第七讲期权定价理论

合集下载

期权定价理论PPT课件

期权定价理论PPT课件

2020/1/10
7
第二节 期权价值构成
• 对于一份期权合约,标的资产、到期日、执行价格都是 事先约定好的,为了的变量就是期权价值,即权利金或 期权费。
• 期权定价就是指对期权价值进行评估,对权利金或期权 费进行定价
• 期权价值是内涵价值与时间价值之和
2020/1/10
8
期权的内涵价值
• 期权内涵价值是指期权本身所具有的价值,是持有人履
• 期权的内涵价值=105-100=5元
有价
• 假设期权费=10
• 期权费=内涵价值+时间价值
2020/1/10
11
期权的时间价值
• 期权的时间价值是期权费与内涵价值的差额,反映了期权合约有 效期内,潜在风险与收益的关系。潜在风险越大,期权时间价值 越大
• 期权的到期日越长,期权的时间价值就越大 • 通常,在平价状态下,期权的时间价值达到最大
2020/1/10
6
期权的分类
• 期权具有很多分类标准,最重要的有以下2种: • 赋予的权利: • 买权(看涨期权,call) • 卖权(看跌期权,put) • 行权时间 • 欧式期权(European option):仅在到期日当天才可
行权 • 美式期权(American option):到期日前均可行权
• 假设贵州茅台当前的股价为105元每股

期权合约
• 持有人可以在该合约出售后30日内,以每股100的价格,买入贵
州茅台股票一股
2020/1/10
12
期权的时间价值
• 期权的时间价值是买方付出的高于内涵价值的期权费, 其实质是为投机获利付出的权利金
• 期权的到期日越长,期权的时间价值就越大

期权定价原理及其应用概述PPT课件

期权定价原理及其应用概述PPT课件
sT su uS S,u 1, P(sT su ) q sT sd dS S, d 1, P(sT sd ) 1 q
其中,u为上涨因子,d为下跌因子
期权定价原理及其应用概述(PPT80页)
21
期权定价原理及其应用概述(PPT80页)
q
sT=su=uS
st
1-q
sT=sd=dS
▪两阶段模型(Two-step binomial tree)
➢若把从定价日t至到期日T的时间区间T-t,划分为2个 阶段,在每1个阶段,仍然假设标的资产价格只可能取2 种状态,上涨和下跌,且上涨和下跌的幅度相等,则第 2阶段结束时候(t=T),标的资产价格的取值为3个, 并且令h为每个阶段的时间长度
是ST的函数
如果ST>X,则成为“实值期权”。 如果ST<X,则成为“虚值期权”。 如果ST=X,则成为“两平期权”。
看跌期权
指定:—— 相关资产 —— 执行价格(X) —— 到期日(T)
欧式看跌期权赋予期权持有人只能在到期日T、 以执行价格X(向看跌期权出售方)卖出(“看 跌”)相关资产的权利(但不是义务)。
1. p is Risk-neutral probability for all securities 。 stock’s expected relative return is
ys
psu
(1 S
p)sd
er d ud
u (1 er d ) er ud
Option’s expected relative return is
80 (0)
无套利原理
如果不同的资产在未来带来相同的现金流, 那么资产(当前)的价格应该相等,否则 就会存在套利的机会;

第七章 期权市场与期权定价

第七章  期权市场与期权定价
Lecture 7 期权市场与期权定价_WCY
2
期权定价理论的突破性进展
• 随着布莱克和思科尔斯(B-S)的《期权定价与公司债务》(JPE, 1973)的发表,期权定 价这个神秘的问题在金融经济学研究史上有 了新的进展。
• 此期权定价模型的诞生是1973年金融界出现的两个重大 事件之一 [另一个是1973年4月,第一家现代期权交易市场, 即芝加哥期权交 易所(CBOE)正式开张营业,挂牌推出12种 期权交易]。从此,股票期 权交易进入官方金融产品交易项目。
flows result (S0 >X for a call, S0 <X for a put)- the option is an in-the-money (价内)option. • Negative moneyness: if an option is exercised, negative cash flows result (S0 <X call, S0 >X for put) – option is out-of-the-money(价外). • If S0 =X, option is at-the-money(价平).
16
货币性(Moneyness)
• Moneyness of an option 是立即执行期权所实现的收入 ( 假定执行期权是可行的).
• Moneyness is S0 –X for a call, X- S0 for a put • Positive moneyness: if an option is exercised, positive cash
• 敲定(执行)价格:The price specified in the contract is the exercise price or strike price.

