福建中考数学卷解析

合集下载

2023福建中考数学试卷及参考答案(图片版)

2023福建中考数学试卷及参考答案(图片版)

2023福建中考数学试卷及参考答案(图片版)2023福建中考数学试题及答案解析学好初中数学的方法1、端正态度,充分认识到数学练习的重要性。

实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

2、要有自信心与意志力。

数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

3、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。

解答后,还应进行检查。

福建中考难度大吗?语文:注重语文学习的情境性、实践性和综合性等特点。

数学:福建中考数学试卷顺应时代背景,以20XX版《数学课程标准》为依据,合理选材,科学控制难度,既关注基础性,又关注综合性,体现选拔性。

英语:考题的体裁多样,话题新颖,紧扣时代脉搏,聚焦思维能力。

注重语言使用,体现了基础性、综合性、应用性、创新性和时代性的特点。

物理:物理试题突出了立德树人的育人导向,注重全面和基础的考查,也聚集学科关键能力,彰显学科素养发展的培育。

化学:福建中考化学试题考查内容涵盖知识与技能,强化了知识的应用能力,体现了两考合一的考试特点。

生物:试卷总体难易适中,图文丰富,试题灵活。

试题在立足基础知识考查同时,也注重考生对资料、图片、数据分析理解和科学探究能?的考查。

历史:试卷整体较为平稳,稳中求新,新中求变,结构略有变化道德与法治:全卷贯穿对学生进行爱国主义、社会主义核心价值观、法治意识、道德意识、孝敬父母、公民权利与义务、规则意识、坚持党的领导教育。

地理:福建省中考地理试题难度适中,题型主要包括选择题和非选择题两个部分。

其中选择题基础题所占比重较大。

非选择题部分题目存在一定难度。

整体来看,福建中考难度并不是很难,大家只需要夯实基础,考试中正常发挥,基本上就能顺利升入高中。

2023年福建省中考数学真题(答案解析)

2023年福建省中考数学真题(答案解析)

数学试题一、选择题1.【答案】D【解析】解:正数大于0,正数大于负数,且21>,所以1012-、、、中最大的实数是2.故选:D2.【答案】D【解析】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .3.【答案】B【解析】解:由题意,得4343m -<<+,即17m <<,故m 的值可选5,故选:B .4.【答案】C【解析】解:91040000000 1.0410=⨯,故选:C .5.【答案】A【解析】解:A 选项,()23236a a a ⨯==,故A 选项计算正确,符合题意;B 选项,62624a a a a -÷==,故B 选项计算错误,不合题意;C 选项,34347a a a a +==⋅,故C 选项计算错误,不合题意;D 选项,2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .6.【答案】B【解析】设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程243903.89(1)53109.85x +=,故选:B .7.【答案】A 【解析】解:由作图过程可得:,OD OC CM DM==∵DM DM=∴()SSS COM DOM ≅ ,∴12∠=∠∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .8.【答案】B【解析】解:A 选项,平均数为6567270757988737+⨯++++=(分钟),故选项错误,不符合题意;B 选项,在7个数据中,67出现的次数最多,为2次,则众数为67分钟,故选项正确,符合题意;C 选项,7个数据按照从小到大排列为:65,67,67,70,75,79,88,中位数是70分钟,故选项错误,不符合题意;D 选项,平均数为6567270757988737+⨯++++=,方差为()()()()()()222222657367732707375737973887341077-+-⨯+-+-+-+-=,故选项错误,不符合题意.故选:B .9.【答案】A 【解析】解:如图所示,连接正方形的对角线,过点,A B 分别作x 轴的垂线,垂足分别为,C D ,点B 在3y x=上,∵OB OA =,90AOB BDO ACO ∠=∠=∠=︒∴90CAO AOC BOD∠=︒-∠=∠∴AOC OBD≌∴32AOC OBD S S == 2n =,∵A 点在第二象限,∴3n =-故选:A .10.【答案】C【解析】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30︒,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA ⊥交OA 于点于点C ,∵30AOB ∠=︒,∴1122BC OB ==,则1111224OAB S =⨯⨯= ,故正十二边形的面积为1121234OAB S =⨯= ,圆的面积为113π⨯⨯=,用圆内接正十二边形面积近似估计O 的面积可得3π=,故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.【答案】5-【解析】解:∵“正”和“负”相对,∴进货10件记作10+,那么出货5件应记作5-.故答案为:5-.12.【答案】10【解析】解:∵ABCD Y 中,∴,DC AB DC AB =∥,∴,OFD OEB ODF EBO ∠=∠∠=∠,∵OD OB=∴()AAS DOF BOE ≅ ,∴DF EB =,∴DC DF AB BE -=-,即10FC AE ==.故答案为:10.13.【答案】10【解析】解:∵四边形ABCD 是菱形,∴10AB BC ==,∵=60B ∠︒,∴ABC 是等边三角形,∴10AC =.故答案为:10.14.【答案】乙【解析】解:52375808077.5101010x =⨯+⨯+⨯=甲,52385807079.5101010x =⨯+⨯+⨯=乙,52370787071.6101010x =⨯+⨯+⨯=丙,∵71.677.579.5<<∴被录用的是乙,故答案为:乙.15.【答案】1【解析】解:∵121a b+=∴21b a ab +=,∴2b a ab +=,即ab a b a -=+.∴1ab a a b a b a b-+==++.16.【答案】10n -<<【解析】解:∵22y ax ax b =-+,0a >∴抛物线的对称轴为直线212a x a-=-=,开口向上,∵()()1223,,1,A n y B n y +-分别位于抛物线对称轴的两侧,假设点B 在对称轴的右侧,则11n ->,解得2n >,∴()23140n n n +--=+>∴A 点在B 点的右侧,与假设矛盾,则点A 在对称轴的右侧,∴23111n n +>⎧⎨-<⎩解得:12n -<<又∵12y y <,∴()()23111n n +-<--∴222.n n +<-解得:0n <∴10n -<<,故答案为:10n -<<.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【答案】3【解析】解:原式311=-+3=.18.【答案】31x -≤<【解析】解:213,13 1.24x x x +<⎧⎪⎨-+≤⎪⎩①②解不等式①,得1x <.解不等式②,得3x ≥-.所以原不等式组的解集为31x -≤<.19.【答案】见解析【解析】证明:AOD COB ∠=∠ ,,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD∴ ≌AB CD ∴=.20.【答案】11x -+,2-【解析】解:22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭22111x x x x x +-⎛⎫=-⋅ ⎪-⎝⎭()()()()1111x x x x x x x -+-=⋅+-11x x x =-⋅+11x =-+.当1x =-时,原式2==-.21.【答案】(1)见解析(2)见解析【解析】(1)证明AF 是O 的切线,AF OA ∴⊥,即90OAF ∠=︒.CE 是O 的直径,90CBE ∴∠=︒.∴90OAF CBE ∠=∠=︒.AF BC ∥,BAF ABC ∴∠=∠,OAF BAF CBE ABC ∴∠-∠=∠-∠,即OAB ABE ∠=∠,AO BE ∴∥.(2)解:ABE ∠ 与ACE ∠都是»AE 所对的圆周角,ABE ACE ∴∠=∠.OA OC = ,ACE OAC ∴∠=∠,ABE OAC ∴∠=∠.由(1)知OAB ABE ∠=∠,OAB OAC ∴∠=∠,AO ∴平分BAC ∠.22.【答案】(1)14(2)应往袋中加入黄球,见解析【解析】(1)解:顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果.记“首次摸得红球”为事件A ,则事件A 发生的结果只有1种,所以()14P A =,所以顾客首次摸球中奖的概率为14.(2)他应往袋中加入黄球.理由如下:记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:第二球第一球红黄①黄②黄③新红红,黄①红,黄②红,黄③红,新黄①黄①,红黄①,黄②黄①,黄③黄①,新黄②黄②,红黄②,黄①黄②,黄③黄②,新黄③黄③,红黄③,黄①黄③,黄②黄③,新新新,红新,黄①新,黄②新,黄③共有20种等可能结果.(ⅰ)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率182205P ==;(ⅱ)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率2123205P ==;因为2355<,所以12P P <,所作他应往袋中加入黄球.23.【答案】(1)①C C ∠=∠;②3c(2)相似三角形的判定与性质(3)最大宽度为sin cos m tan a a ααβ⎛⎫+ ⎪⎝⎭,见解析【解析】(1)∵AC a =,BC b =,3a CM =,3b CN =,∴13CM CN CA CB ==,又∵C C ∠=∠,∴CMN CAB ∽△△,∴13MN AB =.又∵MN c =,∴()3m AB c =.故小水池的最大宽度为3c m .(2)根据相似三角形的判定和性质求得33AB MN c ==,故答案为:相似三角形的判定与性质.(3)测量过程:(ⅰ)在小水池外选点C ,如图,用测角仪在点B 处测得ABC α∠=,在点A 处测得BAC β∠=;(ⅱ)用皮尺测得m BC a =.求解过程:由测量知,在ABC 中,ABC α∠=,BAC β∠=,BC a =.过点C 作CD AB ⊥,垂足为D .在Rt CBD △中,cos BD CBD BC∠=,即cos BD a α=,所以cos BD a α=.同理,sin CD a α=.在Rt ACD △中,tan CD CAD AD∠=,即sin tan a ADαβ=,所以sin tan a AD αβ=.所以()sin cos m tan a AB BD AD a ααβ=+=+.故小水池的最大宽度为sin cos m tan a a ααβ⎛⎫+ ⎪⎝⎭.24.【答案】(1)243y xx =-+(2)见解析(3)ABP 的面积为定值,其面积为2【解析】(1)解:因为抛物线23y ax bx =++经过点()()1,0,3,0A B ,所以30,9330.a b a b ++=⎧⎨++=⎩解得1,4.a b =⎧⎨=-⎩所以抛物线的函数表达式为243y xx =-+;(2)解:设直线CE 对应的函数表达式为()0y kx n k =+≠,因为E 为AB 中点,所以()2,0E .又因为()4,3C ,所以4320k n k n +=⎧⎨+=⎩,解得323k n ⎧=⎪⎨⎪=-⎩,所以直线CE 对应的函数表达式为332y x =-.因为点3,4D m ⎛⎫-⎪⎝⎭在抛物线上,所以23434m m -+=-.解得,32m =或52m =.又因为2m <,所以32m =.所以33,24D ⎛⎫- ⎪⎝⎭.因为3333224⨯-=-,即33,24D ⎛⎫- ⎪⎝⎭满足直线CE 对应的函数表达式,所以点D 在直线CE 上,即,,C D E 三点共线;(3)解:ABP 的面积为定值,其面积为2.理由如下:(考生不必写出下列理由)如图1,当,C D 分别运动到点,C D ''的位置时,,C D '与,D C '分别关于直线EM 对称,此时仍有,,C D E ''三点共线.设AD '与BC '的交点为P ',则,P P '关于直线EM 对称,即PP x '∥轴.此时,PP '与AM 不平行,且AM 不平分线段PP ',故P ,P '到直线AM 的距离不相等,即在此情形下 AMP 与AMP ' 的面积不相等,所以 AMP 的面积不为定值.如图2,当,C D 分别运动到点11,C D 的位置,且保持11,,C D E 三点共线.此时1AD 与1BC 的交点1P 到直线EM 的距离小于P 到直线EM 的距离,所以1MEP △的面积小于MEP △的面积,故MEP △的面积不为定值.又因为,,AMP MEP ABP △△△中存在面积为定值的三角形,故ABP 的面积为定值.在(2)的条件下,直线BC 对应的函数表达式为39y x =-,直线AD 对应的函数表达式为3322y x =-+,求得7,23P ⎛⎫- ⎪⎝⎭,此时ABP 的面积为2.25.【答案】(1)见解析(2)135ABF ∠=︒(3)见解析【解析】(1)解:DF 是由线段DC 绕点D 顺时针旋转90︒得到的,45DFC ∴∠=︒,,AB AC AO BC =⊥ ,12BAO BAC ∴∠=∠.90BAC ∠=︒ ,45BAO ABC ∴∠=∠=︒.BAO DFC ∴∠=∠.90,90EDA ADM M ADM ︒∠+∠︒=∠+∠= ,EDA M ∴∠=∠.ADE FMC ∴ .(2)解:如图1:设BC 与DF 的交点为I ,45,DBI CFI BID FIC ︒∠=∠=∠=∠ ,BID FIC ∴ ,BI DI FI CI ∴=,BI FI DI CI ∴=.BIF DIC ∠=∠ ,BIF DIC ∴ ,IBF IDC ∴∠=∠.又90IDC =︒∠ ,90IBF ∴∠=︒.45,ABC ABF ABC IBF ∠=∠︒=∠+∠ ,135ABF ∴∠=︒.(3)解:如图2:延长ON 交BF 于点T ,连接,DT DO ,90FBI BOA ∠︒∠== ,BF AO ∴∥,FTN AON ∴∠=∠.N Q 是AF 的中点,AN NF ∴=.又TNF ONA ∠=∠ ,TNF ONA ∴≅ ,,NT NO FT AO ∴==.90,,BAC AB AC AO BC =︒∠=⊥ ,AO CO ∴=,FT CO ∴=.由(2)知,BIF DIC ,DFT DCO ∴∠=∠.DF DC =,DFT DCO ∴≅ ,,DT DO FDT CDO ∴=∠=∠,FDT FDO CDO FDO ∴∠+∠=∠+∠,即ODT CDF ∠=∠.90CDF ∠=︒ ,90ODT CDF ∴∠=∠=︒,12ND TO NO ∴==.。

精品解析:福建省2021年中考数学试卷(解析版)

精品解析:福建省2021年中考数学试卷(解析版)
x
【答案】1 【解析】
【分析】结合题意,将点 1,1 代入到 y k ,通过计算即可得到答案.
x
【详解】∵反比例函数 y k 的图象过点 1,1
x ∴1 k ,即 k 1
1
故答案为:1. 【点睛】本题考查了反比例函数的知识;解题的关键是熟练掌握反比例函数图像的性质,从而完成求解.
12. 写出一个无理数 x,使得1 x 4 ,则 x 可以是_________(只要写出一个满足条件的 x 即可)
器测得 A 60, C 90, AC 2km .据此,可求得学校与工厂之间的距离 AB 等于( )
A. 2km
B. 3km
C. 2 3km
D. 4km
【答案】D 【解析】 【分析】解直角三角形,已知一条直角边和一个锐角,求斜边的长.
【详解】A 60, C 90, AC 2km
cos A AC , cos 60 1
B. x 1
C. x 0
D. x 1
【答案】C
【解析】
【分析】先平移该一次函数图像,得到一次函数 y k x 1 b k 0 的图像,再由图像即可以判断出
k x 1 b 0 的解集.
【详解】解:如图所示,将直线 y kx bk 0 向右平移 1 个单位得到 y k x 1 bk 0 ,该图
y
x
x
1
,变形为
x-y=xy,
然后整体代入.
16. 如图,在矩形 ABCD 中, AB 4, AD 5 ,点 E,F 分别是边 AB, BC 上的动点,点 E 不与 A,B 重
5. 某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩 (百分制)如表:
作品

