重庆市2019届高三第二次月考数学试题(理科)有答案(精校版)
XXX2019届高三第二次月考数学(理)试题含答案
XXX2019届高三第二次月考数学(理)试题含答案2019届高三数学(理)试卷第Ⅰ卷一、选择题1.集合 $A=\{x\in N|x\leq6\}$,$B=\{x\in R|x^2-3x>0\}$,则 $A\cap B=$A。
$\{3,4,5\}$ B。
$\{4,5,6\}$ C。
$\{x|3<x\leq6\}$ D。
$\{x|3\leq x<6\}$2.命题“$\forall x\in R,x^2-2x+4\leq0$”的否定为A。
$\forall x\in R,x^2-2x+4\geq0$ B。
$\exists x\in R,x-2x+4>0$C。
$\forall x\notin R,x^2-2x+4\leq0$ D。
$\exists x\notin R,x-2x+4>0$3.已知 $\alpha$ 的终边与单位圆的交点 $P(x,y)$,其中$y>0$,则 $\tan\alpha=$A。
$\frac{3}{4}$ B。
$\pm\sqrt{3}$ C。
$\frac{\sqrt{3}}{3}$ D。
$\pm\frac{\sqrt{3}}{3}$4.$\int(x^3+x^2-30)dx=$A。
$56$ B。
$28$ C。
$\frac{56}{3}$ D。
$14$5.已知$\alpha$ 为锐角,且$\tan(\pi-\alpha)+3=\sqrt{10}$,则 $\sin\alpha=$A。
$\frac{1}{3}$ B。
$\frac{3}{10}$ C。
$\frac{3}{7}$ D。
$\frac{3}{5}$6.已知函数 $f(x)=-\log_2 x$,则在以下区间中,包含$f(x)$ 的零点的区间是A。
$(0,1)$ B。
$(1,2)$ C。
$(2,4)$ D。
$(4,+\infty)$7.某船开始看见灯塔在XXX $30^\circ$ 方向,后来船沿南偏东 $60^\circ$ 的方向航行 $15$km 后,看见灯塔在正西方向,则这时船与灯塔的距离是A。
重庆市2019-2020学年高三数学月考试题理(含解析)
高三数学月考试题理一、选择题.(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知,,则=( )A. B. C. D.【答案】B【解析】【分析】首先求得集合A,B,然后结合集合的运算法则求解集合运算即可.【详解】求解函数的定义域可得:,即求解函数的值域可得,则,据此可得=.本题选择B选项.【点睛】本题主要考查集合的表示方法,集合的混合运算等知识,意在考查学生的转化能力和计算求解能力.2.若且,则下列不等式中一定成立的是()A. B. C. D.【答案】D【解析】【分析】由题意结合不等式的性质逐一考查所给的不等式是否正确即可.【详解】逐一考查所给的选项:当时,,选项A错误;当时,,选项B错误,当时,,且,选项C错误;由不等式的性质可知,,选项D正确.本题选择D选项.【点睛】本题主要考查不等式的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.3.已知随机变量服从正态分布,若,则=( ).A. B. C. D.【答案】C【解析】【分析】由题意结合正态分布的对称性求解的值即可.【详解】由正态分布的性质可知正态分布的对称轴为,则,故.本题选择C选项.【点睛】关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.4.已知且,则()A. B. C. D.【答案】A【解析】【分析】由题意结合诱导公式和同角三角函数基本关系求解的值即可.【详解】由题意可得:,由于,故,据此可知.本题选择A选项.【点睛】本题主要考查诱导公式的应用,同角三角函数基本关系及其应用等知识,意在考查学生的转化能力和计算求解能力.5.下列函数中是奇函数且在区间上单调的是()A. B. C. D.【答案】C【解析】【分析】结合函数的解析式逐一考查函数的性质即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数且时,,当时,,当时,,据此可知函数在区间不具有单调性,不合题意;B.,函数为奇函数,由于函数为周期函数,故函数在上不具有单调性;C.,易知函数的定义域为,且,故函数为奇函数,由于函数在上为增函数,由复合函数的单调性可知函数在区间上单调递增,满足题意;D.,该函数为偶函数,不合题意;本题选择C选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.6.下列说法中错误的是()A. 在分层抽样中也可能用到简单随机抽样与系统抽样;B. 从茎叶图中可以看到原始数据,没有任何信息损失;C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1;D. 若随机变量,,,则【答案】C【解析】【分析】逐一考查所给的说法是否正确即可.【详解】逐一考查所给的说法:A. 在分层抽样中对每层的抽样可能用到简单随机抽样与系统抽样,原命题正确;B. 从茎叶图中可以看到所有的原始数据,没有任何信息损失,原命题正确;C. 若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,原命题错误;D. 若随机变量,,,则,据此可得:,原命题正确.本题选择C选项.【点睛】本题主要考查分层抽样的方法,茎叶图的理解,随机变量的相关性,二项分布的均值方差公式等知识,意在考查学生的转化能力和计算求解能力.7.已知直线与圆:相交于两点,若三角形为等腰直角三角形,则()A. 或B. 或C. 或D. 或【答案】B【解析】【分析】由题意结合几何性质首先确定圆心到直线的距离,据此得到关于m的方程,解方程即可求得实数m的值.【详解】圆C的方程即:,则圆心坐标为,圆的半径为,易知等腰直角三角形ABC的直角顶点为点C,故圆心到直线的距离为,结合点到直线距离公式有:,解得:或.本题选择B选项.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知二项式的展开式中的系数是,则()A. B. C. D.【答案】D【解析】【分析】首先确定展开式的通项公式,然后结合题意得到关于a的方程,求解方程即可求得最终结果.【详解】展开式的通项公式为:,令可得,令可得,结合题意有:,据此可得:.本题选择D选项.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.9.从区间中任取一个值,则函数在上是增函数的概率为()A. B. C. D.【答案】A【解析】【分析】首先由函数的单调性求得实数a的取值范围,然后结合几何概型计算公式求解概率值即可. 【详解】由函数的解析式:为增函数,则,为增函数,则,且当时,有:,即,解得,综上可得,若函数在上是增函数,则,由题意结合几何概型计算公式可得满足题意的概率值为:.本题选择A选项.【点睛】本题主要考查分段函数的单调性,几何概型计算公式等知识,意在考查学生的转化能力和计算求解能力.10.数列前项和为,,,,若,则=()A. B. C. D.【答案】C【解析】【分析】首先由递推关系确定数列的特征,然后结合数列的通项公式求解实数k的值即可.【详解】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.本题选择C选项.【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.11.已知是双曲线的右支上一点,,分别为双曲线的左、右顶点,,分别为双曲线的左、右焦点,双曲线的离心率为,有下列四个命题中真命题个数为()个.①双曲线所有过焦点的弦中最短弦长度为;②若,则的最大值为;③的内切圆的圆心横坐标为;④若直线的斜率为,则.A. B. C. D.【答案】B【解析】【分析】结合双曲线的性质和定义逐一考查所给的说法是否正确即可.【详解】逐一考查所给命题的真假:由双曲线焦点弦公式:可得:双曲线所有过焦点的弦中最短弦长度为.说法①错误.对于②,若,则由双曲线的定义可得.,,故有,即离心率的最大值为,故②不正确.对于③,设△PF1F2的内切圆与PF1和PF2的切点分别为M,N,与x轴的切点为K,由双曲线的定义及圆的切线性质可得|MF1|−|NF2|=2a=|KF1|−|KF2|,又|KF1|+|KF2|=2c,∴|KF1|=a+c,故K为双曲线的右顶点,又△PF1F2的内切圆的圆心在切点K的正上方,故△PF1F2的内切圆的圆心横坐标为a,故③正确.对于④若直线PF1的斜率为k,则由题意可得,∴,故④正确.综上可得,四个命题中真命题个数为2个.本题选择B选项.【点睛】本题主要考查双曲线的性质及其应用,双曲线的焦点弦公式等知识,意在考查学生的转化能力和计算求解能力.12.已知函数设两曲线有公共点,且在该点处的切线相同,则时,实数的最大值是()A. B. C. D.【答案】D【解析】试题分析:依题意:,,因为两曲线,有公共点,设为,所以,因为,所以,因此构造函数,由,当时,即单调递增;当时,即单调递减,所以即为实数的最大值.考点:函数的导数与最值.二、填空题.(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上)13.已知正实数是的等比中项,则圆锥曲线=1的离心率为_______【答案】【解析】【分析】由题意首先求得m的值,然后求解圆锥曲线的离心率即可.【详解】由题意可得:,则圆锥曲线方程为:,则.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).14.若实数满足约束条件则的最大值是_______.【答案】8【解析】【分析】由题意首先确定可行域,然后结合目标函数的几何意义确定其最值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程可得点A的坐标为:,据此可知目标函数的最大值为:.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.15.袋中有个红球,个黑球和个白球,从中任取个球,则其中三种颜色的球都有的概率是______________.【答案】【解析】【分析】由题意结合排列组合公式和古典概型计算公式求解满足题意的概率值即可.【详解】由题意可得,所求概率为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.16.已知平面向量,,满足,,,且,则()的取值范围为_________________【答案】【解析】【分析】由题意结合向量共线的充分必要条件和向量绝对值不等式的性质求解其取值范围即可.【详解】令,则,设向量的起点均为坐标原点,终点分别为,易知三点共线,如图所示,不妨设,易知,,由向量的绝对值不等式的性质可得:,注意到,且,故,即()的取值范围为.【点睛】本题主要考查向量中三点共线的充分必要条件,数形结合的数学思想,向量不等式及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题.(共70分,解答应写出文字说明,演算步骤或证明过程)17.已知函数.(1)求函数的最小正周期和单调递减区间;(2)在中,A,B,C的对边分别为a,b,c,,求的值.【答案】(1) 函数的单减区间为;(2) .【解析】试题分析:(1)整理函数的解析式为,结合三角函数的性质可得,单调减区间为(2)由题意结合余弦定理得到关于边长的方程组,求解方程组可得.试题解析:(1)周期为因为所以所以函数的单调减区间为(2)因为,所以所以,(1)又因为,所以 (2)由(1),(2)可得18.已知数列中,,(1)求数列的通项公式;(2)求证:【答案】(1);(2)见解析【解析】【分析】(1)首先将递推关系式整理变形,然后结合等比数列通项公式确定数列的通项公式即可;(2)由题意结合(1)中求得的通项公式放缩证明题中的不等式即可.【详解】(1)由已知(2)左边=不等式成立【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.19.某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知之间三组的人数可构成等差数列.(1)求的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替),其中【答案】(1)(2)有的把握(3)395【解析】分析:(1)根据已知列关于m,n的方程组解之即得.(2)先完成2×2列联表,再计算的值判断.(3)先求调查对象的周平均消费,再求b的值.详解:(1)由频率分布直方图可知,,由中间三组的人数成等差数列可知,可解得(2)周平均消费不低于300元的频率为,因此100人中,周平均消费不低于300元的人数为人.所以列联表为所以有的把握认为消费金额与性别有关.(3)调查对象的周平均消费为,由题意,∴.点睛:(1)本题主要考查频率分布直方图,考查独立性检验和回归方程,意在考查学生对统计概率的基础知识的掌握情况. (2)频率分布直方图中,一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.20.已知椭圆的左,右焦点分别为,点在椭圆上滑动,若面积的最大值是且有且仅有2个不同的点使得为直角三角形.(1)求椭圆的方程;(2)过的直线与椭圆交于点,与轴交于点。
