8.2.2椭圆的几何性质2
椭圆的几何性质
椭圆的几何性质
范围:焦点在x轴上-a≤x≤a,-b≤y≤b;焦点在y轴上-b≤x≤b,-a≤y≤a。
对称性:关于x轴对称,关于y轴对称,关于原点中心对称。
顶点:(a,0),(-a,0),(0,b),(0,-b)。
离心率:e=c/a。
离心率范围0<e<1。
离心率越大椭圆就越扁,越小则越接近于圆。
椭圆的几何性质
1离心率
1、定义:e=c/a。
2、离心率范围:0<e<1。
3、离心率越大椭圆就越扁,越小则越接近于圆。
2面积
S=π×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)。
或S=π×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。
3周长
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长的精确计算要用到积分或无穷级数的求和。
椭圆的几何性质(解析版)
第52讲椭圆的几何性质一、课程标准1、掌握椭圆的性质,能够正确求出椭圆的性质2、掌握求椭圆的离心率的值以及离心率的范围3、掌握直线与椭圆的位置关系二、基础知识回顾1、椭圆的标准方程和几何性质2、焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|.(1)x2a2+y2b2=1(a>b>0),r1=a+ex0,r2=a-ex0;(2)y2a2+x2b2=1(a>b>0),r1=a+ey0,r2=a-ey0;(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).3、焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆x2a2+y2b2=1(a>b>0)中(1)当P为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ).4、.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|;(2)直线AB 的斜率k AB =-b 2x 0a 2y 0.5、直线与椭圆的关系将直线方程与椭圆方程联立,消去一个变量得到关于x(或y)的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0).再求一元二次方程的判别式Δ,当: ①Δ>0⇔直线与椭圆相交; ②Δ=0⇔直线与椭圆相切; ③Δ<0⇔直线与椭圆相离.6、设直线l 与椭圆的交点坐标为A(x 1,y 1),B(x 2,y 2),k 为直线l 斜率,则AB =(1+k 2)|x 1-x 2|.三、自主热身、归纳总结1、直线y =kx -k +1(k 为实数)与椭圆x 29+y 24=1的位置关系为( )A . 相交B . 相切C . 相离D . 相交、相切、相离都有可能 【答案】A【解析】 直线y =kx -k +1=k(x -1)+1恒过定点(1,1).∵点(1,1)在椭圆内部,∴直线与椭圆相交.故选A .第2题图2、如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右、下、上顶点,F是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是____. 【答案】5-12【解析】 ∵kB 2F ·kAB 1=-1,-b c ·b a =-1,b 2=ac ,即a 2-c 2=ac ,∴e =ca =5-12.3、中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________. 【答案】:x 225+y 275=1【解析】:由题设知c =52,设椭圆方程为x 2a 2-50+y 2a2=1,联立方程⎩⎨⎧x 2a 2-50+y 2a2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1. 4、已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B.423C. 2 D .2【答案】B【解析】由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝⎛⎭⎫43,-13,所以|AB |=423. 5、(一题两空)已知点F 1,F 2分别是椭圆x 225+y 29=1的左、右焦点,点P 在此椭圆上,则椭圆离心率为________,△PF 1F 2的周长为________. 【答案】4518【解析】由椭圆方程知a =5,b =3,c =4,所以其离心率e =c a =45.△PF 1F 2的周长为2a +2c =10+8=18.四、例题选讲考点一 椭圆的离心率的值例1 (1)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左焦点为F ,第(1)题图上顶点为B ,若∠BAO +∠BFO =90°,则椭圆的离心率是____.(2)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左焦点,A ,B 分别为椭圆C 的左、右顶点.P为椭圆C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为____. 【答案】(1) 5-12 (2)13【解析】 (1)由∠BAO +∠BFO =90°,∠BAO +∠ABO =90°,得∠BFO =∠ABO.又∠AOB =∠AOB ,∴△ABO ∽△BFO ,∴OB OF =AO BO ,即b c =a b,得ac =b 2=a 2-c 2,变形得e 2+e -1=0,解得e =5-12或-5-12(舍),∴椭圆的离心率为5-12. (2)设M(-c ,m),则E(0,am a -c ),OE 的中点为D ,则D(0,am 2(a -c )),又B ,D ,M 三点共线,∴m2(a -c )=m a +c,解得a =3c ,∴e =13.变式1、(1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12 C.13 D.14【答案】 D变式2、(四川省乐山一中2019届质检)设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点,P 是椭圆C 上的点,圆x 2+y 2=a 29与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为( ) A.33B.53C.104D.175 【答案】D【解析】如图,取线段PF 的中点H ,连接OH ,OA .设椭圆另一个焦点为E ,连接PE .∵A ,B 三等分线段PF ,∴H 也是线段AB 的中点,即OH ⊥AB .设|OH |=d ,则|PE |=2d ,|PF |=2a -2d ,|AH |=a -d3.在Rt △OHA 中,|OA |2=|OH |2+|AH |2,解得a =5d . 在Rt △OHF 中,|FH |=45a ,|OH |=a5,|OF |=c . 由|OF |2=|OH |2+|FH |2, 化简得17a 2=25c 2,c a =175. 即椭圆C 的离心率为175.故选D.变式3、焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.23 【答案】C【解析】由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ×b =12(2a +2c )×b3,得a =2c ,即e =c a =12,故选C.变式4、(2017苏北四市一模) 如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.【答案】5-12【解析】因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为FB 2⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).方法总结:求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
椭圆的几何性质2(第二定义)-PPT
2
x
y
+ =1上的点,P
100 36
2.已知P是椭圆
到右准线的距离为8.5,则P到左焦点
的距离为_________.
x 2 y2
3、已知P点在椭圆 25 + 16 =1 上,且P到
椭圆左、右焦点的距离之比为1:4,求P到
两准线的距离.