福建省2021年中考数学试卷真题(word版,含答案解析)

福建省2021年中考数学试卷真题(word版,含答案解析)

福建省2021年中考数学试卷一、单选题(共10题;共20分)1.在实数√2,1,0,-1中,最小的数是()2D. √2A. -1B. 0C. 12【答案】A【考点】实数大小的比较,0,−1中,【解析】【解答】解:在实数√2,12为正数大于0,√2,12−1为负数小于0,∴最小的数是:-1.故答案为:A.【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数相比较,绝对值大的反而小.据此判断即可.2.如图所示的六角螺栓,其俯视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】从上面看是一个正六边形,中间是一个圆,故答案为:A.【分析】俯视图:从物体上面所看的平面图形;注意:看到的棱画实线,看不到的棱画虚线,据此判断即可.3.如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得∠A=60°,∠C=90°,AC=2km.据此,可求得学校与工厂之间的距离AB等于()A. 2kmB. 3kmC. 2√3kmD. 4km【答案】 D【考点】解直角三角形的应用【解析】【解答】∵∠A=60°,∠C=90°,AC=2km∴cosA=ACAB ,cos60°=12∴AB=ACcosA =212=4km.故答案为:D.【分析】利用cosA=ACAB即可求出AB.4.下列运算正确的是()A. 2a−a=2B. (a−1)2=a2−1C. a6÷a3=a2D. (2a3)2=4a6【答案】 D【考点】同底数幂的除法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A:2a−a=(2−1)a=a,故A错误;B:(a−1)2=a2−2a+1,故B错误;C:a6÷a3=a6−3=a3,故C错误;D:(2a3)2=22·(a3)2=4a3×2=4a6.故答案为:D【分析】根据合并同类项、完全平方公式、同底数幂的除法、积的乘方与幂的乘方分别进行计算,然后判断即可.5.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A. 甲 B. 乙 C. 丙 D. 丁【答案】B【考点】加权平均数及其计算【解析】【解答】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故答案为:B【分析】分别求出甲、乙、丙、丁四个作品加权平均数,然后比较即得.6.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是()A. 0.63(1+x)=0.68B. 0.63(1+x)2=0.68C. 0.63(1+2x)=0.68D. 0.63(1+2x)2=0.68【答案】B【考点】一元二次方程的实际应用-百分率问题【解析】【解答】解:设年平均增长率为x,由题意得:0.63(1+x)2=0.68,故答案为:B.【分析】设年平均增长率为x,根据2018年底森林覆盖率×(1+平均增长率)2=2020年底森林覆盖率,列出方程即可.7.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A. 108°B. 120°C. 126°D. 132°【答案】C【考点】等腰三角形的性质,等边三角形的性质,多边形内角与外角,正多边形的性质【解析】【解答】∵ABCDE是正五边形,∴∠ABC= (5−2)×180°=108°,AB=BC,5∵△ABF为等边三角形,∴∠ABF=∠AFB=60°,AB=BF,∴BF=BC,∠FBC=∠ABC-∠ABF=48°,∴∠BFC= 1(180°−∠FBC)=66°,2∴∠AFC=∠AFB+∠BFC=126°,故答案为:C.【分析】根据多边形内角和公式求出∠ABC的度数,由正五边形的性质得出AB=BC,根据等边三角形的性质,可得∠ABF=∠AFB=60°,AB=BF,从而得出BF=BC,求出∠FBC=∠ABC-∠ABF=48°,利用等腰三角形的性质求出∠BFC的度数,利用∠AFC=∠AFB+∠BFC即得结论.8.如图,一次函数y=kx+b(k>0)的图象过点(−1,0),则不等式k(x−1)+b>0的解集是()A. x>−2B. x>−1C. x>0D. x>1【答案】C【考点】一次函数与不等式(组)的综合应用【解析】【解答】解:如图所示,将直线y=kx+b(k>0)向右平移1个单位得到y=k(x−1)+b(k>0),该图象经过原点,由图象可知,在y轴右侧,直线位于x轴上方,即y>0,因此,当x>0时,k(x−1)+b>0,故答案为:C.【分析】将直线y=kx+b(k>0)向右平移1个单位得到y=k(x−1)+b(k>0),且该图象经过原点,由图象可知,当x>0时y=k(x−1)+b(k>0)的图象在x轴上方,据此即得结论.9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于()A. 35B. 25C. 34D. 45【答案】 D【考点】圆周角定理,切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:连接OC ,CP ,DP 是⊙O 的切线,则∠OCP =90°,∠CAP =∠PAD ,∴∠CAD=2∠CAP ,∵OA=OC∴∠OAC =∠ACO ,∴∠COP =2∠CAO∴∠COP =∠CAD∵ AB =6∴OC=3在Rt △COP 中,OC=3,PC=4∴OP=5.∴ sin ∠CAD = sin ∠COP = 45故答案为:D.【分析】连接OC ,利用切线的性质及切线长定理得出∠OCP =90°,∠CAP =∠PAD ,根据圆周角定理∠COP =2∠CAO ,从而得出∠COP =∠CAD ,在Rt △COP 中,利用勾股定理求出OP , 利用sin ∠CAD = sin ∠COP = PC OP 即得结论.10.二次函数 y =ax 2−2ax +c(a >0) 的图象过 A(−3,y 1),B(−1,y 2),C(2,y 3),D(4,y 4) 四个点,下列说法一定正确的是( )A. 若 y 1y 2>0 ,则 y 3y 4>0B. 若 y 1y 4>0 ,则 y 2y 3>0C. 若 y 2y 4<0 ,则 y 1y 3<0D. 若 y 3y 4<0 ,则 y 1y 2<0【答案】 C【考点】二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的图象,二次函数y=ax^2+bx+c 的性质【解析】【解答】解:∵二次函数y=ax2−2ax+c(a>0)的对称轴为:x=−b2a =−−2a2a=1,且开口向上,∴距离对称轴越近,函数值越小,∴y1>y4>y2>y3,A,若y1y2>0,则y3y4>0不一定成立,故答案为:错误,不符合题意;B,若y1y4>0,则y2y3>0不一定成立,故答案为:错误,不符合题意;C,若y2y4<0,所以y1>0,y3<0,则y1y3<0一定成立,故答案为:正确,符合题意;D,若y3y4<0,则y1y2<0不一定成立,故答案为:错误,不符合题意;故答案为:C.【分析】抛物线的对称轴为x=1且开口向上,可得距离对称轴越近,函数值越小,从而得出y1>y4>y2>y3,据此逐一分析即可.二、填空题(共6题;共6分)11.若反比例函数y=kx的图象过点(1,1),则k的值等于________.【答案】1【考点】反比例函数图象上点的坐标特征【解析】【解答】∵反比例函数y=kx的图象过点(1,1)∴1=k1,即k=1故答案为:1.【分析】将点(1,1)代入y=kx中,即可求出k值.12.写出一个无理数x,使得1<x<4,则x可以是________(只要写出一个满足条件的x即可)【答案】答案不唯一(如√2,π,1.010010001⋅⋅⋅等)【考点】估算无理数的大小【解析】【解答】根据无理数的定义写一个无理数,满足1<x<4即可;所以可以写:①开方开不尽的数:√2,②无限不循环小数,1.010010001……,③含有π的数π2,等.只要写出一个满足条件的x即可.故答案为:答案不唯一(如√2,π,1.010010001……等)【分析】无限不循环小数叫做无理数,对于开方开不尽的数、圆周率π都是无理数;据此写出满足1< x<4的x值即可.13.某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是________.【答案】270【考点】用样本估计总体【解析】【解答】解:由图知:样本中优秀学生的比例为:27100=27%,∴该校中长跑成绩优秀的学生人数是:1000×27%=270(人)故答案是:270.【分析】利用样本中优秀学生的百分比乘以总人数1000即得结论.14.如图,AD是△ABC的角平分线.若∠B=90°,BD=√3,则点D到AC的距离是________.【答案】√3【考点】角平分线的性质【解析】【解答】如图,过D作DE⊥AC,则D到AC的距离为DE∵AD平分∠CAB,∠B=90°,BD=√3,∴DE=BD=√3∴点D到AC的距离为√3.故答案为√3.【分析】过D作DE⊥AC,根据角平分线的性质可得DE=BD=√3,据此即得结论.15.已知非零实数x,y满足y=xx+1,则x−y+3xyxy的值等于________.【答案】4【考点】代数式求值【解析】【解答】由y=xx+1得:xy+y=x,即x-y=xy∴x−y+3xyxy =xy+3xyxy=4xyxy=4故答案为:4【分析】由y=xx+1可得x-y=xy,然后代入求值即可.16.如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论:① ∠GEB与∠GFB一定互补;②点G到边AB,BC的距离一定相等;③点G到边AD,DC的距离可能相等;④点G到边AB的距离的最大值为2√2.其中正确的是________.(写出所有正确结论的序号)【答案】①②④【考点】多边形内角与外角,矩形的性质,锐角三角函数的定义,三角形全等的判定(AAS)【解析】【解答】∵∠EGF=90°GE=GF∴∠GEF=45°① ∵四边形ABCD是矩形∴∠B=90°∵∠EGF=90°,四边形内角和为360°∴∠GEB+∠GFB=180°∴①正确.②如图:过G作GM⊥AB,GN⊥BC∴∠GME=∠GNF=90°∵∠GEB+∠GFB=180°,∠GEM+∠GEB=180°∴∠GFN=GEM又∵GE=GF△GME≌△GNF(AAS)∴GM=GN即点G到边AB,BC的距离一定相等∴②正确.③如图:过G作GN⊥AD,GM⊥CD∴NG<AB−12EF=2,GM<AD−12EF=3∴NG≥AB−EF×sin45°=4−2√2,GM≥AD−EF×sin45°=5−2√2∴4−2√2≤NG<2,5−2√2<GM<3而∵2<5−2√2所以点G到边AD,DC的距离不可能相等∴③不正确.④如图:当GE⊥AB时,点G到边AB的距离的最大GE=EF×sin45°=4×√22=2√2∴④正确.综上所述:①②④正确.故答案为①②④.【分析】根据矩形的性质得出∠B=90°,由∠EGF=90°,四边形内角和为360°即可判断①;过G作GM⊥AB,GN⊥BC,证明△GME≌△GNF(AAS),可得GM=GN,据此判断②;过G作GN⊥AD,GM⊥CD,分别求出GM、GN的长,然后比较即可判断③;当GE⊥AB时,点G到边AB 的距离的最大,可求出GE=EF×sin45°=2√2,据此判断④.三、解答题(共9题;共80分)17.计算:√12+|√3−3|−(13)−1.【答案】解:√12+|√3−3|−(13)−1=2√3+(3−√3)−3=2√3+3−√3−3=√3.【考点】负整数指数幂的运算性质,二次根式的性质与化简,实数的绝对值【解析】【分析】利用二次根式的性质、绝对值的性质、负整数指数幂的性质先进行计算,再进行实数的加减即得.18.如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.【答案】证明:∵DE⊥AC,DF⊥AB,∴ ∠DEC =∠DFB =90° .在 △DEC 和 △DFB 中, {DE =DF,∠DEC =∠DFB,CE =BF,∴ △DEC ≌△DFB , ∴ ∠B =∠C .【考点】三角形全等的判定(SAS )【解析】【分析】 根据垂直的定义可得∠DEC =∠DFB =90° , 证明△DEC ≌△DFB ,可得∠B =∠C .19.解不等式组: {x ≥3−2x ①x−12−x−36<1②【答案】 解:解不等式 x ≥3−2x , 3x ≥3 , 解得: x ≥1 . 解不等式x−12−x−36<1 ,3x −3−x +3<6 , 解得: x <3 .所以原不等式组的解集是: 1≤x <3 . 【考点】解一元一次不等式组【解析】【分析】先分别解出两个不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小无处找”的规律找出不等式组的解集即可.20.某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元. (1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少? 【答案】 (1)解:设该公司当月零售农产品x 箱,批发农产品y 箱. 依题意,得 {70x +40y =4600,x +y =100, 解得 {x =20,y =80.所以该公司当月零售农产品20箱,批发农产品80箱.(2)解:设该公司零售农产品m 箱,获得总利润w 元.则批发农产品的数量为 (1000−m) 箱, ∵该公司零售的数量不能多于总数量的30% ∴ m ≤300依题意,得 w =70m +40(1000−m)=30m +40000,m ≤300 . 因为 30>0 ,所以w 随着m 的增大而增大, 所以 m =300 时,取得最大值49000元,此时1000−m=700.所以该公司应零售农产品300箱、批发农产品700箱才能使总利润最大,最大总利润是49000元.【考点】一次函数的实际应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)设该公司当月零售农产品x箱,批发农产品y箱.根据“ 该公司某月卖出100箱这种农产品共获利润4600元”列出方程组,求解即可;(2)设该公司零售农产品m箱,获得总利润w元.则批发农产品的数量为(1000−m)箱,由该公司零售的数量不能多于总数量的30%,求出m的范围,根据总利润=零售利润+批发的利润,列出w关于m 的关系式,利用一次函数的性质求解即可.21.如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.(1)求证:∠ADE=∠DFC;(2)求证:CD=BF.【答案】(1)证明:在等腰直角三角形EDF中,∠EDF=90°,∴∠ADE+∠ADF=90°.∵∠ACB=90°,∴∠DFC+∠ADF=∠ACB=90°,∴∠ADE=∠DFC.(2)证明:连接AE.由平移的性质得AE//BF,AE=BF.∴∠EAD=∠ACB=90°,∴∠DCF=180°−∠ACB=90°,∴∠EAD=∠DCF.∵△EDF是等腰直角三角形,∴DE=DF.由(1)得∠ADE=∠DFC,∴△AED≌△CDF,∴AE=CD,∴CD=BF.【考点】平移的性质,等腰直角三角形,三角形全等的判定(AAS)【解析】【分析】(1)在等腰直角三角形EDF中,可得∠ADE+∠ADF=90°,由∠ACB=90°可得∠DFC+∠ADF=∠ACB=90°,利用余角的性质即得∠ADE=∠DFC;(2)连接AE,由平移的性质得AE//BF,AE=BF,从而求出∠EAD=∠DCF,在等腰直角三角形EDF中,可得DE=DF,证明△AED≌△CDF,可得AE=CD,由等量代换可得CD=BF ..22.如图,已知线段MN=a,AR⊥AK,垂足为a.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC=60°,CD//AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点. 【答案】(1)解:作图如下:四边形ABCD是所求作的四边形;(2)解:设直线BC与AD相交于点S,∵DC//AB,∴△SBA∽△SCD,∴SASD =ABDC设直线PQ与AD相交于点S′,同理S′AS′D =PAQD.∵P,Q分别为AB,CD的中点,∴PA=12AB,QD=12DC∴PAQD =ABDC∴S′AS′D =SASD,∴S′D+ADS′D =SD+ADSD,∴ADS′D =ADSD,∴S′D=SD,∴点S与S′重合,即三条直线AD,BC,PQ相交于同一点.【考点】相似三角形的判定与性质,作图-角【解析】【分析】(1)先截取AB=a,再分别以A/B为圆心,a为半径,两弧交于点C,以点C为顶点作角=∠ABC即可;(2)设直线BC与AD相交于点S,利用平行线可证△SBA∽△SCD,可得SASD =ABDC,设直线PQ与AD相交于点S′,同理S′AS′D =PAQD. 根据线段的中点可得PA=12AB,QD=12DC,可得PAQD=ABDC,从而求出ADS′D=ADSD,即得S′D=SD,继而得出点S与S′重合,据此即得结论.23.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.【答案】(1)解:田忌首局应出“下马”才可能在整场比赛中获胜.此时,比赛的所有可能对阵为:(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),(C2A1,B2B1,A2C1),(C2A1,A2C1,B2B1),共四种.其中田忌获胜的对阵有(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),共两种,故此时田忌获胜的概率为P1=12.(2)解:不是.齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是(C2A1,A2B1,B2C1);齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是(C2A1,B2C1,A2B1);齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是(A2B1,C2A1,B2C1);齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是(A2B1,B2C1,C2A1);齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是(B2C1,C2A1,A2B1);齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是(B2C1,A2B1,C2A1).综上所述,田忌获胜的所有对阵是(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),(A2B1,C2A1,B2C1),(A2B1,B2C1,C2A1),(B2C1,C2A1,A2B1),(B2C1,A2B1,C2A1).齐王的出马顺序为A1,B1,C1时,比赛的所有可能对阵是(A2A1,B2B1,C2C1),(A2A1,C2B1,B2C1),(B2A2,A2B1,C2C1),(B2A1,C2B1,A2C1),(C2A1,A2B1,B2C1),(C2A1,B2B1,A2C1),共6种,同理,齐王的其他各种出马顺序,也都分别有相应的6种可能对阵,所以,此时田忌获胜的概率P2=636=16.【考点】列表法与树状图法【解析】【分析】(1)田忌首局应出“下马”才可能在整场比赛中获胜.然后列出比赛的所有可能对阵有4种,其中田忌获胜的对阵有2种,利用概率公式求解即可;(2)根据(1)中的一种情况,推出共18种对阵情况,只要(A2B1,C2A1,B2C1)对阵田忌获胜,然后求出概率即可.24.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE//A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.【答案】(1)证明:设直线DE与AA′相交于点T,∵点A与A′关于DE对称,∴DE垂直平分AA′,即DE⊥AA′,AT=TA′.∵E,F为AB边上的两个三等分点,∴AE=EF,∴ET是△AA′F的中位线,∴ET∥A′F,即DE∥A′F.(2)解:连接FG,∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABG=90°,∠DAT+∠BAG=90°,∵DE⊥AA′,∴∠DTA=90°,∴∠ADT+∠DAT=90°,∴∠ADT=∠BAG. ∴△DAE≌△ABG,∴AE=BG,又AE=EF=FB,∴FB=BG,∴△FBG是等腰直角三角形,∴∠GFB=45°.∵DE//A′F,∴A′F⊥AA′,∴∠FA′G=90°.取FG的中点O,连接OA′,OB,在Rt△A′FG和Rt△BFG中,OA′=OF=OG=12FG,OB=OF=OG=12FG,∴OA′=OF=OG=OB,∴点A′,F,B,G都在以FG为直径的⊙O上,∴∠GA′B=∠GFB=45°.(3)证明:设AB=3a,则AD=BC=3a,AF=2a,AE=BF=a. 由(2)得BG=AE=a,∴tan∠BAG=BGAB =a3a=13,即tan∠A′AF=13,∴A′FAA′=13.设A′F=k,则AA′=3k,在Rt△A′AF中,由勾股定理,得AF=√AA′2+A′F2=√10k,∴√10k=2a,k=√10a5,A′F=√10a5.在Rt△ABG中,由勾股定理,得AG=√AB2+BG2=√10a. 又∵AA′=3k=3√10a5,∴A′G=AG−AA′=√10a−3√10a5=2√10a5,∴A′FA′G =√10a52√10a5=12.∵CG=BC−CB=2a,∴BFCG =a2a=12,∴A′FA′G =BFCG=12.由(2)知,∠A′FB+∠A′GB=180°,又∵∠A′GC+∠A′GB=180°,∴∠A′FB=∠A′GC,∴△A′FB∽△A′GC,∴A′BA′C =BFCG=12,∴A′C=2A′B.【考点】正方形的性质,轴对称的性质,相似三角形的判定与性质,锐角三角函数的定义,三角形的中位线定理【解析】【分析】(1)设直线DE与AA′相交于点T,根据对称性可得DE⊥AA′,AT=TA′,由E,F为AB边上的两个三等分点,可得ET是△AA′F的中位线,利用三角形中位线定理即得结论;(2)连接FG,证明△DAE≌△ABG,可求出△FBG是等腰直角三角形,可得∠GFB=45°,可求出∠FA′G=90°,取FG的中点O,连接OA′,OB,根据直角三角形斜边中线的性质得出OA′=OF=OG=OB,可推出点A′,F,B,G都在以FG为直径的⊙O上,利用圆周角定理即得∠GA′B=∠GFB=45°;(3)设AB=3a,则AD=BC=3a,AF=2a,AE=BF=a,利用锐角三角函数可求出A′FAA′=13,设A′F=k,则AA′=3k,在Rt△A′AF中,由勾股定理求出AF=√10k,从而求出k=25.已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=−1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:△MAB与△MBC的面积相等.【答案】(1)解:因为抛物线y=ax2+bx+c与x轴只有一个公共点,以方程ax2+bx+c=0有两个相等的实数根,所以Δ=b2−4ac=0,即b2=4ac.因为抛物线过点P(0,1),所以c=1,所以b2=4a,即a=b24.所以a+b=b24+b=14(b+2)2−1,当b=−2时,a+b取到最小值−1.(2)解:①因为抛物线y=ax2+bx+c与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧.又点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线的图象上,所以只能是P1(−2,1),P3(2,1)在抛物线的图象上,由对称性可得抛物线的对称轴为x=0,所以b=0,即ac=0,因为a≠0,所以c=0.又点P1(−2,1)在抛物线的图象上,所以4a=1,a=14,故抛物线的解析式为y=14x2.②由题意设M(x1,y1),N(x2,y2),A(x0,−1),则y1=kx1+1,y2=kx2+1.记直线y=−1为m,分别过M,N作ME⊥m,NF⊥m,垂足分别为E,F,即∠MEA=∠AFN=90°,因为∠MAN=90°,所以∠MAE+∠NAF=90°.又∠MAE+∠EMA=90°,所以∠EMA=∠NAF,所以△AME∽△NAF.所以AENF =MEAF,所以x0−x1y2+1=y1+1x2−x0,即(y1+1)(y2+1)+(x1−x0)(x2−x0)=0.所以(kx1+2)(kx2+2)+(x1−x0)(x2−x0)=0,即(k2+1)x1x2+(2k−x0)(x1+x2)+x02+4=0.①把y=kx+1代入y=14x2,得x2−4kx−4=0,解得x1=2k−2√k2+1,x2=2k+2√k2+1,所以x1+x2=4k,x1x2=−4.②将②代入①,得−4(k2+1)+4k(2k−x0)+x02+4=0,即(x0−2k)2=0,解得x0=2k,即A(2k,−1).所以过点A且与x轴垂直的直线为x=2k,将x=2k代入y=14x2,得y=k2,即B(2k,k2),将x=2k代入y=kx+1,得y=2k2+1,即C(2k,2k2+1),所以AB=k2+1,BC=k2+1,因此AB=BC,所以△MAB与△MBC的面积相等.【考点】一元二次方程的根与系数的关系,二次函数图象与坐标轴的交点问题,相似三角形的判定与性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)由抛物线y=ax2+bx+c与x轴只有一个公共点,可得方程ax2+bx+c=0有两个相等的实数根,即得△=0,可求出b2=4ac,将点P(0,1)代入抛物线解析式中,求出c=1,从而得出a=b24,继而可得a+b=b24+b=14(b+2)2−1,据此即可求出最值;(2)①由抛物线y=ax2+bx+c与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧. 又点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线的图象上,所以只能是P1(−2,1),P3(2,1)在抛物线的图象上,由对称性可得抛物线的对称轴为x=0,所以b=0,从而求出c=0,再将点P1(−2,1)代入解析式中求出a值即可;②由题意设M(x1,y1),N(x2,y2),A(x0,−1),则y1=kx1+1,y2=kx2+1.记直线y=−1为m,分别过M,N作ME⊥m,NF⊥m,垂足分别为E,F,先求出过点A且与x轴垂直的直线为x=2k,将x=2k代入y=14x2可求出B(2k,k2),将x=2k代入y=kx+1,可求出C(2k,2k2+1),可得AB=k2+1,BC=k2+1,即得AB=BC,根据等底同高即得结论.。

