和T.
分析:先从f(x)与g(x)有共同最小正周期入手,找参数a,b关系.
解:∵,∴a=2b,
∵f(1)=g(1), ∴
即,∴
∴或,
∴或
又b∈(0,1),∴.
∴,T=12.
例5.若, cosx+tsinx=t, 求t取值范围.
分析:先将t表示出来,,观察到此式右端与半角正切的有理公式
很相像,能否转化?

又,∴,∴,即.
例6.求值:
(1)(2)
(3)(4)arctan2+arctan3
解:(1)设,则,∴
∴原式.
(2)设,
∴,∴,∴原式
(3)设,
∴,∴,
∵,∴原式值不存在.
(4)设arctan2=a, arctan3=b,则,
∴.又,∴0<a+b<π,
∴,∴原式=.
例7.求适合下列条件的x集合:.
分析:先对原式变形,讨论.
解:∵.
当,即时,角x不存在;
当,即时,原式为sin2x=1,所求集合为;当,即时,所求集合为
反思:对于含字母的三角函数值,必须就字母的不同取值分类讨论。

相关文档
最新文档