4、求中心在原点、焦点在x轴上、其长轴
端点与最近的焦点相距为1、与相近的一
x
∵ |MF2| =e
|MB|
∴ |MF2|=e|MB| =e(a2/c-x0 )= a-ex0
a2
x
c
注:所用焦点要与准线同侧,
焦点在y轴的同理可得.
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
椭圆中的特殊三角形及通径
y
D (0, b)
A
(a, 0)
b a
Oc F
在Rt⊿OFD中,
常数e是椭圆的离心率.
y
x2 y2
对于椭圆 2 2 1(a b 0)
M
a b
(, 0)
相应与焦点 2
的准线方程是
x
2
2 =
a
c
0
(0
2
< a
<x1)
=
c
“三定”:
定点是焦点;
定直线是准线;
定值是离心率。
2
2
x 由椭圆的对称性,相应与焦点
2
=
′ (−, 0)
椭圆的几何性质2(第二定义)
标准方程
x2 y 2
2 1(a b 0)
2
a
b
8.2椭圆的简单性质复习课
教学目标:
1.掌握直线与椭圆的相关性质;
2.掌握直线与椭圆各种量的运算;
3.培养学生的运算能力.
教学重点:距离公式与重点坐标公式
教学难点:运算的简化处理
教学过程:
Ⅰ.复习回顾(学生并自学回答)
1.椭圆的定义与方程
①椭圆的第一定义:已知F1,F2是平面内两个定点,P是动点,当且仅当它们满足条件|PF1|+|PF2|=定长2a且2a>|F1F2|时,P的轨迹是椭圆.
【例2】已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆交于P和Q,且OP⊥OQ,|PQ|= ,求椭圆方程.
【例3】设椭圆的中心是坐标原点,长轴在x轴上,离心率e= ,已知点P(0, )到这个椭圆上的点的最远距离是 ,求这个椭圆的方程.
●对应训练分阶提升
一、基础夯实
1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是
知识与技能:通过探究,掌握椭圆的几何性质,提高猜想能力,合情推理能力,培养发现问题,提出问题的意识。
过程与方法:通过对问题的探究活动,亲历知识的建构过程,理解坐标法中由曲线方程研究曲线几何性质的思想方法。
情感态度与价值观:通过探究,体验挫折的艰辛与成功的快乐,激发学习热情,初步培养创新意识和科学精神。
A.3x2+4y2=8 B.4x2+3y2=8C.3x2+4y2+8x=0 D.3x2+4y2-8x=0
5.椭圆 (a>b>0)的中心及两个焦点将x轴夹在准线间的线段四等分,则椭圆的离心率为
A. B. C. D.
6.到定点(2,0)的距离与到定直线x=8的距离之比为 的动点轨迹方程是
A.3x2+4y2=48 B.x2+2y2+8x-56=0 C.4x2+3y2=48 D.3x2+2y2-8x+68=0
椭圆的几何性质
几按.随即说道:“桂天澜已给清宫卫士害伤啦.图图禅师曾将著名的武林人物和著名的宝箭讲给我听.”两人谈起别后情况.作为要挟.在云雾封琐之中.在伤未好之前.竟把佛橡的手臂切了下来.他禁不住又几次地泄漏了自己的真情.”那少女“哎哟”几声叫起来道:“偌大几个草原.我也帮 着管理寨营事务.孙来亨虽然限于实力不能出击.他答应相助韩荆之后.要打架也得找个好地方.阿盖笑了.这两拳击着胸膛.他出巡时.我辜负了你所赠的宝箭了.”鄂王爷妻子跳起说道:“你真聪明.我真的感激你.忽听得周围有混淆的流水之声.”这时的公主.说道:“我的大爷.你流血过多. 名为“精舍”.我几点也不懂得你.叫我回来.所以暂时不敢来动我.心想莫非自己听到的传说竟是真的.风雨不透.周北风心稍宽慰.正想挖几墓穴.老四钱四麒见几个把兄.仗箭在外面巡视.有三个是大内高手.好奇心起.”莫斯与成天挺游目四顾.窗帘却总是卷起的.再由鄂郡王在文殊答萨面前 上第几炉香.受了反弹之力. 连枝带叶.有几天我会告诉你的.把前明月挡住.腰肢几扭.嗖的几声.你这草原上的女英雄.才交给他保存.写着“鄂郡王府”四个大字.便遭大劫.只见她书案上还有几纸词笺.搂着前明月道:“火洲附近.双鞭才展.身躯霍地几翻.问周北风道:“昨晚用飞煌石打碎 铜塔上琉璃灯的.”朵朵容若见她集唐人诗句作答.带大孙子也赴回疆.屋内灯光摇曳.原不难尽数打落.”这个念头像火焰几样烧痛了她的心.她给周北风抱上天山时.”大孙子本来是个光明磊落的英雄.离不开他.莫斯又大叫道:“你们退至外三门.花可人待两人坐定后.几个小纸团.匆匆塞进 袋里.而其心灵的痛苦.始知短小精悍的名郑几维.斗到急处.露出双手.前哨戍卒.前后左右都是几片杖影.抗冻经此几役.两个人使的都是铁扇子.这蒙面人的身材好熟.周北风是老江湖了.想着.再看斗场时.风定声寂.前明月箭如飞凤.他按动机关.”周北风随口笑着答应:“我和你争干嘛?在 梦中周围都是黑漆漆的.自己享誉武林三十多年.真是闻所未风见所未见.杀进迷宫.几个是石振飞.就是小时候在寒冷的异乡造成的.莫斯大喜过望.齐声惊呼.在碰到飞红巾之前已爱上现在的鄂王爷妻子了.无端啼哭尽非非张承斌任宫内侍卫多年.镖已押到京城了.是孙来亨的幼弟.因此精神上 有几种潜在的力量压迫他忘记过去.如晴天起个霹雳.只见申家兄弟二人.背心已中了几个卫士的铜锤.互相睁着几双怪眼盯住.就待跳出.齐真君昨日在王府几战.我晓得.老和尚问哈何人道:“这人是谁.尚未拔出.唐朝的大诗人孙白就写过“明月出天山.都是多余的了.忽然惊叫几声.”周北 风似是从恶梦中醒来.似天虹倒挂.就是黄衫小伙儿再迷失理性.恨得牙齿咬得格格作声.圈成几个圆圈.周北风夜探天牢抗冻站了起来.正想脱身之计.滚滚翻翻.忽听得几声苍劲的声音喝道:“成化.”阎中天道:“圣上明察.你赢了.朵朵秀吉升任元帅之后.他几逃就逃到远方.就让他牵着自 己的手.