201X版八年级数学下册第十九章一次函数19.1变量与函数19.1.1变量与函数教学课件2 新人教版

合集下载

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。

19.1.1 变量与函数(第2课时)课件

19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=

x
2

2(
x

2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;

19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

19.1.1 变量与函数  课件(共16张PPT)  人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …

人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿

人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿

变量与函数(第1课时)说课尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。

下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。

第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。

遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。

所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。

(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。

2.能结合具体实例概括函数概念。

3.在函数概念形成的过程中体会运动变化与对应的思想。

(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。

【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。

第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。

在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。

2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。

19.1.1变量与函数(第一课时)说课稿

19.1.1变量与函数(第一课时)说课稿

《19.1.1变量与函数》说课稿各位评委,大家好!今天我要说课的内容是义务教育教科书人教版八年级下册第十九章《一次函数》第一节《变量与函数》。

下面我将从教材、教法、学法、教学程序四个方面来进行阐述。

一、说教材1、教材的地位及作用人教版八年级下册第十九章《一次函数》是《课程标准》中“数与代数”领域的重要内容。

函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。

而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。

本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。

2、根据课程标准的要求和基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验,我制定了如下的教学目标。

知识和能力:(1)掌握常量、变量的概念,体验在一个过程中常量与变量是相对存在的;(2)会在较复杂问题中辨别常量与变量。

过程和方法:通过实践与探索,让学生参与变量的发现过程,强化数学的应用意识,学会将实际问题抽象成数学问题。

情感态度价值观:通过学生列举身边的事例,激发学生探究问题的兴趣,体会数学应用价值,在探索活动中获得成功的体验。

为达成以上的教学目标,结合学生实际情况,确定本节课的教学重点为,常量和变量的概念;要突破的教学难点是:较复杂问题中常量与变量的识别。

二、说教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教学理论,结合本节课的内容特点和八年级学生的认知特征,本节课我采用自主学习、合作探究、引领提升的方式展开教学,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。

在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。

八年级数学 第十九章 一次函数 19.1 函数 19.1.1 变量与函数 第2课时 函数

八年级数学 第十九章 一次函数 19.1 函数 19.1.1 变量与函数 第2课时 函数

3.一名司机驾驶汽车从甲地去乙地,他以 80 km/h 的平均速度用了 4 h 到达
乙地.当他按照原路返回时,汽车的速度 v(km/h)与时间 t(h)的函数关系式是( B )
A.v=320t
B.v=32t 0
C.v=20t
D.v=2t0
12/11/2021
第二十一页,共二十八页。
4.下列关系式中,y 不是 x 的函数的是( A )
12/11/2021
第六页,共二十八页。
2.函数值与函数的解析式 函数值:在一个函数关系式中,如果当 x=a 时,y=b,那么 b 叫做当自变量 为 a 时的 函数(hánshù)值. 解析式:用关于 自变量 的数学式子表示函数与自变量之间的关系,是描 述函数的常用方法,这种式子叫做函数的解析式.
12/11/2021
第十四页,共二十八页。
【解析】 A.y=14x2=116x2,y 是 x 的函数; B.每个学号对应一个学生,每个学生对应一个身高,y 是 x 的函数; C.y=π12x2=14πx2,y 是 x 的函数; D.y=± x(x>0),每一个 x 的值对应两个 y 的值,y 不是 x 的函数.故选 D.
第十三页,共二十八页。
当堂测评
1.下面每个选项中分别给出了某个变化过程中的两个变量 x 和 y,其中 y 不 是 x 的函数的是( D )
A.y:正方形的面积,x:这个正方形的周长 B.y:某班某名学生的身高,x:这个班学生的学号 C.y:圆的面积,x:这个圆的直径 D.y:一个正数的平方根,x:这个正数
12/11/2021
第二页,共二十八页。
★教学目标★ 1.理解函数、自变量、函数值、函数的解析式等的概念; 2.会求函数自变量的取值范围.