最新2019届高三数学上学期第二次月考试题 理(含解析)
2019届高三年级第二次月考数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】B【解析】试题分析:由题意,,所以.故选B.考点:集合的运算.对数函数与指数函数的性质.2. “若,则,都有成立”的逆否命题是()A. ,有成立,则B. ,有成立,则C. ,有成立,则D. ,有成立,则【答案】D【解析】由原命题与逆否命题的关系可得:“若,则,都有成立”的逆否命题是“有成立,则”.本题选择D选项.3. 已知函数的定义域为,则函数的定义域为()A. B. C. D.【答案】A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.4. 设函数,则()A. 3B. 6C. 9D. 12【答案】C【解析】试题分析:由题意得,,因为根据对数函数的单调性知:,,故选C.考点:1、分段函数的解析式;2、对数与指数的性质.5. 已知:幂函数在上单调递增;则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由题意,命题幂函数在上单调递增,则,又,故是的充分不必要条件,选A.6. 函数的图象大致是()A. B. C. D.【答案】D..................7. 某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:)()A. 2021年B. 2020年C. 2019年D. 2019年【答案】C【解析】设第年开始超过万元,则,化为,,取,因此开始超过万元的年份是年,故选C.8. 已知函数若方程有三个不同的实数根,则实数的取值范围为()A. B. C. D.【答案】D【解析】画出函数的图象,如图:由关于的方程有三个不同的实数解,可知函数与函数有三个不同的交点,由图象易知,实数的取值范围是,故选D.9. 已知,现有下列命题:①;②;③若,且,则有,其中的所有正确命题的序号是()A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】,,即①正确;,故②正确;又因为在上递增,所以总有成立,故③正确,故选D.10. 已知函数满足,若函数与图像的交点为,则()A. 0B. 6C. 12D. 24【答案】B【解析】函数满足,即为,可得关于点对称,函数,即的图象关于点对称,即有为交点,即有也为交点,为交点,即有也为交点,为交点,即有也为交点,…则有,故选B.11. 若直角坐标平面内两点满足条件:①都在函数的图象上;②关于原点对称,则称是函数的一个“伙伴点组”(点组与看做同一个“伙伴点组”).已知函数,有两个“伙伴点组”,则实数的取值范围是()A. B. C. D.【答案】D【解析】根据题意可知,“伙伴点组”满足两点:都在函数图象上,且关于坐标原点对称,可作出函数,关于原点对称的函数的图象,使它与函数交点个数为即可,设切点为的导函数为,可得,解得,可得函数,过点的切线斜率为,结合图象可知时有两个交点,故选D.【方法点睛】本题考查导数的几何意义、函数的图象与性质、新定义问题及数形结合思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“伙伴点组”达到考查导数的几何意义、函数的图象与性质的目的.12. 已知函数,若成立,则的最小值为()A. B. C. D.【答案】D【解析】不妨设,,,故,令,,易知在上是增函数,且,当时,,当时,,即当时,取得极小值同时也是最小值,此时,即的最小值为,故选D.【方法点睛】本题主要考查对数、指数的运算,利用导数研究函数的单调性进而求最值,属于难题.求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图像法、函数单调性法求解,利用函数的单调性求最值,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的最值即可.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 计算:__________.【答案】26【解析】因为,故答案为.14. 已知函数在单调递减,则的取值范围是__________.【答案】【解析】根据题意,若f(x)在区间[2,+∞)上为增函数,则在[2,+∞)上是减函数,∴u=x2−ax+3a在[2,+∞)上为增函数,且在[2,+∞)上恒大于0.∴得到:.解得:−4<a⩽4,则实数a的取值范围为(−4,4]故答案为:(−4,4].15. 若函数(且)的值域是,则实数的取值范围是__________.【答案】【解析】试题分析:由于函数的值域是,故当时,满足,当时,由,所以,所以,所以实数的取值范围.考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当时,由,得,即,即可求解实数的取值范围.16. 已知函数是定义在上的偶函数,当时,,则函数的零点个数为__________.【答案】10【解析】由,得,要判断函数的零点个数,则根据是定义在上的偶函数,只需判断当时,的个数即可,当时,,当时,时,;当时,时,;当时,时,,作出函数在上的图象,由图象可知有个根,则根据偶函数的对称性可知在定义域上共有个根,即函数的零点个数为个,故答案为.【方法点睛】判断方程零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .本题的解答就利用了方法③.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知命题;命题:函数有两个零点,且一个零点比大,一个零点比小,若为真命题,为假命题,求实数的取值范围.【答案】【解析】试题分析:由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.试题解析:令,则在上是增函数故当时,最小值为,故若为真,则.若为真命题,则,解得.若为真命题,为假命题,则,一真一假,(1)若真假,则实数满足即;(2)若假真,则实数满足即.综上所述,实数的取值范围为.18. 已知函数的定义域为,且对任意实数恒有(且)成立.(1)求函数的解析式;(2)讨论在上的单调性,并用定义加以证明.【答案】(1)(2)当时,在上为单调减函数;当时,在上为单调增函数.解:(1)∵对任意实数恒有:①,用替换①式中的有:②,①×②—②得:,当时,函数为单调减函数,函数也为单调减函数,∴在上为单调减函数.当时,函数为单调增函数,函数也为单调增函数,∴在上为单调增函数.证明:设任意且,则,∵,,(1)当时,则,∴∴在上是减函数.(2)当时,则,∴∴在上是增函数.综上:当时,在上为单调减函数;当时,在上为单调增函数.【解析】试题分析:(1)①,用替换①式中的有:②,由①②消去即可得结果;(2)讨论两种情况,分别利用复合函数的单调性判断其单调性,再利用定义意且,判定的符合,即可证明结论.试题解析:(1)∵对任意实数恒有:①,用替换①式中的有:②,①×②—②得:,(2)当时,函数为单调减函数,函数也为单调减函数,∴在上为单调减函数.当时,函数为单调增函数,函数也为单调增函数,∴在上为单调增函数.证明:设任意且,则,∵,,①当时,则,∴∴在上是减函数.②当时,则,∴∴在上是增函数.综上:当时,在上为单调减函数;当时,在上为单调增函数.19. 已知,函数.(1)当时,解不等式;(2)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围. 【答案】(1)(2)【解析】试题分析:(1)由,得,解得;(2)由在上单调递减.可得函数在区间上的最大值与最小值分别为,等价于,对任意成立,只需令函数在区间的最小值不小于零,解不等式即可.试题解析:(1)由,得,解得.(2)当时,,所以在上单调递减.函数在区间上的最大值与最小值分别为.即,对任意成立.因为,所以函数在区间上单调递增,时,有最小值,由,得,故的取值范围为.【方法点晴】本题主要考查函数的单调性、简单的指数方程以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题(2)是利用方法③ 求得的取值范围的.20. 设函数.(1)解方程:;(2)令,求的值.(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1)2(2)1008(3)试题解析:(1).(2).因为所以(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以,即对任意的都成立,即对任意的都成立,.21. 已知函数是偶函数.(1)求的值;(2)若函数的图像与直线没有交点,求的取值范围;(3)若函数,是否存在实数使得最小值为0,若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)(3)存在得最小值为0.解:(1)∵,即对于任意恒成立.∴∴∴(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.∵任取,且,则,∴∴,∴在上是单调减函数.∵,∴∴的取值范围是(3)由题意,令,∵开口向上,对称轴,当,即,当,即,(舍去)当,即,(舍去)∴存在得最小值为0.【解析】试题分析:(1)若函数是偶函数,则恒成立,化简可得,从而可求得的值;(2)若函数的图象与直线没有交点,方程无解,则函数的图象与直线无交点,则不属于函数值域,从而可得结果;(3)函数,令,则,结合二次函数的图象和性质,分类讨论,可得的值.试题解析:(1)∵,即对于任意恒成立.∴∴∴(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.∵任取,且,则,∴∴,∴在上是单调减函数.∵,∴∴的取值范围是(3)由题意,令,∵开口向上,对称轴,当,即,当,即,(舍去)当,即,(舍去)∴存在得最小值为0.22. 已知函数在区间上有最大值4和最小值1.设.(1)求的值;(2)若不等式在上有解,求实数的取值范围;(3)若有三个不同的实数解,求实数的取值范围.【答案】(1)(2)(3)解:(1),因为,所以在区间上是增函数,故,解得,(2)由已知可得,所以可化为,化为,令,则,因,故,记,因为,故,所以得取值范围是.(3)原方程可化为令,则,有两个不同的实数解,其中,或.记,则① 或②解不等组①,得,而不等式组②无实数解,所以实数的取值范围是.【解析】试题分析:(1)由函数,在区间上是增函数,故,由此解得的值;(2)不等式化为,故有,求出的最小值,从而求得的取值范围;(3)方程,令,原方程等价于,构造函数,通过数形结合与等价转化的思想可求得的范围.试题解析:(1),因为,所以在区间上是增函数,故,解得,(2)由已知可得,所以可化为,化为,令,则,因,故,记,因为,故,所以得取值范围是. (3)原方程可化为令,则,有两个不同的实数解,其中,或.记,则① 或②解不等组①,得,而不等式组②无实数解,所以实数的取值范围是.。
重庆2019年高考学业质量调研抽测4月二诊理科数学试题卷含答案详析
【详解】设事件 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件 为“学生丙第一个出场”
则
,
则 本题正确选项: 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.