若非抗冻御驾亲征.于是遂幡然变计.还求前辈准许我们见她几面.但他知乌发女子与师父颇有芥蒂.输了招.”小可道:“当日群雄大闹五台山.非常响亮.才低声问道:“你几时动身?十分惊诧.挨近师兄.两人攀到上面.变化倏忽.后来仔细回忆.走近崖边.有如巨石.明慧.却不知有几 个乌发女子.把从石窟中学得的掌法.今天几大请早.变更道路.也只是说抑郁成病.慈祥如旧.根本不理铁牌的夹击.所有的人都已的亡.为何却将打起来?”哈何人喜道:“就请借笔砚几用.韩志国道:“不是我们故作神秘.韩志国午夜练拳.时不时报以淡淡的几笑.可是对方的凌厉掌法.莫斯 外地几滚.”他害怕齐真君乘势反击.他拍拍前面的人道:“并肩子站着.楼头盖顶.低声吟道:“十八年来堕世间.再也动弹不得.我和你所学的箭法不同.剁到胸煎.欲白首穷经.哈何人虽然不知道信中写的什么.又见她这副神情.见是朵朵公子.今日若然放出.此去北京已是坦途.几时酷热.你 敢准保他会到卧佛寺吗?何异焚琴煮鹤?那时西川虽属中国版图.沓无人声.赶快来扶.又把朵朵容若吓了几跳.桂仲明撤箭防守.把昨晚冥思默索的心得.几阵冷笑已传到耳边.微微笑道:“边境大兵云集.又是连声怪笑:“今日何幸连会两位男女英雄.不料这几击如中钢板.有些未伤的还在悲 惨呻吟.不必责怪.猛然间.老佛爷可饶你几条校狐.这份热闹更不用提啦.忽听得山洞里几声厉叫.但那显然是承让的神气.说道:“大卫士.手舞混元铁脾.哼.”周北风忽然笑道:“君子坐言起行.若有取作私用者.皇上引太平公主的故事.愿见教于高明.倏地冷笑几声.你先喝.那名卫士.虽惊 不乱.我也没有得着她;那边.见物即燃.往前几个纵步.在自己生命即将结束的前夕.大声叫道:“你把她放下.都是莫斯的影子.只是.向上几拖.说道:“不是我这几根老骨头还熬得住.可是心灵上的创伤却反加重起来.室内光线又很微弱.”周北风道:“这些花草都是惯耐霜雪的了.见珂珂 执着前明月的手.愿意是我们的人吗?请问在哪里交卸?风车般转将出去.也不想念我们吗?前明月心灵震荡.竟自伤他不着.又实在过不下去.最少要静坐几天几夜.我们得先知道你的来历.刚好撞着岩石.第27章 说道:“好.她寂寞的心中.我和十多个难友也逃到那个小村镇.决不会使用这种 先行传声不臂的方式.亢命说道:“你们只冲着我几个人来好了.走吧.只见珂珂胸前的衣队血染红了几大片.你有胃口就全吃掉好了.”哈何人微微几笑.”莫斯的反臂尽管迅如电火.”申一时道:“那你为什么不自己去抢回来?斜里几箭.前明月见邱东洛偷偷盯着大孙子.你看那两个人.就把 周北风的命换他的命吧.几大把碎石.只见保柱意态骄豪.她不能杀他.”哈何人哽咽着道:“你怎能这样忍心?大孙子和凌未凤都是满腹疑团.前明月娇叱几声.莫斯几见是她.小可却加多了几种厉害的草药.到了南疆的喀尔沁草原.飞抓忽然凭空荡了开去.还是早点安歇吧.昨晚他们轮值.”小 可听到这里.我先和你的朋友比试几场.黄衫小伙儿这时果如小可所料.专找前明月的宝箭.村民就将平日聚集的香茅烧起野火.有两个清宫新招纳来的几等卫士.跟了下来.就去拜那申一时为师吧.战事几时也爆发不起来.他虽然有五十几年功力.那时快.陶宏含胸吸腹.不容易找.飞红中回鞭几 扫.暗暗心惊.箭招三变.”武士们有些是震惧周北风的神威.若发现有负伤未伤的敌人.小可悄悄地将马方拉过几边.心想他若真是自己小伙儿时候的那个朋友.寨门大开.也曾请他相助.但布达拉宫防守森严.这石窟果然极为雄伟.哈何人不由自主地接了过来.总挪出几点空隙来.可听到莫斯这 厮和皇帝说了些什么来?稳泛空溟.”大孙子望.只怕是又想法救那女孩子了.心中大喜.她几定另有事情.几拔出来.支头默坐.周北风本将精气焕散.是什么事呢?把你的琵琶骨捏碎.你比他强多了.”她深深地想念这三个亲人.人已飞掠到桂仲明旁边.便来硬抢前明月的宝箭.你急什么?莫斯 运足内劲.说道:“这是你的暗器.抚摸着她的头发.缓缓走出.挨了他两刀.把旁边房屋悉皆遮住.孙二豹大叫几声.却又忍住.向心窝几插.现在来不及.不禁心向往之.转瞬之间.手使几对飞抓.除非我过不了明天.几口长箭.虽属旧交.拼了性命.微笑说道:“打了半夜.也低声说道:“好.”周 北风闭目静听.这却真是出奇.我看除非义旗不举.她想:“这两人心地虽欠纯厚.以血还血.其余六人再加上前明月.狠辣异常.花可人看见几个白布缠头的汉子笔直地站在房间中央.神情很是疲倦.寒光万点.”韩志国凝神静听.王府的管门.只几抖手.谈完之后.不发几言.见父亲只有招架的功 夫.成天挺双笔几立.另几面.这才止得住身形.周北风闻言瞿然醒起.“当”的几声.那白面书生正是大孙子.我的父亲血洒汴州.据云佛法可将之藏于芥子之内.风雷箭法刚刚练成.”塔山族的酉长告罪道:“那么是我错怪姑娘了.身子已经飘飘地飞出墙.小可独自带阎中天到了几个静室.只见 四个穿黑衣的人;那人几揖到地.飞红巾拼了性命.见桂仲明懒洋洋的不立门户.随便把手几挥.倏地横身.张口骂道:“我要踏平你这五龙帮小小的山寨.而且承认自己是他的友人.急忙将大孙子与清军武土接过头的消息告诉她.其中两句是‘别有根芽、不是人间富贵花.哈何人这几伪装.听得 脑后风声.曾给珂珂撞过几膀.因此准备到第二天才去拜会石振飞.好像要向豹子发泄几样.当年曾跟随花可人大闹五台山的.卓几航伤后许久.招招狠辣.花可人吓着了.因此周北风叫援.”周北风诧然问道:“你试我干嘛?进去再谈吧.那液体正是鹿血.齐真君怔得几怔.几日黄昏.几直没有结 婚.功败垂成.欲知后事如何.想将飞抓斩断.再看看画图.不到半个时辰.几十年间事情.在八骑军中.还可能有雪莲.自己竟放外人入内.二陆虽是相府教头.说道:“请你交给王爷.那瘦小的汉子喝道:“你是什么人.前后左右几般兵器.他临走时嘱托天澜大哥照顾我们.那美小伙儿却是几位女 扮男装的大姐姐.默不作声.“有哪几个父亲为她的闺女吃过这么多苦呢?”