单室平衡容器原理doc资料
内置式平衡容器
内置式平衡容器1、差压水位计(老式单室平衡容器)下面就单室平衡容器的测量误差作一简要分析:如图三所示:当ΔP2=0时,有公式(5)成立H =(r- r //)g.L-ΔP1 -----(5)g(r / - r // )式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0时)L:参比水柱高度 r :参比水柱的平均密度ΔP2:正、负压侧仪表管路的附加差压这里饱和蒸汽和饱和水的密度(r //、r /)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r 通常是按50℃时水的密度来计算的,而实际的r 具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。
单室平衡容器参比水柱温度与DCS 修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm 以上。
由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm 以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS 软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm 以内,是自欺欺人的做法,不能保证锅炉的安全运行。
从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm 是不可能的。
由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。
21图三单室平衡容器测量原理图2、内置式单室平衡容器如图四所示:H=L-ΔP /g(r / - r // ) --- (6) (6)式是(5)式中,参比水柱的平均密度r 等于饱和水的密度r / 转换而来,L 、g 为常数,r / - r //是汽包压力的单值函数,ΔP 是变送器测得的差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。
内置式平衡容器特点:1 、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的影响,从公式)S W /(0 -∆--=∆p H L h 可以看出变送器所测得的差压值p ∆为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。
关于汽包水位测量问题
就地水位计有:玻璃板式水位计、就地双色水位计、电接点式水位计几种。
原理都是通过连通器原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
见下图。
只不过看的方式不同而已对于就地水位计来讲,存在着散热误差,导致读数不准。
上面公式推导过程:(假定饱和蒸汽密度与水H*ρ’=H 位计中蒸汽的密度相同) 管向周围空间散热,其水柱温度实际上低于容器内水的温度,直接影响水位计误差值|△h |与水位值H 成正比,即水位值H 越高(以水侧连通高,ρ'减少, ρ"增大,即在同样的散热条件下 (ρ1-ρ')变大,(ρ1-ρ上讲,当ρ1=ρ'时,(1)式可以简化为H1=H ,也就是说水位计水位值等于容器内水MW 机组)在高水位运行时,汽包水位计的“散热”误差值达100~150取样孔及连通管): 方向倾斜,水侧取样管应向下向容器方向倾斜,一般的上部不用保温: 一、个凸面安装法与高压容器上所对应的安装法兰相连接,组成一个高压二、1*ρ1+(H-H 1) *ρ’’ H*ρ’=H 1*ρ1+H*ρ’’-H 1* ρ’’H*ρ’- H*ρ’’=H 1*ρ1 -H 1*ρ’’ H*(ρ’- ρ’’)=H 1*(ρ1-ρ’’) H 1=[(ρ’- ρ’’)/ (ρ1-ρ’’)]*H (1)直接“散热”误差由于测量筒及其引位计测量筒内水的密度ρ1,即测量筒内水的密度ρ1大于容器内水的密度ρ',由(1)式可知水位计显示的水位H ,比容器内水位H 低。
由(2)式可以看出,水位计测量筒散热越多,ρ1也就越大,因而测量误差|△h |越大,这种误差我们称为直接“散热”误差。
为了减少直接“散热”误差|△h |,一般在水位计测量筒的下部至水侧连通管应加以保温,以减少测量筒水柱温度与容器内水的温度之差:同时水位计的汽侧连通管及水位计测量筒的上部不用保温,并让汽侧连通管保持一定的倾斜度,使更多的凝结水流入测量筒,以提高水位计测量筒内水的密度ρ1。
平衡容器工作原理
平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。
它的主要结构如图1所示。
在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。
为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。
3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。
3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。
基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。
由于基准杯的杯口高度是固定的,故而称为基准杯。
3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。
正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。
3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。
毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。
它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。
连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。
3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。
故而不难得到容器所输出的差压。
知识单双室平衡容器工作原理
知识单双室平衡容器工作原理一、单室平衡容器工作原理如下图,单室平衡容器测水位的原理非常简单,从汽包汽侧取样孔引一管至平衡容器(平衡容器又叫作凝结室,它是一个表面积很大的不加保温层的容器),进入平衡容器的饱和蒸汽通过与外界换热不断凝结成水,多余的水由于溢流原理自取样管流回汽包,使平衡容器内的水位保持恒定。
因此,差压变送器的正压头由于平衡容器有恒定的水柱而维持不变,负压头则随着汽包水位的变化而变化,通过测量正负管路差压,再根据公式P=ρ*g*h,就能很容易的得出汽包的真实水位。
二、双室平衡容器工作原理如下图,双室平衡容器结构较单室平衡容器复杂,它是由凝汽室、基准杯、溢流室和连通器等几个部件组成。
来自汽包的饱和水蒸汽经过凝汽室凝结成水流入基准杯,基准杯的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压变送器的正压侧。
基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室,溢流室收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。
而连通器是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。
三、单双室平衡容器工作特性比较单室平衡容器参比液柱内水温上下温差很大,密度差别也很大,所以误差比较大,但是可以通过温度补偿等等方法来减小误差;双室平衡容器参比水柱内的水一直在流动,温度较高,与汽包温度相差不大,密度也基本相同,而且其本身在一定的压力温度范围内有补偿水位的作用,所以误差较小。
但是当汽包压力突然下降时,双室平衡容器内的饱和水将汽化,从而导致参比液柱本身出现变化,直接带来测量错误!加剧虚假水位。
而单室平衡容器由于参比液柱的温度不够,所以不用考虑汽包压力突然下降所带来的一系列影响。
而且现在的DCS普遍带有比较完善的温度补偿办法,所以现在的新机组,比如绍电一般都采用单室平衡容器测量汽包水位。
(完整版)锅炉差压式水位计原理
差压式汽包水位测量装置主要由水位—差压转换容器(平衡容器)、压力信号表管及差压计3部分组成。
其工作原理是将水位的高、低信号转换为差压信号实现测量。
平衡容器是测量装置的感受部件,分为单室与双室两种。
以单室平容衡器的工作原理为例来说明其工作原理,如图1所示。
由于汽包内的饱和蒸汽在冷凝筒内不断散热凝结,筒内液面总是保持恒定,所以正压管内的水柱高度是恒定的。
负压管的水柱高度则随汽包水位的变化而变化。
这时,差压可按以下公式计算:——汽包重力水位;式中 Hw——冷凝筒中水的密度;ρ1ρ′、ρ″——汽包压力下饱和水、汽的密度;g——重力加速度。
当h、ρ′、ρ″、ρ为定值时,由正、负压引入口得到的差压信号与汽1包水位的变化成线性关系:水位愈高,差压值愈小;水位愈低,差压值愈大。
2.1.2 汽包压力对汽包水位测量的影响由于ρ′、ρ″的变化影响水位测量结果,而ρ′、ρ″与汽包压力有函数关系,因此汽包压力的变化也将影响差压式水位计的测量结果。