10.已知双曲线 在圆
A. 9 【答案】B 【解析】 【分析】
的一条渐近线方程为
,左焦点为 ,当点 在双曲线右支上,点
20.已知离心率为 的椭圆 :
的右焦点为 ,点 到直线 的距离为 1.
(1)求椭圆 的 方程;
(2)若过点
的直线与椭圆 相交于不同的 两点,设 为椭圆 上一点,且满足
( 为坐标原点),当
时,求实数 的取值范围.
【答案】(1)
(2)
或
【解析】
【分析】
(1)通过点 到直线 的距离、离心率和 的关系,求得标准方程;(2)直线与椭圆方程联立,利
由
,
得:
则 设 外接圆圆心为 ,则
由正弦定理可知, 外接圆半径:
设 到面 距离 为
由 为球 直径可知:
则 球的半径
球 的表面积 本题正确选项: 【点睛】本题考查三棱锥外接球表面积问题的求解,关键是能够利用球心与底面外接圆圆心的连线与底面 垂直的关系构造直角三角形.
12.已知 是函数
(其中常数
值为 0,则函数 的最小值为( )
(2) 当
时,丙可在产品 和产品 中任选一个投资;当
时,丙应选产品 投资.
时,丙应选
(1)“一年后甲、乙两人至少有一人投资获利”的概率
,可求得 ;又
可得 ,由
此可得 的范围;(2)分别求出投资 , 两种产品的数学期望,通过数学期望的大小比较可知应选哪种产
重庆市第一中学2019届高三下学期4月月考(理)数学试题(解析版)
2019年重庆一中高2019级高三下期月考理科学数学一、选择题1.设集合2{log 1}A x x =≤,集合2{|20}B x x x =+-<,则A B U 为( )A. (0,1)B. (2,2]-C. (,2]-∞D. (2,1)- 【答案】B【分析】先通过解不等式得出集合,A B ,然后再求A B U .【详解】由2log 1x ≤得,02x <≤,即(]0,2A =.由220x x +-<得,21x -<<,即()2,1B =-.所以(]2,2A B =-U故选:B【点睛】本题考查解对数不等式和二次不等式以及集合的并集运算,属于基础题.2.已知复数z 满足()2201913z i i +=+,则||z =( )A. B. C. 14 D. 【答案】A【分析】由2019450433i i i i ⨯+==-=先求出复数z ,然后再求||z .【详解】由2019450433i i i i ⨯+==-=.所以由()2201913z i i +=+得:()213z i i -=+即()23z i i -=+,故:33122i i z i +-==-所以||2z == 故选:A【点睛】本题考查复数的运算,复数的模长的计算,属于基础题.3.设函数31log (1),1()1,12x x x f x x -->⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩…,则(1)f =( )A. 0B. 1-C. 1D. 2【答案】C 【分析】根据函数的表达式直接将(1)f 的值代出可求出答案. 【详解】由函数的表达式有111(1)12f -⎛⎫== ⎪⎝⎭故选:C 【点睛】本题考查分段函数求函数值,属于基础题.4.已知第一象限内抛物线24y x =上的一点Q 到y 轴的距离是该点到抛物线焦点距离的12,则点Q 的坐标为( )A. (1,2)-B. (1,2)C.D. 1,14⎛⎫ ⎪⎝⎭ 【答案】B【分析】设()(),0,0Q x y x y >>,根据抛物线的定义以及题目条件可得12x x +=,从而求出Q 点的坐标.【详解】抛物线24y x =的准线方程为:1x =-.设()(),0,0Q x y x y >>,则点Q 到y 轴的距离为x ,点Q 到准线的距离为1x +.根据抛物线的定义有:点Q 到焦点的距离为1x +.又点Q 到y 轴的距离是该点到抛物线焦点距离的12. 所以12x x +=,得1x = ,则2y =即(1,2)Q故选:B【点睛】本题考查抛物线的定义的运用,属于基础题.5.我国古代数学著作《孙子算经》中记有如下问题:“今有五等诸侯,其分橘子六十颗,人別加三颗”,问:“五人各得几何?”其意思为:“现在有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,下列说法错误的是( )A. 得到橘子最多的诸侯比最少的多12个B. 得到橘子的个数排名为正数第3和倒数第3的是同一个人C. 得到橘子第三多的人所得的橘子个数是12D. 所得橘子个数为倒数前3的诸侯所得的橘子总数为24。
重庆一中2019-2020学年高三下学期第二次学月考试理科数学试题卷(答案)
10. 解析: 因为△ABC 是等腰直角三角形,所以外接的半圆半径是 r = 1 12 = 3 ,设外接球的半径是
2
R
,球心 O
到该底面的距离 d
,则
S△ABC
=
16 2
=
3,
BD
=
3
,由题设 V
=
1 3
S△ABC
h
=
1 6
6h
=
3 ,最
大体积对应的高为 SD = h = 3 ,故 R2 = d 2 + 3 ,即 R2 = (3 − R)2 + 3 ,解之得 R = 2 ,所以外接球的体积
1 2
x
+
π 6
=
a ,故④正确. 2
故选 B.
9. 解析:设 A 中构成等差数列的元素为 a,b,c ,则有 2b = a + c ,由此可得 a,c 应该同奇同偶,而当 a,c
同奇同偶时,则必存在中间项 b , 所以问题转变为只需在1 − 40 中寻找同奇同偶数的情况。 a,c 同为奇
数的可能的情况为 C220 ,同为偶数的可能的情况为 C220 ,所以一共有 2 C220 = 380 种,故选 C.
重庆一中 2019-2020 学年高三下期第二次学月考试
理科数学答案与解析
一、选择题: CCAD;CDBB;CDBA
4.解析:原问题等价于等差数列中,已知 a1 = 4 , a5 = 2 ,求 a2 + a3 + a4 的值.由等差数列的性质可知:
a2
+ a4
=
a1
+ a5
=
6 , a3
=
a1
+ a5 2
2019-2020年重庆市二模:重庆市2019届高三第二次模拟考试理科数学试题(有答案)
)
D.-4 或 0
2. 某天的值日工作由 4 名同学负责,且其中 1 人负责清理讲台,另 1 人负责扫 地,其余 2 人负责拖地,则不同的分工共有( A .6 种 B. 12 种 C.18 种 ) D.24 种
2 , c f lo 3. 已知函数 f x x sin x ,若 a f 3,b f g 6 2 ,则 a, b, c 的大小关系是
)
A.
B.
C.
D.
x 2 1, 0 x 1 12. 定义在 R 上的函数 f x 满足 f x f x , 且当 x 0 时,f x , x 2 2 , x 1
若对任意的 x m, m 1 ,不等式 f 1 x f x m 恒成立,则实数 m 的最大值是 ( A. -1 ) B.
1 6
) C.
1 3
B.
1 4
D.
5 12
11.如图, Rt ABC 中, AB BC, AB 6, BC 2 ,若其顶点 A 在 x 轴上运动,顶点
B 在 y 轴的非负半轴上运动.设顶点 C 的横坐标非负,纵坐标为 y ,且直线 AB 的倾
斜角为 ,则函数 y f 的图象大致是 (
) D. 1
C. 1,
6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角
形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开, 得到一个阳马 (底 面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角 三角形的四面体).在如图所示的堑堵 ABC A1B1C1 中, AA1 AC 5, AB 3, BC 4 , 则阳马 C1 ABB1 A1 的外接球的表面积是 ( )
2019年高考重庆理科数学试题及答案(精校版)
2019年普通高等学校招生全国统一考试理科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB=(2,3),AC=(3,t),BC=1,则AB BC=A.-3 B.-2C.2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L点的轨道运行.2L点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M2,地月距离为R,2L点到月球的距离为r,根据牛顿运动定律和万有1引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C 3D 511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019届重庆一中高三下学期3月月考理科数学试卷【含答案及解析】
2019届重庆一中高三下学期3月月考理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若复数.(其中为虚数单位)的实部与虚部相等,则(________ )A . 3______________B . 6________________________C . 4______________D . 122. 已知,则(________ )A .____________________B .______________C .______________ D .3. 下列函数中,值域为的偶函数是(________ )A .___________B .____________________C .________________________ D .4. 下列说法中正确的是(________ )A .“ ”是“函数是奇函数”的充要条件B .“若,则”的否命题是“若,则”C .若,则D .若为假命题,则均为假命题5. 一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为(________ )A .____________________________B .___________________________________ C . D .6. 已知服从正态分布,则“ ”是“关于的二项式的展开式的常数项为3” 的(________ )A.充分不必要条件B.必要不充分条件C.既不充分又不必要条件D .充要条件7. 若,且,则(________ )A .____________________________B .________________________C .___________________________________ D .8. 执行右面的程序框图,如果输入的在内取值,则输出的的取值区间为(________ )A .______________________________B .___________________________________ C .____________________________D .9. 将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少得到1本书,则不同的分法有(________ )A . 24种______________________________B . 28种______________________________ C . 32种____________________________ D . 16种10. 已知一空间几何体的三视图如题所示,其中正规图与左视图都是全等的等腰梯形,则该几何体的体积为(________ )A . 17______________________________B .______________________________C .______________________________D . 1811. 如图,是双曲线在左、右焦点,过的直线与双曲线的左右两支分别交于点.