期权定价理论课件

期权定价理论课件
引入非金融资产
除了金融资产,现实中还存在许多非金融资产,如房地产、艺术品等。将这些资产的价格和风险特性纳入期权定 价模型中,可以更好地服务于实物期权定价和风险管理。
运用计算机技术提高模型计算效率
采用更高效的算法
随着计算机技术的发展,可以采用更高效的算法来计算期 权价格,如蒙特卡洛模拟算法、有限元方法等。这些算法 可以更快地得到期权价格估计值。
、城市规划、自然资源开发等多个领域。
06
期权定价理论的发展趋势与展望
改进现有模型的局限性
01
引入更复杂的因素
随着金融市场的变化和经济的发展,期权定价理论需要引入更多的影响
因素,如宏观经济因素、市场情绪因素等,以更准确地预测期权价格。
02 03
完善假设条件
现有的期权定价模型通常基于一些假设条件,如无摩擦市场、完全竞争 等。为了更真实地反映市场情况,需要进一步放宽或修改这些假设条件 。
期权类型
按行权时间可分为欧式期 权和美式期权;按交易场 所可分为场内期权和场外 期权。
期权持有者权利
期权持有者具有在到期日 之前按照行权价买入或卖 出标的资产的权利。
期权定价模型的起源与发展
起源
期权定价模型最初由BlackScholes模型和二叉树模型两
种主要方法所主导。
发展历程
随着金融市场的不断发展和完善, 各种新型期权定价模型如随机波动 率模型、跳跃扩散模型等逐渐被引 入。
:P = (1 - e^(-rT)) / (1 + d) - K / (1 + d)^T, 其中P表示期权价格,r表示无风险利率,T表示时间步长,d表 示上涨与下跌的比率。 • 模型应用:基于二叉树模型的数字期权定价方法适用于美式期权和欧式期权的定价,具有较高的计算效率和适 用性。

期权定价理论-PPT课件

期权定价理论-PPT课件
2019/3/11 11
B-S 期权定价模型是根据ITO过程的特例-几何 布朗运动来代表股价的波动
s x ,( a s , t ) s ,( b s , t ) s t t t t t t d s s d t s d w t t t t
省略下标t,变换后得到几何布朗运动方程
1.在某一小段时间Δt内,它的变动Δw与时段满

足Δt
2019/3/11 5
wt t t
这 里 , w w w , i d N ( 0 , 1 ) t t t 1 t i
(13.1)

2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
利用泰勒展开,忽略高阶段项,f(x,t)可以展开为
2 2 f f 1 f 2 f f ( t x x ) xt 2 t x 2 x xt 2 1 f 2 t 2 (13.8) 2 t
在连续时间下,即 Dt ? 0 从而 Dt 2 ? 0 D t ? 0
b t
2 2
(13.10)
2 且 当时 t 0 , 有 t 0 , 从 而
t 0
l i m D ( x )[ b t ] D ( ) 0 2
2 2 2 2
即Δx2不呈现随机波动!
由(13.10)可得
E ( x ) E ( b t ) b t E () (13.11)
2 f f 1 f 2 d f d t d x 2d x t x 2 x
f f 1 f 2 d t ( a d t b d w ) 2b d t t x 2 x