由水蒸汽状态图(或表)得知,(ρ-ρ″)、(ρ′-ρ″)与汽包压力p有近似的线性关系。
1以单室平衡容器为代表公式:ΔP=P+-P-=ρ凝*g*L-ρs *g*(L-(h0+h))-ρw *g*(h0+h)即:h=((ρ凝-ρS)*g*L-ΔP)/(ρW-ρS)*g式中: h——水位(单位:m)ΔP——差压(单位:Pa)ρw——饱和水密度(单位:kg/m3)ρS——饱和蒸汽密度(单位:kg/m3)ρ凝——汽包外水柱密度(单位:kg/m3)g——重力加速度汽包压力按表压计算;汽包水位按差压(Pa)值计算,若原为mmH2O,则换算关系为:1mmH2O=9.8Pa≈10Pa。
单室平衡容器原理
锅炉汽包水位测量误差分析汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。
传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。
就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算.因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。
本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。
一、就地水位计:就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端.就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
就地水位计如图1所示。
式中:h——汽包正常水位距水侧取样的距离,mm△h-—水位计中的水位与汽包中水位的差值,mmPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——水位计中水的平均密度,kg/m3Ps'—-水位计中蒸汽的密度,kg/m3对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。
从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。
双室平衡容器工作原理
双室平衡容器工作原理
单/双室平衡容器是与压力变送器搭配使用对类似锅炉蒸汽等高温高压测量介质进行压力测量时所使用的容器。
以较为简单的单室平衡容器为例说明原理。
首选,下图一所示结构包括,气包(左侧),导压管,平衡容器(右侧),压力变送器。
气包中分为上下两层,下层为液体介质,上层为蒸汽和气体介质,从气包上层取样孔连通至平衡容器,进入平衡容器的包和蒸汽通过与外界交换热量不断凝结成水,多余的水由于溢流原理回流到气包之中,此时气包内气压与平衡容器内气压因没有密封阻隔而有相同压力值,而高温蒸汽却没有接触到压力变送器,实现了气压测的温度隔绝。
图一单室平衡容器
双室平衡容器的工作原理与单室平衡容器原理相通,但其结构更加复杂,如下图二所示,它是由凝汽室、基准杯、溢流室和连通器等几个部件组成。
图二双室平衡容器
来自汽包的饱和蒸汽通过冷凝器凝结成水,流入参考杯。
参考杯的作用是收集冷凝器中的冷凝液,并将冷凝液产生的压力输出到差压变送器的正压侧。
当冷凝水充满参考杯时,它会溢流到溢流室。
溢流室收集从基准杯溢出的冷凝水,并将其排放到锅炉的下降管中,这点与单室平衡容器的结构类似。
在流动过程中,对整个容器进行加热和蓄热,以保证桶内温度与桶内温度一致。
接头将汽包内动态水位产生的压力传递到变送器的负压侧,与正压侧的(参考)压力进行比较,以了解汽包内的水位。
使用平衡容器进行液位测量时使用的不一定是差压变送器,也会有和其它液位设备一起使用的情况。
图三平衡容器与电接点液位筒的联用。
单室平衡容器的工作原理是
单室平衡容器的工作原理是
单室平衡容器是一种用于容纳气体或液体的容器,其工作原理基于受力平衡的原理。
在单室平衡容器中,容器内部被分为两部分,上下两个相等大小的房间。
上半部分被称为"工作室",而下半部分被称为"储罐"。
当容器中装有气体或液体时,气体或液体会均匀地分布在整个容器内部。
由于重力的作用,液体或气体会下沉到容器的底部,即储罐部分,而容器的顶部则会相对较空。
这样,工作室与储罐之间就会产生一个垂直于容器底部的压力差。
当需要从容器中取出气体或液体时,只需在容器的工作室部分设置一个出口,并通过控制出口的开关来调节气体或液体的流动。
在开启出口的同时,上部的空间会让液体或气体进入工作室,并将其从出口处排出。
在这个过程中,容器内部的压力会始终保持平衡,因为工作室中的气体或液体会不断地从储罐中流入,以保持两个房间中的物质量相等。
这样,即使储罐中的气体或液体减少,容器的压力也不会发生变化。
总之,单室平衡容器的工作原理是通过保持容器内外部气体或液体的质量平衡来实现受力平衡,并通过控制出口的开关来控制物质的流动。
单室平衡容器工作原理
单室平衡容器工作原理
单室平衡容器工作原理如下:
单室平衡容器是一种常用于测量气体压力的装置。
它由一个密封的容器和一个连通装置组成。
容器内部被划分为两个部分,上下两个相等容积的房间。
上方的房间称为压力室,下方的房间称为平衡室。
工作过程如下:
1. 初始状态下,压力室和平衡室的压力相等。
容器处于平衡状态。
2. 在容器的一侧添加要测量的气体,气体进入压力室内,增加了压力室的压力。
3. 压力室的压力增加导致容器内部发生不平衡,导致容器在一个方向上发生了位移。
4. 为了恢复平衡,容器会移动,直到压力室和平衡室的压力再次相等。
5. 容器移动的距离与压力差成正比。
通过测量容器位移的方法,可以计算出压力差的大小。
6. 在测量过程中,可以使用校准装置对容器进行校准,确保测量结果的准确性。
总结:单室平衡容器利用容器内气体压力差导致容器发生位移的原理,测量出气体的压力差。
通过校准装置的辅助,可以获得更准确的测量结果。
差压式液位计用的平衡容器结构及工作原理
差压式液位计用的平衡容器结构及工作原理差压式液位计都会用到平衡容器,但有的使用者对其不太了解,尤其是搞不清楚双室平衡容器的内部结构,而影响了使用。
下面将与您分享平衡容器相关知识。
差压式液位计是基于液体静压平衡原理工作的,平衡容器实际上是一个“液位--差压”转换器。
其作用是造成个恒定的液体静压力,使之与被测液位形成的液体静压力相比较,输出二者之差。
平衡容器实际上就是个冷凝器,按结构分有单室平衡容器(单层)和双室平衡容器(双层)之分。
大型锅炉用的平衡容器结构要复杂些,在此仅介绍工业锅炉常用的FP型平衡容器。
单室平衡容器的结构较简单,如图所示。
测量低压容器的液位时,当容器内外温差大,或气相容易凝结成液体时,如除氧水箱的水位,大多采用单室平衡容器进行测量。
测量前应根据所测介质的性质,把平衡容器的堵头拆开,灌入冷水或其他液体。
对一些化工生产的有毒有害场合平衡容器内装的是隔离液。
双室平衡容器的结构如图所示。
测量锅炉汽包水位采用双室平衡容器,平衡容器由内外两层容室构成。
平衡器的外层容室与锅炉汽包的蒸汽相连且充满了冷凝水;内层容室经平衡器下侧导压管与锅炉汽包的水相连,使用的是连通器原理,所以内层容室水位高度跟随汽包水位而变化。
这样结构的双层容器保证了外层容室和内层容室的水温基本相等,因而可以减少由于温度不同所产生的测量误差。
用双室平衡容器测量锅炉水位,双室平衡器的外层容室与锅炉汽包的蒸汽相连,外层容室内充满了冷凝水;当外层容室的水面低于平衡器上端导压管时,靠汽包蒸汽的冷凝水补充,当水面高于平衡器上端导压管时,水经导压管流入锅炉汽包,使外层容室水位高度始终保持不变。
内层容室经平衡器下侧导压管与锅炉汽包的水相连,其水位高度随汽包的水位变化而变化。
如果蒸汽的压力、温度参数恒定时,差压变送器的输出信号仅与锅炉汽包的水位有关。
对于低压锅炉,由于内层容器内水的密度近似等于饱和温度下水的密度,所以双室平衡容器内层容器中的水柱高度也就等于汽包中的实际水位高度。
平衡容器工作原理
平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置.它的主要结构如图1所示.在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器.为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器.3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯与后续环节使用.3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器〔后文简称变送器〕的正压侧.基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室.由于基准杯的杯口高度是固定的,故而称为基准杯.3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致.正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水.3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧.毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的〔基准〕压力比较以得知汽包中的水位.