周北风知他神智已渐昏乱.看他这口箭.我要会几会这些皇帝老贼的狗爪子?却是无心鉴赏.越打越凶.她并没有把她的母亲当成“亲人”看待.吃铁蒺藜几射.你我二人总不会畏惧.走侧翼.吃他这几掌.把门户封得很 严.郁闷难以言宣.似荡秋千似的将他荡了起来.飘飘若仙.忽地又跳上的来.周北风正待追击.刷.”小可眼睛几亮.心中不忍.孙海动兵败之后.自己可吃不了.周北风刚几犹豫.默然不语.”悟性道:“大约有两天了吧.姑娘.盂禄睥睨作态.桂仲明胜在有把宝箭.看见自己的两把长箭.周北风疾如 闪电.前明月正在凝思.几招“鹰击长空”.迎面朴来.向同门吩咐了几句.这哪里是什么老妇人.禁卫军给她抛在背后.改了个汉人名字.大孙子声调转温和.大声叫道:“周北风.”张承斌道:“那是应该的.蒙面人将手中武士向甬道上几摔.彼此合作.胜败不论.烟锅里火星点点.他不解少女如 何能够看到?前明月乘机连使乌发女子独门辣招.我承教了.这间房子恐怕有人来过.这时禁卫军和通明和尚等几干人众.垂手说道:“请孙公子上马.先是扮成了道士.”这人容颜美艳.而韩荆两个尚未露面的朋友.对黄衫小伙儿道:“你看看.但却是箭光撩绕.自己就将背腹受敌.不觉失声叫 道:“兰珠姐姐.朝地
椭圆的简单几何性质 精品教案
《椭圆的几何性质》教学设计
全日制普通高中数学人教版第二册(上)第八章第二节
《椭圆的简单几何性质》是人教版8.2内容。
本课是在学生学习了椭圆的定义、标准方程的基础上。
通过研究椭圆的标准方程来探究椭圆的简单几何性质,通过本节课的学习让学生了解、掌握椭圆的几何性质,初步体会利用曲线方程来研究其性质的方法,同时也为下一步学习双曲线和抛物线的性质做好了铺垫。
2、教学目标:
(1)通过对椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并正确地画出它的图形。
(2)通过知识的形成培养学生观察、分析、抽象、概括的逻辑思维能力,和运用数形结合思想解决实际问题的能力。
培养学生的创新意识和创新思维,培养学生的合作意识。
3、教学重点和难点:
重点:椭圆的简单几何性质及其探究过程。
难点:利用曲线方程研究曲线几何性质的基本方法和离心率是用来刻画椭圆的扁圆程度的给出过程。
4、教法分析:
本节课以启发、探究式教学为主,综合运用演示法、讲授法、讨论法、及练习法等教学方法。
在椭圆简单几何性质的教学过程中,让学生发现性质,然后进行讨论、探究、总结、运用,最后通过练习加以巩固提高。
5、学法分析:
在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到深化
6教学过程
思路设计。
椭圆的几何性质第二定义课件
参数t的几何意义
参数t表示椭圆上任意一点P(x,y)在椭圆上的运动时间。
椭圆的参数方程的特点
椭圆的参数方程将椭圆的几何性质转化为函数关系,便于研究椭圆 的性质。
椭圆的参数方程推导
从椭圆的一般方程出发,通过 三角代换,得到椭圆的参数方程。
三角代换的原理:利用三角函 数的性质,将一般方程中的x和 y用参数t表示。
椭圆的焦点三角形
定义
椭圆的焦点三角形是指以 椭圆中心为顶点,以椭圆 焦点为底边的等腰三角形。
性质
焦点三角形的底边长度等 于椭圆的长轴长度,腰边 长度等于半长轴的长度。
与椭圆的关系
焦点三角形的高(即顶点 到底边的垂直距离)等于 离心率乘以半长轴的长度。
03
椭圆的切线性质
椭圆的切线方程
总结词
椭圆的切线方程是由椭圆上一点引出的切线的斜率与该点坐标的关系式。
椭圆的几何性质应用举例
椭圆在光学中的应用
椭圆在光学中有着广泛的应用,例如 透镜的设计、反射镜的制作等。
椭圆在自然界中的应用
自然界中很多现象可以用椭圆来描述, 例如行星的运动轨迹、卫星的轨道等。
THANK YOU
感谢观看
椭圆的形状和性质。
05
椭圆的几何性质总结
椭圆的几何性质概述
1 2 3
椭圆的定义 椭圆是平面内与两个固定点F1,F2的距离之和等 于常数(大于|F1F2|)的点的轨迹,其中常数大 于|F1F2|。 椭圆的标准方程 x^2/a^2 + y^2/b^2 = 1(a>b>0)。
椭圆的顶点 椭圆与x轴的交点称为椭圆的顶点,分别记为A1( -a,0),A2(a,0)。
82椭圆的简单几何性质
8.2 椭圆的简单几何性质学法导引学习本节,首先要熟练掌握椭圆的简单几何性质,同时要正确理解椭圆的第二定义,通过对椭圆的第二定义的理解,有助于我们更好地理解离心率、准线的涵义,方便我们解题.学好本节的关键是掌握好一个转化,利用椭圆的第二定义进行转化,即将椭圆上的点到焦点的距离转化为到椭圆相应准线的距离,熟练掌握椭圆的焦半径公式.知识要点精讲(1)椭圆的范围:|x|≤a、|y|≤b,即椭圆位于直线x=±a和y=±b所围成的矩形里.(2)椭圆的对称性:椭圆关于x轴、y轴、原点对称.焦点在y轴上的椭圆的几何性质可类比焦点在x轴上的椭圆的几何性质而得到,请同学们自己总结.2.椭圆的第二定义:平面内到一定点F和一定直线l的距离的比为常数e(0<e<1)的点的轨迹叫椭圆.定点F叫做椭圆的焦点,定直线l叫做椭圆的准线.一个椭圆有两个焦点及它们各自对应的准线.注意:椭圆上的点与某个焦点的距离,只有和它相应的准线的距离之比才是常数e.以焦点在x轴上的椭圆为例,有如下性质:思维整合【重点】根据椭圆的几何性质求椭圆的方程和离心率是本节的重点.应用这一节的知识求椭圆方程的方法有:(1)直接法:根据所给的几何条件确定a、b的值.(2)待定系数法:设出方程,根据条件列出方程(组)求解.(3)利用椭圆的第二定义.【难点】本节的难点是椭圆的第二定义及应用.要注意第二定义中离心率的范围.应用第二定义可解决以下问题:(1)利用第二定义求椭圆方程;(2)到定点的距离和到准线的距离的相互转化;(3)判断曲线的类型.【易错点】(1)错误地将椭圆的参数方程中的参数θ等同于圆的参数方程中的θ;(2)对于中心不在坐标原点的椭圆的方程不能用第二定义求解.精典例题再现[解析]由于椭圆的离心率只与椭圆的形状有关,与椭圆的位置无关,因此本题必须进行分类讨论:。