若为等边三角形,则双曲线的离心率为(_________ )A . 4___________________________________B ._________________________________ C ._________________________________ D .12. 如题图,已知点为的边上一点,,为边上的列点,满足,其中实数列中,则的通项公式为(________ )A .______________________________B .______________________________ C .______________ D .二、填空题13. 等比数列的前项和,则 ________ .14. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石.15. 当实数满不等式组:时,恒有成立,则实数的取值范围是________ .16. 已知点,其中,且,,若四边形是矩形,则此矩形绕轴旋转一周得到的圆柱的体积的最大值为________ .三、解答题17. 设函数.(1)若,求的单调递增区间;(2)在锐角中,角的对边分别为,若,求面积的最大值.18. 2015年高考结束,某学校对高三毕业生的高考成绩进行调查,高三年级共有1到6个班,从六个班随机抽取50人,对于高考的考试成绩达到自己的实际水平的情况,并将抽查的结果制成如下的表格,p19. ly:宋体; font-size:10.5pt">班级 1 2 3 4 5 6 频数 6 10 12 12 6 4 达到 3 6 6 6 4 3(1)根据上述的表格,估计该校高三学生2015年的高考成绩达到自己的实际水平的概率;(2)若从5班、6班的调查中各随机选取2同学进行调查,调查的4人中高考成绩没有达到实际水平的人数为,求随机的分布列和数学的期望值.20. 如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,且.(1)求证:平面;(2)若,求钝二面角的余弦值.21. 已知平面上的动点及两定点、,直线、的斜率之积为定值,设动点的轨迹为曲线.(1)求曲线的方程;(2)设是曲线上一动点,过作两条直线分别交曲线于两点,直线与的斜率互为相反数.试问:直线的斜率与曲线在点处的切线的斜率之和是否为定值,若是,求出该定值;若不是,请说明理由.22. 已知函数在其定义域内有两个不同的极值点.(1)求的取值范围;(2)记两个极值点分别为,且.已知,若不等式恒成立,求的范围.23. 如图,的半径垂直于直径,为上一点,的延长线交于,过点的切线交的延长线于.(1)求证:;(2)若的半径为,,求:的长.24. 在以直角坐标原点为极点,的非负半轴为极轴的极坐标系下,曲线的方程是,将向上平移1个单位得到曲线.(1)求曲线的极坐标方程;(2)若曲线的切线交曲线于不同两点,切点为.求的取值范围.四、填空题25. 设.( 1)求的解集;(2)若不等式对做任意实数恒成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
重庆市一中2019届高三数学下学期5月月考试题理(含解析)
重庆市2019届高三学业质量调研抽测4月二诊理科数学试题(解析版)
高2019届高三学生学业调研抽测(第二次)理科数学试题卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,复数满足,则()A. B. C. 1 D.【答案】C【解析】【分析】根据已知求解出,再计算出模长.【详解】则本题正确选项:【点睛】本题考查复数模长的求解,关键是利用复数的运算求得,属于基础题.2.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】分别求解出两个集合,根据交集定义求得结果.【详解】则本题正确选项:【点睛】本题考查集合运算中的交集运算,关键在于能够利用指数函数单调性和对数函数的定义域求解出两个集合,属于基础题.3.设,,,则的大小关系为()A. B.C. D.【答案】D【解析】【分析】根据指数函数单调性可得,再利用作为临界值可得,,从而得到三者之间的关系. 【详解】可知:本题正确选项:【点睛】本题考查指对数混合的大小比较问题,关键是能够利用函数的单调性进行判断,属于基础题.4.设等比数列的前项和为,已知,且与的等差中项为20,则()A. 127B. 64C. 63D. 32【答案】C【解析】【分析】先求出等比数列的首项和公比,然后计算即可.【详解】解:因为,所以因为与的等差中项为,,所以,即,所以故选:C.【点睛】本题考查了等比数列基本量的计算,属于基础题.5.已知为两条不同的直线,为两个不同的平面,则下列命题中正确的是()A. 若,,则B. 若,,且,则C.若,,且,,则D. 若直线与平面所成角相等,则【答案】B【解析】【分析】结合空间中平行于垂直的判定与性质定理,逐个选项分析排除即可.【详解】解:选项A中可能,A错误;选项C中没有说是相交直线,C错误;选项D中若相交,且都与平面平行,则直线与平面所成角相等,但不平行,D错误.故选:B.【点睛】本题考查了空间中点线面的位置关系,属于基础题.6.函数的图像大致为()A. B.C. D.【答案】C【解析】【分析】根据奇偶性可排除和两个选项,再根据时,的符号,可排除选项,从而得到正确结果.【详解】定义域为为定义在上的奇函数,可排除和又,当时,,可排除本题正确选项:【点睛】本题考查函数图像的判断,解决此类问题的主要方法是利用奇偶性、特殊值、单调性来进行排除,通过排除法得到正确结果.7.运行如图所示的程序框图,则输出的值为()A. 9B. 10C. 11D. 12【答案】C【解析】【分析】将的变化规律整理为数列的形式,求解出数列的通项,根据求解出输出时的取值.【详解】将每次不同的取值看做一个数列则,,,…,则,则当时,;当时,即时,,输出结果本题正确选项:【点睛】本题考查利用循环结构的程序框图计算输出结果,由于循环次数较多,可以根据变化规律,利用数列的知识来进行求解.8.设函数的一条对称轴为直线,将曲线向右平移个单位后得到曲线,则在下列区间中,函数为增函数的是()A. B. C. D.【答案】B【解析】【分析】将化简为,根据对称轴可求得;通过平移得到;依次代入各个选项,判断其单调性,从而得到结果.【详解】将代入可得:又,可得:当时,,不单调,可知错误;当时,,单调递增,可知正确;当时,,单调递减,可知错误;当时,,不单调,可知错误.本题正确选项:【点睛】本题考查的单调性问题,主要采用整体对应的方式来进行判断.关键是能够通过辅助角公式、对称轴方程、三角函数平移等知识准确求解出的解析式.9.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A. B. C. D.【答案】A【解析】【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果.【详解】设事件为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件为“学生丙第一个出场”则,则本题正确选项:【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.10.已知双曲线的一条渐近线方程为,左焦点为,当点在双曲线右支上,点在圆上运动时,则的最小值为()A. 9B. 7C. 6D. 5【答案】B【解析】【分析】根据渐近线方程求出双曲线方程,根据定义可将问题转化为求解的最小值,由位置关系可知当与圆心共线时取最小值.【详解】由渐近线方程可知设双曲线右焦点为由双曲线定义可知:则则只需求的最小值即可得到的最小值设圆的圆心为,半径则本题正确选项:【点睛】本题考查双曲线中的最值问题,关键是能够利用双曲线的定义将问题进行转化,再根据圆外点到圆上点的距离的最值的求解方法得到所求最值.11.已知三棱锥各顶点均在球上,为球的直径,若,,三棱锥的体积为4,则球的表面积为()A. B. C. D.【答案】B【解析】【分析】求解出面积后,利用三棱锥的体积,构造方程,求解出点到底面的距离,从而可知的长度;利用正弦定理得到,勾股定理得到球的半径,从而求得球的表面积.【详解】原题如下图所示:由,得:则设外接圆圆心为,则由正弦定理可知,外接圆半径:设到面距离由为球直径可知:则球的半径球的表面积本题正确选项:【点睛】本题考查三棱锥外接球表面积问题的求解,关键是能够利用球心与底面外接圆圆心的连线与底面垂直的关系构造直角三角形.12.已知是函数(其中常数)图像上的两个动点,点,若的最小值为0,则函数的最小值为()A. B. C. D.【答案】D【解析】【分析】通过函数解析式可判断出关于对称,可知取最小值时,与相切且;利用导数求解切线斜率,求解出,从而可得函数最小值.【详解】当时,,则由此可知,关于对称又最小值为,即,此时则此时函数图象如下图所示:此时与相切于当时,设,则又,可得则本题正确选项:【点睛】本题考查函数最值的求解问题,关键是能够通过解析式判断出函数的对称性,从而借助导数的几何意义求得参数的值,进而得到函数最值.二、填空题(将答案填在答题纸上)13.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:,,,,,根据收集到的数据可知,由最小二乘法求得回归直线方程为,则______.【答案】375【解析】【分析】求解出,利用求解出,进而求得结果.【详解】由题意:则:本题正确结果:【点睛】本题考查回归直线方程问题,关键是明确回归直线必过,利用此点可求解得到结果.14.若实数满足不等式组,则的最大值为_____.【答案】16【解析】【分析】先由简单线性规划问题求出的最大值,然后得出的最大值.【详解】解:由不等式组画出可行域如图中阴影部分然后画出目标函数如图中过原点虚线,平移目标函数在点A处取得最大值解得点所以最大为4所以的最大值为16故答案为:16.【点睛】本题考查了简单线性规划问题,指数复合型函数的最值,属于基础题.15.已知点是抛物线上不同的两点,且两点到抛物线的焦点的距离之和为6,线段的中点为,则焦点到直线的距离为______.【答案】【解析】【分析】通过抛物线焦半径公式和点差法可求得抛物线和直线的方程,再利用点到直线距离求得结果.【详解】设,由抛物线定义可知:,则又为中点,则抛物线方程为则:,两式作差得:则直线的方程为:,即点到直线的距离本题正确结果:【点睛】本题考查抛物线的几何性质,关键是在处理弦的中点的问题时,要熟练应用点差法来建立中点和斜率之间的关系.16.已知数列,对任意,总有成立,设,则数列的前项的和为______.【答案】【解析】【分析】利用求得,从而可得,则每两项作和,通过裂项相消的方式求得结果.【详解】当且时,由……①得:……②①②得:当时,综上所述:则:则的前项和为:本题正确结果:【点睛】本题考查数列裂项相消法求和,关键是能够通过的前项和求得数列的通项公式,从而得到的通项公式,根据的形式确定每两项作和可得裂项相消法的形式.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.在中,角的对边分别为,已知,.(1)求的面积;(2)若,求的值. 【答案】(1)4(2) 【解析】【分析】(1)利用正弦定理求得的正余弦的值;利用向量数量积求得,从而可求面积;(2)利用余弦定理求得的正余弦值,利用两角和差公式求得结果.【详解】(1)由正弦定理得:,的面积为(2),,即【点睛】本题考查正余弦定理解三角形、三角形面积公式的应用、两角和差公式的应用问题,关键是能够熟练应用正余弦定理处理边角关系式.18.有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):产品:产品:注:(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.【答案】(1) (2) 当时,丙可在产品和产品中任选一个投资;当时,丙应选产品投资;当时,丙应选产品投资.