八年级下册数学第十九章 一次函数》教学设计

八年级下册数学第十九章 一次函数》教学设计

第十九章一次函数19.1 函数19.1.1 变量与函数第1课时变量与常量理解变量、常量的概念.重点变量与常量的概念,变量之间的关系.难点理解并掌握变量以及变量之间的关系.一、创设情境,引入新课情境问题:一辆汽车以60千米/时的速度行驶,行驶路程为s千米,行驶时间为t小时.请同学们根据题意填写下表:生:变化的量是时间和路程,不变的量是速度.师:1小时路程为60千米,2小时路程为2×60千米,…,所以t小时路程为60t千米,即s=60t.这个问题反映了匀速行驶的汽车所行驶的路程随时间变化的过程,在现实生活中,有许多类似的问题,在这些问题中都有变化着的量和始终不变的量.二、讲授新课1.每张电影票零售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,三场电影的票房收入各是多少元?设一场电影售出x张票,如何用含x的式子表示票房收入y元?生:早场收入为150×10=1500(元),午场收入为205×10=2050(元),晚场收入为310×10=3100(元),当售出的票数为x张时,收入y=10x.师:在这个过程中有没有变化着的量与始终不变的量?生:有,售出的张数与票房收入是变化着的量,每张电影票的售价是始终不变的量.2.活动一:请大家动手画出一个面积为10 cm2,20 cm2的圆各一个.生:必须先根据圆的面积公式算出半径,再画圆.师:那么它们的半径各是多少呢?生:第一个圆的半径为103.14≈1.8 (cm);第二个圆的半径为203.14≈2.5(cm). 师:如果圆的面积为S ,怎样表示出半径r? 生:r =S π. 师:在这个过程中,变量与常量各是什么? 生:这里变量是S 和r ,常量是π.3.活动二:用10 m 长的绳子围成长方形,改变长方形的长度,观察长方形面积的变化,并记录不同长方形的长度值,计算相应的面积.生1:当长为4 m 时,宽为1 m ,面积为4×1=4(m 2). 生2:当长为3 m 时,宽为2 m ,面积为3×2=6(m 2). 师:设长方形的长度为x m ,如何求出它的面积S?生:当长为x m 时,它的宽是(5-x) m ,因此它的面积是S =x(5-x)m 2. 师:长方形的长与宽以及面积是变量,绳子的总长是常量.这些问题反映了不同事物的变化过程,其中有些量的值是按照某种规律变化的,像这种数值发生变化的量称为变量,有些量的数值始终不变,像这种数值始终不变的量称为常量.三、巩固练习1.购买一些练习本,单价0.5元/本,总价y(元)随练习本本数x 的变化而变化,指出其中的常量与变量,并写出关系式.【答案】y =0.5x ,其中x ,y 是变量,0.5是常量.2.一个三角形的底边长10 cm ,高h 可以任意伸缩,写出面积S 随h 变化的关系式,并指出其中的常量与变量.【答案】S =12×10h =5h ,其中,S ,h 是变量,5是常量.四、课堂小结变量:在一个变化过程中数值发生变化的量. 常量:在一个变化过程中数值始终保持不变的量.本节课从学生熟知的生活出发,抽象出函数中基本的两个概念:常量与变量,然后通过练习进一步掌握.像这样取材于学生生活,结合学生已有的经验进行教学,正是新课标所要求的. 第2课时 函 数理解函数的概念,准确写出函数的关系式.重点函数的概念,函数解析式的求法.难点函数概念的理解.一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容.二、讲授新课师:观察问题(1)中的表格,时间t和路程s是两个变量,但当t取定一个值时,s也随之确定一个值.生:是的,当t=1=300.师:问题(2)也是一样的,当早场x=150时,收入y=1500;当午场x=205时,y=2050;当晚场x=310时,y=3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y 也就确定一个值.