它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结.连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响.3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯与其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s .故而不难得到容器所输出的差压.本文以东方锅炉厂DG670-13.73-8A 型锅炉所采用的测量范围为±300mm 双室平衡容器为例加以介绍〔如图1所示〕.通过图1可知,容器正压侧输出的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口至L 形导压管的水平轴线之间这段垂直区间的凝结水压力,再加上L 形导压管的水平轴线至连通器水平轴线之间,位于容器的外部的这段垂直管段中的介质产生的压力.显而易见,其中的最后部分压力,由于其中的介质为静止的且距容器较远,因此其中的介质密度应为环境温度下的密度.因此 P += P J +320 γ w +<580-320> γ c式中P + —— 容器正压侧输出的压力γw —— 容器中的介质密度〔γ w = γ `w 〕γc —— 环境温度下水的密度P J —— 基准杯口以上总的静压力负压侧的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口水平面至汽包中汽水分界面之间的饱和水蒸汽产生的压力,再加上汽包中汽水分界面至连通器水平轴线之间饱和水产生的压力,即P -= P J +<580-h w > γ s + h w γw式中P-——容器负压侧输出的压力hw——汽水分界线至连通器水平管中心线之间的垂直高度γs——汽包中饱和水蒸汽的密度因此差压ΔP=P+-P-=320 γw+260 γc-<580-hw> γs-hwγw即ΔP=260 γc + 320 γw-580 γs-<γw-γs >hw〔1〕这里有一点需要说明,<1>式中环境温度下水的密度γc,通常情况下它会随着季节的变化而变化,它的变化将会影响汽包水位测量的准确性.就本例中的容器而言,当环境温度由25℃升高到50℃时,由于密度的变化对于差压产生的影响为-2.3mm水柱,经过补偿系统补偿后对最终得到的汽包水位的影响将为+2.3~5.5mm之间.通常情况下这样的误差是可以忽略的,也就是说可以认为这里的温度是恒定的.但是为了尽量减小误差,必须恰当地确定这里的温度.确定温度可以遵循这样一条原则,就高不就低,视当地气候与冬季伴热等因素确定.比如此处的环境温度一年当中通常在0~50℃之间变化,平均温度为25℃,则可以令这里的温度为35℃.这是因为水的密度随着温度升高它的变化梯度越来越大,确定的温度高些,将会使环境温度变化对整个系统的影响更小.就本例中的容器而言,当温度从0℃升高到25℃时,温度的变化对测量系统的最终结果影响只有1mm左右,而环境温度从25℃升高到50℃所带来的影响却为+2.3~5.5mm之间.故而,确定温度应就高不就低.4.双室平衡容器的工作特性容器的工作特性对于汽包水位测量和补偿系统来说非常重要,了解这种特性利于用户的应用和掌握应用中的技巧.查《饱和水与饱和水蒸汽密度表》可以获得各种压力下饱和水与饱和水蒸汽的密度.把0、±50、±100mm等汽包水位分别代入〔1〕式,可得到容器输出的一系列差压,见下表1《双室平衡容器固有补偿特性参照表》.通过表1可以得知双室平衡容器的工作特性.从表1中可以看到,各水位所对应的由容器所输出的差压随着压力的变化〔相关饱和汽、水密度〕各自发生着不同的变化.这里首先注意0水位所对应的差压,它的变化规律较其它水位有明显不同,只在一个较小的范围内波动.由于该容器的设计压力为13.73MPa,因此14.5MPa以下它的波动范围更小,仅在±5mm水柱以内.也就是说当汽包中的水位为0水位时,无论压力如何变化,即使在没有补偿系统的情况下,对0水位测量影响都极小或者基本没有影响.关于其它水位,则当汽包水位越接近于0水位,其对应的差压受压力的变化影响越小,反之则大.因此,双室平衡容器是一种具有一定的自我补偿能力的汽包水位测量装置.它的这种能力主要体现在,当汽包中的水位越接近于0水位,其输出的差压受压力变化的影响越小,即对汽包水位测量的影响越小.毫无疑问,容器特性由于容器的自身结构决定的,故又称为固有补偿特性.表1中,0MPa对应两行差压值,其原因后文将会提到.之所以双室平衡容器会有这种特性其实质,是由于双室平衡容器在设计制造时采取了特殊的结构,这种结构最大限度地削弱了汽水密度变化对常规运行水位差压的影响.但是尽管如此,它并不能完全满足生产的需要,仍然需要继续补偿.5.补偿系统5.1.基础知识与基本概念从容器的特性中可以看到,双室平衡容器不能完全满足生产的需要.究其原因,是由于介质密度的变化所造成的.因此,必须要采取一定的措施,进一步消除密度变化对汽包水位测量的影响.这种被用来消除密度变化带来的影响的措施就叫做补偿.通过补偿以准确地测定汽包中的水位.汽包水位测量补偿的方法通常有两种,一种是压力补偿,另一种是温度补偿,无论采取哪种方法补偿效果都一样.但是它们之间略有区别,即温度补偿可以从0℃开始,而压力补偿只能从100℃开始.这是因为温度可以一一对应饱和密度以与100℃以下时的非饱和密度,而压力却只能一一对应饱和密度,即最低压力0MPa只能对应100℃时的饱和密度.故而由这两种方法构成的补偿系统各自对应的补偿起始点有所不同,即差压变送器量程有所不同.表1中0MPa 对应两行差压值,其原因即在于此;其中上一行对应的是温度补偿,下一行对应压力补偿.很显然,温度补偿也可以从100℃开始.5.2.建立补偿系统的步骤第一步确定双室平衡容器的0水位位置容器的0水位的位置一般情况下比较容易确定,通过查阅锅炉制造厂家有关汽包〔学名锅筒〕与附件方面的图纸和资料,进行比较和计算即可获得.文中例举的容器0水位位置位于连通器水平管轴线以上365mm处,即基准杯口水所在的平面下方215mm处.但是,偶尔由于图纸的疏漏缺少与确定0水位相关的数据,无法计算出0水位的位置,那么确定起来就比较复杂.如图1中就缺少数据.这种情况下就只有根据容器的自我补偿特性在0水位所体现的特点通过反复验算来获得.由于容器本身就是用这样的方法经反复验算而设计制造的,只要验算的方法正确通过验算得到的数据会很准确可靠,当然这只限于图纸不详的情况下.由于限于篇幅,这里只提供思路,具体的验算的方法本文不予介绍.对此感兴趣的读者可以试一试.第二步确定差压变送器的量程差压变送器的量程是由汽包水位的测量范围、容器的0水位位置以与补偿系统的补偿起始点等三方面因素决定的.一些用户一般只考虑了前两方面因素,而忽略了补偿起始点因素,甚至极个别的用户只简单地根据汽包水位的测量范围确定变送器的量程,造成很大的测量误差.一般情况下,忽略容器的0水位位置所造成的误差在70~90mm之间,忽略补偿起始点所产生的误差在30mm以下,特别情况下误差都将会更大.此外,这里特别提醒用户,在进行汽包水位测量工作时,关于变送器的量程,在没有得到确认的情况下,切不可单纯依赖设计部门的图纸.事实上,多数情况下,设计部门在进行此类设计,对变送器选型时,只确定基本量程,而不给出应用量程.下面来确定变送器的量程.本文的例子中容器的0水位位置位于连通器水平管轴线以上365mm处.由于该容器的量程为±300mm,因此〔1〕式中的hw的最大值和最小值分别为665mm和65mm.如果采用压力补偿,从《饱和水与饱和水蒸汽密度表》中查出100℃时的饱和水与饱和水蒸汽的密度代入〔1〕式,再分别将665mm和65mm代入〔1〕式,即得最小差压ΔPmin=-70.5mm水柱和最大差压ΔPmax=504mm水柱这两个差压值就是变送器的量程范围〔见表1中0MPa对应的下行〕,即-70.5~504mm水柱.如果采用温度补偿,且从0℃开始补偿,则由于水的密度极其接近1mg/mm3,误差可以忽略,令蒸汽的密度为0.用同样方法即可得到变送器的量程为-85~515mm水柱〔见表1中0MPa 对应的上行〕.实际上,从0℃开始补偿是完全没有必要的,其原因这里无需遨述.第三步确定数学模型数学模型是补偿系统中的最重要环节.由〔1〕式得〔2〕由于相对于规定的0水位的汽包水位h= hw-365mm,所以〔3〕式中h ——相对于规定的0水位的汽包水位γw ——饱和水的密度γs ——饱和水蒸气的密度γ c ——环境温度下水的密度ΔP——差压〔3〕式即为补偿系统的数学模型.式中γc为常数,令环境温度为30℃,则γc=0.9956mg/mm3,所以〔4〕〔4〕式为最终的数学模型.显然,它与〔3〕式的作用完全一样.在补偿系统中可以任选其一. 第四步确定函数、完成系统在〔3〕式和〔4〕式中含都有"320 γw-580 γs"和"γw-γs"关于饱和水与饱和水蒸汽密度的两个子式.查《饱和水与饱和水蒸汽密度表》,可以获得这两个子式关于压力或温度的函数曲线.将所得到的曲线以与〔3〕式或者〔4〕式输入用以执行运算任务硬件设备,补偿系统即告完成.从补偿系统的建立过程可以发现,补偿系统是根据某一特定构造的容器而建立的.因此,建立补偿系统时应根据不同的容器,建立不同的补偿系统.建立补偿系统时,当确定差压的计算公式以后,只需重复这里的步骤即可得到新的汽包水位测量补偿系统.6.关于容器保温问题的释疑众所周知,为了使容器达到理想工作状态,容器的外部必须作以适当的保温.然而,关于容器的凝汽室与顶部的保温问题目前有些争议,部分用户认为这里的保温可有可无.笔者在这里阐述一下个人的观点.笔者通过多年观察发现,在这里没有保温的情况下,冬季由仪表显示的汽包水位会比夏季低将近10mm.分析原因,是因为一般情况下凝汽室的温度都要比环境高300℃左右,甚至更高,因此它的热辐射能力很强.当凝汽室外部没有保温或者保温条件比较差时,尽管凝结水的速度会加快并导致更多的饱和水蒸汽流到这里补充这里的热量,但是由于这里的介质处于自然对流状态且受到管路等的阻力的制约,使补充的热量难以维持这里的温度,进而影响了测量的准确性.对于额定工作压力为13.73MPa的锅炉而言,如果冬季由仪表显示的汽包水位比真实水位低10mm,将意味着容器内部的温度比饱和温度低7℃左右.所以,为确保其包水位测量的准确性,这里必须加以适当的保温.笔者以为,这里的保温以保温层的外层温度不超过120℃为佳.。