福建省福州市中考数学真题试题(带解析)

福建省福州市中考数学真题试题(带解析)

数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.3的相反数是A .-3B .13C .3D .-13考点:相反数.专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为A .48.9×104B .4.89×105C .4.89×104D .0.489×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单. 4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°.第3题图A B C D a 第4题图 1 2 b点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题.5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.分析:分别根据合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CD AD, ∴ AD =CDtan A =10033=100 3在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长. 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题. 专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解.解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小,设与线段AB 相交于点(x ,-x +6)时k 值最大,则k =x (-x +6)=-x 2+6x =-(x -3)2+9,第9题图AB CD 30° 45°第10题图∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________. 考点:二次根式的定义. 专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1. 故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) 考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x 的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值.解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°.∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BCCD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12. 故x =5-12. 如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AE AD=125-12=5+14. 故答案是:5-12;5+14. 点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.ABCD 第15题图ABCD E考点:整式的混合运算;实数的运算;零指数幂. 专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果; (2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换. 分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C . ∵ AE =CF ,∴ AE +EF =CF +EF , 即 AF =CE . 又∵ AB =CD , ∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π.点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部A B C D E F第17(1)题图 第17(2)题图A B C分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? 考点:条形统计图;用样本估计总体;扇形统计图. 分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果;(3) 用学生总数乘以骑自行车所占的百分比即可.解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示;(2) 采用乘公交车上学的人数最多;(3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题? 考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解; (2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解. 解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68. 解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,学生上学方式扇形统计图步行 其他乘公交车 骑自行车 上学方式步行 其他乘公交车 骑自行车 上学方式依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形. 专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长. 解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线, ∴ OC ⊥CD ,∴ ∠OCD =90°. ∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°, ∴ AD ∥OC , ∴ ∠1=∠2, ∵ OA =OC , ∴ ∠2=∠3, ∴ ∠1=∠3, 即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =ACcos ∠CAB =43cos30°=8.连接OE ,∵ ∠EAO =2∠3=60°,OA =OE , ∴ △AOE 是等边三角形,∴ AE =OA =12AB =4.解法二:如图3,连接CE ∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°, ∴ ∠1=∠3=30°.在Rt △ADC 中,CD =23, ∴ AD =CDtan ∠DAC =23tan30°=6.∵ 四边形ABCE 是⊙O 的内接四边形, ∴ ∠B +∠AEC =180°. 又∵ ∠AEC +∠DEC =180°, ∴ ∠DEC =∠B =60°. 在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2.∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.图2图3考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质. 专题:代数几何综合题. 分析:(1) 根据题意得:CQ =2t ,PA =t ,由Rt△ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD PA =BC AC =43,则可求得QB 与PD 的值;(2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t .(2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10. ∵ PD ∥BC ,∴ △APD ∽△ACB ,∴ AD AB =AP AC ,即:AD 10=t6, ∴ AD =53t ,∴ BD =AB -AD =10-53t .∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125.当t =125时,PD =43×125=165,BD =10-53×125=6,∴ DP ≠BD ,∴ □PDBQ 不能为菱形.第21题图①第21题图②图1设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t .要使四边形PDBQ 为菱形,则PD =BD =BQ , 当PD =BD 时,即43t =10-53t ,解得:t =103.当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615.(3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0); 当t =4时,点M 2的坐标为(1,4).设直线M 1M 2的解析式为y =kx +b ,∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0),∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t2,t ).把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t .∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2. ∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度. 解法二:如图3,设E 是AC 的中点,连接ME . 当t =4时,点Q 与点B 重合,运动停止. 设此时PQ 的中点为F ,连接EF .过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC . ∴ △PMN ∽△PDC . ∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t ,∴ CN =PC -PN =(6-t )-(3-12t )=3-12t .∴ EN =CE -CN =3-(3-12t )= 12t .∴ tan ∠MEN =MN EN=2.∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4. ∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合, ∴ 线段PQ 中点M 所经过的路径长为25单位长度.图2AC PN 图3E H点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标; (3) 综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB 沿x 轴翻折;方法二:旋转变换,将△NOB 绕原点顺时针旋转90°.特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ). 又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.第22题图① 第22题图②∵ 抛物线与直线只有一个公共点, ∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2, ∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3). 设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去),∴ 点N 的坐标为(-34,4516).方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4),∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, ∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB 2则N 2(4516,34),B 2(4,-4),∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, 图1∴ 点P 1的坐标为(4532,38).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532).综上所述,点P 的坐标是(-38,-4532)或(4532,38).点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.本模板说明1、页眉21世纪教育网 21世纪教育网 黑体 小三号字 加粗 鲜红色 居中 2、背景专注初中教育,服务一线教师 隶书 鲜红色 3、页脚21世纪教育网期待您的投稿!zkzyw@ 宋体(正文) 小五号字 右对齐 鲜红色 4、页码 -1-数字,两遍加横 居中。