期权的定价基本理论及特性

期权的定价基本理论及特性

期权的定价基本理论及特性期权是一种金融衍生工具,它赋予持有者在未来某个时间点或期间内以约定价格买入或卖出某个资产的权利,而并非义务。

期权的定价理论是为了确定期权合理的市场价格。

以下是期权定价的基本理论及特性:1. 内在价值和时间价值:期权的价格由内在价值和时间价值组成。

内在价值是期权执行时的实际价值,即与标的资产市场价格的差额。

时间价值是期权存在期限内所具备的可能增值的价值,它会随时间的推移而减少。

2. 标的资产价格的波动性:期权的价格受标的资产价格的波动性影响。

波动性越高,期权价格越高,因为更大的价格波动可能会带来更大的利润机会。

3. 行权价:期权的行权价是购买或出售标的资产的协议价格。

购买期权的持有者希望标的资产价格高于行权价,而卖出期权的持有者希望标的资产价格低于行权价。

4. 期权到期时间:期权的到期时间是期权生效的时间段。

到期时间越长,期权价格越高,因为时间价值越高。

到期时间到达后,期权将失去其价值。

5. 利率:利率对期权的价格也有影响。

高利率会提高购买期权的成本,因为持有者必须支付为期较长时间的利息。

6. 杠杆作用:期权具有较高的杠杆作用。

购买期权相对于购买标的资产的成本较低,但潜在的利润也较高。

相比之下,期权卖方承担的潜在风险较高,但收入较低。

7. 期权类型:期权可以是看涨期权(认购期权)或看跌期权(认沽期权)。

看涨期权赋予持有者以在行权日购买标的资产的权利,而看跌期权赋予持有者以在行权日以行权价格卖出标的资产的权利。

总的来说,期权定价基于标的资产价格的波动性、行权价、期权到期时间、利率等因素。

同时,期权也具有杠杆作用和灵活性,可以用来进行投机或风险管理。

对于投资者来说,理解期权定价基本理论及特性对于正确选择和定价期权合约至关重要。

期权的定价理论及特性对于投资者和交易员而言非常重要,因为它们能够帮助他们进行科学合理的决策和风险管理。

下面将进一步探讨期权定价的相关内容。

期权定价的基本理论依赖于数学建模,最著名的理论之一就是布莱克-斯科尔斯模型(Black-Scholes Model)。

期权定价理论课件(PPT60页)

期权定价理论课件(PPT60页)
之间的相互作用和看涨期权—看跌期权之
间的平价关系能够造就相对公平的价格。
看涨期权—看跌期权之间的平价关系使期
权之间、期权与标的物之间的价格达到均 衡关系。因此,具有相同标的物、协定价 格和到期日的看涨期权与看跌期权之间存 在一定的价格关系。
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
能排除提前执行的可能性。因此其下限为:
P ≥max(D+X-S,0)
22
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
➢五、看涨期权与看跌期权之间 的平价关系
在期权市场,市场参与者(套利者)
期权价格的下限
美式看涨期权价格的下限
无收益资产美式看涨期权价格的下限
提前执行无收益资产美式看涨期权是不明智的。因此,同 一种无收益标的资产的美式看涨期权和欧式看涨期权的价值是
相同的,即:C=c
我们可以得到无收益资产美式看涨期权价格的下限:
由于r>0,所以C>max(S-X,0)
有收益资产的美式看涨期权下限
17
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
期权价格的下限
欧式看跌期权价格的下限
无收益资产欧式看跌期权价格的下限
考虑以下两种组合: 组合A:一份欧式看跌期权加上一单位标的资产
组合B:金额为Xe-r(T-t)的现金
期权定价理论课件(PPT60页)培训课件培训讲义培训 ppt教 程管理 课件教 程ppt
润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中

布莱克-斯科尔斯期权定价模型

布莱克-斯科尔斯期权定价模型
欧式看涨期权的下限:c S D XerT 欧式看跌期权的下限:p D XerT S
其中:D表示期权有效期内红利的现值
Sichuan University
一、期权
注: 1、提前执行不付红利美式看涨期权是不明智的。 2、不付红利的美式看跌期权可能提前执行。 3、在红利的影响下,美式看涨期权可能提前执行。
那么,则有: 在第6个月末,该头寸将服从正态分布,均值为60,标准差 为:30√0.5=21.21的正态分布; 在第1年末,该头寸将服从正态分布,均值为70,标准差为 30。
分析:随机变量值在பைடு நூலகம்来某一确定时刻的不确定性(用标准 差来表示)是随着时间长度的平方根增加而增加的。
Sichuan University
3、股价过程是马尔科夫过程等于股票市场的弱有效性。
Sichuan University
二、随机过程
➢(二)标准布朗运动或维纳过程: 变量z是一个随机变量,设一个小的时间间隔长度为Δt,
定义Δz为在Δt时间内z的变化。要使z遵循维纳过程,Δz必须 满足两个基本性质:
性质1:Δz与Δt的关系满足方程式:
2、Put Option: Gives owner the right to sell an asset for a given price on or before the expiration date.
3、 European Option:Gives owner the right to exercise the option only on the expiration date.
所以有: XerT p 。
如果不存在这一关系,则套利者出售期权并将所得收入以 无风险利率进行投资,可以轻易获得无风险收益。