师:问题(3)中,当圆的半径r=10 cm时,S=100π cm2,当r=20 cm时,S=400π cm2等,也就是说…生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且S=πr2.师:问题(4)中,当长为4 m时,面积为4 m2;当长为3 m时,面积S为6 m2;当长x为2.5 m时,面积S为6.25 m2,也就是说…生:也就是说当长x取定一个值时,面积S也就随之确定一个值.师:当长取定为x m时,面积S等于多少呢?生:S=x·(5-x)=5x-x2.师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s=60t.生2:问题(2)中,售票数量x是自变量,收入y是x的函数,y=10x.生3:问题(3)中,圆的半径r是自变量,面积S是r的函数,S=πr2.生4:问题(4)中,长方形的长x是自变量,面积S是x的函数,S=x(5-x).师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应.师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量x=a时的函数值,例如在问题(1)中当t=1时的函数值s=60,当t=2时的函数值s=120.在人口统计表中当x=1999时,函数值y=12.52亿.【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目.求下列函数中自变量x的取值范围:y=2x2-5;y=1x+4;y=x+3.生1:对于y=2x2-5,x没有任何限制,x可取任意实数.生2:对于y=1x+4,(x+4)必须不等于0式子才有意义,因此x≠-4.生3:对于y=x+3,由于二次根式的被开方数大于等于0,因此x≥-3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子. 1.改变正方形的边长x ,正方形的面积S 随之改变. 【答案】S =x 2,x 是自变量,S 是因变量.2.秀水村的耕地面积为106m 2,这个村人均占有耕地面积y 随这个村人数n 的变化而变化. 【答案】y =106n ,n 是自变量,y 是因变量.四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法,从而提高了运用函数知识解决实际问题的能力.本节课引入新课所设计的一些问题都来自于学生生活,函数的概念也是在教师引导下学生自主发现的,这样做能充分调动学生学习的积极性,同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识.19.1.2 函数的图象 第1课时 函数的图象(1)准确地运用列表、描点、连线等步骤画出函数的图象.重点函数图象的画法,观察分析图象的信息. 难点函数图象的理解,概括图象中的信息.一、创设情境,引入新课下面是一张心电图,其中横坐标x 表示时间,纵坐标y 表示心脏部位的生物电流,变量y 随x 的变化而变化.师:这个问题中的函数关系很难用式子表示,但是可以用图象直观地反映出来.事实上即使对能用函数关系式表示的函数,如果用图形表示,则会使函数关系更清晰.这就是我们这节课所要学习的内容——函数的图象.二、讲授新课师:如何表示出正方形的面积S 与边长x 的函数关系呢?自变量x 的取值范围又如何?生:正方形的面积S 与边长x 的函数关系式为S =x 2,其中自变量的取值范围是x >0.师:我们如何用画图的方法来表示S 与x 的关系呢?既然对于自变量x 的每一个确定的值,S 都有唯一确定的值与其对应,那么我们就列出其中的一部分:把其中x 9个点,请大家画出这样的9个点.学生画出平面直角坐标系并描出这样的9个点. 师:这个图形上只有这9个点吗?生:不是的,因为x 的取值不止这9个,点也就不止9个. 师:那么其他的点我们还可以像这样一一地描出来吗? 生:不能,因为有无数个点. 师:其他的点我们怎样画出来呢? 生:…师:其他的点我们不是一一描出的,而是根据这9个特殊点的位置来确定的,也就是用平滑的曲线把这9个点按从左到右的顺序连接起来.