2020年福建省中考数学试题(含参考答案与试题解析)

2020年福建省中考数学试题(含参考答案与试题解析)
5.如图, AD 是等腰三角形 ABC 的顶角平分线, BD 5 ,则 CD 等于( )
A. 10
B. 5
C. 4
D. 3
【答案】B
【解析】
【分析】
根据等腰三角形三线合一的性质即可判断 CD 的长.
【详解】∵ AD 是等腰三角形 ABC 的顶角平分线
∴CD=BD=5. 故选:B. 【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.
试问 6210 文能买多少株椽?设这批椽的数量为 x 株,则符合题
6210 3 x
B.
6210 3 x 1
C. 3x 1 6210
D.
x
【答案】A
【解析】
【分析】
根据“这批椽的价钱为 6210 文”、“每件椽的运费为 3 文,剩下的椽的运费恰好等于一株椽的 价钱”列出方程解答.
故选:C
【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确 m 和 n 的范围,然
后再确定 m n 的范围即可.
7.下列运算正确的是( )
A. 3a2 a2 3
B. (a b)2 a2 b2
C. 3ab2 2 6a2b4
D. a a1 1(a 0)
【答案】D
【解析】
等于( )
A. 40
【答案】A 【解析】 【分析】
B. 50
C. 60
D. 70
根据 AB CD ,A 为 BD 中点求出∠CBD=∠ADB=∠ABD,再根据圆内接四边形的性质得
到∠ABC+∠ADC=180°,即可求出答案.
【详解】∵ A 为 BD 中点,
∴ AB AD ,
∴∠ADB=∠ABD,AB=AD,
6.如图,数轴上两点 M , N 所对应的实数分别为 m, n ,则 m n 的结果可能是( )

2024年福建省中考真题数学试卷含答案解析

2024年福建省中考真题数学试卷含答案解析

2024年福建省中考真题数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中,无理数是( )A .3-B .0C .23D2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯【答案】C【分析】根据科学记数法的定义解答,科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<∣∣为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.本题考查了科学记数法,熟悉科学记数法概念是解题的关键.【详解】469610 6.96110=⨯故选:C .3.如图是由长方体和圆柱组成的几何体,其俯视图是( )A .B .C .D .【答案】C【分析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.【详解】解:这个立体图形的俯视图是一个圆形,圆形内部中间是一个长方形.故选:C .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒【答案】A【分析】本题考查了平行线的性质,由AB CD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD ,∴60CDB ∠=︒,∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒-∠-∠=︒,故选:A .5.下列运算正确的是( )A .339a a a ⋅=B .422a a a ÷=C .()235a a =D .2222a a -=【答案】B【分析】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解题的关键是掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则.利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:336a a a ⋅=,A 选项错误;422a a a ÷=,B 选项正确;()236a a =,C 选项错误;2222a a a -=,D 选项错误;故选:B .6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A .14B .13C .12D .23由树状图可知,共有6种不同情况,和是偶数的共有2163=,故选:B7.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于( )A .18︒B .30︒C .36︒D .72︒8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( )A .()1 4.7%120327x +=B .()1 4.7%120327x -=C .1203271 4.7%x=+D .1203271 4.7%x=-【答案】A【分析】本题主要考查了列一元一次方程,解题的关键是理解题意,找出等量关系,根据今年第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,列出方程即可.【详解】解:将去年第一季度社会消费品零售总额设为x 亿元,根据题意得:()1 4.7%120327x +=,故选:A .9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠C .OE OF =D .180BOC AOD ∠+∠=︒B.BOC ∠不一定等于AOB ∠,结论错误,故符合题意;C.由对称得OAB ODC ≌,∵点 E ,F 分别是底边AB CD ,的中点,OE OF ∴=,结论正确,故不符合题意;D.过O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒ ,GOD BOH ∴∠=∠,由对称得BOH COH ∠∠=,GOD COH ∴∠=∠,同理可证AOM BOH ∠=∠,AOD BOC ∠∠∴+AOD AOM DOG =∠+∠+∠180=︒,结论正确,故不符合题意;故选:B .10.已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <二、填空题11.因式分解:x 2+x = .【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.不等式321x -<的解集是 .【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.【详解】解:321x -<,33x <,1x <,故答案为:1x <.13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是.(单位:分)【答案】90【分析】本题考查了中位数的知识,解题的关键是了解中位数的求法,难度不大.根据中位数的定义(数据个数为偶数时,排序后,位于中间位置的数为中位数),结合图中的数据进行计算即可;【详解】解:∵共有12个数,∴中位数是第6和7个数的平均数,+÷=;∴中位数是(9090)290故答案为:90.14.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为.15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为 .∵反比例函数ky x=的图象与∴221kk ==,设()B n m ,,则2nm k ==∵22215OB OA ==+=16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD == .(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)【答案】128【分析】此题考查了解直角三角形的应用,求出40ADQ ∠=︒,130PDQ ∠=∠=︒,由AB QD ∥得到40BAD ADQ ∠=∠=︒,求出2sin 256F BD AD BAD ==⋅∠=,求出∵帆船航行方向与风向所在直线的夹角∴70ADQ PDA PDQ ∠=∠-∠=∵AB QD ∥,∴40BAD ADQ ∠=∠=︒,在Rt △ABD 中,400F AD ==sin 400F BD AD BAD ==⋅∠=三、解答题17.计算:0(1)5-+--【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.18.如图,在菱形ABCD 中,点E F 、分别在BC CD 、边上,AEB AFD ∠=∠,求证:BE DF =.【答案】见解析【分析】本题考查菱形的性质、全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答的关键.根据菱形的性质证得AB AD =,B D ∠=∠,再根据全等三角形的判定证明()AAS ABE ADF ≌△△即可.【详解】证明: 四边形ABCD 是菱形,AB AD ∴=,B D ∠=∠,AEB AFD ∠=∠ ,()AAS ABE ADF ∴ ≌,BE DF ∴=.19.解方程:3122x x x +=+-.20.已知A 、B 两地都只有甲、乙两类普通高中学校.在一次普通高中学业水平考试中,A 地甲类学校有考生3000人,数学平均分为90分:乙类学校有考生2000人,数学平均分为80分.(1)求A 地考生的数学平均分;(2)若B 地甲类学校数学平均分为94分,乙类学校数学平均分为82分,据此,能否判断B 地考生数学平均分一定比A 地考生数学平均分高?若能,请给予证明:若不能,请举例说明.21.如图,已知二次函数2y x bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,其中()()2,0,0,2A C --.(1)求二次函数的表达式;(2)若P 是二次函数图象上的一点,且点P 在第二象限,线段PC 交x 轴于点,D PDB △的面积是CDB △的面积的2倍,求点P 的坐标.22.如图,已知直线1l 2l.(1)在12,l l 所在的平面内求作直线l ,使得l 1l 2l ,且l 与1l 间的距离恰好等于l 与2l 间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若1l 与2l 间的距离为2,点,,A B C 分别在12,,l l l 上,且ABC 为等腰直角三角形,求ABC 的面积.直线l 就是所求作的直线.(2)①当90,BAC AB AC ∠=︒=l 1l 2l ,直线1l 与2l 间的距离为称性可知:2BC =,2AB AC ∴==,②当90,ABC BA BC ∠=︒=时,分别过点,A C 作直线1l 的垂线,垂足为90AMB BNC ∴∠=∠=︒.l l l ,直线l 与l 间的距离为22③当90,ACB CA CB ∠=︒=时,同理可得,综上所述,ABC 的面积为1或23.已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212-为非负数;b aca b c均为奇数,,m n是否可以都为整数?说明你的理由.(2)若,,24.在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A .B .C .D .(3)卡纸型号型号Ⅰ型号Ⅱ型号Ⅲ规格(单位:cm )3040⨯2080⨯8080⨯单价(单位:元)3520现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE ,EF 的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C ;(3)见解析.【分析】本题考查了几何体的展开与折叠,空间观念、推理能力、模型观念、创新意识等知识,掌握相关知识是解题的关键.(1)由折叠和题意可知,GH AE FB =+,AH DH =,四边形EFNM 是正方形,得到上述图形折叠后变成:由折叠和题意可知,∵四边形EFNM∴EM EF=,即+=∴GH AG AE∴型号Ⅲ卡纸,每张卡纸可制作10个正方体,如图:型号Ⅱ卡纸,每张这样的卡纸可制作2个正方体,如图:型号Ⅰ卡纸,每张这样的卡纸可制作1个正方体,如图:∴可选择型号Ⅲ卡纸2张,型号⨯+⨯+⨯=(个),102231127∴所用卡纸总费用为:202533158⨯+⨯+⨯=(元).25.如图,在ABC 中,90,BAC AB AC ∠=︒=,以AB 为直径的O 交BC 于点D ,AE OC ⊥,垂足为,E BE 的延长线交 AD 于点F .(1)求OE AE的值;(2)求证:AEB BEC △∽△;(3)求证:AD 与EF 互相平分.∴∠AO BO = ,AOE BOM ∴△≌△,,AE BM OE OM ∴==12OE AE = ,2BM OE EM ∴==,90ADB AFB ∴∠=∠=,90AB AC BAC ∠== 2,BC BD DAB ∴=∠=由(2)知,AEB △∽△22AE AB AO BE BC BD ∴===。

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试题及答案(Word解析版)