期权定价理论

期权定价理论

期权定价理论期权定价理论是衡量期权合约价格的数学模型。

它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。

这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。

期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。

该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。

布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。

布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。

通过调整组合中的权重,可以确定合理的期权价格。

这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。

除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。

这些模型在不同情况下,可以更准确地预测期权价格。

需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。

市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。

此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。

总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。

布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。

然而,需要注意实际市场中的差异和其他影响因素。

期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。

期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。

期权定价理论课件

期权定价理论课件

证券业协会
协助证监会和期交所进行 监管,促进期权市场的健 康发展。
期权市场的法规要求
交易规则
规定期权交易的流程、交易方式、交易时间等。
投资者适当性
确保只有符合一定条件的投资者才能参与期权交易。
信息披露
要求期权发行方及时、准确地进行信息披露。
期权市场的道德规范
诚信原则
01
所有参与期权市场的机构和个人都应遵守诚信原则,不得进行
欺诈、内幕交易等行为。
公平原则
02
确保所有投资者在期权交易中享有平等的权利和机会。
公正原则
03
监管机构应对所有市场参与者一视同仁,维护市场的公正性。
THANKS
谢谢您的观看
策略是赚取权利金,获得赚取现金的机会。
日历价差期权组合
策略是赚取权利金,获得赚取现金的机会。
动态对冲策略
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
动态对冲策略
策略是根据市场走势,不断调整持仓 比例,以降低风险。
05
期权的风险管理
希腊字母在风险管理中的应用
希腊字母
Delta、Gamma、Vega、Theta、Rho、 Lambda
应用
有限差分法广泛应用于金融衍生品定 价、数值分析和科学计算等领域。
03
期权定价的数学基础
概率论基础
概率空间
定义了随机事件、样本空间和概 率测度的概念,为期权定价提供 了基础的概率框架。
随机变量
描述了标的资产价格的可能取值 ,通过随机变量的期望和方差来 评估标的资产的预期收益和风险 。
条件概率与独立性
要点二
详细描述
期权定价是确定期权价值的过程,对于投资者和交易者来 说至关重要。通过合理的期权定价,投资者可以更好地评 估期权的风险和收益,从而做出更明智的决策。同时,对 于交易者来说,了解期权的定价原理和机制有助于制定更 好的交易策略,提高盈利机会。此外,期权定价理论也是 金融工程和风险管理等领域的重要基础。

期权定价理论

期权定价理论

期权定价理论期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。

金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。

今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。

因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。

而期权定价理论被认为是经济学中唯一一个先于实践的理论。

当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。

后来默顿对此进行了改进。

布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。

期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。

在此之前,许多学者都研究过这一问题。

最早的是法国数学家路易·巴舍利耶(Lowis Bachelier )于1900年提出的模型。

随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。

但他们都没能完全解出具体的方程。

本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。

一、预备知识(一)连续复利我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。

因而,熟悉连续复利的计算是十分必要的。

假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为n r A )1(+。

如果每年计m 次利息,则终值为:mnmr A )1(+。

当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。

在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rnAe 。

期权定价理论

期权定价理论

期权定价理论杨长汉11952年现代资产组合理论的提出以后,现代证券投资组合理论才开始真正形成,自此以后,该理论体系的发展成为经济金融领域最活跃的分支之一。

按照历史的逻辑来讲,资本资产定价模型、因素模型、套利定价理论以及有效市场假说理论等理论相继诞生,并且每种理论都是在检验和批判先前理论的过程中诞生和涌现的,同时不断推动着现代西方证券投资组合理论体系的发展,直到期权定价理论诞生以后,现代西方证券投资理论才形成了一套系统的理论体系。

b5E2RGbCAP期权定价问题一直是西方证券投资理论界研究的焦点问题。

早期的期权定价理论主要有巴舍利耶(1900>提出的股价服从布朗运动的欧式看涨期权定价模型,斯普伦克尔(1962>提出的假定标的资产价格成对数正态分布情形下的看涨期权定价模型以及萨缪尔森(1965>提出的考虑期权和股票预期收益率因风险特性的差异而不一致性的期权定价模型,直到1973年,布莱克和斯科尔斯根据股价符合几何布朗运动的假定,成功的推导出无现金股利的欧式期权定价公式,这才真正得到了期权定价的一般公式。