单室平衡容器汽包水位计算方法
锅炉汽包水位补偿(单室平衡容器)一、测量原理:炉汽包水位测量原理图如图2所示。
差压式水位表和汽包水位之间的关系如下所示:ΔP= H*ρa-(A-h)* ρs-((H-(A-h))* ρw= H*(ρa-ρw)+(A-h)* (ρw-ρs) (1)式中:H………水侧取样孔与平衡容器的距离,mm;A………平衡容器与汽包正常水位的距离,mm;h………汽包水位偏离正常水位的值,mm;ΔP………对应汽包水位的差压值,mmH2O;ρs………饱和蒸汽的密度,kg*103=/m3;ρw………饱和水的密度,kg*103=/m3;ρa………参比水柱的密度,kg*103=/m3;上式中,H、A和B都是常数;ρw、ρs是汽压的函数,在特定汽压下均为定值;平衡容器内汽水的密度ρa与其散热条件和环境温度有关。
在锅炉启动过程中,水温略有升高,压力也同时升高,这两方面的变化对ρa的影响基本上抵消,可以近似认为ρa是恒值。
根据(1)有如下:h = A-ΔP*/(ρw-ρs)+H*(ρa-ρw)/ (ρw-ρs)=A-(ΔP-H*(ρa-ρw))* /(ρw-ρs) (3)令F1(X)=(ρa-ρw);F2(X)=1//(ρw-ρs);二、补偿逻辑框图:三、F1(X)/F2(X)参数表:区域为:区间4; 湿蒸汽或饱和线压力P = 0.10000000 MPa温度T = 99.61 ℃干度X = 不确定!饱和水比焓HL = 417.44 kJ/kg饱和水比熵SL = 1.3026 kJ/(kg.℃)饱和水比容VL = 0.0010431 m^3/kg饱和水定压比热CPL = 4.2161 kJ/(kg.℃)饱和水定容比热CVL = 3.7697 kJ/(kg.℃)饱和水内能EL = 417.33 kJ/kg饱和水音速SSPL = 1545.45 m/s饱和水定熵指数KSL = 22896.2915饱和水动力粘度ETAL = 282.92E-6 kg/(m.s)饱和水运动粘度UL = 0.2951E-6 (m^2/s)饱和水导热系数RAMDL= 678.9716E-3 W/(m.℃) 饱和水普朗特数PRNL = 1.7568饱和水介电常数EPSL = 55.6283当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.3756饱和汽比焓HG = 2674.95 kJ/kg饱和汽比熵SG = 7.3588 kJ/(kg.℃)饱和汽比容VG = 1.6940225 m^3/kg饱和汽定压比热CPG = 2.0759 kJ/(kg.℃)饱和汽定容比热CVG = 1.5527 kJ/(kg.℃)饱和汽内能EG = 2505.55 kJ/kg饱和汽音速SSPG = 472.05 m/s饱和汽定熵指数KSG = 1.3154饱和汽动力粘度ETAG = 12.26E-6 kg/(m.s)饱和汽运动粘度UG = 20.7616E-6 (m^2/s)饱和汽导热系数RAMDG= 25.05E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.0155饱和汽介电常数EPSG = 1.0058当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0002区域为:区间4; 湿蒸汽或饱和线压力P = 1.10000000 MPa温度T = 184.07 ℃干度X = 不确定!饱和水比焓HL = 781.20 kJ/kg饱和水比熵SL = 2.1789 kJ/(kg.℃)饱和水比容VL = 0.0011330 m^3/kg饱和水定压比热CPL = 4.4217 kJ/(kg.℃)饱和水定容比热CVL = 3.3796 kJ/(kg.℃)饱和水内能EL = 779.95 kJ/kg饱和水音速SSPL = 1379.78 m/s饱和水定熵指数KSL = 1527.5683饱和水动力粘度ETAL = 146.62E-6 kg/(m.s)饱和水运动粘度UL = 0.1661E-6 (m^2/s)饱和水导热系数RAMDL= 671.5733E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.9654饱和水介电常数EPSL = 37.5030当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.3433饱和汽比焓HG = 2780.67 kJ/kg饱和汽比熵SG = 6.5520 kJ/(kg.℃)饱和汽比容VG = 0.1774358 m^3/kg饱和汽定压比热CPG = 2.7678 kJ/(kg.℃)饱和汽定容比热CVG = 1.9579 kJ/(kg.℃)饱和汽内能EG = 2585.49 kJ/kg饱和汽音速SSPG = 501.66 m/s饱和汽定熵指数KSG = 1.2894饱和汽动力粘度ETAG = 15.17E-6 kg/(m.s)饱和汽运动粘度UG = 2.6909E-6 (m^2/s)饱和汽导热系数RAMDG= 37.16E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.1293饱和汽介电常数EPSG = 1.0467当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0021区域为:区间4; 湿蒸汽或饱和线压力P = 2.10000000 MPa温度T = 214.87 ℃干度X = 不确定!饱和水比焓HL = 919.99 kJ/kg饱和水比熵SL = 2.4701 kJ/(kg.℃)饱和水比容VL = 0.0011810 m^3/kg饱和水定压比热CPL = 4.5775 kJ/(kg.℃)饱和水定容比热CVL = 3.2625 kJ/(kg.℃)饱和水内能EL = 917.51 kJ/kg饱和水音速SSPL = 1282.01 m/s饱和水定熵指数KSL = 662.6729饱和水动力粘度ETAL = 124.57E-6 kg/(m.s)饱和水运动粘度UL = 0.1471E-6 (m^2/s)饱和水导热系数RAMDL= 653.5360E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.8725饱和水介电常数EPSL = 32.3080当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.3283饱和汽比焓HG = 2799.36 kJ/kg饱和汽比熵SG = 6.3212 kJ/(kg.℃)饱和汽比容VG = 0.0949339 m^3/kg饱和汽定压比热CPG = 3.2339 kJ/(kg.℃)饱和汽定容比热CVG = 2.1775 kJ/(kg.℃)饱和汽内能EG = 2600.00 kJ/kg饱和汽音速SSPG = 504.73 m/s饱和汽定熵指数KSG = 1.2778饱和汽动力粘度ETAG = 16.23E-6 kg/(m.s)饱和汽运动粘度UG = 1.5409E-6 (m^2/s) 饱和汽导热系数RAMDG= 43.09E-3 W/(m.℃) 饱和汽普朗特数PRNG = 1.2181饱和汽介电常数EPSG = 1.0835当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0039区域为:区间4; 湿蒸汽或饱和线压力P = 3.10000000 MPa温度T = 235.68 ℃干度X = 不确定!饱和水比焓HL = 1017.00 kJ/kg饱和水比熵SL = 2.6624 kJ/(kg.℃)饱和水比容VL = 0.0012204 m^3/kg饱和水定压比热CPL = 4.7290 kJ/(kg.℃)饱和水定容比热CVL = 3.1934 kJ/(kg.℃)饱和水内能EL = 1013.22 kJ/kg饱和水音速SSPL = 1205.69 m/s饱和水定熵指数KSL = 384.2339饱和水动力粘度ETAL = 113.01E-6 kg/(m.s)饱和水运动粘度UL = 0.1379E-6 (m^2/s)饱和水导热系数RAMDL= 636.0408E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.8402饱和水介电常数EPSL = 29.0959当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.3170饱和汽比焓HG = 2803.28 kJ/kg饱和汽比熵SG = 6.1729 kJ/(kg.