2024福建省三明市中考数学试卷一、单项选择题(共10题,每题4分,满分40分)1.(4分)(2024•三明)的相反数是()C. 3 D.-3A.B.-分析:依据只有符号不同的两个数互为相反数求解后选择即可.解答:解:-的相反数是.故选A.点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(4分)(2024•三明)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2考点:幂的乘方与积的乘方;同底数幂的除法;完全平方公式.分析:依据幂的乘方,可推断A,依据同底数幂的除法,可推断B,依据积的乘方,可推断C,依据完全平方公式,可推断D.解答:解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.(4分)(2024•三明)下列正方形中由阴影部分组成的图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、是中心对称图形不是轴对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.4.(4分)(2024•三明)PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10-5B.2.5×10-5C.2.5×10-6D.2.5×10-7考点:科学记数法—表示较小的数.分析:肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.解答:解:0.000 002 5=2.5×10-6;故选:C.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定.5.(4分)(2024•三明)不等式组的解集是()A.x≥-1 B.x≤2 C.1≤x≤2 D.-1≤x≤2考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x≥-1,解②得:x≤2,则不等式组的解集是:-1≤x≤2.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目经常要结合数轴来推断.还可以视察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.6.(4分)(2024•三明)如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图推断几何体;简洁组合体的三视图.分析:先细心视察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选B.点评:本题考查了由三视图推断几何体及简洁组合体的三视图,重点考查几何体的三视图及空间想象实力.7.(4分)(2024•三明)小亮和其他5个同学参与百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.B.C.D.1考点:概率公式.分析:由赛场共设1,2,3,4,5,6六个跑道,干脆利用概率公式求解即可求得答案.解答:解:∵赛场共设1,2,3,4,5,6六个跑道,∴小亮首先抽签,则小亮抽到1号跑道的概率是:.故选A.点评:此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.8.(4分)(2024•三明)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n-2)•180°.9.(4分)(2024•三明)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.D E=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形考点:垂径定理.分析:依据垂径定理推断即可.解答:解:∵AB⊥CD,AB过O,∴DE=CE,弧BD=弧BC,依据已知不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选B.点评:本题考查了垂径定理的应用,主要考查学生的推理实力和辨析实力.10.(4分)(2024•三明)已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1 C.b≥1 D.b≤1考点:二次函数的性质.专题:数形结合.分析:先依据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得推断b≤1.解答:解:∵抛物线y=-x2+2bx+c的对称轴为直线x=-=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x-)2+,的顶点坐标是(-,),对称轴直线x=-b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小,二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2024•三明)计算:×=6.考点:二次根式的乘除法.分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.解答:解:原式=2×=6.故答案为:6.点评:本题考查了二次根式的乘法运算,属于基础题,驾驭运算法则是关键.12.(4分)(2024•三明)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是甲(填“甲”或“乙”).考点:方差.分析:依据方差的意义可作出推断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S2=0.9,S2乙=1.1,甲∴S2甲<S2乙,∴甲、乙两支仪仗队的队员身高更整齐的是甲;故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(4分)(2024•三明)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是AB=AD(答案不唯一)(写出一个即可).考点:菱形的判定.分析:利用菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.解答:解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵邻边相等的平行四边形是菱形,∴添加的条件是AB=AD(答案不唯一),故答案为:AB=AD(答案不唯一).点评:本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键.14.(4分)(2024•三明)如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,依据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是驾驭圆的面积公式.15.(4分)(2024•三明)有两块面积相同的蔬菜试验田,第一块运用原品种,其次块运用新品种,分别收获蔬菜1500千克和2100千克.已知其次块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则依据题意列出的方程是=.考点:由实际问题抽象出分式方程.分析:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,依据两块地的面积相同,列出分式方程.解答:解:设第一块试验田每亩的产量为x千克,则其次块试验田每亩的产量为(x+200)千克,由题意得,=.故答案为;=.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出分式方程.16.(4分)(2024•三明)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB 于D,P是上的一个动点,连接AP,则AP的最小值是-1.考点:勾股定理;线段的性质:两点之间线段最短;等腰直角三角形.分析:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再依据勾股定理求出AE的长,然后减掉半径即可.解答:解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE==,P2E=1,∴AP2=-1.故答案为-1.点评:本题考查了勾股定理、最短路径问题,利用两点之间线段最短是解题的关键.三、解答题(共9小题,满分86分)17.(7分)(2024•三明)解不等式2(x-2)<1-3x,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:去括号得,2x-4<1-3x,移项得,2x+3x<1+4,合并同类项得,5x<5,系数化为1得,x<1.在数轴上表示为:.点评:本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.18.(7分)(2024•三明)先化简,再求值:(1+)•,其中x=+1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=,当x=+1时,原式==.点评:此题考查了分式的化简求值,娴熟驾驭运算法则是解本题的关键.19.(8分)(2024•三明)如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.(1)求k和b的值;(2)连接OA,求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)分别把A点坐标代入y=x+b和y=中即可计算出b和k的值;(2)先确定B点坐标,然后依据三角形面积公式求解.解答:解:(1)把A(2,1)代入y=x+b得2+b=1,解得b=-1;把A(2,1)代入y=(x>0)得k=2×1=2;(2)一次函数解析式为y=x-1,把y=0代入y=x-1得x-1=0,解得x=1,则B点坐标为(1,0),所以△AOB的面积=×1×1=.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满意两函数解析式.20.(8分)(2024•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)考点:解直角三角形的应用-坡度坡角问题.分析:在直角三角形中利用20°角和AB的长求得线段AC的长后看是否在5.3-5.7范围内即可.解答:解:由题意得:Rt△ACB中,AB=6米,∠A=20°,∴AC=AB•cos∠A≈6×0.94=5.64,∴在5.3~5.7米范围内,∴符合要求.点评:本题考查了解直角三角形的应用,解题的关键是弄清题意,并整理出直角三角形.21.(10分)(2024•三明)某学校在开展“书香校内”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,依据图中的信息,解答下列问题:(1)这次调查的学生人数为200人,扇形统计图中m的值为15;(2)补全条形统计图;(3)假如这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用文学的人数和所占的百分比求出总人数,用整体1减去文学、科普、军事所占的百分比,即可求出m的值;(2)用200乘以科普所占的百分比,求出科普的人数,再补全统计图几即可;(3)用课外阅读的书籍的册数乘以科普所占的百分比,即可得出答案.解答:解:(1)这次调查的学生人数为=200(人),扇形统计图中军事所占的百分比是:1-35%-20%-30%=15%,则m=15;故答案为:200,15;(2)科普的人数是:200×30%=60(人),补图如下:(3)依据题意得:1500×=450(册),答:“科普”类书籍应添置450册比较合适.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图干脆反映部分占总体的百分比大小.22.(10分)(2024•三明)为了激励居民节约用水,某市采纳“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?考点:一次函数的应用.分析:(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y与x的函数表达式是y =2x;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,y与x的函数表达式是y=2×20+2.8(x-20),即y=2.6x-12;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x计算用水量;四月份缴费金额超过40元,所以用y=2.8x-16计算用水量,进一步得出结果即可.解答:解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.点评:此题考查一次函数的实际运用,依据题目蕴含的数量关系解决问题.23.(10分)(2024•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.考点:直线与圆的位置关系;平行线的性质;全等三角形的判定与性质.分析:(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.(2)连接OE,①证明△AOE≌△OCD,即可得AE=OD;②利用等腰三角形及平行线的性质,可求得∠ODC的度数.解答:解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.点评:本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出协助线是解题的关键.24.(12分)(2024•三明)如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相像?考点:圆的综合题;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;相像三角形的判定与性质.专题:综合题;分类探讨.分析:(1)易证∠OCB=∠B,由条件∠DOE=∠B可得∠OCB=∠DOE,从而得到△COF是等腰三角形,过点F作FH⊥OC,垂足为H,如图1,由等腰三角形的三线合一可求出CH,易证△CHF∽△BCA,从而可求出CF长.(2)题中要求“△OMN与△BCO相像”,并没有指明对应关系,故需分状况探讨,由于∠DOE=∠B,因此△OMN中的点O与△BCO中的点B对应,因而只需分两种状况探讨:①△OMN∽△BCO,②△OMN∽△BOC.当△OMN∽△BCO时,可证到△AOM∽△ACB,从而求出AM长,进而求出CM长;当△OMN∽△BOC时,可证到△CON∽△ACB,从而求出ON,CN长.然后过点M作MG⊥ON,垂足为G,如图3,可以求出NG.并可以证到△MGN∽△ACB,从而求出MN长,进而求出CM长.解答:解:(1)∵∠ACB=90°,点O是AB的中点,∴OC=0B=OA=5.∴∠OCB=∠B,∠ACO=∠A.∵∠DOE=∠B,∴∠FOC=∠OCF.∴FC=FO.∴△COF是等腰三角形.过点F作FH⊥OC,垂足为H,如图1,∵FC=FO,FH⊥OC,∴CH=OH=,∠CHF=90°.∵∠HCF=∠B,∠CHF=∠BCA=90°,∴△CHF∽△BCA.∴=.∵CH=,AB=10,BC=6,∴CF=.∴CF的长为.(2)①若△OMN∽△BCO,如图2,则有∠NMO=∠OCB.∵∠OCB=∠B,∴∠NMO=∠B.∵∠A=∠A,∴△AOM∽△ACB.∴=.∵∠ACB=90°,AB=10,BC=6,∴AC=8.∵AO=5,AC=8,AB=10,∴AM=.∴CM=AC-AM=.②若△OMN∽△BOC,如图3,则有∠MNO=∠OCB.∵∠OCB=∠B,∴∠MNO=∠B.∵∠ACO=∠A,∴△CON∽△ACB.∴==.∵BC=6,AB=10,AC=8,CO=5,∴ON=,CN=.过点M作MG⊥ON,垂足为G,如图3,∵∠MNO=∠B,∠MON=∠B,∴∠MNO=∠MON.∴MN=MO.∵MG⊥ON,即∠MGN=90°,∴NG=OG=.∵∠MNG=∠B,∠MGN=∠ACB=90°,∴△MGN∽△ACB.∴=.∵GN=,BC=6,AB=10,∴MN=.∴CM=CN-MN=-=.∴当CM的长是或时,△OMN与△BCO相像.点评:本题考查了直角三角形斜边上的中线等于斜边的一半、等腰三角形的判定与性质、相像三角形的判定与性质、勾股定理等学问,考查了分类探讨的思想,而将等腰三角形的三线合一与三角形相像相结合是解决本题的关键.25.(14分)(2024•三明)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,干脆写出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)解析式已存在,y=ax2+bx+4,我们只须要依据特点描述求出a,b即可.由对称轴为-,又过点A(-2,0),所以函数表达式易得.(2)四边形为平行四边形,则必定对边平行且相等.因为已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平行4个单位,向右2个单位与N重合;②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.因为M在抛物线,可设坐标为(x,-x2+x+4),易得N坐标.由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.(3)使△PBD≌△PBC,易考虑∠CBD的平分线与抛物线的交点.确定平分线可因为BC=BD,可作等腰△BCD,利用三线合一,求其中线所在方程,进而与抛物线联立得方程组,解出P即可.解答:解:(1)∵抛物线y=ax2+bx+4交x轴于A(-2,0),∴0=4a-2b+4,∵对称轴是x=3,∴-=3,即6a+b=0,两关于a、b的方程联立解得a=-,b=,∴抛物线为y=-x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,-x2+x+4),则N(x+2,-x2+x),∵N在x轴上,∴-x2+x=0,解得x=0(M与C重合,舍去),或x=6,∴x M=6,∴M(6,4).②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.设M(x,-x2+x+4),则N(x-2,-x2+x+8),∵N在x轴上,∴-x2+x+8=0,解得x=3-,或x=3+,∴x M=3-,或3+.∴M(3-,-4)或(3+,-4)综上所述,M的坐标为(6,4)或(3-,-4)或(3+,-4).(3)∵OC=4,OB=3,∴BC=5.假如△PBD≌△PBC,那么BD=BC=5,∵D在x轴上,∴D为(-2,0)或(8,0).①当D为(-2,0)时,连接CD,过B作直线BE平分∠DBC交CD于E,交抛物线于P1,P2,此时△P1BC≌△P1BD,△P2BC≌△P2BD,∵BC=BD,∴E为CD的中点,即E(-1,2),设过E(-1,2),B(3,0)的直线为y=kx+b,则,解得,∴BE:y=-x+.设P(x,y),则有,解得,或,则P1(4+,),P2(4-,).②当D为(8,0)时,连接CD,过B作直线BF平分∠DBC交CD于F,交抛物线于P3,P4,此时△P3BC≌△P3BD,△P4BC≌△P4BD,∵BC=BD,∴F为CD的中点,即E(4,2),设过E(4,2),B(3,0)的直线为y=kx+b,则,解得,∴BF:y=2x-6.设P(x,y),则有,解得或,则P3(-1+,-8+2),P4(-1-,-8-2).综上所述,点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).点评:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等学问,本题难度适中,但想做全答案并不简洁,是道特别值得学生练习的题目.2024福建省三明市中考数学试题满分:150分,考试时间:120分钟。

福州市中考数学试卷含答案解析

福州市中考数学试卷含答案解析

福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=.14.若二次根式在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=. 故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将人数减去人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,比增加了750﹣743=7(万人);(2)由图可知增加:×100%≈0.98%,增加:×100%≈0.97%,增加:×100%≈1.2%,增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测福州市常住人口数大约为757万人.故答案为:(1)7;(2).【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H 重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2023福建省中考数学试卷及答案

2023福建省中考数学试卷及答案

2023福建省中考数学试卷及答案本试卷共分为两部分:选择题和非选择题,满分100分。

考试时间为120分钟。

选择题本部分共20小题,每小题2分,共40分。

1. 甲乙两个园子,甲园占地面积的$40\%$,乙园占地面积的$60\%$。

如果两个园子的面积相等,且甲园比乙园的边长长1米,则甲园的面积是()。

A. 100$ m^2$ $\quad$B. 120$ m^2$ $\quad$C.150$ m^2$ $\quad$D. 200$ m^2$2. 关于方程$x^2+mx+n=0$,下列命题正确的是()。

A. 当$m^2<4n$时,它有两个相等的实数根;B. 当$m^2=4n$时,它有两个相等的实数根;C. 当$m^2>4n$时,它有两个相等的实数根;D. 总成立。

3. 某车站有不同的旅游集散地$A_1,A_2,\cdots,A_n$,所有旅行团都从这个车站出发,到若干个旅游集散地点游览,所有旅游集散地都可以到达。

有一个旅行团计划从车站出发,到不重复地游览若干个旅游集散地,它们之间的路程用1到$n$之间的整数表示,集合$S$表示这些行程的集合,则$S$中小于10的最大元素是()。

A. 2 $\quad$B. 3 $\quad$C. 4 $\quad$D. 54. 若$\sin x>\cos y$,$\cos x<0,\sin y<0$,则$\tan x$与$\coty$的大小关系是()。

A. $\tan x< \cot y$ $\quad$B. $\tan x= \cot y$ $\quad$C. $\tan x>\cot y$ $\quad$D.无法确定。

5. 20条等长钢管要用火车运送到工地,车厢的长度比钢管多0.2米。

如果每个车厢可以装4条钢管,则至少需要多少个车厢()。

A. 3车厢 $\quad$B. 4车厢 $\quad$C. 5车厢 $\quad$D. 6车厢6. 已知由$n(n\geqslant 3)$个不在同一直线上的点,任取三点不共线,它们围成的三角形是等边三角形的概率为$\frac{1}{4}$,则$n=$()。