布莱克和斯科尔斯(1973>的1文章出处:《中国企业年金投资运营研究》杨长汉著杨长汉,笔名杨老金。

师从著名金融证券学者贺强教授,中央财经大学MBA教育中心教师、金融学博士。

中央财经大学证券期货研究所研究员、中央财经大学银行业研究中心研究员。

这一出色工作也使现代证券投资组合理论体系真正形成。

p1EanqFDPw一、早期的期权定价理论(一> 巴舍利耶(Louis Bachelier>的期权定价理论2DXDiTa9E3d法国数学家巴舍利耶于1900年发表在《巴黎高等师范学院科学年鉴》上的博士论文《投机理论》中提到了他的期权定价理论,他也是最早提出期权定价理论的学者。

巴舍利耶假设股票的价格服从布朗运动,其单位的时间方差为,并且不存在漂移项,因此他的欧式看涨期权定价公式为:RTCrpUDGiT其中,表示欧式看涨期权的价格,表示执行价格,为到期日,表示现在的日期,表示标的资产的价格,是标准正态分布函数,是标准正态分布的密度函数。

期权定价理论

期权定价理论

期权定价理论期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。

金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。

今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。

因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。

而期权定价理论被认为是经济学中唯一一个先于实践的理论。

当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。

后来默顿对此进行了改进。

布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。

期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。

在此之前,许多学者都研究过这一问题。

最早的是法国数学家路易·巴舍利耶(Lowis Bachelier )于1900年提出的模型。

随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。

但他们都没能完全解出具体的方程。

本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。

一、预备知识(一)连续复利我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。

因而,熟悉连续复利的计算是十分必要的。

假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为n r A )1(+。

如果每年计m 次利息,则终值为:mnmr A )1(+。

当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。

在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rnAe 。

期权定价理论及其应用

期权定价理论及其应用
权价值的特征。对于看跌期权,我们也 有类似的名称。
第二,期权的时间价值。
– 即使在到期日以前的任何时间,欧式期权均 有价值,因为它提供了将来执行权利的可能 性。
– 例如,以GM公司股票为标的物的一种期权,其执 行价格为40美元,到期日为三个月。假设GM公股 票现在的价格为37美元。显然,在接下来的三个月 中,该股票的价格有可能上涨而超过40美元,从而 有执行该期权而获得利润的可能。从这儿可以看出, 即使现在期权是虚值的,它也具有价值。
• 以股票为标的物的期权,每份期权通常包括100份特定的股票。 例如,持有一份以IBM公司股票为标的物的看涨期权,是一份可 以买100份IBM公司股票的权利。
– 2)执行价格(exercise price, 或者strike price)。
• 这个价格是执行期权合约时,可以以此价格购买标的物的价格。 对于以IBM公司股票为标的物的看涨期权,如果执行价格为150 美元,则在执行这种期权时,按每份股票150美元购买。
the money option)
所有合约都是由看涨期权、看跌期权、股票和 债券四种基本证券构成地。
Exotic option:
– Asian option – Barrier option – Lookback option – Currency-translated option – Binary option
• 从(1)和(2)式可以看出,一种看涨期权,其执行价格越小, 股票价格超过的可能性就越大,这种看涨期权也就越有价 值。对于看跌期权,结果正好相反。
– 2)标的股票价格的方差
• 在投资的过程中,投资者偏好以方差较大的股票为标的物 的期权。方差越大,股票价格超过执行价格的概率越大, 这种期权对投资者也就越有价值。