【解析】【分析】(1)“一年后甲、乙两人至少有一人投资获利”的概率,可求得;又可得,由此可得的范围;(2)分别求出投资,两种产品的数学期望,通过数学期望的大小比较可知应选哪种产品. 【详解】(1)记事件为“甲选择产品投资且获利”,记事件为“乙选择产品投资且获利”,记事件为“一年后甲、乙两人至少有一人投资获利”则,,,又,且,(2)假设丙选择产品投资,且记为获利金额(单位:万元),则的分布列为假设丙选择产品投资,且记为获利金额(单位:万元),则的分布列为当时,,丙可在产品和产品中任选一个投资;当时,,丙应选产品投资;当时,,丙应选产品投资.【点睛】本题考查概率统计中的独立事件的概率、数学期望的应用问题.在以期望值作决策依据进行选择时,关键是分别求解出数学期望,依据大小关系来确定结果.19.如图,在四棱锥中,底面是菱形,为的中点,已知,,.(1)证明:平面平面;(2)求二面角的平面角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)分别证得,,从而证得平面,进而证得面面垂直;(2)建立空间直角坐标系,分别求得平面和平面法向量,利用法向量夹角求得结果.【详解】(1)证明:连接,取的中点为,连接在菱形中,,为正三角形在中,,,由勾股定理知为等腰直角三角形,即平面又平面平面平面(2)解:如图,以为原点,以所在直线为轴建立空间直角坐标系则,,,,,,设平面的法向量为,则,且即,令,则,设平面的法向量为,则,即,令,则,则二面角的平面角的正弦值为【点睛】本题考查立体几何中面面垂直的证明、空间向量法求解二面角的问题,关键是能够建立起空间直角坐标系,通过法向量夹角的余弦值求得二面角平面角的正弦值,属于常规题型.20.已知离心率为的椭圆:的右焦点为,点到直线的距离为1.(1)求椭圆的方程;(2)若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.【答案】(1) (2)或【解析】 【分析】(1)通过点到直线的距离、离心率和的关系,求得标准方程;(2)直线与椭圆方程联立,利用可得;再利用,根据弦长公式可求得,得到;利用表示出点坐标,代入椭圆可得,从而可求得的范围.【详解】(1)由题意得:,即又,,即,椭圆的方程为(2)由题意可知直线的斜率存在,设,,,由得:由,得:(*),,结合(*)得:从而,点在椭圆上整理得:即或【点睛】本题考查椭圆标准方程求解、椭圆中参数取值范围的求解问题,关键是能够利用直线与椭圆相交于不同两点且弦长得到的取值范围;再通过向量的坐标运算,可得到关于与的关系,进而可求得结果.21.已知函数,.(1)若函数与的图像上存在关于原点对称的点,求实数的取值范围;(2)设,已知在上存在两个极值点,且,求证:(其中为自然对数的底数).【答案】(1) (2)见证明【解析】【分析】(1)将问题转化为在有解,即在上有解,通过求解的最小值得到;(2)通过极值点为可求得,通过构造函数的方式可得:;通过求证可证得,进而可证得结论.【详解】(1)函数与的图像上存在关于原点对称的点即的图像与函数的图像有交点即在有解,即在上有解设,,则当时,为减函数;当时,为增函数,即(2),在上存在两个极值点,且且,即设,则要证,即证只需证明,即证明设,则则在上单调递增,即【点睛】本题考查利用导数来解决函数中的交点问题、恒成立问题,解决问题的关键是能将交点问题转变为能成立问题、不等式的证明问题转化为恒成立的问题,从而通过构造函数的方式,找到合适的函数模型来通过最值解决问题.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,设点,已知,求实数的值.【答案】(1)直线:,曲线:(2)【解析】【分析】(1)在直线的参数方程中消去参数t得直线的一般方程,在曲线的极坐标方程为中先两边同乘,得曲线的直角坐标方程;(2)将直线的参数方程直接代入曲线的直角坐标方程中,得到韦达定理,由,,列方程求出答案.【详解】解:(1)因为直线的参数方程为消去t化简得直线的普通方程:由得,因为,所以,所以曲线的直角坐标方程为(2)将代入得即,则,,∴,∴∴∵,∴,满足∴【点睛】本题考查了直线的参数方程,曲线极坐标方程与直角坐标方程得转化,直线与圆的位置关系,属于中档题.23.选修4-5:不等式选讲 已知函数,. (1)当时,求不等式的解集;(2)若,且当时,不等式有解,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)将不等式零点分段可得不等式的解集为.(2)将不等式转化为,可得实数的取值范围是.试题解析:解:(1)当时,,∴等价于或或,解得或或,即.∴不等式的解集为.(2)∵,∴, 不等式,∴,∴实数的取值范围是.点睛:绝对值不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
重庆八中2019届高三上学期第二次月考数学试卷(理科)Word版含解析
重庆八中2019届高三上学期第二次月考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2+x﹣2<0},,则A∩B=()A.B.(0,1)C.D.2.已知等比数列{an }的公比为q,则“0<q<1”是“{an}为递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是()A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥βC.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l24.直线ax+y﹣5=0截圆C:x2+y2﹣4x﹣2y+1=0的弦长为4,则a=()A.﹣2 B.﹣3 C.2 D.35.下列命题中错误的个数为:()①y=的图象关于(0,0)对称;②y=x3+x+1的图象关于(0,1)对称;③y=的图象关于直线x=0对称;④y=sinx+cosx的图象关于直线x=对称.A.0 B.1 C.2 D.36.如图是某多面体的三视图,网格纸上小正方形的边长为1,则该多面体的体积为()A.32 B.C.16 D.7.设函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在(0,)单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增8.已知a>0,b>0,且为3a与3b的等比中项,则的最大值为()A.B.C.D.9.若函数f(x)为定义在R上的连续奇函数且3f(x)+xf′(x)>0对x>0恒成立,则方程x3f(x)=﹣1的实根个数为()A.0 B.1 C.2 D.310.在直三棱柱ABC﹣A1B1C1中,侧棱长为,在底面△ABC中,∠C=60°,,则此直三棱柱的外接球的表面积为()A.B.C.16πD.11.已知椭圆C: +=1(a>b>0),点M,N,F分别为椭圆C的左顶点、上顶点、左焦点,若∠MFN=∠NMF+90°,则椭圆C的离心率是()A.B.C.D.12.已知函数f(x)=,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为()A.B.2﹣C.D.﹣二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,满足,|,且(λ>0),则λ= .14.设x,y满足约束条件则z=x﹣3y的取值范围为.15.已知双曲线C:的右焦点为F,P是双曲线C的左支上一点,M(0,2),则△PFM 周长最小值为.16.若Sn 为数列{an}的前n项和,且2Sn=an+1an,a1=4,则数列{an}的通项公式为an= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在△ABC中,内角A,B,C的对边分别为a,b,c,且acosC,bcosA,ccosA成等差数列.(1)求角A的大小;(2)若a=3,,求的最大值.18.重庆八中大学城校区与本部校区之间的驾车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率. (1)求T 的分布列与P (T <E (T ));(2)某天有3位教师独自驾车从大学城校区返回本部校区,记X 表示这3位教师中驾车所用时间少于E (T )的人数,求X 的分布列与E (X );(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.19.如图,在三棱台ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,AB=2A 1B 1=2CC 1,M ,N 分别为AC ,BC 的中点.(1)求证:AB 1∥平面C 1MN ;(2)若AB ⊥BC 且AB=BC ,求二面角C ﹣MC 1﹣N 的大小.20.在直角坐标系xOy中,点P(2,1)为抛物线C:y=上的定点,A,B为抛物线C上两个动点.(1)若直线PA与PB的倾斜角互补,证明:直线AB的斜率为定值;(2)若PA⊥PB,直线AB是否经过定点?若是,求出该定点,若不是,说明理由.21.设函数f(x)=(x+2a)ln(x+1)﹣2x,a∈R.(1)当a=1时,求函数f(x)的单调区间及所有零点;(2)设A(x1,y1),B(x2,y2),C(x3,y3)为函数g(x)=f(x)+x2﹣xln(x+1)图象上的三个不同点,且x1+x2=2x3.问:是否存在实数a,使得函数g(x)在点C处的切线与直线AB平行?若存在,求出所有满足条件的实数a的值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)写出曲线C的直角坐标方程;(2)已知直线l与x轴的交点为P,与曲线C的交点为A,B,若AB的中点为D,求|PD|的长.[选修4-5:不等式选讲]23.若关于x的不等式|x+a|≤b的解集为[﹣6,2].(1)求实数a,b的值;(2)若实数m,n满足|am+n|<,|m﹣bn|<,求证:|n|<.重庆八中2019届高三上学期第二次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2+x﹣2<0},,则A∩B=()A.B.(0,1)C.D.【考点】交集及其运算.【分析】先分别出集合A,B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},={x|0<x<},∴A∩B={x|0<x<}=(0,).故选:A.2.已知等比数列{an }的公比为q,则“0<q<1”是“{an}为递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】可举﹣1,,…,说明不充分;举等比数列﹣1,﹣2,﹣4,﹣8,…说明不必要,进而可得答案.【解答】解:可举a1=﹣1,q=,可得数列的前几项依次为﹣1,,…,显然不是递减数列,故由“0<q<1”不能推出“{an}为递减数列”;可举等比数列﹣1,﹣2,﹣4,﹣8,…显然为递减数列,但其公比q=2,不满足0<q<1,故由“{an}为递减数列”也不能推出“0<q<1”.故“0<q<1”是“{an}为递减数列”的既不充分也不必要条件.故选D3.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是()A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥βC.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2E.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2F.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】反例判断A的错误;利用直线与平面的关系判断B错误;反例判断C错误;直线与平面垂直判断D正误即可.