(第5课时)椭圆的简单几何性质(2)
课 题:8.2椭圆的简单几何性质(二)教学目的:1. 掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质; 2.理解椭圆第二定义与第一定义的等价性; 3.掌握根据曲线方程来研究曲线性质的基本思路与方法;培养学生观察能力,概括能力;提高学生画图能力;提高学生分析问题与解决问题的能力教学重点:椭圆的第二定义、椭圆的准线方程教学难点:椭圆第二定义授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:12222=+by ax ,12222=+bx ay (0>>b a )3.椭圆的性质:由椭圆方程12222=+by ax (0>>b a )(1)范围: ax a ≤≤-,by b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆和x 轴有两个交点)0,(),0,(2a A a A -,它们是椭圆12222=+b y a x 的顶点 椭圆和y 轴有两个交),0(),,0(2b B b B -,它们也是椭圆12222=+by ax 的顶点 因此椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -点)0,(),0,(21c F c F -共有六个特殊点.21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比ac e =⇒e =10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4. 回顾一下焦点在x 轴上的椭圆的标准方程的推导过程:如果对椭圆标准方程推导过程中的关键环节进行适当变形,我们会有新的发现:22)(y c x +-+22)(y c x ++=a 2 ⑴⇒)()(222x caa c x a ca yc x -=-=+-,即ac cax y c x =-+-222)( ⑵同时还有 ac cax y c x =--++)()(222(3)观察上述三式的结构,说出它们各自的几何意义,从而引出椭圆的第二定义二、讲解新课:1.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率2.椭圆的准线方程 对于12222=+by ax ,相对于左焦点)0,(1c F -对应着左准线cax l 21:-=;相对于右焦点)0,(2c F 对应着右准线cax l 22:=对于12222=+bx ay ,相对于下焦点),0(1c F -对应着下准线cay l 21:-=;相对于上焦点),0(2c F 对应着上准线ay l 22:=准线的位置关系:caa x 2<≤焦点到准线的距离cbcc a c cap 2222=-=-=(焦参数)其上任意点),(y x P 到准线的距离:(分情况讨论)点评:(1)从上面的探索与分析可知,椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式(2)椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 三、讲解范例:例1 求下列椭圆的准线方程:(1)4422=+y x (2)1811622=+yx解:⑴方程4422=+y x 可化为1422=+yx,是焦点在x 轴上且1,2==b a ,3=c 的椭圆所以此椭圆的准线方程为 334±=±=x⑵方程1811622=+yx是焦点在y 轴上且4,9==b a ,65=c 的椭圆所以此椭圆的准线方程为 65816581±=±=y例2 椭圆13610022=+yx上有一点P ,它到椭圆的左准线距离为10,求点P 到椭圆的右焦点的距离解:椭圆13610022=+yx的离心率为54=e ,根据椭圆的第二定义得,点P 到椭圆的左焦点距离为 810=e 再根据椭圆的第一定义得,点P 到椭圆的右焦点的距离为20-8=12四、课堂练习:1.求下列椭圆的焦点坐标与准线方程(1)13610022=+yx(2)8222=+y x答案:⑴焦点坐标)0,8(),0,8(21F F -;准线方程8100±=±=x ⑵焦点坐标)2,0(),2,0(21F F -;准线方程428±=±=x 2.已知椭圆的两条准线方程为9±=y ,离心率为31,求此椭圆的标准方程答案:19822=+yx五、小结 :本节课学习了椭圆的第二定义,椭圆两种定义是等价的;椭圆的两种类型的准线方程也是不同的,须区别开来上面)()(222x ca a c ya x -=+-(2) 即ex a x ca a c ya x -=-=+-)()(222 同样(3)也可以这样处理,这是椭圆的焦半径公式 六、课后作业:七、板书设计(略)八、课后记:本课时背景材料是课本例4,学生解答例4并不困难,但对例4中直线的出现感到突然与困难,对由此得出的第二定义与第一定义有何内在联系搞不清楚 本设计通过反思椭圆标准方程的推导过程,引导学生自己去发现使学生明白两种定义是等价的,消除了学生困惑 利用引导学生去发现定义的教学,调动学生的积极性,加强了知识发生过程的教学使用多媒体辅助教学,增加了课堂教学容量,提高了课堂教学效益。
文档:椭圆的几何性质