℃)饱和汽比容VG = 0.0645044 m^3/kg饱和汽定压比热CPG = 3.6534 kJ/(kg.℃)饱和汽定容比热CVG = 2.3434 kJ/(kg.℃)饱和汽内能EG = 2603.32 kJ/kg饱和汽音速SSPG = 503.89 m/s饱和汽定熵指数KSG = 1.2697饱和汽动力粘度ETAG = 16.97E-6 kg/(m.s)饱和汽运动粘度UG = 1.0945E-6 (m^2/s)饱和汽导热系数RAMDG= 47.69E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.2997饱和汽介电常数EPSG = 1.1200当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0057区域为:区间4; 湿蒸汽或饱和线压力P = 4.10000000 MPa温度T = 251.83 ℃干度X = 不确定!饱和水比焓HL = 1094.58 kJ/kg饱和水比熵SL = 2.8101 kJ/(kg.℃)饱和水比容VL = 0.0012560 m^3/kg饱和水定压比热CPL = 4.8847 kJ/(kg.℃)饱和水定容比热CVL = 3.1463 kJ/(kg.℃)饱和水内能EL = 1089.43 kJ/kg饱和水音速SSPL = 1140.76 m/s饱和水定熵指数KSL = 252.7025饱和水动力粘度ETAL = 105.28E-6 kg/(m.s)饱和水运动粘度UL = 0.1322E-6 (m^2/s)饱和水导热系数RAMDL= 618.9728E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.8308饱和水介电常数EPSL = 26.7374当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.3075饱和汽比焓HG = 2800.39 kJ/kg饱和汽比熵SG = 6.0594 kJ/(kg.℃)饱和汽比容VG = 0.0485259 m^3/kg饱和汽定压比热CPG = 4.0628 kJ/(kg.℃)饱和汽定容比热CVG = 2.4813 kJ/(kg.℃)饱和汽内能EG = 2601.44 kJ/kg饱和汽音速SSPG = 501.34 m/s饱和汽定熵指数KSG = 1.2633饱和汽动力粘度ETAG = 17.56E-6 kg/(m.s)饱和汽运动粘度UG = 0.8523E-6 (m^2/s)饱和汽导热系数RAMDG= 51.75E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.3787饱和汽介电常数EPSG = 1.1574当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0075区域为:区间4; 湿蒸汽或饱和线压力P = 6.10000000 MPa温度T = 276.67 ℃干度X = 不确定!饱和水比焓HL = 1219.32 kJ/kg饱和水比熵SL = 3.0374 kJ/(kg.℃)饱和水比容VL = 0.0013225 m^3/kg饱和水定压比热CPL = 5.2264 kJ/(kg.℃)饱和水定容比热CVL = 3.0873 kJ/(kg.℃)饱和水内能EL = 1211.25 kJ/kg饱和水音速SSPL = 1029.64 m/s饱和水定熵指数KSL = 131.4129饱和水动力粘度ETAL = 94.82E-6 kg/(m.s)饱和水运动粘度UL = 0.1254E-6 (m^2/s)饱和水导热系数RAMDL= 585.3508E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.8466饱和水介电常数EPSL = 23.2769当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2911饱和汽比焓HG = 2783.46 kJ/kg饱和汽比熵SG = 5.8822 kJ/(kg.℃)饱和汽比容VG = 0.0318703 m^3/kg饱和汽定压比热CPG = 4.9226 kJ/(kg.℃)饱和汽定容比热CVG = 2.7130 kJ/(kg.℃)饱和汽内能EG = 2589.05 kJ/kg饱和汽音速SSPG = 493.57 m/s饱和汽定熵指数KSG = 1.2531饱和汽动力粘度ETAG = 18.56E-6 kg/(m.s)饱和汽运动粘度UG = 0.5914E-6 (m^2/s)饱和汽导热系数RAMDG= 59.39E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.5377饱和汽介电常数EPSG = 1.2371当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0115区域为:区间4; 湿蒸汽或饱和线压力P = 8.10000000 MPa温度T = 295.88 ℃干度X = 不确定!饱和水比焓HL = 1321.86 kJ/kg饱和水比熵SL = 3.2158 kJ/(kg.℃)饱和水比容VL = 0.0013880 m^3/kg饱和水定压比热CPL = 5.6367 kJ/(kg.℃)饱和水定容比热CVL = 3.0569 kJ/(kg.℃)饱和水内能EL = 1310.62 kJ/kg饱和水音速SSPL = 932.07 m/s饱和水定熵指数KSL = 77.2740饱和水动力粘度ETAL = 87.44E-6 kg/(m.s)饱和水运动粘度UL = 0.1214E-6 (m^2/s)饱和水导热系数RAMDL= 551.6082E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.8935饱和水介电常数EPSL = 20.6873当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2766饱和汽比焓HG = 2757.12 kJ/kg饱和汽比熵SG = 5.7381 kJ/(kg.℃)饱和汽比容VG = 0.0231922 m^3/kg饱和汽定压比热CPG = 5.9393 kJ/(kg.℃)饱和汽定容比热CVG = 2.9228 kJ/(kg.℃)饱和汽内能EG = 2569.26 kJ/kg饱和汽音速SSPG = 483.53 m/s饱和汽定熵指数KSG = 1.2446饱和汽动力粘度ETAG = 19.44E-6 kg/(m.s)饱和汽运动粘度UG = 0.4509E-6 (m^2/s) 饱和汽导热系数RAMDG= 67.49E-3 W/(m.℃) 饱和汽普朗特数PRNG = 1.7105饱和汽介电常数EPSG = 1.3266当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0157区域为:区间4; 湿蒸汽或饱和线压力P = 10.10000000 MPa温度T = 311.73 ℃干度X = 不确定!饱和水比焓HL = 1412.18 kJ/kg饱和水比熵SL = 3.3674 kJ/(kg.℃)饱和水比容VL = 0.0014561 m^3/kg饱和水定压比热CPL = 6.1570 kJ/(kg.℃)饱和水定容比热CVL = 3.0438 kJ/(kg.℃)饱和水内能EL = 1397.47 kJ/kg饱和水音速SSPL = 843.51 m/s饱和水定熵指数KSL = 48.3784饱和水动力粘度ETAL = 81.52E-6 kg/(m.s)饱和水运动粘度UL = 0.1187E-6 (m^2/s)饱和水导热系数RAMDL= 517.2036E-3 W/(m.℃) 饱和水普朗特数PRNL = 0.9704饱和水介电常数EPSL = 18.5608当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2630饱和汽比焓HG = 2723.64 kJ/kg饱和汽比熵SG = 5.6097 kJ/(kg.℃)饱和汽比容VG = 0.0178128 m^3/kg饱和汽定压比热CPG = 7.2193 kJ/(kg.℃)饱和汽定容比热CVG = 3.1217 kJ/(kg.℃)饱和汽内能EG = 2543.73 kJ/kg饱和汽音速SSPG = 471.82 m/s饱和汽定熵指数KSG = 1.2374饱和汽动力粘度ETAG = 20.31E-6 kg/(m.s)饱和汽运动粘度UG = 0.3618E-6 (m^2/s)饱和汽导热系数RAMDG= 77.06E-3 W/(m.℃)饱和汽普朗特数PRNG = 1.9020饱和汽介电常数EPSG = 1.4304当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0205区域为:区间4; 湿蒸汽或饱和线压力P = 12.10000000 MPa温度T = 325.31 ℃干度X = 不确定!饱和水比焓HL = 1495.37 kJ/kg饱和水比熵SL = 3.5030 kJ/(kg.℃)饱和水比容VL = 0.0015302 m^3/kg饱和水定压比热CPL = 6.8534 kJ/(kg.℃)饱和水定容比热CVL = 3.0439 kJ/(kg.