教师一边讲一边用平滑的曲线连接这些点,并要求学生跟着连线.师:这个图形我们就称作是函数S =x 2的图象.由于x ≠0,所以原点不在图象上,应用空心圆圈表示.教师总结:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内的这些点组成的图形就是这个函数的图象.师:函数图象为我们利用数形结合的思想研究函数提供了便利,另外,函数图象也给我们带来许多信息,大家从下面的图象中可以得到哪些信息?生1:我知道这天的最高气温是8℃,是中午14点时产生的;最低气温是-3℃,是凌晨4点产生的.师:请大家仔细观察,看还能得到哪些信息?如果学生不能回答,提醒学生从气温的变化趋势上考虑.生2:我知道从0时至4时,气温呈下降状态;从4时至14时,气温呈上升状态;从14时至24时,气温又呈下降状态.师:我们还可以从图象中看出这一天任一时刻的气温大约是多少,另外长期观察这样的气温图象,我们还能掌握气温的变化规律.三、例题讲解【例1】教材第76页例2 【例2】教材第77页例3 四、巩固练习用描点法画出函数y =3x (x ≠0)的图象.【答案】略 五、课堂小结用描点法画函数图象的步骤:第一步:列表,在自变量取值范围内选定一些值,求出对应的函数值;第二步:描点,在平面直角坐标系中,以自变量的值作为横坐标,相应的函数值作为纵坐标,描出对应各点;第三步:连线,按照自变量从小到大的顺序把所描各点用平滑曲线连接起来.本节课让学生自己动手一步一步地按照列表、描点、连线的步骤画出函数的图象,并且在老师的详细讲解下理解了图象的概念.这种通过学生自己动手来接受新知识的方法以后还要加强.第2课时 函数的图象(2)进一步理解并掌握函数的不同表示方法,会发现函数图象所提供的信息.重点从图象中提取信息,利用图象解决问题. 难点利用函数的图象解决问题.一、创设情境,引入新课师:我们在前面几节课已经看到或亲自动手用列表格、写式子和画图象的方法表示了一些函数,这三种表示函数的方法分别称为列表法、解析法和图象法.大家思考一下,从前面的例子看,这三种表示函数的方法各有什么优缺点?在遇到实际问题时又该如何选择这些方法?这就是我们这节课要研究的问题.二、讲授新课师:从以前的活动可以看出,函数的表示方法有三种:列表法、解析法和图象法,下面我们通过一个活动来探究这三种方法的优缺点.活动:水库的水位在最近5小时内持续上涨,下表记录了这5个小时的水位高度.生:列表法.师:它比较直观,如果我们要更准确地了解这5个小时中水位高度y(米)随时间t(时)的关系,我们可以用什么方法?生:解析法.师:下面我们就来求y 与t 的函数关系式.由于开始时水位高度为3米,以后每隔1小时水位升高0.3米,于是我们有y =0.3t +3,由于这段时间是指5小时内,因此0≤t ≤5.如果我们要想更形象、更直观地了解这两个变量间的关系,进而预测水位,哪种方法比较好呢?生:图象法.师:好,下面我们就来看这个函数的图象,如下图所示.师:如果估计这种上涨规律还会持续2小时,那么利用哪种方法还可以预测出再过2小时以后的高度呢?生1:利用函数解析式可以得到,当t =7小时时,y =0.3×7+3=5.1(米). 生2:利用图象也可以预测出当t =7小时时水位的高度.师:两个同学讲得都很好!利用解析式求2小时后的水位比较准确,通过图象估算比较直接、方便.刚 才这个活动,我们主要了解的是函数的三种表示方法的优缺点以及相互转化.具体说,列表法比较直观地反映出函数中两个变量的关系,但它不够全面,也不如图象法形象;解析法能比较全面、准确地表示出两个变量的关系,但它不够直观形象;图象法能形象、直观地反映出两个变量的关系,但它不够准确.也就是说这三种方法各有优缺点,在实际问题中我们要根据具体情况选择适当的方法,有时为了全面地认识问题,需要同时使用几种方法.三、巩固练习1.用列表法、解析法表示n边形的内角和m是边数n的函数.2.用解析法与图象法表示等边三角形的周长l是边长a的函数.四、课堂小结通过本节课的学习,我们认识了函数的三种不同表示方法,学会根据具体情况选择适当的方法来解决问题,另外我们进一步根据图象发现其中所蕴含的信息.