福建省2024届中考试题猜想数学试卷含解析

福建省2024届中考试题猜想数学试卷含解析

福建省2024届中考试题猜想数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣3,0,4,6这四个数中,最大的数是()A.﹣3 B.0 C.4 D.62.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.3.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限4.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为() A.7.49×107B.74.9×106C.7.49×106D.0.749×1075.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a46.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根7.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=28.﹣3的绝对值是()A.﹣3 B.3 C.-13D.139.tan45°的值等于()A .33B .22C .32D .110.如图,△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得△ABF ,连接EF 交AB 于H ,有如下五个结论①AE ⊥AF ;②EF :AF=2:1;③AF 2=FH•FE ;④∠AFE=∠DAE+∠CFE ⑤ FB :FC=HB :EC .则正确的结论有( )A .2个B .3个C .4个D .5个11.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120∠=,AB 8=,则点A 到BC 的距离是( )A .4B .43C .5D .612.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13182=________.14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x 匹大马,y 匹小马,根据题意可列方程组为______.15.在实数范围内分解因式:x 2y ﹣2y =_____.16.出售某种手工艺品,若每个获利x 元,一天可售出(8)x -个,则当x=_________元,一天出售该种手工艺品的总利润y 最大.17.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.18.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .20.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?21.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.22.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k ,然后放回搅匀再取一个球,标号记为b ,求直线y=kx+b 经过一、二、三象限的概率.23.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,经过C 作CD ⊥AB 于点D ,CF 是⊙O 的切线,过点A 作AE ⊥CF 于E ,连接AC .(1)求证:AE=AD .(2)若AE=3,CD=4,求AB 的长.24.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA=4,OC=3,若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点D ,E 的坐标分别为(3,0),(0,1). (1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.25.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.26.(12分)解方程:+=1.27.(12分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,16这四个数中,﹣3<06<1,最大的数是1.故选C.2、B【解题分析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【题目详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【题目点拨】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.3、C【解题分析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像4、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】7490000=7.49×106.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解题分析】解:A.a2+a2=2a2,故A错误;C、a2a3=a5,故C错误;D、a8÷a2=a6,故D错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方6、A【解题分析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【题目详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【题目点拨】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、A【解题分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【题目点拨】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.8、B【解题分析】根据负数的绝对值是它的相反数,可得出答案.【题目详解】根据绝对值的性质得:|-1|=1.故选B.【题目点拨】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.9、D【解题分析】根据特殊角三角函数值,可得答案.【题目详解】解:tan45°=1,故选D.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10、C【解题分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【题目详解】解:由题意知,△AFB ≌△AED∴AF=AE ,∠FAB=∠EAD ,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE ⊥AF ,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE ,故④正确;∵△AEF 是等腰直角三角形,有EF:AF=2:1,故此选项②正确;∵△AEF 与△AHF 不相似,∴AF 2=FH·FE 不正确.故此选项③错误,∵HB//EC ,∴△FBH ∽△FCE ,∴FB:FC=HB:EC ,故此选项⑤正确.故选:C【题目点拨】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.11、A【解题分析】作AH BC ⊥于H.利用直角三角形30度角的性质即可解决问题.【题目详解】解:作AH BC ⊥于H .DE 垂直平分线段AB ,EA EB ∴=,EAB EBA ∠∠∴=,AEB 120∠=,EAB ABE 30∠∠∴==,AE //BC ,EAB ABH 30∠∠∴==,AHB 90∠=,AB 8=,1AH AB 42∴==, 故选A .【题目点拨】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.12、B【解题分析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【题目详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【题目点拨】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】试题解析:原式==故答案为14、10031003x y y x +=⎧⎪⎨+=⎪⎩【解题分析】分析:根据题意可以列出相应的方程组,从而可以解答本题. 详解:由题意可得,10031003x y y x ⎧⎪⎨⎪⎩+=+=, 故答案为10031003x y y x ⎧⎪⎨⎪⎩+=+=点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 15、y (x+2)(x ﹣2) 【解题分析】先提取公因式y 后,再把剩下的式子写成x 2-(2)2,符合平方差公式的特点,可以继续分解. 【题目详解】x 2y-2y=y (x 2-2)=y (x+2)(x-2). 故答案为y (x+2)(x-2). 【题目点拨】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止. 16、1【解题分析】先根据题意得出总利润y 与x 的函数关系式,再根据二次函数的最值问题进行解答. 解:∵出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个, ∴y=(8-x )x ,即y=-x 2+8x , ∴当x=- b82a 2-=-=1时,y 取得最大值.故答案为:1. 17、56【解题分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可. 【题目详解】 如图:共有12种情况,在第三象限的情况数有2种, 故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【题目点拨】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.18、16 5【解题分析】由图象得出解析式后联立方程组解答即可.【题目详解】由图象可得:y甲=4t(0≤t≤5);y乙=()() 2112 916(24)t tt t<⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【题目点拨】此题考查一次函数的应用,关键是由图象得出解析式解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【解题分析】由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.【题目详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.20、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解题分析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒. 考点:二次函数的应用.21、(1)3;(2)1312n +-;(3)1218,95N N ==【解题分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可. ()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值 【题目详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++=()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n −1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n---⋯-, 每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,nn S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可, 则①1+2+(−2−n )=0,解得:n =1,总共有()111232+⨯+=,不满足N >10,②1+2+4+(−2−n )=0,解得:n =5,总共有()1553182+⨯+=,满足:10100N <<,③1+2+4+8+(−2−n )=0,解得:n =13,总共有()113134952+⨯+=,满足:10100N <<,④1+2+4+8+16+(−2−n )=0,解得:n =29,总共有()1292954402+⨯+=,不满足100N <,∴1218,95N N == 【题目点拨】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.22、(1)23;(2)49【解题分析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【题目详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b 1 -1 21 1,1 1,-1 1,2 -1 -1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【题目点拨】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.23、(1)证明见解析(2)25 3【解题分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【题目详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【题目点拨】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.24、(1)y=﹣34x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(6+233,2)或(153,﹣2).【解题分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【题目详解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣34,∴抛物线解析式为y=﹣34(x﹣2)2+3,即y=﹣34x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形;(3)存在.理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得1k2b1⎧=⎪⎨⎪=⎩,∴直线BE解析式为y=12x+1,当x=2时,y=2,∴F(2,2),①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,∴点M的纵坐标为2或﹣2,在y=﹣34x 2+3x 中,令y=2可得2=﹣34x 2+3x ,解得, ∵点M 在抛物线对称轴右侧, ∴x >2,∴x=3,∴M 2);在y=﹣34x 2+3x 中,令y=﹣2可得﹣2=﹣34x 2+3x ,解得, ∵点M 在抛物线对称轴右侧, ∴x >2,∴x=3,∴M 点坐标为(3,﹣2); ②当AF 为平行四边形的对角线时, ∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1), 设M (t ,﹣34t 2+3t ),N (x ,0),则﹣34t 2+3t=2,解得 ∵点M 在抛物线对称轴右侧, ∴x >2, ∵t >2,∴∴M 2);综上可知存在满足条件的点M2,﹣2).【题目点拨】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB 各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.25、(1)14;(2)13.【解题分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【题目详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13 P .【题目点拨】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26、-3【解题分析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.27、证明见解析.【解题分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则CFD AEB=,由FD=EB,得,FD EB=,由等量减去等量仍是等量得:CFD FD AEB EB-=-,即FC AE=,由等弧对的圆周角相等,得∠D=∠B.【题目详解】解:方法(一)证明:∵AB、CD是⊙O的直径,∴CFD AEB=.∵FD=EB,∴FD EB=.∴CFD FD AEB EB-=-.即FC AE=.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【题目点拨】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.。

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.(4分)(2022•福建)﹣11的相反数是()A.﹣11B.C.D.112.(4分)(2022•福建)如图所示的圆柱,其俯视图是()A.B.C.D.3.(4分)(2022•福建)5G应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为()A.13976×103B.1397.6×104C.1.3976×107D.0.13976×1084.(4分)(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.5.(4分)(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(4分)(2022•福建)不等式组的解集是()A.x>1B.1<x<3C.1<x≤3D.x≤37.(4分)(2022•福建)化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a48.(4分)(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F109.(4分)(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm10.(4分)(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB =60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.160二、填空题:本题共6小题,每小题4分,共24分。

2023年福建省中考数学真题(学生版+解析版)

2023年福建省中考数学真题(学生版+解析版)

2023年福建省中考数学真题一、选择题z本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.l.下列实数中,最大的数是(〉A.-IB.0C. ID.22.下图是由一个长-;Jj'体和一个圆柱组成的几何体,它的俯视图是(〉/主视方向c曰|「0·10 I3.若某三角形的三边长分别为3,4, m,则m的值可以是(〉A.IB. 5C. 7D.94.党的二寸大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保旦在稳定在百分之九寸五、将数据1040000000用科学记数法表示为(〉A.104×107B.10.4xl085.下列计算正确的是(〉C.l.04xl09D.0.104×1010A (a2)3 =α。

B.a6÷a2 =α3 C.a3♂=α12 D.a2 _α=α6.根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为1,根据Jlfil意可列7日程(〉A.43佣3.89(1+x)= 53109.85C.43903.89x2 = 53109.857.阅读以下作图步骤:B.43903.89(1 + x)2 = 53109.85D.43佣3.89(l+x2)=到09.85①在OA 和OB 上分别被取O C,OD ,佼OC=OD:②分别以C,D 为圆心,以大于.!_CD 的长为半径作弧,两弧在:LAOB 内交于点M;2 @作射线OM ,连接C M,DM ,如图所示.根据以上作图,一定可以推得的结论是(A. LI=ζ2且CM=DMC ζl=ζ2且OD=DM B.L三1= L3llCM =DMD.L2=L3且OD=DM8.为贯彻落实教育部办公厅关于“保隙学生每夭校内、校夕|、各l小时体育活动时间”的要求,:导:生每夫坚待体育锻炼.小亮记录了自己一周内每夭校外锻炼的时间〈单位:分钟〉,并制作了如1图所示的统计图.时间/分钟一二三四五六日星期根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是()A.平均数为70分钟B众数为67分钟C中位数为67分钟D.方主主为。

2020年福建省中考数学试题(教师版含解析)

2020年福建省中考数学试题(教师版含解析)

福建省2020年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.有理数15-的相反数为()A. 5B. 15C.15- D. 5-【答案】B【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数即得.【详解】A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.2.如图所示的六角螺母,其俯视图是()A. B. C. D. 【答案】B【解析】【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:故选:B .3.如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF 的面积是( )A. 1B. 12C. 13D. 14【答案】D【解析】【分析】 根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14. 【详解】∵,,D E F 分别是AB ,BC ,CA 的中点,且△ABC 是等边三角形,∴△ADF ≌△DBE ≌△FEC ≌△DFE,∴△DEF 的面积是14. 故选D .4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.5.如图,AD 是等腰三角形ABC 的顶角平分线,5BD =,则CD 等于( )A. 10B. 5C. 4D. 3【答案】B【解析】【分析】 根据等腰三角形三线合一的性质即可判断CD 的长.【详解】∵AD 是等腰三角形ABC 的顶角平分线∴CD=BD=5.故选:B .6.如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A. 1-B. 1C. 2D. 3【答案】C【解析】分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3故选:C7.下列运算正确的是( )A. 2233a a -=B. 222()a b a b +=+C. ()222436-=-ab a bD. 11(0)-⋅=≠a a a【答案】D【解析】【分析】 根据整式的加减乘除、完全平方公式、1(0)p pa a a -=≠逐个分析即可求解. 【详解】解:选项A :22232a a a -=,故选项A 错误;选项B :222()2a b a ab b +=++,故选项B 错误;选项C :()222439-=ab a b ,故选项C 错误; 选项D :111(0)-⋅=⋅=≠a aa a a ,故选项D 正确. 故选:D .8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. 62103(1)-=x x B. 621031=-x C. 621031-=x x D. 62103=x 【答案】A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.【详解】解:由题意得:62103(1)-=x x , 故选A.9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A. 40︒B. 50︒C. 60︒D. 70︒【答案】A【解析】【分析】 根据AB CD =,A 为BD 中点求出∠CBD=∠ADB=∠ABD ,再根据圆内接四边形的性质得到∠ABC+∠ADC=180°,即可求出答案.【详解】∵A 为BD 中点,∴AB AD =,∴∠ADB=∠ABD ,AB=AD ,∵AB CD =,∴∠CBD=∠ADB=∠ABD ,∵四边形ABCD 内接于O ,∴∠ABC+∠ADC=180°,∴3∠ADB+60°=180°,∴ADB ∠=40°,故选:A .10.已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A. 若12|1||1|->-x x ,则12y y >B. 若12|1||1|->-x x ,则12y y <C. 若12|1||1|-=-x x ,则12y y =D. 若12y y =,则12x x =【答案】C【解析】【分析】 分别讨论a >0和a <0的情况,画出图象根据图象的增减性分析x 与y 的关系.【详解】根据题意画出大致图象:当a>0时,x=1为对称轴,|x-1|表示为x到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y值也相同,当抛物线上的点到x=1的距离越大时,对应的y值也越大,由此可知A、C正确.当a<0时,x=1为对称轴,|x-1|表示为x到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y值也相同,当抛物线上的点到x=1的距离越大时,对应的y值也越小,由此可知B、C正确.综上所述只有C正确.故选C.第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:8-=__________.【分析】根据绝对值的性质解答即可.【详解】|﹣8|=8.故答案为8.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.【答案】1 3【解析】【分析】利用概率公式即可求得答案.【详解】解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13.13.一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)【答案】4π【解析】【分析】根据扇形的面积公式2360n r Sπ=进行计算即可求解.【详解】解:∵扇形的半径为4,圆心角为90°,∴扇形的面积是:29044360ππ⨯⨯==S.故答案为:4π.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【解析】【分析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC ,BC=AF ,∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.16.设,,,A B C D 是反比例函数k y x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】①④【解析】【分析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法.【详解】解:如图, 反比例函数ky x =的图象关于原点成中心对称,,,OA OC OB OD ∴==∴ 四边形ABCD 是平行四边形,故①正确,如图,若四边形ABCD 是菱形,则,AC BD ⊥90,COD ∴∠=︒显然:COD ∠<90,︒所以四边形ABCD 不可能是菱形,故②错误,如图, 反比例函数k y x=的图象关于直线y x =成轴对称,当CD垂直于对称轴时,,,OC OD OA OB∴==,OA OC=,OA OB OC OD∴===,AC BD∴=∴四边形ABCD是矩形,故③错误,四边形ABCD不可能是菱形,∴四边形ABCD不可能是正方形,故④正确,故答案:①④.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解不等式组:26312(1)x xx x≤-⎧⎨+>-⎩①②【答案】32x-<≤.【解析】【分析】分别求出各不等式的解集,再找到其公共解集即可求解.【详解】解:由①得26+≤x x,36x≤,2x≤.由②得3122+>-x x,3221->--x x,3x>-.∴原不等式组的解集是32x -<≤.18.如图,点,E F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠. 【答案】详见解析 【解析】 【分析】根据菱形的性质可知AB=AD ,∠B=∠D ,再结合已知条件BE=DF 即可证明ABE ADF ∆∆≌后即可求解. 【详解】解:证明:∵四边形ABCD 是菱形, ∴B D ∠=∠,AB AD =.在ABE ∆和ADF ∆中,ABAD B D BEDF∴()≌∆∆ABE ADF SAS , ∴BAE DAF ∠=∠.19.先化简,再求值:211(1)22x x x --÷++,其中21x =. 【答案】11x -,22【解析】 【分析】根据分式运算法则即可求出答案. 【详解】原式()()212211x x x x x +-+=⋅++-11x =-; 当21x =时,原式222==20.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 【答案】(1)甲特产15吨,乙特产85吨;(2)26万元. 【解析】 【分析】(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨,根据题意列方程解答;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m ,根据题意列函数关系式(10.510)(1.21)(100)0.320=-+--=+w m m m ,再根据函数的性质解答.【详解】解:(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨, 依题意,得()10100235+-=x x , 解得15x =,则10085-=x , 经检验15x =符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m , 公司获得的总利润(10.510)(1.21)(100)0.320=-+--=+w m m m , 因为0.30>,所以w 随着m 的增大而增大, 又因为020≤≤m ,所以当20m =时,公司获得的总利润的最大值为26万元, 故该公司一个月销售这两种特产能获得的最大总利润为26万元. 21.如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与,B D重合的点,1sin 2A =.(1)求BED ∠的大小; (2)若O 的半径为3,点F 在AB 的延长线上,且33BF =,求证:DF 与O 相切.【答案】(1)60°;(2)详见解析 【解析】 【分析】(1)连接OB ,在Rt △AOB 中由1sin 2A =求出∠A =30°,进而求出∠AOB=60°,∠BOD=120°,再由同弧所对的圆周角等于圆心角的一半可以求出∠BED 的值; (2)连接OF ,在Rt △OBF 中,由tan 3∠==BFBOF OB可以求出∠BOF=60°,进而得到∠FOD=60°,再证明△FOB ≌△FOD ,得到∠ODF=∠OBF=90°. 【详解】解:(1)连接OB ,∵AB 与O 相切于点B ,∴OB AB ⊥, ∵1sin 2A =,∴30A ∠=︒, ∴60AOB ∠=︒,则120BOD ∠=︒. 由同弧所对的圆周角等于圆心角的一半可知:1602︒∠=∠=BED BOD .故答案为:60︒. (2)连接OF ,由(1)得OB AB⊥,120BOD∠=︒,∵3OB=,33BF=,∴tan3∠==BFBOFOB,∴60BOF∠=︒,∴60DOF∠=︒.在BOF∆与DOF∆中,OB ODBOF DOFOF OF=⎧⎪∠=∠⎨⎪=⎩∴()≌∆∆BOF DOF SAS,∴90ODF OBF∠=∠=︒.又点D在O上,故DF与O相切.22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【答案】(1)120;(2)2.4千元;(3)可以预测该地区所有贫困家庭能在今年实现全面脱贫,理由详见解析 【解析】 【分析】(1)用2000乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可; (2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为6100012050⨯=. (2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为()1.56 2.08 2.210 2.512 3.09 3.25 2.4150⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元). (3)依题意,2020年该地区农民家庭人均月纯收入的最低值如下: 月份1 2 3 4 5 6 人均月纯收入(元) 500 300 150 200 300 450 月份7 8 9 10 11 12 人均月纯收入(元) 620790960113013001470由上表可知当地农民2020年家庭人均年纯收入不低于500300150200300450620790960113013001470+++++++++++ 9601130130014704000>+++>.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫. 23.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析 【解析】 【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上. 【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠, ∴ABP CDP ∆∆∽,∴ABAP CD CP. ∵,M N 分别为AB ,CD 的中点, ∴2AB AM =,2CD CN =,∴=AM APCN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM , ∴,,M P N 三点在同一条直线上.24.如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:=EP PCPF CF. 【答案】(1)90°;(2)①=DF PF ,证明详见解析;②详见解析 【解析】 【分析】(1)根据旋转的性质,得出ABC ADE ∆∆≌,进而得出=B ADE ADB ∠=∠∠,求出结果;(2)①由旋转的性质得出AC AE =,90CAE ∠=︒,进而得出45∠=∠=︒ACE AEC ,再根据已知条件得出∠+∠=∠+∠ADB CDF ACE CAD ,最后得出结论即可;②过点P 作//PH ED 交DF 于点H ,得出≌∆∆HPF CDF ,由全等得出HF CF =,=DH PC ,最后得出结果.【详解】解:(1)由旋转的性质可知,AB AD =,90BAD ∠=︒,ABC ADE ∆∆≌, ∴B ADE ∠=∠,在Rt ABD ∆中,45∠=∠=︒B ADB , ∴45∠=∠=︒ADE B ,∴90∠=∠+∠=︒BDE ADB ADE . (2)①=DF PF .证明:由旋转的性质可知,AC AE =,90CAE ∠=︒, 在Rt ACE ∆中,45∠=∠=︒ACE AEC , ∵CDF CAD ∠=∠,45∠=∠=︒ACE ADB , ∴∠+∠=∠+∠ADB CDF ACE CAD , 即∠=∠FPD FDP ,∴=DF PF .②过点P 作//PH ED 交DF 于点H , ∴∠=∠HPF DEP ,=EP DHPF HF, ∵45∠=∠+∠=︒+∠DPF ADE DEP DEP ,45∠=∠+∠=︒+∠DPF ACE DAC DAC , ∴∠=∠DEP DAC , 又∵∠=∠CDF DAC , ∴∠=∠DEP CDF , ∴=∠∠HPF CDF . 又∵FD FP =,F F ∠=∠ ∴≌∆∆HPF CDF , ∴HF CF =, ∴=DH PC ,又∵=EP DHPF HF , ∴=EP PCPF CF.25.已知直线1:210=-+l y x 交y 轴于点A ,交x 轴于点B ,二次函数的图象过,A B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12y y >. (1)求二次函数的表达式;(2)若直线2:(10)=+≠l y mx n n ,求证:当2m =-时,21//l l ;(3)E 为线段BC 上不与端点重合的点,直线3:2=-+l y x q 过点C 且交直线AE 于点F ,求ABE ∆与CEF ∆面积之和的最小值.【答案】(1)221210y x x =-+;(2)详见解析;(3)∆∆+ABE FCE S S 的最小值为40240.【解析】 【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,B 两点的坐标,再根据BC=4,得出点C 的坐标,最后利用待定系数法可求二次函数的表达式; (2)利用反证法证明即可;(3)先求出q 的值,利用//CF AB ,得出∽∆∆FCE ABE ,设()04=<<BE t t ,然后用含t 的式子表示出∆∆+ABE FCE S S 的面积,再利用二次函数的性质求解即可.【详解】解:(1)对于1:210=-+l y x , 当0x =时,10y =,所以()0,10A ;当0y =时,2100x -+=,5x =,所以()5,0B , 又因为4BC =,所以()9,0C 或()1,0C ,若抛物线过()9,0C ,则当57x <<时,y 随x 的增大而减少,不符合题意,舍去. 若抛物线过()1,0C ,则当3x >时,必有y 随x 的增大而增大,符合题意. 故可设二次函数的表达式为210=++y ax bx , 依题意,二次函数的图象过()5,0B ,()1,0C 两点,所以255100100a b a b ++=⎧⎨++=⎩,解得212a b =⎧⎨=-⎩所求二次函数的表达式为221210y x x =-+.(2)当2m =-时,直线2:2(10)=-+≠l y x n n 与直线1:210=-+l y x 不重合, 假设1l 和2l 不平行,则1l 和2l 必相交,设交点为()00,P x y ,由00002102y x y x n=-+⎧⎨=-+⎩得002102-+=-+x x n , 解得10n =,与已知10n ≠矛盾,所以1l 与2l 不相交, 所以21//l l . (3)如图,因为直线3:2=-+l y x q 过()1,0C ,所以2q,又因为直线1:210=-+l y x ,所以31//l l ,即//CF AB , 所以∠=∠FCE ABE ,∠=∠CFE BAE ,所以∽∆∆FCE ABE ,所以2∆∆⎛⎫= ⎪⎝⎭FCE ABE S CE S BE ,设()04=<<BE t t ,则4CE t =-,1110522∆=⋅=⨯⨯=ABE S BE OA t t , 所以2222(4)5(4)5∆∆--⎛⎫=⨯=⨯= ⎪⎝⎭FCEABE CE t t S S t BE t t , 所以25(4)5∆∆-+=+ABE FCEt S S t t801040=+-t t2221040240=+t t 所以当22t =∆∆+ABE FCE S S 的最小值为40240.。