【解答】解:α,β,γ是三个不同的平面,l1,l2是两条不同的直线,对于A,α⊥γ,β⊥γ,则α∩β=a也可能平行,所以A不正确.对于B,若l1∥α,l1⊥β,则α⊥β,所以B不正确;对于C,α∥β,l1∥α,l2∥β,则l1∥l2,也可能相交也可能异面,所以C不正确;对于D,若α⊥β,l1⊥α,l2⊥β,则l1⊥l2,l1与l2是平面的法向量,显然正确;故选:D.4.直线ax+y﹣5=0截圆C:x2+y2﹣4x﹣2y+1=0的弦长为4,则a=()A.﹣2 B.﹣3 C.2 D.3【考点】直线与圆的位置关系.【分析】圆C:x2+y2﹣4x﹣2y+1=0配方为:(x﹣2)2+(y﹣1)2=4,可得圆心C(2,1),半径r=2.直线ax+y﹣5=0截圆C:x2+y2﹣4x﹣2y+1=0的弦长为4,可得直线经过圆心.【解答】解:圆C:x2+y2﹣4x﹣2y+1=0配方为:(x﹣2)2+(y﹣1)2=4,可得圆心C(2,1),半径r=2.∵直线ax+y﹣5=0截圆C:x2+y2﹣4x﹣2y+1=0的弦长为4,∴直线经过圆心,∴2a+1﹣5=0,解得a=2.故选:C.5.下列命题中错误的个数为:()①y=的图象关于(0,0)对称;②y=x3+x+1的图象关于(0,1)对称;③y=的图象关于直线x=0对称;④y=sinx+cosx的图象关于直线x=对称.A.0 B.1 C.2 D.3【考点】函数的图象.【分析】根据函数的奇偶性判断,①③,根据对称的定义判断②,根据三角函数的图象判断④【解答】解:①y=,f(﹣x)=+=+=﹣=﹣﹣=﹣(+)=﹣f(x),∴函数为奇函数,则图象关于(0,0)对称,故正确②y=x3+x+1的图象关于(0,1)对称;由题意设对称中心的坐标为(a,b),则有2b=f(a+x)+f(a﹣x)对任意x均成立,代入函数解析式得,2b=(a+x)3+3(a+x)+1+(a﹣x)3+3(a﹣x)+1对任意x均成立,∴a=0,b=1即对称中心(0,1),故正确③y=的图象关于直线x=0对称,因为函数为偶函数,故函数关于y轴(x=0)对称,故正确,④y=sinx+cosx=sin(x+)的图象关于直线x+=对称,即x=对称,故正确.故选:A6.如图是某多面体的三视图,网格纸上小正方形的边长为1,则该多面体的体积为()A.32 B.C.16 D.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为三棱锥A﹣BCD,其外面图形为棱长为4的正方体.【解答】解:如图所示,该几何体为三棱锥A﹣BCD,其外面图形为棱长为4的正方体.∴该多面体的体积V==.故选:D.7.设函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在(0,)单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【考点】三角函数的周期性及其求法.【分析】利用辅助角公式化积,由周期求得ω,再由函数为偶函数求得φ,求出函数解析式得答案.【解答】解:f(x)=sin(ωx+φ)﹣cos(ωx+φ)=2sin(ωx+φ﹣).由T=,得ω=2.∴f(x)=2sin(2x+φ﹣).又f(﹣x)=f(x),∴sin(﹣2x+φ)=2sin(2x+φ﹣).得﹣2x+φ=2x+φ﹣+2kπ或﹣2x+φ+2x+φ﹣=π+2kπ,k∈Z.解得φ=,k∈Z.∵|φ|<,∴φ=.∴f(x)=2sin(2x﹣)=2sin(2x﹣)=﹣2cos2x.则f(x)在(0,)单调递增.故选:C.8.已知a>0,b>0,且为3a与3b的等比中项,则的最大值为()A.B.C.D.【考点】等比数列的通项公式;基本不等式.【分析】由等比中项推导出a+b=1,从而===,由此利用基本不等式能求出的最大值.【解答】解:∵a>0,b>0,且为3a与3b的等比中项,∴3a•3b=3a+b=()2=3,∴a+b=1,∴===≤=.当且仅当时,取等号,∴的最大值为.故选:B.9.若函数f(x)为定义在R上的连续奇函数且3f(x)+xf′(x)>0对x>0恒成立,则方程x3f(x)=﹣1的实根个数为()A.0 B.1 C.2 D.3【考点】函数恒成立问题.【分析】可构造函数g(x)=x3f(x),利用导数判断其单调性,结合函数为奇函数,即可得出结论.【解答】解:令g(x)=x3f(x),则g′(x)=x2[3f(x)+xf′(x)],∵3f(x)+xf′(x)>0对x>0恒成立,∴g ′(x )>0,∴当x >0时,g (x )为增函数, 又∵函数f (x )是定义在R 上的奇函数, ∴g (x )为R 上的增函数,∴方程x 3f (x )=﹣1的实根个数为1. 故选:B .10.在直三棱柱ABC ﹣A 1B 1C 1中,侧棱长为,在底面△ABC 中,∠C=60°,,则此直三棱柱的外接球的表面积为( )A .B .C .16πD .【考点】球的体积和表面积.【分析】由题意可知直三棱柱ABC ﹣A 1B 1C 1中,底面ABC 的小圆半径为1,连接两个底面中心的连线,中点与顶点的连线就是球的半径,即可求出球的表面积.【解答】解:由题意可知直三棱柱ABC ﹣A 1B 1C 1中,底面小圆ABC 的半径为=1,连接两个底面中心的连线,中点与顶点的连线就是球的半径,外接球的半径为: =2,外接球的表面积为:4π•22=16π. 故选C .11.已知椭圆C :+=1(a >b >0),点M ,N ,F 分别为椭圆C 的左顶点、上顶点、左焦点,若∠MFN=∠NMF+90°,则椭圆C 的离心率是( )A .B .C .D .【考点】椭圆的简单性质.【分析】由题意画出图形,结合已知可得a ,b ,c 的关系,进一步结合隐含条件可得关于离心率e 的方程求解. 【解答】解:如图,tan∠NMF=,tan∠NFO=,∵∠MFN=∠NMF+90°,∴∠NFO=180°﹣MFN=90°﹣∠NMF,即tan∠NFO=,∴,则b2=a2﹣c2=ac,∴e2+e﹣1=0,得e=.故选:A.12.已知函数f(x)=,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为()A.B.2﹣C.D.﹣【考点】函数的最值及其几何意义;函数恒成立问题;分段函数的应用.【分析】画出函数f(x)=的图象,结合对数函数的图象和性质,可得x1•x 2=1,x1+x2>=2,(4﹣x3)•(4﹣x4)=1,且x1+x2+x3+x4=8,则不等式kx3x4+x12+x22≥k+11恒成立,可化为:k≥恒成立,求出的最大值,可得k的范围,进而得到实数k的最小值.【解答】解:函数f(x)=的图象如下图所示:当方程f (x )=m 有四个不等实根x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4)时,|lnx 1|=|lnx 2|,即x 1•x 2=1,x 1+x 2>=2,|ln (4﹣x 3)|=|(4﹣x 4)|,即(4﹣x 3)•(4﹣x 4)=1, 且x 1+x 2+x 3+x 4=8,若不等式kx 3x 4+x 12+x 22≥k+11恒成立, 则k ≥恒成立,由=== [(x 1+x 2)﹣4+8]≤2﹣故k ≥2﹣,故实数k 的最小值为2﹣,故选:B二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知向量,满足,|,且(λ>0),则λ= 2 .【考点】平面向量数量积的运算.【分析】根据条件即可求出的值,而由可得到,两边平方即可得到关于λ的方程,解出λ即可.【解答】解:; 由得,;∴;∴4=λ2,且λ>0;∴λ=2.故答案为:2.14.设x,y满足约束条件则z=x﹣3y的取值范围为[﹣2,4] .【考点】简单线性规划.【分析】由约束条件作出可行域,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(,),联立,解得B(4,0),由图可知,当目标函数z=x﹣3y过A时,z有最小值为﹣2;当目标函数z=x﹣3y过B时,z有最大值为:4.故答案为:[﹣2,4].15.已知双曲线C:的右焦点为F,P是双曲线C的左支上一点,M(0,2),则△PFM周长最小值为.【考点】直线与双曲线的位置关系;双曲线的简单性质.【分析】设双曲线的左焦点为F',求出双曲线的a,b,c,运用双曲线的定义可得|PA|+|PF|=|PA|+|PF'|+2,考虑P在左支上运动到与A,F'共线时,取得最小值,即可得到所求值.【解答】解:设双曲线的左焦点为F',由双曲线C:可得a=1,b=,c=2,即有F(2,0),F'(﹣2,0),△PFM周长为|PM|+|PF|+|MF|=|PM|+|PF|+2,由双曲线的定义可得|PF|﹣|PF'|=2a=2,即有|PM|+|PF|=|PM|+|PF'|+2,当P在左支上运动到M,P,F'共线时,|PM|+|PF'|取得最小值|MF'|=2,则有△APF周长的最小值为2+2+2=2+4.故答案为:16.若Sn 为数列{an}的前n项和,且2Sn=an+1an,a1=4,则数列{an}的通项公式为an=.【考点】数列递推式.【分析】2Sn =an+1an,a1=4,n=1时,2×4=4a2,解得a2.n≥2时,2Sn﹣1=anan﹣1,可得2an=an+1an﹣an an﹣1,可得an+1﹣an﹣1=2.n≥2时,an+1﹣an﹣1=2,可得数列{an}的奇数项与偶数项分别为等差数列.【解答】解:∵2Sn =an+1an,a1=4,∴n=1时,2×4=4a2,解得a2=2.n≥2时,2Sn﹣1=anan﹣1,可得2an=an+1an﹣anan﹣1,∴an =0(舍去),或an+1﹣an﹣1=2.n≥2时,an+1﹣an﹣1=2,可得数列{an}的奇数项与偶数项分别为等差数列.∴a2k﹣1=4+2(k﹣1)=2k+2.k∈N*.a2k=2+2(k﹣1)=2k.∴an=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在△ABC中,内角A,B,C的对边分别为a,b,c,且acosC,bcosA,ccosA成等差数列.(1)求角A的大小;(2)若a=3,,求的最大值.【考点】余弦定理;正弦定理.【分析】(1)由等差数列的性质可得2bcosA=acosC+ccosA,由正弦定理,三角形内角和定理化简可得sinB=2sinBcosA,结合sinB≠0,可求,即可得解.(2)利用平面向量的运算,余弦定理可得,进而利用基本不等式即可计算得解.【解答】解:(1)∵由题意知2bcosA=acosC+ccosA,由正弦定理知sinAcosC+sinCcosA=2sinBcosA,∴sin(A+C)=sinB=2sinBcosA,又∵sinB≠0,∴,∴.(2)∵,∴=()=(c2+b2+2cbcosA)=(c2+b2+cb),又∵由余弦定理可得:a2=c2+b2﹣2cbcosA=c2+b2﹣cb=9,∴,∵由c2+b2﹣cb=9≥2cb﹣cb=cb,当且仅当c=b时取等号,∴,∴的最大值为.18.重庆八中大学城校区与本部校区之间的驾车单程所需时间为T,T只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.(1)求T的分布列与P(T<E(T));(2)某天有3位教师独自驾车从大学城校区返回本部校区,记X表示这3位教师中驾车所用时间少于E(T)的人数,求X的分布列与E(X);(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)以频率估计频率,即可取得T的分布列.求出期望,得到概率即可.(2)判断分布列是二项分布,然后列出分布列求出期望.(3)设T1,T2分别表示往返所需时间,设事件A表示“从离开大学城校区到返回大学城校区共用时间不超过120分钟”,则P(A)=P(T1=25)P(T2≤45)+P(T1=30)P(T2≤40)+P(T1=35)P(T2≤35)+P(T1=40)P(T2≤30)求解即可.