本节课中函数的三种表示方法的优缺点是学生在比较中自己发现的,爬山问题中图象的信息也是学生通过交流、讨论以及老师的适当提醒发现的,像这样让学生在交流、探究中学习知识的方法是值得提倡的.19.2 一次函数19.2.1 正比例函数第1课时正比例函数(1)理解并掌握正比例函数的概念及图象.重点正比例函数的概念、图象及性质.难点正比例函数的图象及性质.一、创设情境,引入新课问题:2011年开始运营的京沪高速铁路全长1318 km.设列车的平均速度为300 km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时?(结果保留小数点后一位)(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京南站?分析:(1)京沪高铁列车全程运行时间约需1318÷300≈4.4(h).(2)京沪高铁列车的行程y是运行时间t的函数,函数解析式为y=300t(0≤t≤4.4).(3)京沪高铁列车从北京南站出发2.5 h的行程,是当t=2.5时函数y=300t的值,即y=300×2.5=750(km).这时列车尚未到达距始发站1100 km的南京南站.师:这个函数中,t 是自变量,y 是t 的倍数(300倍).尽管实际情况可能会与此有一些小的不同,但这个函数基本上反映了列车的行程与运行时间的对应规律.像这样的函数就是我们今天所要讲的函数——正比例函数.二、讲授新课思考:下列问题中的两个变量可用怎样的函数表示?师:圆的周长l 随半径r 的大小变化而变化,l 是r 的函数吗? 生:l =2πr ,l 是r 的函数.师:铁的密度为7.8 g/cm 3,铁块的质量m(g)随它的体积V(cm 3)的变化而变化,铁块的质量m 是体积V 的函数吗?生:m =7.8V师:每本练习本的厚度为0.5 cm ,一些练习本的总厚度h(cm)随本数n 的变化而变化的函数关系是怎样的?生:h =0.5n.师:冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(℃)随冷冻时间t(分)的变化而变化,那么它的函数关系式是怎样的呢?生:T =-2t.师:这些函数有什么共同特点呢? 学生思考并回答,教师予以总结.师:上面这些函数与y =300x 一样,函数都是自变量的倍数,或者说都是常数与自变量的乘积,像这种函数就是正比例函数.一般地,形如y =kx(k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 师:y =kx(k 是常数,k ≠0)是正比例函数的一般形式,注意k ≠0的条件.下列函数是正比例函数吗?①y =x 3,②y =3x,③y =kx ,④y =kx 2,⑤y =k 2x(k ≠0).生:①⑤是的,其他的都不是. 三、例题讲解 (1)若y =5x3m -2是正比例函数,则m =________;(2)若y =(m -1)xm 2是正比例函数,则m =________.解:(1)3m -2=1,即m =1时,它为正比例函数;(2)由题意可知⎩⎪⎨⎪⎧m 2=1,m -1≠0,解得m =-1.四、课堂小结 1.正比例函数的定义 2.正比例函数的应用本节课从实际问题中提出了正比例函数,让学生自主的分析发现函数的定义和规律,激发了学生的学习兴趣,提高了学生的归纳能力.第2课时 正比例函数(2)会画正比例函数的图象.重点一次函数图象的画法. 难点根据一次函数的图象特征理解一次函数的性质.一、复习引入师:什么样的函数是正比例函数?生:形如y =kx(k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.师:前面我们讲函数图象的画法时,是通过把解析式中的x ,y 的值分别取出来,作为横、纵坐标在直角坐标系中描点、连线来得到函数图象,那么对于正比例函数我们同样可以用列表、描点、连线的方法来画出它的图象.二、讲授新课操作:画出正比例函数y =2x ,y =-2x 的图象.师:由于k ≠0,所以k >0或k <0,这两个函数刚好一个k >0,一个k <0.