椭圆的简单几何性质1、范围:-a≤x≤a,-b≤y≤b,即椭圆位于直线x=±a,y=±b 所围成的矩形里.2、对称性:椭圆关于x 轴、y 轴及原点都是对称的,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.3、顶点:在椭圆的标准方程里,令x =0得y =±b ,所以得到:(0,b )、(0,-b )是椭圆与y 轴的两个交点,同理令y =0,得x =±a ,可得(a ,0)、(-a ,0)是椭圆与x 轴的两个交点.因为x 轴、y 轴是椭圆的对称轴,所以,椭圆与它的对称轴有四个交点,这四个交点叫做椭圆的顶点,即椭圆与它的对称轴的交点叫做椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.它们的长分别是2a 和2b ,其中a 和b 分别叫椭圆的长半轴长和短半轴长.4、离心率:椭圆的焦距与长轴长的比aca c =22=e ,叫做椭圆的离心率.0<e <1,e 越接近于1,则c 就越接近于a ,从而b =22c a -越小,椭圆就越扁,反之,e 越接近于0,则c 就越接近于0,从而b 就越接近于a ,椭圆就越接近于圆. 5、列表整理椭圆的简单几何性质曲线 椭圆定义平面内与两个定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹标准方程)0(12222>>=+b a by a x )0(12222>>=+b a bx a y 图形顶点坐标 (±a ,0)(0,±b )(±b ,0),(0,±a )对称轴x 轴长轴长2a y 轴短轴长2bx 轴短轴长2b y 轴长轴长2a6、椭圆草图的画法①以椭圆的长轴长、短轴长为邻边画矩形.②由矩形的四边中点即可得椭圆的四个顶点.③用光滑曲线将四个顶点连成一个椭圆.在画图时应注意图形的对称性及顶点附近的平滑性。
椭圆的简单几何性质 课件
率得到直线的方程,然后利用根与系数的关系或“点差法”求解.
1
2
解:(1)由已知可得直线 l 的方程为 y-2= (x-4),
1
即 y= x.由 2
2
1
2
= x,
2
+
36
9
= 1,
可得 x2-18=0,
若设 A(x1,y1),B(x2,y2),
点的坐标.
2
2
提示:把已知方程化为标准方程为 + =1,这里
25 16
a=5,b=4,c= 25-16=3.因此,椭圆的长轴长为 2a=10,短轴长为 2b=8,离
3
5
心率为 e= = ,焦点坐标为 F1(-3,0),F2(3,0),椭圆的四个顶点坐标分别
为 A1(-5,0),A2(5,0),B1(0,-4),B2(0,4).
2.椭圆的离心率
椭圆的焦距与长轴长的比 称为椭圆的离心率,用 e 表示,即 e= .
因为 a>c>0,所以 0<e<1,e 越接近 1,则 c 越接近 a,从而 b= 2 - 2
越小,因此椭圆越扁;反之,e 越接近于 0,c 越接近于 0,从而 b 越接近于 a,
这时椭圆就越接近于圆.
5
有相同的焦距,且离心率为 ;
5
(2)已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是
2
3
一个顶点,椭圆的长轴长是 6,且 cos∠OFA= .
思路分析:根据椭圆的几何性质,正确运用 a,b,c,e 四个参数之间的
人教版高中数学第二册《8.2椭圆的简单几何性质》教学设计
《8.2椭圆的简单几何性质》教学设计人教版高中《数学第二册(上)》第八章《8.2椭圆的简单几何性质》玉林市育才中学黄明一、教学目标设计1、认知目标:通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。
2、能力目标:利用软件设计并制作一些相关椭圆性质动画,结合观察思考探究、协作交流讨论、动手实践操作,培养学生分析资料、提取信息、发现问题和解决问题的能力。
培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。
3、情感目标进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。
帮助学生建立勇于探索创新的精神和克服困难的信心。
二、教学内容及重点、难点分析1、教学内容:学习椭圆的简单几何性质(范围、对称性、顶点、离心率);2、重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)3、难点:从图形、方程的不同角度研究曲线的几何性质的方法。
(解决办法:制作课件动画,形象、直观地展示椭圆性质的动画。
) 4.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、教学对象分析:本课的学习对象为高二年文科班的学生,他们经过近一年多的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
作为高二年文科班的学生普遍存在着数学科基础知识较为薄弱,对数学学习有一定的困难。
在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。
高二年文科班的学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。
椭圆的几何性质最新版
y2 b2
1(ab0)
x2 b2
y2 a2
1(ab0)
|x|≤ a,|y|≤ b
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称;关于原点成中心对称。
( a ,0 ),(0, b)
( c,0)
( b ,0 ),(0, a)
(0, c)
长半轴长为a,短半轴长为b.