期权定价理论及其应用

期权定价理论及其应用

期权定价理论及其应用期权定价理论是金融学中的重要理论之一,用于计算期权合约的价格。

期权是一种金融工具,允许持有人以约定价格在约定时间内买入或卖出标的资产。

根据定价理论,期权的价格取决于一系列因素,包括标的资产价格、行权价格、到期时间、波动率以及利率等。

根据期权定价理论,有两种主要的方法用于计算期权的价格:风险中性定价模型和基于形态的定价模型。

风险中性定价模型是期权定价理论中最常用的方法之一。

根据这个模型,期权的价格可以通过将期权组合的价值与无风险利率相等来计算。

这表示期权的价格必须与类似的无风险投资产生的收益相匹配。

这一模型的一个关键假设是,市场是完全有效的,不存在无风险套利的机会。

基于形态的定价模型是基于期权的形态结构和特征来计算期权价格的方法。

这种方法通常通过建立期权的价格公式来实现,该公式基于标的资产价格的概率分布。

这种方法的一个优点是它不需要对市场进行强假设。

期权定价理论的应用非常广泛,它对金融市场和投资者都具有重要意义。

首先,期权定价理论为投资者提供了了解期权价格背后的基本因素的方法。

投资者可以使用这些因素来评估他们的投资策略是否合理,并为期权交易做出决策。

其次,期权定价理论为金融机构提供了制定期权交易策略的基础。

他们可以使用定价模型来评估期权合约的价格,并确定是否存在投资机会。

此外,金融机构也可以利用期权定价理论来对冲风险,降低对市场波动性的敏感性。

最后,期权定价理论还对学术界的研究和理论发展起到了推动作用。

通过对期权定价理论的研究,学者们可以深入了解金融市场的运作机制,并提出新的交易模型和策略。

总而言之,期权定价理论是金融学中的重要理论之一,它为投资者和金融机构提供了计算期权价格的方法。

通过应用期权定价理论,投资者和金融机构可以更好地理解期权交易的潜在风险和收益,从而做出更明智的投资决策。

期权定价理论在金融市场中起着至关重要的作用。

它不仅为投资者和金融机构提供了计算期权价格的方法,而且对于投资者的风险管理和投资组合管理也具有重要意义。

期权定价理论PPT课件

期权定价理论PPT课件

二、期权定价模型与定价方法
期权定价模型 期权定价方法
(一)期权定价模型
Black—Scholes期权定价模型 不变方差弹性(Constant Elasticity of
Variance ,CEV )模型 跳—扩散(Jump-Diffusion)模型 随机波动率(Stochastic Volatility)模型
期权的种类
从交易者的买卖行为划分,期权可以分为买 入期权(又称看涨期权(Call Option))和卖 出期权(又称看跌期权(Put Option))
按照合约所规定的履约时间不同,期权可以 分为欧式期权和美式期权
按照期权标的物性质不同,期权可以分为两 大类,即商品期权和金融期权
新型期权(Exotic Option)
回望期权
回望期权(lookback options)的收益依附 于期权有效期内标的资产达到的最大或 最小价格。欧式回望看涨期权的收益等 于最后标的资产价格超过期权有效期内 标的资产达到的最低价格的那个量。欧 式回望看跌期权的收益等于期权有效期 内标的资产价格达到的最高价格超过最 后标的资产 价格的那个量。
C t rf
SC12S2
S 2
2C S2 rfC
C(T)maxS(T)X,0)
有限差分方法
通过数值方法求解衍生资产所满足的 微分方程来为衍生资产估值,将微分 方程转化为一系列差分方程之后,再 通过迭代法求解这些差分方程总的来 看,有限差分方法的基本思想与二叉 树方法基本相似.
Black-Scholes期权定价法的优缺点
期权定价理论及其应用
期权的基本概念 期权定价模型与定价方法 期权定价模型的参数估计 期权理论的应用
一、期权的基本概念
期权的定义 期权的种类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现货价格