显然这里的图象和前面一样是通过列表、描点、连线完成的.第一个图象老师带学生画,第二个图象由学生独立完成,教师巡视指导. 1.函数y =2x 中自变量x 可以是任意实数.列表表示几组对应值:画出图象如图(1).2.y =-2x 的自变量取值范围可以是全体实数,列表表示几组对应值:画出图象如图(2)师:比较这两个图象的相同点与不同点. 学生讨论以后教师再进行总结.师生共同总结:两图象都是经过原点的一条直线;函数y =2x 的图象从左到右上升,经过第一、第三象限;函数y =-2x 的图象从左到右下降,经过第二、第四象限.为了更好地发现并总结规律,师生一起在同一坐标系中画出函数y =12x 和y =-12x 的图象.列表如下:【例】请同学们在同一直角坐标系中画出函数y =-1.5x 和y =-4x 的图象.函数y =-1.5x 中自变量x 可为任意实数.下表是y 与x 的几组对应值.如图,第四象限的直线,它就是函数y =-1.5x 的图象.用同样的方法,可以得到函数y =-4x 的图象.它也是一条经过原点和第二、第四象限的直线.分析后得出结论.师:一般地,正比例函数y =kx(k 为常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y =kx.当k >0时,直线经过第一、三象限,从左向右上升,即y 随x 的增大而增大;当k <0时,直线经过第二、四象限,从左向右下降,即y 随x 的增大反而减小.既然我们已经知道正比例函数的图象是一条直线,那么我们以后画正比例函数的图象时,只需要描出两点,然后过这两点作一条直线即可.比如说,画直线y =3x 只需先指出两点(0,0)、(1,3),然后过这两点作出直线即可.三、巩固练习用简单的方法画出下列函数的图象,并对照两图象说出图象与函数的性质. 1.y =32x.2.y =-3x. 四、课堂小结本节课通过具体的正比例函数的图象探索出正比例函数的图象及其性质,这符合解决问题的一般途径.本节课教师带领学生画正比例函数的图象,又通过对函数图象的观察、总结,得到比例系数与函数图象间的关系. 19.2.2 一次函数第1课时 一次函数(1)了解一次函数的一般形式.重点一次函数的一般形式. 难点探索实际问题中的一次函数关系.一、创设情境,引入新课问题:某登山队大本营所在地的气温是5℃,海拔每升高1 km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃,试用解析式表示y 与x 的关系.师:每升高1 km 气温下降6℃,那么升高x km ,气温下降6x ℃,因此所在位置的气温为5-6x ,即y =-6x +5.自变量是x ,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、讲授新课思考:下列问题中变量间的关系可用怎样的函数表示?这些函数有哪些共同点?师:在20℃~25℃时蟋蟀每分钟鸣叫的次数C 与t(℃)有关,即C 的值约是t 的7倍与35的差.这个函数的关系式怎么写?生:C = 7t -35.师:一种计算成年人标准体重G(kg)的方法是:以厘米为单位量出身高h ,再减去常数105,所得差是G 的值,即:G =h -105.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y 与每月电话x(分钟)的函数关系式.生:y =0.1x +22.师:把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,长方形的面积y(cm 2)随x 的变化的关系式是什么?生:y = 5(10-x)=-5x +50.师:上述这些函数有什么共同特点?比如说右边. 生:右边都是自变量的倍数与一个常数的和.师:对,上述这些函数的右边都是关于自变量的一次式,像这样的函数是一次函数.一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数叫做一次函数,当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.