福建省中考数学试题分类解析汇编 专题8:平面几何基础

福建省中考数学试题分类解析汇编 专题8:平面几何基础

专题8:平面几何基础一、选择题1.(福建福州4分)下列四个角中,最有可能与70°角互补的角是A、B、C、D、【答案】D。

【考点】补角。

【分析】根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角,而选项D是钝角。

故选D。

2.(福建漳州3分)下列命题中,假命题是A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【答案】B。

【考点】命题与定理,直线的性质:两点确定一条直线,平行四边形的性质,等腰梯形的定义,切线的性质。

【分析】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确;D、圆的切线垂直于经过切点的半径,故本选项正确。

故选B。

3.(福建龙岩4分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是A.25°B.30° C.35° D.40°【答案】C。

【考点】平行线的判定和性质,三角形外角定理,等腰三角形的性质。

【分析】利用方位得到平行,再利用三角形外角定理及等腰三角形等边对等角的性质即可求解:如图,由方位和平行线同位角相等的性质,得∠2=∠1=70°。

由乙到丙、丁的距离相同,根据等腰三角形等边对等角的性质,得∠3=∠α。

由三角形外角定理,∠2=∠3+∠α,∴∠α=12∠2=35°。

故选C。

4.(福建莆田4分)等腰三角形的两条边长分别为3,6,那么它的周长为A.15 B.12 C.12或15 D.不能确定【答案】A。

【考点】等腰三角形的性质,三角形三边关系。

【分析】根据等腰三角形的性质和三角形的三边关系,可求出第三条边长,即可求得周长:∵当腰长为3时,3+3=6,显然不成立,∴腰长为6。

2022年福建中考数学真题(解析版)

2022年福建中考数学真题(解析版)