施权价




期限




价格波动性
+



无风险利率
+-Βιβλιοθήκη +-预期红利




Dr.Ouyang
第七讲期权定价理论
假设与符号
• 假设
– 不存在交易成本。 – 所有交易盈利都适用同一税率。 – 投资者进行无风险借贷或者投资的利率是一样的。
• 符号
– S: 当期股票价格 – X:施权价格 – T:期权到期的时点 – t:当期时点 – ST:时点T的股票价格 – r:无风险利率 – σ:股票价格波动的标准差 – c,C:欧式及美式看涨期权价值 – p,P:欧式及美式看跌期权价值
• 所以组合A与组合B的价值相等,即
c+ Xe-r(T-t) =p+ S
Dr.Ouyang
第七讲期权定价理论
示例
• 某股票现价为20元,施权价为20元,离到期尚有一年的欧 式看涨和看跌期权价格分别为3.00元和1.00元,无风险利率 为10%,问以上数据是否符合期权平价公式,如果不是, 你将如何进行套利?
• 红利
– 作为交割品的现金流,派发红利会导致交割品价格下降。 – 预期红利支付越高,看涨期权价格越低,看跌期权价格越高。
Dr.Ouyang
第七讲期权定价理论
套利举例——利率与预期股票价格
例:某股票现货市场价格为10元,3个月后到期的该股票远期合约价 格为11元,目前市场的借贷利率为每年10%,假设该股票在未来三 个月内都不派发红利,问套利者将如何操作?
• 因此组合A的价值大于组合B
C+X > P+S,从而,S-X < C-P
Dr.Ouyang
第七讲期权定价理论
7.6 红利的影响
• 期权价格上限
– 对于看涨期权来说,上限仍然是S – 对于欧式看跌期权来说,上限仍然是Xe-r(T-t) – 对于美式看跌期权来说,上限是X
• 期权价格下限
– 欧式看涨期权的下限变为S-D- Xe-r(T-t) – 欧式看跌期权的下限变为D+ Xe-r(T-t) - S – 美式看涨期权的下限变为不确定,但高于欧式期权 – 美式看跌期权的下限也是不确定,高于欧式期权
• 答案:
该看跌期权的价值下限为:Xe-r(T-t) - S=24e-0.1-20=1.71
该期权目前报价为1.00元,低于价值下限,因此可用下列策略套利:
从市场上借入21元,以1.0元买入该期权,以20元购买股票A。
一年后,如果股价低于24元,则执行期权获得24元,并偿还贷款本息, 利润为:24-21e0.1=0.79;如果股票价格高过24元,则不执行期 权,将股票卖掉并偿还本息,利润为:股价-21e0.1>0.79。
c + D + Xe-r(T-t) >S,从而, c > S-D- Xe-r(T-t)
Dr.Ouyang
第七讲期权定价理论
欧式看跌期权的下限
p + S > Xe-r(T-t) ,从而, p > Xe-r(T-t) - S
Dr.Ouyang
第七讲期权定价理论
示例
• 假设股票A现价20元,某欧式看跌期权施权价为24元,离 到期还有一年时间,无风险利率为10%,问该看跌期权的 最低价值是多少?假如该期权目前报价1.00元,你将如何 操作进行套利?
c + Xe-r(T-t) >S,从而, c > S- Xe-r(T-t)
Dr.Ouyang
第七讲期权定价理论
示例
• 假设股票A现价20元,某欧式看涨期权施权价为18元,离 到期还有一年时间,无风险利率为10%,问该看涨期权的 最低价值是多少?假如该期权目前报价3.00元,你将如何 操作进行套利?
• 到期时:
– 如果股票价格低于20元,看涨期权不会被执行,执行看 跌期权获得20元,偿还贷款本息,利润=20-18e0.1= 0.11元;
– 如果股票价格高于20元,看跌期权不被执行,将所持股 票用于施权,获得20元,偿还贷款本息,利润=20- 18e0.1=0.11元。
Dr.Ouyang
第七讲期权定价理论
第七讲期权定价理论
美式看涨与看跌期权价格关系
• 考虑两个资产组合
组合A:一份欧式看涨期权,施权价X,加上现金X 组合B:一份美式看跌期权,施权价X,加上一份股票
• 时点τ
– 如果组合B执行了看跌期权,那么价值为X – 组合A的价值为现金Xer(τ-t)加上看涨期权价值
• 到期时T
– 如果ST≤X,组合A的价值为Xer(T-t),组合B的价值为X – 如果ST>X,组合A的价值为ST-X+Xer(T-t),组合B的价值为ST
Dr.Ouyang
第七讲期权定价理论
7.2 期权价格的上下限