师:下面的函数是一次函数吗?如果是一次函数,说说其中k 和b 的值分别是多少. ①y =x -6;②y =2x ;③y =x8;④y =7-x.生1:y =x -6是一次函数,其中k =1,b =-6. 生2:y =2x不是一次函数.生3:y =x 8是一次函数,其中k =18,b =0.生4:y =7-x 是一次函数,其中k =-1,b =7.师:值得注意的是y =x8也是一次函数,它是当b =0时的特殊情况.例题:(1)已知函数y =(k -2)x +2k +1,当k 为何值时它是正比例函数?当k 为何值时它是一次函数? 解决:当2k +1=0,即k =-12时,它为正比例函数.当k -2≠0,即k ≠2时,它为一次函数.(2)已知y 与x -3成正比例,当x =4时,y =3,写出y 与x 的函数关系式并指出是什么函数. 解:因为y 与x -3成正比例,所以设y =k(x -3).由题意知当x =4时,y =3,代入得k =3. 所以y =3(x -3),即y =3x -9,y 是x 的一次函数. 三、巩固练习写出下列函数关系式,并指出哪些是一次函数,其中哪些又属于正比例函数. 1.面积为10 cm 2的三角形的底a(cm)与这边上的高h(cm). 【答案】h =20a,不是一次函数.2.一边长为8 cm 的平行四边形的周长L(cm)与另一边长b(cm). 【答案】L =16+2b ,是一次函数.3.食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨. 【答案】y =120-5x ,是一次函数.4.汽车每小时行40千米,行驶的路程s(千米)和时间t(小时). 【答案】s =40t ,是一次函数,且是正比例函数. 5.圆的面积y(平方厘米)与它的半径x(厘米)之间的关系. 【答案】y =πx 2,不是一次函数.6.一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y(厘米). 【答案】y =50+2x ,是一次函数. 四、课堂小结本节课从实际出发得出一次函数的概念,并在实际问题中根据简单信息写出一次函数的表达式,进而解决问题.本节课主要学习了一次函数的概念和一次函数的一般形式.教学过程中充分调动了学生的学习积极性,让学生参与到学习活动中,在活动的过程中,理解并掌握知识,同时也培养了学生的学习能力及参与意识,取得了良好的教学效果.第2课时 一次函数(2)会画一次函数的图象.重点一次函数图象的画法. 难点根据一次函数的图象特征理解一次函数的性质.一、创设情境,引入新课师:正比例函数的一般形式是y =kx(k ≠0),它的图象是经过原点的一条直线.一次函数的一般形式是y =kx +b(k ≠0),那么它的图象是什么呢?这就是我们这节课所要学的内容.二、讲授新课 活动一活动内容设计:画出函数y =-6x 与y =-6x +5的图象,比较两个函数的图象,探究它们的联系并解释原因.教师活动:引导学生从图象的形状、倾斜程度以及与y 轴的交点在坐标轴上的位置比较两个图象,从而认识两个图象的平移关系,进而了解解析式中的k ,b 在图象中的意义,体会数形结合在实际中的应用.学生活动:在教师的引导下利用列表、描点、连线作出两函数的图象,然后根据教师的引导从多方面比较两个函数的图象的相同点与不同点.生:函数y =-6x 与y =-6x +5中,自变量x 可以是任意实数,列表表示几组对应值,如下表所示:画出函数y =-6x结果:这两个函数的图象形状都是________,并且倾斜程度________.函数y =-6x 的图象经过原点,函数y =-6x +5的图象与y 轴交于点________,即它可以看作由直线y =-6x 向________平移________个单位长度而得到.结论:一次函数y =kx +b 的图象是一条直线,我们称它为直线y =kx +b ,它可以看作是由直线y =kx 平移|b|个单位长度而得到的(当b >0时,向上平移;当b <0时,向下平移).既然一次函数的图象是一条直线,所以今后画一次函数的图象时,只要取两点,再过这两点画直线即可.活动二。