2022年福建省中考数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. -11的相反数是( )A. -11B. 111C. 111D. 11【答案】D【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:-11的相反数是11故选:D 【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2. 如图所示的圆柱,其俯视图是( )A. B.C. D.【答案】A【解析】【分析】圆柱体的顶部是一圆,圆柱体的俯视图应为一个圆.【详解】∵圆柱体的顶部是一个圆∴圆柱体的俯视图应为一个圆A 选项是一个圆,是圆柱体的俯视图.B 选项是长方形,不符合题意C 选项是长方形,不符合题意D 选项不是圆,不符合题意故选:A .【点睛】本题考查几何体的三视图,从不同的方向抽象出几何体的形状是解决问题的关键.3. 5G 应用在福建省全面铺开,助力千行百业迎“智”变,截止2021年底,全省5G 终端用户达1397.6万户,数据13 976 000用科学记数法表示( )A. 31397610⨯ B. 41397.610⨯ C. 71.397610⨯ D. 80.1397610⨯【答案】C【解析】【分析】在科学记数法中,一个数被写成一个1与10之间的实数(尾数)与一个10的幂的积.【详解】在科学记数法中,一个数被写成一个1与10之间的实数(尾数)与一个10的幂的积A 选项13976不是一个1与10之间的实数B 选项1397.6不是一个1与10之间的实数C 选项1.3976是一个1与10之间的实数,且10的幂为7,与题意相符合D 选项0.13976不是一个1与10之间的实数.故选:C .4. 美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A B.C. D.【答案】A【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项符合题意;为.B 、不是轴对称图形,故此选项不合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选:A .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.5. 如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A. D. π【答案】B【解析】【分析】先根据数轴确定点P 对应的数的大小,再结合选项进行判断即可.【详解】解:由数轴可得,点P 对应的数在1与2之间,A.21-<-<-,故本选项不符合题意;B. 12<<,故此选项符合题意;C. 23<<,故本选项不符合题意;D. 34π<<故选:B【点睛】本题主要考查了实数与数轴,无理数的估算,正确确定点P 对应的数的大小是解答本题的关键.6. 不等式组1030x x ->⎧⎨-≤⎩的解集是( )A. 1x > B. 13x << C. 13x <≤ D. 3x ≤【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大;同小取小;大小小大中间找,大大小小找不到,确定不等式组的解集.【详解】解:由10>x -,得:1x >,由30x -≤,得:3x ≤,则不等式组的解集为13x ≤<,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解题的基础,熟知“同大取大;同小取小;大小小大中间找,大大小小找不到”的原则是解题的关键.7. 化简()223a 的结果是( )A. 29a B. 26a C. 49a D. 43a 【答案】C【解析】【分析】根据幂的乘方和积的乘方进行计算即可.【详解】()()222224339a a a ==g ,故选:C .【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键.8. 2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A. 1F B. F 6 C. 7F D. 10F 【答案】D【解析】【分析】根据折线统计图,观察图中的各个数据,根据数据信息逐项判定即可.【详解】解:结合题意,综合指数越小,表示环境空气质量越好,根据福建省10个地区环境空气质量综合指数统计图可直观看到10F 的综合指数最小,从而可知环境空气质量最好的地区就是10F ,故选:D .【点睛】本题考查折线统计图,根据图中所呈现的数据信息得出结论是解决问题的关键.9. 如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,27ABC ∠=︒,BC =44cm ,则高AD 约为( )(参考数据:sin 270.45︒≈,cos 270.89︒≈,tan 270.51︒≈)A. 9.90cmB. 11.22cmC. 19.58cmD. 22.44cm【答案】B【解析】【分析】根据等腰三角形的性质及BC =44cm ,可得1222DC BC ==cm ,根据等腰三角形的性质及27ABC ∠=︒,可得27ACB ABC ∠=∠=︒,在Rt ADC V 中,由tan 27AD CD =︒⨯,求得AD 的长度.【详解】解:∵等腰三角形ABC ,AB =AC ,AD 为BC 边上的高,∴12DC BC =,∵BC =44cm ,∴1222DC BC ==cm .∵等腰三角形ABC ,AB =AC ,27ABC ∠=︒,∴27ACB ABC ∠=∠=︒.∵AD 为BC 边上的高,27ACB ∠=︒,∴在Rt ADC V 中,tan 27AD CD =︒⨯,∵tan 270.51︒≈,22DC =cm ,∴0.512211.22AD ≈⨯=cm .故选:B .【点睛】本题考查了等腰三角形的性质以及锐角三角函数的定义,熟练掌握正切的定义是解题的关键.10. 如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C '''V ,点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A. 96B.C. 192D. 【答案】B【解析】【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin 602sin 60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,∵90ABC ∠=︒,60CAB ∠=︒,AB =8,12A A '=.2AC AB∴=∴平行四边形ACC A ''的面积=sin 602sin 60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B二、填空题:本题共6小题,每小题4分,共24分.11. 四边形的外角和等于_______.【答案】360°.【解析】【详解】解:n (n≥3)边形的外角和都等于360°.12. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点.若BC =12,则DE 的长为______.【答案】6【解析】【分析】利用中位线的性质计算即可.【详解】∵D,E分别是AB,AC中点,∴DE是△ABC的中位线,又BC=12,∴162DE BC==,故答案为:6.【点睛】本题考查了三角形中位线的性质,中位线平行且等于第三边的一半,熟记中位线的性质是解题的关键.13. 一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这个球是红球的概率是______.【答案】3 5【解析】【分析】先求出总的所有可能结果数及摸出的球是红球的所有可能数,再根据概率公式即可得出答案.【详解】解:根据题意可得:不透明的袋子里装有将5个球,其中3个红色的,任意摸出1个,摸到红球的概率是3 5.故答案为:35.=所求情况数与总情况数之比.14. 已知反比例函数kyx=的图象分别位于第二、第四象限,则实数k的值可以是______.(只需写出一个符合条件的实数)【答案】-5(答案不唯一)【解析】【分析】根据反比例函数的图象分别位于第二、四象限可知k<0,进而问题可求解.【详解】解:由反比例函数kyx=的图象分别位于第二、第四象限可知k<0,∴实数k的值可以是-5;故答案为-5(答案不唯一).【点睛】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.15. 推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.的例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.【答案】④【解析】【分析】根据等式的性质2即可得到结论.【详解】等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变,∴第④步等式两边都除以x m -,得x m m +=,前提必须为0x m -≠,因此错误;故答案为:④.【点睛】本题考查等式的性质,熟知等式的性质是解题的关键.16. 已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【解析】【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建省中考数学A 试题一、选择题:本大题共10小题,每小题4分,共40分.1. 在实数3-、-2、0、π中,最小的数是( )A .3- C. 0 D. π2.(2018福建A 卷,2,4)某几何体的三视图如图所示,则该几何体是( )A .圆柱 B.三棱柱 C.长方体 D.四棱锥3.(2018福建A 卷,3,4)下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2 ,2,4 C. 2,3,4 ,3,54.(2018福建A 卷,4,4)一个n 边形的内角和是360°,则n 等于( )A .3 C. 5 D. 65.(2018福建A 卷,5,4)如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15° ° C. 45° D. 60°6.(2018福建A 卷,6,4)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1 B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于127. (2018福建A 卷,7,4)已知m m 的估算正确的是( )A .23m << B. 34m << C. 45m << D. 56m <<8. (2018福建A 卷,8,4)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是 ( )A .5152x y x y ì=+ïí=-ïî B. 5152x y x y ì=-ïí=+ïî C. 525x y x y ì=+ïí=-ïî D. 525x y x y ì=-ïí=+ïî 9. (2018福建A 卷,9,4)如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于 ( )A .40° B. 50° C. 60° D. 80°10.(2018福建A 卷,10,4)已知关于x 的一元二次方程()()21210a x bx a ++++=有两个相等的实数根,下列判断正确的是 ( )A .1一定不是关于x 的方程20x bx a ++=的根 一定不是关于x 的方程20x bx a ++=的根 和-1都是关于x 的方程20x bx a ++=的根 D. 1和-1不都是关于x 的方程20x bx a ++=的根二、填空题:(本题共6小题,每小题4分,共24分)11.(2018福建A 卷,11,4)计算:1220-⎪⎪⎭⎫ ⎝⎛=______.12.(2018福建A 卷,12,4)某8种食品所含的热量值分别为:120、134、120、119、126、120、118、13.(2018福建A 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.14.(2018福建A 卷,14,4)不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______. 15.(2018福建A 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______.16.(2018福建A 卷,16,4)如图,直线y=x+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.三、解答题(共86分) 本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.(2018福建A 卷,17,9)解方程组: ⎩⎨⎧=+=+1041y x y x18.(2018福建A 卷,18,9)如图,□ABCD 中,对角线AC 与BD 相交于点O ,19.(2018福建A 卷,19,9)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(2018福建A 卷,20,8) 求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A ′B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(2018福建A 卷,21,8)如图,在△ABC 中,∠C=90°,AB=10,AC=8,线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到. △EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D.(1)求∠BDF 的大小;(2)求CG 的长.22.(2018福建A 卷,22,10)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算基本工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图;(1)现从今年四月份30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(2018福建A 卷,23,10) 如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD £MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a =20,所围成的矩形菜园的面积为450平方米,求所用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.24.(2018福建A 卷,24,12)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F .(1)延长DC 、FB 交于点P ,求证:PB=PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB=3,DH=1,∠OHD=80°,求∠EDB 的度数.25.(2018福建A 卷,25,14)已知抛物线y=ax 2+bx +c 过点A (0,2) .(1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M(x 1,y 1)、N(x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,若△ABC 中有一个内角为60°.①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分∠MPN .2018年福建省中考数学B 试题一、选择题:本大题共10小题,每小题4分,共40分.1.(2018福建A 卷,1,4) 在实数3-、-2、0、π中,最小的数是( )A .3- C. 0 D. π【答案】B【解析】∵3-=3,根据有理数的大小比较法则(正数大于零,负数都小于零,正数大于一切负数,比较(图1)(图2)-<π,∴最小的数是-2.故选C.即可.解:∵-2<0<3【知识点】有理数比较大小2.(2018福建A卷,2,4)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱 C.长方体 D.四棱锥【答案】C【解析】思路一:充分发挥空间想象能力,让俯视图根据主视图长高,再利用左视图进行验证即可.思路二:分别根据球,圆柱,圆锥,立方体的三视图作出判断.三棱柱的主视图和左视图都是长方形,俯视图是三角形;四棱锥的主视图和左视图都是三角形,俯视图是有对角线的四形;长方体的三视图都是长方形,由此得这个几何体是长方体,故选C.【知识点】三视图的反向思维3.(2018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 ,2,4C. 2,3,4 ,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系4.(2018福建A卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和5.(2018福建A卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一6.(2018福建A卷,6,4)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于12【答案】D【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.故选D.【知识点】必然事件;随机事件;不可能事件;7. (2018福建A 卷,7,4)已知m m 的估算正确的是( )A .23m << B. 34m << C. 45m << D. 56m <<B【答案】B【解析】本题考查了算术平方根的估算.解:因为1<3<4,,即12,2=,∴34m <<.故选B .【知识点】算术平方根的概念及求法8. (2018福建A 卷,8,4)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是 ( )A .5152x y x y ì=+ïí=-ïî B. 5152x y x y ì=-ïí=+ïî C. 525x y x y ì=+ïí=-ïî D. 525x y x y ì=-ïí=+ïî 【答案】A【解析】本题考查了二元一次方程组,解题的关键是找准等量关系.由“绳索比竿长5尺”,可得x =y +5;再根据“将绳索对半折后再去量竿,就比竿短5尺”,可列得方程152x y =-.所以符合题意的方程组是5152x y x y ì=+ïí=-ïî. 【知识点】二元一次方程组的实际应用9. (2018福建A 卷,9,4)如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于 ( )A .40° B. 50° C. 60° D. 80°【答案】D【解析】根据同弧所对的圆周角等于这条弧所对圆心角的一半,即可求出结果. 解:∵ AB 是⊙O 的直径,∴∠ABC =90°,∵∠ACB =50°,∴∠A =90°-∠A C B =40°,∠BOD =2∠A =80°.【知识点】圆;圆的有关性质;圆心角、圆周角定理10.(2018福建A 卷,10,4)已知关于x 的一元二次方程()()21210a x bx a ++++=有两个相等的实数根,下列判断正确的是 ( )A .1一定不是关于x 的方程20x bx a ++=的根一定不是关于x 的方程20x bx a ++=的根和-1都是关于x 的方程20x bx a ++=的根D. 1和-1不都是关于x 的方程20x bx a ++=的根【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a ++=根的情况即可. 解:由关于x 的方程()()21210a x bx a ++++=有两个相等的实数根,所以△=0,所以()224410b a -+=,()()110b a b a ++--=,解得10a b -+=或10a b ++=,∴1是关于x 的方程20x bx a ++=的根,或-1是关于x 的方程20x bx a ++=的根;另一方面若1和-1都是关于x 的方程20x bx a ++=的根,则必有11a b a b ì+=-ïí-=-ïî,解得10a b ì=-ïí=ïî,此时有10a +=,这与已知()()21210a x bx a ++++=是关于x 的一元二次方程相矛盾,所以1和-1不都是关于x 的方程20x bx a ++=的根,故选D.【知识点】一元二次方程;根的判别式二、填空题:(本题共6小题,每小题4分,共24分)11.(2018福建A 卷,11,4)计算:1220-⎪⎪⎭⎫ ⎝⎛=______.【答案】0【思路分析】解题关键是理解零指数幂的意义.思路:利用任意不为0的数的0次幂都等于1,然后求差即可. 【解题过程】解:1220-⎪⎪⎭⎫ ⎝⎛=1-1=0,故答案为0 .【知识点】零指数幂12.(2018福建A 卷,12,4)某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为______.【答案】120【思路分析】本题考查了众数的概念,解题的关键是明确众数是一组数据中出现次数最多的数据,根据众数的定义即可得出答案.【解题过程】解:在数据120、134、120、119、126、120、118、124中,120出现了3次,出现的次数最多,则众数是120.【知识点】众数13.(2018福建A 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解题过程】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形14.(2018福建A 卷,14,4)不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______.【答案】2x >【思路分析】先分别求得不等式①和不等式②的解集,然后依据同大取大,同小取小,小大大小中间找出,大大小小找不着,判断出不等式组的解集即可.【解题过程】解:解不等式①得:1x >,解不等式②得:2x >,所以不等式组的解集为2x >.【知识点】一元一次不等式组的解法、不等式(组)的解集的表示方法15.(2018福建A 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______.1【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由“三线合一”及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解题过程】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=2BC =,∴CF=1,∵∠C =45°,∴AF=CF=1,∴DF ,∴1CD DF CF =-=.【知识点】等腰三角形的性质,勾股定理16.(2018福建A 卷,16,4)如图,直线y=x+m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.【答案】6【思路分析】本题考查了求两函数的交点、一元二次方程的解法、三角形的面积等知识,解题的关键是用含有同一个未知数的代数式表示出△ABC 的底和高.先由一次函数关系式得出△ABC 是等腰直角三角形,根据两函数的交点于A 、B 两点列出方程组,整理后得到一个二元一次方程,利用根与系数关系表示出线段BC ,进而表示出三角形的底和高,然后列出三角形面积关系式,讨论出S △ABC 的最小值.【解题过程】∵y=x+m 与y=x 平行,∴AC=BC ,∴S △ABC =212BC , 将y=x+m 与x y 3=联立得方程组:3y x m y x ì=+ïí=ïî,整理,得:230x mx +-=, ∴12x x m +=-,123x x ?-,∵BC=12A B x x x x -=-,∴12x x -, ∴S △ABC =()222111126222BC m m =+=+,∴S △ABC 的最小值是6.【知识点】两函数的交点、一元二次方程的解法、三角形的面积三、解答题(共86分) 本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.(2018福建A 卷,17,9)解方程组: ⎩⎨⎧=+=+1041y x y x【思路分析】用②减去①消去y 得到x 的值,把x 的值代入①求出y 的值即可.【解题过程】解:1410x y x y ì+=ïí+=ïî①②,②-①,得:39x =解得:3x =把3x =代入①,得:31y +=解得:2y =- 所以原方程组的解为32x y ì=ïí=-ïî. 【知识点】解二元一次方程组,消元18.(2018福建A 卷,18,9)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE=OF.【思路分析】本题考查平行四边形的性质和利用全等三角形来证明两条线段相等,解题的关键是从平行四边形的性质中得到三角形全等的条件. 利用平行四边形的性质得到AD ∥CB 且OB=OD ,再利用平行线的性质得到∠ODE=∠OBF ,即可证得△AOE ≌△COF.【解题过程】证明:∵四边形ABCD 是平行四边形∴AD ∥CB ,OB=OD ,∴∠ODE=∠OBF.又∵∠DOE=∠BOF ,∴△DOE ≌△BOF ,∴OE=OF.【知识点】平行四边形的性质与判定;三角形全等的判定与性质19.(2018福建A 卷,19,9)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m【思路分析】首先将括号里的式子进行通分,根据同分母的分式减法的运算法则进行计算,并将计算的结果除以21m m-,得出最简分式,然后把13+=m 代入最简分式中即可. 【解题过程】解:原式=()()221111111m m m m m m m m m m m +-+⋅=⋅=-+--当1m =时,原式3=. 【知识点】异分母分式的减法,分式的乘除法20.(2018福建A 卷,20,8) 求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A ′B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【思路分析】①利用“作一个角等于已知角”的尺规作图方法完成作图;②利用相似三角形性质及三角形中线性质得出成比例线段,再根据“两边对应成比例及夹角相等的两个三角形相似”证两三角形相似,据此可得出结论.【解题过程】解:(1)(2)已知:如图,△A ′B ′C ′∽△ABC ,=A B B C A C k AB BC AC ==′′′′′′,A ′D ′=D ′B ′,AD=DB ,求证:=D C k DC′′. 证明:∵A ′D ′=D ′B ′,AD=DB ,∴A ′D ′=12A ′B ′,AD=12AB , ∴12=12A B A D A B AD AB AB =′′′′′′. ∵△A ′B ′C ′∽△ABC ,∴A A ??′,A B A C AB AC =′′′′, 在△A ′D ′C ′∽△ADC 中,A D A C AD AC=′′′′,且A A ??′, ∴△A ′D ′C ′∽△ADC ,∴==D C A C k DC AC′′′′. 【知识点】尺规作图——作一个角等于已知角;相似三角形的判定和性质21.(2018福建A 卷,21,8)如图,在△ABC 中,∠C=90°,AB=10,AC=8,线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到. △EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D.(1)求∠BDF 的大小;(2)求CG 的长.【思路分析】(1)根据旋转的性质得出相等的线段,计算出∠ABD 的度数;再由平移的性质,得出平行线,利用平行线性质即可求得∠BDF 的度数;(2)根据平移性质推出AE ∥CG ,AB ∥EF ,再由平行线性质得到相等的角,由“两角对应相等的两个三角形相似”,证三角形相似,列出比例式,即可求得CG 的长度.【解题过程】解:(1)∵线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG 由△ABC 沿CB 方向平移得到,∴AB ∥EF,∴∠BDF=∠ABD=45°.(2)由平移的性质可得:AE ∥CG ,AB ∥EF ,∴∠DEA=∠DFC=∠ABC ,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB ,∴△ACB ∽△ADE ,∴AD AE AC AB=,∵AC=8,AB=AD=10, ∴AE=252,由平移的性质可得:CG=AE=252. 【知识点】平移、旋转的性质,平行线的性质,相似三角形的判定及性质22.(2018福建A 卷,22,10)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算基本工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图;(1)现从今年四月份30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.【思路分析】(1)由于每个事件出现的可能性均等,可以直接用概率公式求解.(2)①观察统计图,提取出甲公司各揽件员四月份的揽件数,根据平均数的定义求解. ②根据“甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案”分别计算出两公司揽件员的平均工资,然后作出选择.【解题过程】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的共有4天,所以,所求的概率:423015P ==; (2)①设甲公司各揽件员的日平均揽件数为x ,则:38133994044134213930x ⨯+⨯+⨯+⨯+⨯==. 即甲公司各揽件员的日平均揽件数为39.②由①及甲公司工资方案可知,甲公司揽件员的日平均工资为70+39×2=148(元);由条形统计图及乙公司工资方案可知,乙公司揽件员的日平均工资为:()()38739740853415236159.430⨯+⨯+⨯++⨯+⨯+⨯⨯=(元). 因为159.4148>,所以仅从工资收入角度考虑,小明应到乙公司应聘.【知识点】条形统计图,概率,平均数23.(2018福建A 卷,23,10)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a =20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园的面积为450平方米,如图1,求所用旧墙AD 的长;(2)已知050a <<,且空地足够大,如图2,请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【思路分析】本题考查了一元二次方程以及二次函数的应用,解题的关键根据题意列出方程或函数关系式进行解答.(1)设矩形的边长AD 为x m ,根据长方形长与宽的关系,得到另一边长为1002x -,从而列出一元二次方程即可求解;(2)由第(1)问矩形面积列出面积S 与x 的函数关系式,结合自变量的取值范围利用函数的增减性进行解答.【解题过程】解:(1)设AD=x 米,则AB=1002x -米,依题意,得:1004502x x -⋅= 解得: 110x =,290x =因为20a =且x a ≤,所以290x =不合题意,应舍去。

相关文档
最新文档