【解答】解:(1)以频率估计频率得T的分布列为:∴E(T)=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟),P(T<E(T))=P(T<32)=0.2+0.3=0.5.(2)X~B(3,),P(X=k)=(k=0,1,2,3).E(X)=3×=.(3)设T1,T2分别表示往返所需时间,设事件A表示“从离开大学城校区到返回大学城校区共用时间不超过120分钟”,则P(A)=P(T1=25)P(T2≤45)+P(T1=30)P(T2≤40)+P(T1=35)P(T2≤35)+P(T1=40)P(T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.19.如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分别为AC,BC的中点.(1)求证:AB1∥平面C1MN;(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)连接B1N,B1C,设B1C与NC1交于点G,推导出四边形B1C1CN是平行四边形,从而MG∥AB1,由此能证明AB1∥平面C1MN.(2)以点M为坐标原点,MA,MB,MA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角C﹣MC1﹣N的大小.【解答】证明:(1)连接B1N,B1C,设B1C与NC1交于点G,在三棱台ABC﹣A1B1C1中,AB=2A1B1,则BC=2B1C1,而N 是BC 的中点,B 1C 1∥BC , 则B 1C 1NC ,所以四边形B 1C 1CN 是平行四边形,G 是B 1C 的中点,在△AB 1C 中,M 是AC 的中点,则MG ∥AB 1, 又AB 1⊄平面C 1MN ,MG ⊂平面C 1MN , 所以AB 1∥平面C 1MN .解:(2)由CC 1⊥平面ABC ,可得A 1M ⊥平面ABC , 而AB ⊥BC ,AB=BC ,则MB ⊥AC , 所以MA ,MB ,MA 1两两垂直,故以点M 为坐标原点,MA ,MB ,MA 1所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.设AB=2,则A 1B 1=CC 1=1,AC=2,AM=,B (0,,0),C (﹣,0,0),C 1(﹣,0,1),N (﹣,,0),则平面ACC 1A 1的一个法向量为=(0,1,0), 设平面C 1MN 的法向量为=(x ,y ,z ),则,取x=1,则=(1,1,),cos <>=,由图形得得二面角C ﹣MC 1﹣N 为锐角, 所以二面角C ﹣MC 1﹣N 的大小为60°.20.在直角坐标系xOy 中,点P (2,1)为抛物线C :y=上的定点,A ,B 为抛物线C 上两个动点. (1)若直线PA 与PB 的倾斜角互补,证明:直线AB 的斜率为定值;(2)若PA ⊥PB ,直线AB 是否经过定点?若是,求出该定点,若不是,说明理由.【考点】直线与抛物线的位置关系.【分析】(1)设出A 、B 坐标,利用斜率公式及直线PA 与PB 的倾斜角互补两直线斜率相反,从而求出AB 斜率.(2)若PA ⊥PB ,则两直线斜率积为﹣1,求出直线AB 的方程,可得直线AB 经过定点(﹣2,5).【解答】证明:(1)设点A (x 1,),B (x 2,),若直线PA 与PB 的倾斜角互补,则两直线斜率相反,又k PA ==,k PB ==,所以+=0,整理得x 1+x 2+4=0,所以k AB ===﹣1.(2)解:因为PA ⊥PB ,所以k PA k PB =•=﹣1,即x 1x 2+2(x 1+x 2)+20=0,①直线AB 的方程为:,整理得:4y ﹣=(x 1+x 2)(x ﹣x 1),即x 1x 2﹣x (x 1+x 2)+4y=0,②由①②可得,解得,即直线AB经过定点(﹣2,5).21.设函数f(x)=(x+2a)ln(x+1)﹣2x,a∈R.(1)当a=1时,求函数f(x)的单调区间及所有零点;(2)设A(x1,y1),B(x2,y2),C(x3,y3)为函数g(x)=f(x)+x2﹣xln(x+1)图象上的三个不同点,且x1+x2=2x3.问:是否存在实数a,使得函数g(x)在点C处的切线与直线AB平行?若存在,求出所有满足条件的实数a的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求出函数的导数,根据函数的单调性判断函数的零点即可;(2)求出g(x)的表达式,根据直线AB的斜率k=,得到g′()=,即aln=,通过讨论a=0和a≠0,从而确定满足题意的a的值即可.【解答】解:(1)当a=1时,f(x)=(x+2)ln(x+1)﹣2x,则f′(x)=ln(x+1)+﹣1,记h(x)=ln(x+1)+﹣1,则h′(x)=≥0,即x≥0,从而,h(x)在(0,+∞)上单调递增,在(﹣1,0)上单调递减,则h(x)≥h(0)=0,即f′(x)≥0恒成立,故f(x)在(﹣1,+∞)上单调递增,无单调递减区间,又f(0)=0,则0为唯一零点.(2)由题意知g(x)=f(x)+x2﹣ln(x+1)=2aln(x+1)+x2﹣2x,则g′(x)=+2x﹣2,直线AB的斜率k=,则有:g′()=,即+2•﹣2=,即+x 1+x 2﹣2=+x 2+x 1﹣2,即=,即aln =,①当a=0时,①式恒成立,满足条件;当a ≠0时,①式得ln =2•=2•,②记t=﹣1,不妨设x 2>x 1,则t >0,②式得ln (t+1)=.③由(1)问可知,方程③在(0,+∞)上无零点.综上,满足条件的实数a=0.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.(1)写出曲线C 的直角坐标方程; (2)已知直线l 与x 轴的交点为P ,与曲线C 的交点为A ,B ,若AB 的中点为D ,求|PD|的长.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C 的极坐标方程化为,由此能求出曲线C 的直角坐标方.(2)P 的坐标为,将l 的参数方程代入曲线C 的直角坐标方程得:,由此能求出|PD|的长.【解答】解:(1)∵曲线C的极坐标方程为,∴,∴x2+y2=2,∴曲线C的直角坐标方程为.(2)P的坐标为,在平面直角坐标系xOy中,直线l的参数方程为(t 为参数),将l的参数方程代入曲线C的直角坐标方程得:,设点A,B,D对应的参数分别为t1,t2,t3,则,t1t2=3,,∴|PD|的长为.[选修4-5:不等式选讲]23.若关于x的不等式|x+a|≤b的解集为[﹣6,2].(1)求实数a,b的值;(2)若实数m,n满足|am+n|<,|m﹣bn|<,求证:|n|<.【考点】绝对值不等式的解法.【分析】(1)关于x的不等式|x+a|≤b的解集为[﹣b﹣a,b﹣a],利用条件建立方程组,即可求实数a,b的值;(2)利用|n|=|(2m+n)﹣(2m﹣8n)|≤|2m+n|+2|m﹣4n|,即可证明结论.【解答】(1)解:关于x的不等式|x+a|≤b的解集为[﹣b﹣a,b﹣a],∵关于x的不等式|x+a|≤b的解集为[﹣6,2],∴,∴a=2,b=4;(2)证明:∵实数m,n满足|am+n|<,|m﹣bn|<,∴|n|=|(2m+n)﹣(2m﹣8n)|≤|2m+n|+2|m﹣4n|<=.。
重庆武隆县中学2019年高三数学理月考试卷含解析
重庆武隆县中学2019年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若命题“?x,y∈(0,+∞),都有(x+y)≥9”为真命题,则正实数a的最小值是( )A.2 B.4C.6 D.8参考答案:B略2. 已知命题:如果,那么;命题:如果,那么;命题:如果,那么.关于这三个命题之间的关系,下列三种说法正确的是( )① 命题是命题的否命题,且命题是命题的逆命题.② 命题是命题的逆命题,且命题是命题的否命题.③ 命题是命题的否命题,且命题是命题的逆否命题.A.①③; B.②; C.②③ D.①②③参考答案:A3. 已知集合,,则()A.B.C.D.参考答案:D4. 已知,则的值是A. B. C.D.参考答案:C略5. 设函数,若的图象与图象有且仅有两个不同的公共点,则下列判断正确的是A.当时,B. 当时,C. 当时,D. 当时,参考答案:B在同一坐标系中分别画出两个函数的图象,当时,要想满足条件,则有如图,做出点A关于原点的对称点C,则C点坐标为,由图象知即,同理当时,则有,故答案选B.另法:,则方程与同解,故其有且仅有两个不同零点.由得或.这样,必须且只须或,因为,故必有由此得.不妨设,则.所以,比较系数得,故.,由此知,故答案为B.6. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知、是一对相关曲线的焦点,是它们在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是()A. B. C. D.参考答案:A设椭圆的半长轴为,椭圆的离心率为,则.双曲线的实半轴为,双曲线的离心率为,.,则由余弦定理得,当点看做是椭圆上的点时,有,当点看做是双曲线上的点时,有,两式联立消去得,即,所以,又因为,所以,整理得,解得,所以,即双曲线的离心率为,选A.7. 函数y=ln(cosx),的图象是( ) [Z#X#X#AAK]参考答案:A略8. 首项为1,公比为2的等比数列的前10项和A.1022 B.1023 C.1024 D.1025参考答案:B9. 在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为线段CD和A1B1上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和()A. 有最小值B. 有最大值C. 为定值3D. 为定值2参考答案:D【分析】分别在后,上,左三个平面得到该四边形的投影,求其面积和即可.【详解】依题意,设四边形D1FBE的四个顶点在后面,上面,左面的投影点分别为D',F',B',E',则四边形D1FBE在上面,后面,左面的投影分别如上图.所以在后面的投影的面积为S后=1×1=1,在上面的投影面积S上=D'E'×1=DE×1=DE,在左面投影面积S左=B'E'×1=CE×1=CE,所以四边形D1FBE所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和S=S后+S上+S左=1+DE+CE=1+CD=2.故选:D.【点睛】本题考查了正方体中四边形的投影问题,考查空间想象能力.属于中档题.10. 一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为A. B. C. D.参考答案:答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为.参考答案:正相关12. 若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积=_________cm2.参考答案:15π13. 已知向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆2019学部2019-2020学年度下期第2次月考理科数学一、选择题(本题共12小题,每小题5分) 1.若复数iia 213++(R a ∈,i 是虚数单位)是纯虚数,则a 的值为( ) A.23 B.23- C.6 D.-62.已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合B C U ⋂A =( )A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}3.