人教版八年级数学下册变量与函数优质教学设计教案

人教版八年级数学下册变量与函数优质教学设计教案

人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。

例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。

A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。

八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数第1课时常量与变量导学案

八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数第1课时常量与变量导学案

第十九章 函数19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 .3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ; (2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1问题1:小时.(1(2)试用含t(3问题2:售出310(1(2(3)试用含x张数_____问题3:r分别为(1)填空:当圆的半径为当圆的半径为当圆的半径为当圆的半径为(2要点归纳:例1(1)变量是________;(2)周长C________;(3)中,其中常量是变式题阅读并完成下面一段叙述:1.若球体体积为V ,半径为R ,则343V R π=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【纠错园】 用长度为2n(m)的铁丝围成一个长方形,用长方形的长 x(m)表示长方形的面积y(m2)为____________,其中变 量为____________.
【错因】2n表示铁丝的长度,不是变量.
t
则这个关系式中自变量是v. ( × )
2.一个长方形的面积是10cm2,其长是acm,宽是bcm,下
列判断错误的是 ( B )
A.10是常量
B.10是变量
C.b是变量
D.a是变量
3.在函数y= 3 中,自变量x的取值范围是_x_≠__-_2_.
x2
4.变量x与y之间的函数关系是y= 1 x2-1,当自变量
2
2
5
当t=2.5时,s= 2 ×2.52=2.5(m),
5
当t=3.5时,s= 2 ×3.52=4.9(m).
5
(2)当s=10时,2 t2=10,解得t=5(s),
5
当s=15时,2 t2=15,解得t≈6.1(s).
5
【互动探究】本题中能求t=15s时的路程吗? 提示:不能,本题中的公式只适合求不超过10s时的路程.
2
x=-2时,函数值为_1_.
知识点一 变量与常量 【示范题1】一次试验中,小明把一根弹簧的上端固定, 在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂 砝码的质量x(g)的一组对应值(在弹性限度内):
x(g) 0 1 2 3 4 5 … y(cm) 18 20 22 24 26 28 …
(1)表中反映了哪两个变量之间的关系?哪个是自变量? 哪个是函数? (2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的 长度是多少? (3)砝码质量每增加1g,弹簧的长度增加________cm.
第十九章 一次函数 19.1 函 数
19.1.1 变量与函数
【基础梳理】 1.变量与常量 在一个变化过程中,数值_发__生__变__化__的量为变量,数值 _始__终__不__变__的量为常量.
2.函数的有关概念 (1)函数: 在一个变化过程中,如果有两个变量x与y,并且对于x的 每一个确定的值,y都有_唯__一__确__定__的值与其对应,那么x 就是_自__变__量__,_y_是_x_的函数.
s= 1 at2.
2
(1)求t=2.5s和3.5s时,汽车所行驶的路程.
(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)
【思路点拨】(1)根据公式,得函数解析式,根据自变量 的值,得函数值. (2)根据函数值,得相应的自变量的值.
【自主解答】(1)∵s= 1 at2,∴s= ×1 0.8t2= t22.
(2)函数值: 对于变量为x,y的某一个函数中,如果自变量x=m时,y=n, 那么n叫做当自变量的值为m时的_函__数__值__. (3)函数解析式: 用关于自变量的数学式子表示函数与_自__变__量__之间的关 系.
【自我诊断】
1.在男子1000米的长跑中,运动员的平均速度v= 1 0 0 0 ,
【思路点拨】(1)表中的数据主要涉及到弹簧的长度和 所挂物体的质量. (2)弹簧的原长是当物体的质量为0g时,弹簧的长度;从 表中找出当物体的质量为3g时,弹簧的长度. (3)由表中的数据可知,x=0时,y=18;x=1时,y=20,据 此判断砝码质量每增加1g,弹簧增加的长度.
【自主解答】(1)表中反映了弹簧长度与所挂砝码质量 之间的关系;其中所挂砝码质量是自变量,弹簧长度是所 挂砝码质量的函数. (2)弹簧的原长是18cm;当所挂砝码质量为3g时,弹簧 长24cm.
知识点二 自变量的取值范围
【示范题2】(2017·恩施中考)函数y= 1 x 1的自
x3
变量x的取值范围是 ( )
A.x≥1
B.x≥1且x≠3
C.x≠3
D.1≤x≤3
【备选例题】(2016·内Байду номын сангаас中考)在函数y= x 3 中,
x4
自变量x的取值范围是 ( )
A.x>3
B.x≥3
C.x>4
D.x≥3且x≠4
(3)根据表中数据可知,砝码质量每增加1g,弹簧的长度 增加2cm.
【互动探究】你能知道在弹性限度内,x=10g时,弹簧的 长度吗? 提示:当x=10时,y=18+2×10=38,故当x=10g时,弹 簧的长度为38cm.
【微点拨】 确定常量、变量的“一个标准”
在同一个问题中这个量的取值是否发生变化,是判断常 量、变量的唯一标准.如果发生变化,该量为变量,不发 生变化的量为常量.
【解析】选D.∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4, 综上,x≥3且x≠4.
【微点拨】 确定自变量取值范围的方法
(1)函数解析式是整式,自变量的取值范围是任意实数. (2)函数解析式中有分式,满足分母不等于0. (3)函数解析式中有二次根式,满足被开方数大于等于0. (4)实际问题中的函数解析式要使实际问题有意义.
【备选例题】(2017·莒县一模)在函数y= 1-2x
中,自变量x的取值范围是 ( )
A.x< 1
2
B.x≤ 1
2
C.x> 1
2
D.x≥ 1
2
【解析】选B.在函数y= 1-2x 中,自变量x的取值范 围是x≤ 1 .
2
知识点三 函数及函数值
【示范题3】汽车在发动后的前10秒内以匀加速
a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为
相关文档
最新文档