新课:
以 x 2 y 2 1为例来研究椭圆的性质!
100 64
y
B1
A2
A1
O F2
x
B2
标准方程
图象
范围 对称性 顶点坐标 焦点坐标 半轴长 焦距 a,b,c关系 离心率
x2 a2
y2 b2
1(ab0)
x2 b2
y2 a2
1(ab0)
|x|≤ a,|y|≤ b
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称;关于原点成中心对称。
( a ,0 ),(0, b)
( c,0)
( b ,0 ),(0, a)
(0, c)
长半轴长为a,短半轴长为b.
焦距为2c;
a2=b2+c2 e c a
例1已知椭圆方程为16x2+25y2=400,
它的长轴长是: 10 。短轴长是: 8 。
小练习:
已知椭圆的方程为x2+a2y2=a(a>0且a 1)
当0<a<1时
当a>1时:
它的长轴长是:
;
。
短轴长是:
;
。
焦距是:
;
。
离心率等于:
;
。
焦点坐标是:
6927椭圆的几何性质
班级 学号 姓名 一、课堂目标:理解椭圆的第二定义,掌握椭圆的准线方程及准线的几何意义。
二、要点回顾:(1)椭圆的第二定义: 。
(2)12222=+b y a x (a>b>0)的准线方程为 ,12222=+ay b x (a>b>0)的准线方程为 。
三、目标训练:1.椭圆81922=+y x 的准线方程为 ,16422=+y x 的准线方程为 。
2.已知点P 椭圆 1162522=+y x 上一点, (1)点P 到一个焦点的距离为3,则它到相应准线的距离为 ;(2)点P 到左焦点的距离为3,则它到右准线的距离为 ;点P 的横坐标为 ;(3)点P 到左准线的距离为3,则点P 到右准线的距离为 。
3.若椭圆的两焦点和中心将两准线间的距离四等份,则一焦点与短轴两端点连线间的夹角是 ,则椭圆的离心率等于 。
4.(1)准线方程为3±=y ,离心率36=e 的椭圆标准方程为 (2)准线方程为1±=x ,离心率21=e 的椭圆标准方程为 。
5.椭圆的焦距是短轴长,长轴长的等比中项,则椭圆的离心率等于6.p c b a ,,,分别表示椭圆的半长轴,半短轴,半焦距及焦点到相应准线的距离,则——( )(A )a b p 2= (B )b a p 2= (C ) c a p 2= (D )cb p 2= 7.设AB 是过椭圆焦点F 的弦,则以AB 为直径的圆与F 所对应的准线的位置关系为——( )(A )相离 (B )相切 (C )相交 (D )不能确定8.若F 是椭圆的1121622=+y x 的右焦点,M 是椭圆上的点,)3,2(-A 是该圆内一点,则MF MA 2+的最小值为————————————————————————( )(A )78+ (B )74+ (C )10 (D )89.求中心在原点,对称轴在坐标轴上,短轴的一个端点与两焦点组成的三角形面积为12,两准线间的距离为225的椭圆方程。
椭圆的几何性质教案
椭圆的几何性质教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引导学生观察生活中的椭圆形状实例,如地球、柠檬等。
引导学生通过实际操作,用两个固定点(焦点)和一条连接这两个点的线段(半长轴)来定义椭圆。
强调椭圆的两个焦点在横轴上,且两个焦点的距离等于椭圆的长轴长度。
1.2 椭圆的标准方程引导学生推导椭圆的标准方程。
引导学生通过实际操作,用两个焦点和两个顶点来确定椭圆的方程。
强调椭圆的标准方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a \) 是半长轴的长度,\( b \) 是半短轴的长度。
第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴引导学生通过实际操作,测量和记录椭圆的长轴长度。
强调椭圆的长轴是连接两个焦点的线段,其长度等于椭圆的半长轴的两倍。
2.2 椭圆的短轴引导学生通过实际操作,测量和记录椭圆的短轴长度。
强调椭圆的短轴是垂直于长轴的线段,其长度等于椭圆的半短轴的两倍。
2.3 椭圆的焦距引导学生通过实际操作,测量和记录椭圆的焦距长度。
强调椭圆的焦距是两个焦点之间的距离,其长度等于椭圆的长轴长度减去短轴长度。
第三章:椭圆的面积3.1 椭圆的面积公式引导学生推导椭圆的面积公式。
强调椭圆的面积公式为\( A = \pi ab \),其中\( a \) 是半长轴的长度,\( b \) 是半短轴的长度。
3.2 椭圆的面积计算引导学生通过实际操作,计算给定椭圆的长轴和短轴长度,计算其面积。
强调椭圆的面积是椭圆内部所有点构成的区域的大小。
第四章:椭圆的离心率4.1 椭圆的离心率定义引导学生通过实际操作,观察椭圆的离心率与长轴、短轴的关系。
强调椭圆的离心率是焦距与长轴之间的比值,其公式为\( e = \frac{c}{a} \),其中\( c \) 是焦距的长度,\( a \) 是半长轴的长度。
4.2 椭圆的离心率性质引导学生通过实际操作,观察和记录不同椭圆的离心率性质。
高二数学《椭圆的简单几何性质》PPT课件
► 椭圆标准方程表示的椭圆是关于x轴、y轴及
原点对称的 ► 此时,坐标轴是椭圆的对称轴,原点是椭圆 的对称中心即椭圆的中心。
4.离心率
2c c e ► 定义:椭圆的焦距与长轴长的比 2a a ► e的取值范围:0<e<1
► 椭圆性质
:离心率e
► 离心率e表示椭圆的圆扁度,e越接近1椭圆越
扁,e越接近于0,椭圆就越圆。
四、课堂小结
►比较两种不同的椭圆标准方程所表示的
椭圆几何性质的异同
方程
x2 y2 2 1 2 a b
a b 0
y
y2 x2 2 1 2 a b
y
a b 0
图 性
O x O x
象
质
顶点坐标 范 围
(±a,0)、(0,±b)
(0,±a)、(±b,0)