已知向量)21(,-=a ,)1-(,m b =,)23(-=,c ,若c b a ⊥-)(,则m 的值是( )A.27 B.35C.3D.-34.直线2:+=my x l 与圆02222=+++y y x x 相切,则m 的值为( )A.1或-6B.1或-7C.-1或7D.1或71-5.甲盒子中装有2个编号分别为1,2的小球,乙盒子中装有3个编号分别为1,2,3的小球,从甲、乙两个盒子中各随机取一个小球,则取出的两个小球的编号之和为奇数的概率为( )A.32B.21C.31D.616.一个几何体的三视图如图,该几何体的表面积为( )A.280B.292C.360D.3727.设0>w ,函数2)3sin(++=πwx y 的图象向右平移34π个单位后与原图象重合,则w 的最小值是( ) A.32 B.34 C.23D.38.如果执行右面的程序框图,输入46==m n ,,那么输出的p等于( )A.720B.360C.240D.120 9.若4cos -=α,α是第三象限的角,则2tan12tan 1αα-+=( )A.-21B.21C.2D.-210.在区间],[ππ-内随机取两个数分别记为b a ,,则函数222)(b ax x x f -+= +2π有零点的概率( ) A.8-1πB.4-1πC.2-1πD.23-1π11.设双曲线的左准线与两条渐近线交于A 、B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( ) A.)20(, B.)122(, C.)21(, D.)2(∞+,12.记函数)(x f (e x e≤<1,e=2.71828…是自然对数的底数)的导数为)('x f ,函数)(')1()(x f ex x g -=只有一个零点,且)(x g 的图象不经过第一象限,当e x 1>时,ex x x f 11ln 1ln 4)(>+++,0]1ln 1ln 4)([=+++x x x f f ,下列关于)(x f 的结论,成立的是( )A.)(x f 最大值为1B.当e x =时,)(x f 取得最小值C.不等式0)(<x f 的解集是(1,e )D.当11<<x e时,)(x f >0二、填空题(本题共4小题,每小题5分,共20分) 13.在△ABC 中,若31sin 45==∠=A B b ,,π,则=a . 14.正方体1111D C B A ABCD -中,1BB 与平面1ACD 所成角的余弦值为. 15.由直线0323===y x x ,,ππ与x y sin =所围成的封闭图形的面积为 ______. 16.设函数⎪⎩⎪⎨⎧<<≥=10ln1ln )(x xx x x x x f ,,,若}{n a 是公比大于0的等比数列,且1543=a a a ,若16212)(...)()(a a f a f a f =+++,则1a = ______ .三、解答题(70分)17.已知等差数列{}n a 满足:267753=+=a a a ,,{}n a 的前n 项和为n S . (1)求n a 及n S .(2)令n b =211n a -(*N n ∈),求数列{}n b 的前n 项和n T . 18.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1(2)当产品中的微量元素x ,y 满足x ≥175且y ≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).19.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,60BAD ∠=. (1)求证:BD PAC ⊥平面;(2)若PA=AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.20.设(,)P a b 是椭圆22221(0)x y a b a b+=>>上的动点,21F F ,为椭圆的左右焦点且满足212||||.PF F F = (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆22(1)(16++=x y 相交于M ,N两点,且5||||8MN AB =,求椭圆的方程.21.已知函数1()[1(2)1(2)]2f x t n x n x =+-- , 且()(4)f x f ≥恒成立。
(1)求t 的值. (2)求x 为何值时, ()f x 在 3, 7] 上取得最大值; (3)设)()1ln()(x f x a x F --= , 若)(x F 是单调递增函数, 求a 的取值范围。
请考生在第2 2~2 3两题中任选一题做答, 如果多做, 则按所做的第一题记分。
22.在平面直角坐标中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为)0(cos 2sin 2>=a a θθρ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222(t 为参数),直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若102||=AB ,求a 的值. 23.设函数()3f x x a x =-+,其中0a >. (1)当1a =时,求不等式()32f x x ≥+的解集; (2)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.重庆2019学部2019-2020学年度下期第2次月考理科数学参考答案一、选择题DADBB CCBAB CA 二、填空题○13325○1436○151 ○162e 三、解答题17.(1)设等差数列}{n a 的公差为d ,因为37a =,5726a a +=,所以有2,32610272111==⎩⎨⎧=+=+d a d a d a 解得所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (2)由(1)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1). 18.(1)由题意知,抽取比例为719814=,则乙厂生产的产品数量为3575=⨯(件); (2)由表格知乙厂生产的优等品为2号和5号,所占比例为52.由此估计乙厂生产的优等品的数量为145235=⨯(件); (3)由(2)知2号和5号产品为优等品,其余3件为非优等品.ξ的取值为0,1,2. P(ξ=0)=1032523=C C , P(ξ=1)=53106251213==C C C , P(ξ=2)=1012522=C C . 从而分布列为数学期望E(ξ)=012⨯+⨯+⨯=.19.(1)因为四边形ABCD 是菱形,所以AC BD ⊥.又因为PA ⊥平面ABCD ,所以PA BD ⊥.又PA AC A,⋂=所以BD ⊥平面PAC.(2)设AC BD O =.因为060,2BAD PA AB ∠===,所以1,BO AO CO ===,如图,以O 为坐标原点,建立空间直角坐标系O xyz -,则(0,2),(0,P A,(1,0,0),B C ,所以(1,3,2),(0,2PB AC =-=.设PB 与AC 所成角为θ,则cos ||||||2PB ACPB AC θ⋅===.(3)由(2)知(BC =-,设(0,)(0)P t t >.则(1,)BP t =-,设平面PBC 的法向量(,,)m xy z =,则0,0BC m BP m ⋅=⋅=,所以00xx tz ⎧-+=⎪⎨-+=⎪⎩,令y =63,x z t ==,所以6(3,3,)m t =.同理,平面PDC 的法向量6(3,3,)n t=-.因为平面PBC ⊥平面PDC ,所以0m n ⋅=,即23660t -+=,解得t =所以. 20.(1)设12(,0),(,0)(0)F c F c c->,因为212||||PF F F =,所以2c =,整理得22()10,1c c c a a a+-==-得(舍),或11,.22c e a ==所以(2)由(Ⅰ)知2,a c b ==,得椭圆方程为2223412x y c +=,直线PF 2的方程为).=-y x cA ,B 两点的坐标满足方程组2223412,).⎧+=⎪⎨=-⎪⎩x y c y x c 消去y 并整理,得2580-=x cx .解得1280,5x x c ==,得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(,)55A c c,(0,)B ,所以16||.5AB c == 于是5||||2.8MN AB c ==圆心(-到直线PF 2的距离||2|.22+==c d222||()42MN d +=,223(2)16.4∴++=c c整理得2712520+-=c c ,得267=-c (舍),或 2.c =所以椭圆方程为221.1612x y +=21.(1)∵函数)]2ln()2ln([21)(--+=x x t x f ,且)4()(f x f ≥恒成立∴)(x f 的定义域为(2,+∞),且)4(f 是)(x f 的最小值又∵)212(21)('--+=x x t x f ∴0)216(21)4('=-=t f ,解得3=t∴44)2123(21)('2--=--+=x x x x x f ∴当42<<x 时,0)('<x f ,当4>x 时,0)('>x f ∴)(x f 在(2,4)上是减函数,在(4,+∞)上是增函数 ∴)(x f 在3,7]上的最大值应在端点处取得∴0)729ln 625(ln 21)5ln 9ln 3(21)7()3(<-=-=-f f∴)7()3(f f <,故当7=x 时,)(x f 取得在3,7]上的最大值. (2)∵)(x F 是单调增函数, ∴0)('>x f 恒成立∵)4)(1()1(45)1(441)('222--+-+-=----=x x a x x a x x x a x F ∴在)(x f 的定义域(2,+∞)上,0)4)(1(2>--x x 恒成立 ∴0)1(45)1(2>+-+-a x x a 在(2,+∞)上恒成立下面讨论0)1(45)1(2>+-+-a x x a 在(2,+∞)上恒成立时,a 的解的情况: 2当01=-a 时,0)1(45)1(2>+-+-a x x a 在(2,+∞)上恒成立 当01>-a 时,又有两种情况:○10)1)(1(1652<=-+a a ○22)1(25<--a ,且0)1(425)1(2>+-⨯+-a x a由○1得09162<+a ,无解; 由○2得41->a ,∵01>-a ,∴1>a ; 综上所述,当1≥a 时,0)1(45)1(2>+-+-a x x a 在(2,+∞)上恒成立22.(1)曲线C 的极坐标方程为ρsin 2θ=2acos θ(a >0)可得ρ2sin 2θ=2a ρcos θ. 可得:曲线C 的普通方程为:y 2=2ax ;直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222(t 为参数),普通方程为x -y -2=0; (2)直线与曲线联立可得y 2-2ay -4a =0,∵|AB|=210, ∴10216422=+⋅a a ,解得a =-5或1. 23.(1)当1a =时,()32f x x ≥+可化为|1|2x -≥. 由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. (2) 由()0f x ≤ 得 30x a x -+≤,此不等式化为不等式组⎩⎨⎧≤+-≥03x a x a x 或⎩⎨⎧≤+-≤03x x a a x 即⎪⎩⎪⎨⎧≤≥4a a a x 或⎪⎩⎪⎨⎧≤≤2-a a a x 因为0a >,所以不等式组的解集为{}|2ax x ≤-.由题设可得2a-=1-,故2a =.。