• 看涨期权上限
– 看涨期权给予持有人按照一定价格在将来购买特定股票的权利。 – 看涨期权的价值=PV(股票价格)-PV(施权价) – 所以看涨期权的价值小于当期的股票价值,即
c≤S, 同时, C ≤S
• 看跌期权上限
– 看跌期权给予持有人按照一定价格在将来卖出特定股票的权利。 – 看跌期权的价值=PV(施权价)-PV(股票价格) – 所以看跌期权的价值小于施权价的现值。
Dr.Ouyang
第七讲期权定价理论
7.3 美式看涨期权价格的下限
• 考虑两个资产组合
组合A:一份美式看涨期权,施权价X,加上现金Xe-r(T-t) 组合B:一份股票
• 假设在时点τ,该期权被执行
– 组合A的价值为Sτ-X+Xe-r(T-τ) – 组合B的价值为Sτ
• 如果是在时点T,期权才被执行
Dr.Ouyang
第七讲期权定价理论
欧式看跌期权的下限
• 考虑两个资产组合
组合A:一份欧式看跌期权,施权价为X,加上一份股票 组合B:现金Xe-r(T-t) 。
• 到期时
– 如果ST<X,组合A和组合B的价值都是X – 如果 ST ≥X ,组合A的价值为ST ,组合B的价值为X – 所以组合A的价值大于组合B
• 答案:
该看涨期权的价值下限为S-Xe-r(T-t)=20-18e-0.1×1=3.71
该期权报价低于价值下限,因此可以采用下列策略套利:卖空该股票, 获得20元,买入看涨期权,支出3.00元,并将17元按无风险利率借 贷出去
到期时
如果股票价格超过18元,以18元的价格施行期权,回补空头,利 润为17e0.1-18=0.79;如果股票价格低于18元,则以市价回补空 头,利润为17e0.1 -股票市价>0.79。
p ≤Xe-r(T-t),同时,P ≤X
Dr.Ouyang
第七讲期权定价理论
欧式看涨期权的下限
• 考虑两个资产组合
组合A:一份欧式看涨期权,施权价X,加上现金Xe-r(T-t) 组合B:一份股票。
• 到期时
– 如果ST≥X,组合A和组合B的价值都是ST – 如果ST<X,组合A的价值为X,组合B的价值为ST – 所以组合A的价值大于组合B
美式看涨与看跌期权价格关系
• 条件
– 美式与欧式看涨期权价值相等,c=C – 美式看跌期权价值高于欧式看跌期权价值,P>p – 欧式期权平价公式:c+Xe-r(T-t)=p+S
• 推论
– P > p=c+Xe-r(T-t)-S= C+Xe-r(T-t)-S – C-P < S-Xe-r(T-t)
Dr.Ouyang
• 现货价格
– 指交割品在现货市场上的价格。
• 施权价
– 指期权约定的交割价格。
• 期权的期限
– 指当期到期权失效时点的时间长度。
• 股票价格的波动性
– 指股票价格变动的剧烈程度,可以用方差来衡量。
• 无风险利率
– 一般用3月期国债利率来代替,指无风险投资的收益或者借贷的成本。
• 期权有效期内的股票红利
– 越晚施行期权,施权所需的现金越晚付出,从而节省了 资金成本。
Dr.Ouyang
第七讲期权定价理论
看涨期权价值与股票价格
看涨期权价值
施权价
Dr.Ouyang
股票现货价格
第七讲期权定价理论
7.4 美式看跌期权的下限
• 考虑两个资产组合
组合A:一份美式看跌期权,施权价为X,加上一份股票 组合B:现金Xe-r(T-t) 。
Dr.Ouyang
第七讲期权定价理论
无风险利率与红利
• 无风险利率
– 无风险利率对于期权的所有者来说是资金的成本,或者说是持有 现货的机会成本,因此无风险利率越高,预期的现货价格就越高。
– 但是无风险利率越高,未来利润折现值也越低。 – 两种因素综合,无风险利率越高,看涨期权的价格越高,看跌期
权价格越低。
第七讲期权定价理论
2020/12/6
第七讲期权定价理论
内容提要
• 7.1 影响期权价格的因素 • 7.2 期权价格的上下限 • 7.3 美式看涨期权价格的下限 • 7.4 美式看跌期权价格的下限 • 7.5 期权平价公式 • 7.6 红利的影响
Dr.Ouyang
第七讲期权定价理论
7.1 影响股票期权价格的因素
– 组合A的价值为Max(ST, X) – 组合B的价值为ST
• 因此美式看涨期权的最佳执行时间为到期时点。
Dr.Ouyang
第七讲期权定价理论
美式看涨期权的价值
• 在股票不支付红利的情况下
– 美式看涨期权的最佳执行时间是到期日 – 一份美式看涨期权的价值与一份欧式看涨期权价值相等
相关文档
最新文档