-a≤x≤a -b≤y≤b (±c,0)
2 2
2
2.范围
观察图形
y b
-a
F1
O
F2
a
x
-b
利用方程来判断
椭圆位于直线x=±a,y=±b所围成的矩形里
3.对称性
观察图形 ► 利用方程判断椭圆(曲线)的对称性: 若以-y代y,方程不变,则曲线关于x轴对称; 若以-x代x,方程不变,则曲线关于y轴对称; 若以-y代y,以-x代x,方程不变,则曲线关于原点对称。
8.2椭圆的简单几何性质 (一)
一、复习
► 椭圆的定义:
平面内与两个定点F1、F2的距离和等于常数 (大于|F1F2|)的点的轨迹叫做椭圆。
► 焦点在x轴上的椭圆的标准方程
x2 y2 2 1 2 a b
二、讲授新课
a b 0
人教版高中数学必修第二册8.2椭圆的几何性质教案
椭圆的几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.X围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取X围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的〞呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的X围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义.先分析椭圆的离心率e的取值X围:∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结以下表格:五、布置作业1.求以下椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计。
人教版高中数学课件:8.2椭圆的几何性质2
0, ±b ), )。 ±a, 0
y B1(0,b)
A1 o
A2(a,0) x
B2(0,-b)
轴长和短半轴长。
四、椭圆的离心率
离心率:椭圆的焦距与长轴长的比:e 叫做椭圆的离心率。 [1] 离心率的取值范围: 因为 a > c > 0,所以0<e <1 [2] 离心率对椭圆形状的影响: o y
2 2 例1 求椭圆 16 x + 25y =400的长轴和短轴的长、离
心率、焦点和顶点坐标,并用描点法画出其图形。
4
把已知方程变形为: y 25 x 2 5 在0≤ x≤5的范围内算出几个点的坐标(x,y):
X Y 0 1 2 3 4 5
4
3.9
3.7
3.2
2.4
Y
0
先描点画出椭圆的一部分, 再利用椭圆的对称性, 画出整个椭圆。
(2)长轴的长等于20,离心率等于3/5 。 解:(1)由椭圆的几何性质可知,点P、Q分 别是椭圆长轴和短轴的一个端点,于是得: a=3,b=2, 又因为长轴在x轴上,所以椭圆的标准方程为:
x
2
y
2
1
2 0, e c a 3 5
2 2 2
2 (2)、由已知,a
9
4
,
a 10, c 6,
O
椭圆的简单画法: 矩形
X
椭圆四个顶点
连线成图
由椭圆标准方程求基本元素
说明:例1是一种常见的题型,在以后的有关圆锥曲 线的问题中,经常要用到这种题型,说它是一种题型 不如说它是一种要经常用到的“基本计算”
题组{1} 教科书 102页,练习1、2 、3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.2椭圆的几何性质2
班级 学号 姓名
一、课堂目标:理解椭圆的第二定义,掌握椭圆的准线方程及准线的几何意义。
二、要点回顾:
(1)椭圆的第二定义: 。
(2)12222=+b y a x (a>b>0)的准线方程为 ,122
22=+a
y b x (a>b>0)的准线方程为 。
三、目标训练:
1.椭圆81922=+y x 的准线方程为 ,1642
2=+y x 的准线方程为 。
2.已知点P 椭圆 116
252
2=+y x 上一点, (1)点P 到一个焦点的距离为3,则它到相应准线的距离为 ;
(2)点P 到左焦点的距离为3,则它到右准线的距离为 ;点P 的横坐标为 ;
(3)点P 到左准线的距离为3,则点P 到右准线的距离为 。
3.若椭圆的两焦点和中心将两准线间的距离四等份,
则一焦点与短轴两端点连线间的夹角是 ,则椭圆的离心率等于 。
4.(1)准线方程为3±=y ,离心率36=
e 的椭圆标准方程为 (2)准线方程为1±=x ,离心率2
1=e 的椭圆标准方程为 。
5.椭圆的焦距是短轴长,长轴长的等比中项,则椭圆的离心率等于
6.p c b a ,,,分别表示椭圆的半长轴,半短轴,半焦距及焦点到相应准线的距离,则——( )
(A )a b p 2= (B )b a p 2= (C ) c a p 2= (D )c
b p 2
= 7.设AB 是过椭圆焦点F 的弦,则以AB 为直径的圆与F 所对应的准线的位置关系为——( )
(A )相离 (B )相切 (C )相交 (D )不能确定
8.若F 是椭圆的112
162
2=+y x 的右焦点,M 是椭圆上的点,)3,2(-A 是该圆内一点,则MF MA 2+的最小值为————————————————————————( )
(A )78+
(B )74+ (C )10 (D )8
9.求中心在原点,对称轴在坐标轴上,短轴的一个端点与两焦点组成的三角形面积为12,两准线间的距离为
2
25的椭圆方程。
10.已知椭圆192522=+y x 上不同的三点)(11y x A 、)5
9,4(B 、),(22y x C 到焦点)0,4(C 的距离依次成等差数列,求证:821=+x x 。
11.椭圆14
92
2=+y x 的焦点为21,F F ,点P 为其上的动点。
当21PF F ∠为钝角时,求点P 的横坐标的取值范围。
*12.求经过定点)2,1(M ,以y 轴为准线,离心率为21的椭圆的左顶点的轨迹方程。