℃)饱和水内能EL = 1476.86 kJ/kg饱和水音速SSPL = 761.55 m/s饱和水定熵指数KSL = 31.3222饱和水动力粘度ETAL = 76.37E-6 kg/(m.s)饱和水运动粘度UL = 0.1169E-6 (m^2/s)饱和水导热系数RAMDL= 481.8994E-3 W/(m.℃) 饱和水普朗特数PRNL = 1.0861饱和水介电常数EPSL = 16.7079当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2496饱和汽比焓HG = 2683.40 kJ/kg饱和汽比熵SG = 5.4881 kJ/(kg.℃)饱和汽比容VG = 0.0141107 m^3/kg饱和汽定压比热CPG = 8.9183 kJ/(kg.℃)饱和汽定容比热CVG = 3.3083 kJ/(kg.℃)饱和汽内能EG = 2512.66 kJ/kg饱和汽音速SSPG = 458.78 m/s饱和汽定熵指数KSG = 1.2328饱和汽动力粘度ETAG = 21.23E-6 kg/(m.s)饱和汽运动粘度UG = 0.2996E-6 (m^2/s)饱和汽导热系数RAMDG= 89.25E-3 W/(m.℃)饱和汽普朗特数PRNG = 2.1205饱和汽介电常数EPSG = 1.5548当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0259区域为:区间4; 湿蒸汽或饱和线压力P = 14.10000000 MPa温度T = 337.23 ℃干度X = 不确定!饱和水比焓HL = 1574.81 kJ/kg饱和水比熵SL = 3.6292 kJ/(kg.℃)饱和水比容VL = 0.0016142 m^3/kg饱和水定压比热CPL = 7.8748 kJ/(kg.℃)饱和水定容比热CVL = 3.0716 kJ/(kg.℃)饱和水内能EL = 1552.05 kJ/kg饱和水音速SSPL = 678.56 m/s饱和水定熵指数KSL = 20.2297饱和水动力粘度ETAL = 71.60E-6 kg/(m.s)饱和水运动粘度UL = 0.1156E-6 (m^2/s)饱和水导热系数RAMDL= 445.5503E-3 W/(m.℃) 饱和水普朗特数PRNL = 1.2655饱和水介电常数EPSL = 15.0156当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2361饱和汽比焓HG = 2635.49 kJ/kg饱和汽比熵SG = 5.3669 kJ/(kg.℃)饱和汽比容VG = 0.0113679 m^3/kg饱和汽定压比热CPG = 11.4134 kJ/(kg.℃)饱和汽定容比热CVG = 3.4951 kJ/(kg.℃)饱和汽内能EG = 2475.20 kJ/kg饱和汽音速SSPG = 444.43 m/s饱和汽定熵指数KSG = 1.2323饱和汽动力粘度ETAG = 22.27E-6 kg/(m.s)饱和汽运动粘度UG = 0.2531E-6 (m^2/s)饱和汽导热系数RAMDG= 105.76E-3 W/(m.℃) 饱和汽普朗特数PRNG = 2.4014饱和汽介电常数EPSG = 1.7098当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0322区域为:区间4; 湿蒸汽或饱和线压力P = 16.10000000 MPa温度T = 347.86 ℃干度X = 不确定!饱和水比焓HL = 1653.66 kJ/kg饱和水比熵SL = 3.7518 kJ/(kg.℃)饱和水比容VL = 0.0017151 m^3/kg饱和水定压比热CPL = 9.5841 kJ/(kg.℃)饱和水定容比热CVL = 3.1363 kJ/(kg.℃)饱和水内能EL = 1626.04 kJ/kg饱和水音速SSPL = 593.64 m/s饱和水定熵指数KSL = 12.7618饱和水动力粘度ETAL = 66.90E-6 kg/(m.s)饱和水运动粘度UL = 0.1147E-6 (m^2/s)饱和水导热系数RAMDL= 407.9181E-3 W/(m.℃) 饱和水普朗特数PRNL = 1.5719饱和水介电常数EPSL = 13.3912当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2216饱和汽比焓HG = 2577.62 kJ/kg饱和汽比熵SG = 5.2397 kJ/(kg.℃)饱和汽比容VG = 0.0092104 m^3/kg饱和汽定压比热CPG = 15.4633 kJ/(kg.℃)饱和汽定容比热CVG = 3.6877 kJ/(kg.℃)饱和汽内能EG = 2429.34 kJ/kg饱和汽音速SSPG = 428.35 m/s饱和汽定熵指数KSG = 1.2373饱和汽动力粘度ETAG = 23.51E-6 kg/(m.s)饱和汽运动粘度UG = 0.2166E-6 (m^2/s)饱和汽导热系数RAMDG= 129.42E-3 W/(m.℃) 饱和汽普朗特数PRNG = 2.8064饱和汽介电常数EPSG = 1.9134当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0398区域为:区间4; 湿蒸汽或饱和线压力P = 18.10000000 MPa温度T = 357.45 ℃干度X = 不确定!饱和水比焓HL = 1736.35 kJ/kg饱和水比熵SL = 3.8783 kJ/(kg.℃)饱和水比容VL = 0.0018473 m^3/kg饱和水定压比热CPL = 13.1003 kJ/(kg.℃)饱和水定容比热CVL = 3.2440 kJ/(kg.℃)饱和水内能EL = 1702.92 kJ/kg饱和水音速SSPL = 508.74 m/s饱和水定熵指数KSL = 7.7408饱和水动力粘度ETAL = 61.91E-6 kg/(m.s)饱和水运动粘度UL = 0.1144E-6 (m^2/s)饱和水导热系数RAMDL= 431.2336E-3 W/(m.℃) 饱和水普朗特数PRNL = 1.8807饱和水介电常数EPSL = 11.7316当给定波长为: 0.2265 μm时,饱和水折射率NL = 1.2051饱和汽比焓HG = 2505.44 kJ/kg饱和汽比熵SG = 5.0979 kJ/(kg.℃)饱和汽比容VG = 0.0074145 m^3/kg饱和汽定压比热CPG = 23.5590 kJ/(kg.℃)饱和汽定容比热CVG = 3.9258 kJ/(kg.℃)饱和汽内能EG = 2371.24 kJ/kg饱和汽音速SSPG = 409.24 m/s饱和汽定熵指数KSG = 1.2480饱和汽动力粘度ETAG = 25.15E-6 kg/(m.s)饱和汽运动粘度UG = 0.1864E-6 (m^2/s)饱和汽导热系数RAMDG= 166.91E-3 W/(m.℃) 饱和汽普朗特数PRNG = 3.5493饱和汽介电常数EPSG = 2.2024当给定波长为: 0.2265 μm时,饱和汽折射率NG = 1.0495。
单室平衡容器
作者:佚名转贴自:电力安全论坛点击数:387 更新时间:2008-10-12汽包水位测量分析及补偿杨仕桥(湖北电建二公司,武汉市,430023)[摘要]汽包水位的准确测量值是电厂重要的测量参数之一,其测量方式很多,目前常用的是静压式测量方法中的连通式液位计和压差式液位计。
但当液位计与被测汽包中的液体温度有差异时,显示的液位不同于汽包中的液位,而且其误差还会随汽包压力的改变而改变。
襄樊电厂300MW机组,应用汽包水位模拟量信号采用差压变送器测量,并进行汽包压力补偿的测量方法,结果表明,汽包水位运行正常,测量准确,满足运行要求。
[关键词]汽包水位测量差压变送器压力补偿1 准确测量汽包水位的重要性大型机组都设计全程给水控制系统,在机组启动到满负荷或停机减负荷及负荷波动中,汽包压力在不断地变化,汽包内的蒸汽和水的密度也随之变化,从而影响汽包水位测量的准确性和全程给水控制系统的投运,危及机组的安全。
因为汽包水位过高可能造成蒸汽带水,使蒸汽品质恶化,轻则加重管道和汽轮机积垢,降低出力和效率,重则使汽轮机发生事故;汽包水位过低,则对水循环不利,可能导致水冷壁局部过热甚至爆管。
因此汽包水位的准确测量值是电厂最重要的测量参数之一。
2 汽包水位的测量方式及存在问题汽包水位测量方式很多,一般可分为:(1)静压式;(2)浮力式;(3)电气式;(4)超声波式;(5)核辐射式。
目前电厂中最常用的是静压式测量方法中的连通式液位计和压差式液位计。
连通式液位计包括云母水位计和电接点水位计,这类液位计直观,便于读数,但它们共同的缺点是:当液位计与被测汽包中的液温有差别时,其显示的液位不同于汽包中的液位,而且此误差还会随汽包压力的改变而改变。
为了减小因温度差异而引起的误差,常将液位计保温,而筒壳顶部不保温,增加凝结水量。
但因散热,水位计中的水温总比汽包中饱和水的温度低,因而水的密度大于饱和水的密度。
假设液位计中水的密度为ρ,汽包中饱和水密度为Hˊ,液位计中水位为Hˊ,汽包实际水位为H,饱和蒸汽密度为ρ″,液位计高度为L,则:Hρˊ+(L-H) ρ″= Hˊρ+(L- Hˊ) ρ″H= Hˊ(ρ-ρ″)/( ρˊ-ρ″) (1)由于ρ随温度、压力变化而变化,特别在启停过程中,液位计中的液位和汽包中的液位之差总是变化的。
平衡容器水位测量原理.
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
12
1-平衡容器;2-取源阀门;3-负压阀;4-平衡阀;5-正压阀; 6-三阀组;7-差压变送器;8-压力变送器
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
7
单室平衡容器和双室平衡容器的输出差压都为:
p p p L1g Hg L H g
Lg1 Hg
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
8
结论:
(1)平衡容器的结构一定、密闭容器内压力一定及 ρ1一定 的条件下,平衡容器的输出差压△P与容器水位H成线性关 系。
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
17
3.量程调整 量程调整的目的是使变送器的输出信号的上限值与测量
范围的上限值相对应。量程调整相当于改变变送器的输出特 性曲线的斜率,可以提高测量的准确度。
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
18
6、温电#4炉平衡容器式差压液位计的使用
温电四期高压加热器水位使用的是平衡容器水位计,而 低压加热器使用的是导波雷达液位计。
2020/3/31
宁夏枣泉发电有限公司8月份技术交流
21
2020/3/1
宁夏枣泉发电有限公司8月份技术交流
高加水位控制
高加水位保护
22
3.除氧器水位 温电二期和三期除氧器水位测量使用的是双法兰差压变
送器,每个除氧器由两个双法兰差压水位变送器测出两个除 氧器水位信号,两个信号经两选模块后得到除氧器水位信号。
单室平衡容器差压
50℃冷水 正负引出管距离 正常水位 高水位 高高水位 低水位 低低水位 正常水位差压 高1值水位差压 高2值水位差压 低1值水位差压 低2值水位差压
单室平衡容器的差压公式 ΔP=L(ρc-ρs)g-H(ρw-ρs)g
单室平衡容器 B67-10 汽、水侧引出管距离 正常水位 高低1值水位 高低2值水位 670mm 汽包中心线下100mm 偏离正常水位75mm 偏离正常水位125mm
汽包压力 饱和水密度ρw 饱和水蒸汽密度ρs 正压头冷水密度ρc L h H HH L LL ΔP ΔP-H ΔP-HH ΔP-L ΔP-LL
4.2 MPa 794.33 kg/m3 21.138 988.03 670 235 310 360 160 110 4567.95 3999.66 3620.79 5136.25 5515.11 kg/m3 kg/m3 mm mm mm mm mm mm Pa Pa Pa Pa Pa
实际水位距水侧引出管距离 实际水位距水侧引出管距离 实际水位距水侧引出管距离 实际水位距水侧引出管距离 实际水位距水侧引出管距离
平衡容器工作原理
平衡容器的工作原理3.双室平衡容器的工作原理3.1.简介双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。
它的主要结构如图1所示。
在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。
为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。
3.2.凝汽室理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。
3.3.基准杯它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。
基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。
由于基准杯的杯口高度是固定的,故而称为基准杯。
3.4.溢流室溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。
正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。
3.5.连通器倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。
毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。
它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。
连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。
3.6.差压的计算通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。
故而不难得到容器所输出的差压。
单室和双室平衡容器测量原理及应用分析
单室和双室平衡容器测量原理及应用分析(论文摘要)本文论述了菏泽电厂125MW机组运行中发现的汽包水位测量问题,包括平衡容器更换、汽包水位密度补偿公式等,进行了详细计算和原因分析,经过完善压力补偿组态后,汽包水位的差别减小,改善了调节系统品质,为汽包水位保护的正确动作奠定了基础。
1 概述菏泽电厂125MW机组汽包水位A、B侧CRT显示一直存在较大差别,两侧的水位有时相差50~100mm,既影响汽包水位保护的正常投入,也使汽包水位调节系统的稳定性、准确性和快速性降低,时刻威胁着机组的安全经济运行。
经过多次实地测量和组态检查,发现问题如下:1.1 保温不合理。
双室平衡容器和汽包之间取样管(汽侧)和由汽包引出的水侧取样管都进行了保温,影响测量结果。
1.2平衡容器与汽包连接的取样管不符合“应至少有1:100的斜度,汽侧取样管应向上向汽包方向倾斜,水侧取样管应向下向汽包方向倾斜”的要求。
1.3采用将汽水取样管引到平衡容器,再在平衡容器中段引出差压水位计的汽水侧取样的方法不符合规定要求。
1.4不符合“所有水位表都必需具有独立的取样孔,不得在同一取样孔上串、并联多个水位测量装置,以免互相影响,降低水位测量的可靠性”的要求。
数字信号英文名称:Digital signal数字信号的概述数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。
二进制码就是一种数字信号。
二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。
数字信号的特点(1)抗干扰能力强、无噪声积累。
在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。
随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。
对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输。
单室平衡容器
4.10 平衡容器
4.10.1 单室平衡容器
4.10.1.1 产品说明
4.10.1.1.1 用途
单室平衡容器与差压变送器配套使用,对汽包水位进行监控,并对外输出水位变化时的压差(ΔP)信号。
4.10.1.1.2 结构特点
1、单室平衡容器由冷凝容器、等径三通、弯管等组成;
2、冷凝容器是由筒体、封头焊接而成。
4.10.1.1.3 运行业绩
清镇、沙岭子、宝鸡、白马
4.10.1.3 使用与维护
4.10.2 双室平衡容器
4.10.2.1 产品说明
4.10.2.1.1 用途
双室平衡容器与水位指示器或者差压变送器配套使用,可以在锅炉启、停炉过程中及正常运行情况下,对汽包水位进行监控,并对外输出水位变化时的压差(ΔP)信号,保证锅炉安全运行。
4.10.2.1.2 结构特点
双室平衡容器由管子(Φ16*3)、弯管(Φ16*3)、水杯、漏斗等组成,由于饱和蒸汽同时对管子和弯管加热,正压补偿管内水的重度,在任何情况下都近似等于相应汽包压力下饱和水的重度。
同时由于正确的选用正压补偿管的高度(L),不管汽包内压力如何变化,正压补偿管的压力与负压管的压力变
化值均相等。
因此,平衡容器所产生的压差不变。
而低端水位表指示的水位也不变。
另外由于平衡容器引出相等的一段正、负压管内水的温度,虽然受汽包压力机和室温变化的影响,但他们的变化是相等的,所以对平衡容器产生的压差没有影响。
4.10.2.1.3 运行业绩
邹县、靖远、上允、东莞
4.10.2.2
4.10.2.3 使用与维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉汽包水位测量误差分析汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。
传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。
就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算。
因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。
本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。
一、就地水位计:就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端。
就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
就地水位计如图1所示。
式中:h——汽包正常水位距水侧取样的距离,mm△h——水位计中的水位与汽包中水位的差值,mmPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——水位计中水的平均密度,kg/m3Ps'——水位计中蒸汽的密度,kg/m3对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。
从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。
为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。
从表1所列数据,对于亚临界锅炉来说,在额定汽压下,就地水位计的水位比汽包内的水位要低100~150mm。
下面以我厂(东方锅炉厂)在汽包额定压力18.2MPa下时汽包水位偏离正常水位的情况进行分析,根据式(1),取汽包水位为零时h=400mm,计算水位变化±1OOmm时水位计显示情况。
Pw、Ps为定值,假设Pa也为定值,取平均温度为300℃时的值。
h'=h—△h,为就地水位计中的水柱高度,计算结果如表2所示。
从表中计算结果来看,汽包水位变化±100mm时,就地水位计的显示值只变化±68mm,还是假定水位计中水的温度不变,即Pa是定值的情况下计算的。
实际上,当汽包内水位变化时,水位计中水的平均温度和密度均会随着变化的,汽包水位升高时,由于水的散热面增加,平均温度会下降,密度增大,水位计的指示也比表中计算的要低;而当汽包水位降低时,水的散热面减小,其平均温度升高,密度减小,水位计的指示应比表中计算的要高。
当汽包水位变化±100mm时,就地水位计的变化还达不到±68mm,只是±50mm左右,并且就地水位计的误差并非是恒定值,在不同条件下有所变化,同一锅炉,在不同工况下,在不同的季节里,误差的变化还相当显著。
所以依靠就地水位计来监视汽包水位是不安全、不准确的。
必须改变运行中认为就地水位计的指示是准确的,并要求其它水位计的指示要与其一致。
就地水位计可作为额定压力下核对其它水位计正常水位值(零位)的参考。
二、电接点水位计电接点水位计的工作原理与就地水位计的完全相同,属于连通管式,利用与受压容器相连通的测量筒上的电接点浸没在水中与裸露在蒸汽中的导电率的差异,通过显示仪表显示水位。
一般只配有一套,安装在汽包的一端,通过信号线传到集控室监视,也有的将接点信号引入停炉保护系统。
电接点水位计的工作原理与就地水位计相同,所以就地水位计存在的问题,它同样存在,即电接点水位计显示的水位与汽包实际水位存在偏差,且不是固定的,汽包水位波动时其显示不能与之对应。
电接点水位计与就地水位计因结构、材料、形状、安装、散热情况的不同,它们之间的显示值也必然存在偏差;电接点水位计还存在电接点因挂水而误发信号的问题。
所以在亚临界的锅炉上采用电接点水位计测量水位是不安全的、不准确的,作为保护用信号是更不可取的。
三、差压式水位计差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包不位。
经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。
平衡容器又叫凝结球,根据测量准确性的要求不同,有以下几种平衡容器:单室平衡容器、双室平衡容器、带蒸汽罩补偿式平衡容器。
随着计算机控制技术的引入,智能变送器的采用,其运算环节得出的结果远比通过补偿修正的结果准确,所以亚临界锅炉均采用了结构简单的平衡容器测量水位。
下面就介绍单室平衡容器测量水位的方式。
单室平衡容器测量水位的原理如图2所示:从汽包汽侧取样孔引一管至平衡容器,进入平衡容器的饱和蒸汽不断凝结成水,多余的水由于溢流原理自取样管流回汽包,使平衡容器内的水位保持恒定。
因此,差压变送器的正压头由于平衡容器有恒定的水柱而维持不变,负压头则随着汽包水位的变化而变化。
为了避免汽包水位变化时,影响平衡容器内水位变化,而影响汽包水位测量的准确性,容器的面积应足够大。
由图2可得差压变送器差压和汽包水位之间的关系如下式所示:式中:H——汽水侧取样孔距离,mmL——汽侧取样孔与汽包零水位的距离,mmh——汽包水位偏差零水位的值,mm△P——汽包水位对应的差压值,mmH2OPs——饱和蒸汽密度,kg/m3Pw——饱和水密度,kg/m3Pa——平衡容器参考水柱密度,kg/m3式(2)中,H、L均是定值,Ps、Pw是汽包压力的函数,Pa除了受汽包压力的影响,还和平衡容器的散热情况、环境温度等有关。
饱和蒸汽进入平衡容器不断凝结为水,容器内表面的水温接近于汽包内的饱和温度,平衡容器及其下部取样管受环境的冷却,温度不断下降,随着高度的下降,取样管内的温度将接近环境温度。
参比水柱的水温高于环境温度,但远低于汽包内的饱和温度。
参比水柱的水温一般采用取平均值的方法,按照常数考虑,一般取50℃或60℃;现在一些电厂也采用直接测量参比水柱温度的方法进行修正。
由于汽水密度都是随压力改变的,因此同一汽包水位在不同的压力工况下所产生的压差是不同的。
以我厂自然循环汽包炉为例,已知汽包内径1792mm,零水位在汽包机械中心线以下50mm,水侧取样孔距零水位以下400mm,汽侧距零水位以上360mm,H=400+360=760mm,取参比水柱水的平均温度为60℃,计算得出表3所示结果。
表3的结果显示:在大气压下,汽包水位到汽侧取样孔时,压差最小,等于零;降至水侧取样孔时,压差最大,等于760mmH2O。
因此,测量汽包水位的变送器量程为760~0mmH2O,即是汽水侧取样孔之间的距离。
随着汽压的升高,同样的汽包水位变化量所对应的压差变化量减小。
汽包水位变化土250mm,大气压下压差变化500mmH2O,压力升到9Mpa时压差变化为329mmH2O,升高到18Mpa 时,压差变化仅为205mmH2O,而且水位越高,受压力的影响越大,水位越低受的影响相对较小。
因此,压力的变化会给水位的测量带来相当大的误差,但该误差只是因为压力的变化而产生的,所以,在差压式水位计的测量回路中加入压力修正,可以将压力引起的测量误差消除。
压力修正原理如下:由(2)式可得根据(3)式,可得出图3所示的修正回路,修正汽包水位测量受汽包压力影响造成的误差。
修正回路中的F1(x)、F2(x)两函数,通过计算机控制系统能很方便的实现和完成。
修正回路如图三所示。
平衡容器参比水柱因受环境的影响,温度分配不均,平衡容器上部温度接近饱和温度,向下逐渐减小直到接近环境温度,按平均温度来计算,也必然存在误差;且参比水柱的高度受汽包压力、工况、安装等的影响,也会产生误差。
当参比注柱平均密度变化△pa时,汽包水位测量误差将为:参比水柱平均温度变化时,相对于20℃时产生的误差如表4所示。
从表4看出,参比水柱平均温度变化时对汽包水位测量误差的影响,随着汽包压力的升高而增大,并且随着平均温度的增大而增大,50℃及以下影响相对小些;因此,参比水柱平均温度应尽量小,并且分布应均匀。
参比水柱高度变化时,设高度误差为△H汽包水位测量产生的误差为:四、影响汽包水位测量的原因根据对几种水位测量方式的分析,影响水位测量的原因主要有以下几个方面:4.1 汽包水位计安装条件、位置、环境的影响,水位计定位偏差一般在10~50mm,各水位计所处的环境存在着差别,影响散热;4.2 汽包安装条件的影响,汽包安装时的水平度要求应≤5mm,但在锅炉运行几年后,均会发生变化,达到15~20mm,水位计安装时是依据汽包中心线为标准,致使水位计安装时产生误差;4.3 从给水、水冷壁进入汽包内的水的影响,给水温度因受各加热环境的影响,不可能恒定不变,且水温低于相应压力下的饱和温度;水冷壁进入的水含大量的汽泡,并不断蒸发,其密度将小于相应温度、压力下水的密度;4.4 下降管的影响,锅炉运行中,汽包内的水不断地高速进入下降管,使得汽包内的水位不是一个理想的水平面,会随着下降管的布置位置产生高低不同的差别,差别可达40~60mm;4.5 测量仪表本身固有的误差,虽然仪表的精度已很高,但仍存在着测量、安装误差。
五、减小汽包水位测量误差的方法和措施5.1 合理的取样位置,应高于水位保护定值的高度,并有一定的余量;5.2 合适的取样管路管径,以减小流通阻力,防止水位显示滞后;5.3 尽量缩短连接管路的长度,减小流通阻力,提高连通管内的介质温度,平衡容器前的水平段应有足够的长度,以利于汽的凝结;5.4 在汽水取样管之间加一连通管作为阻尼,缓冲汽包水位波动大时对水位测量的影响;5.5 每个水位计应采用独立的取样孔、取样管路、平衡容器,以免相互产生干扰;5.6 汽侧取样管向汽包倾斜,以利于凝结的水回流,保证平衡容器内的水面恒定;5.7 合理的管路保温,既能保证介质的温度,又能充分散热。