对称性在解题中的应用
对称性在积分计算中的应用
㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
高中数学中曲线对称的解法及应用
高中数学中曲线对称的解法及应用曲线对称,是指图形中存在一条直线,使得该直线将图形分为两部分,各自沿此直线对称。
在数学中,曲线对称是一种重要的变换方式,它不仅在几何学中具有广泛的应用,而且在代数学的解题中也有重要的作用。
本文将重点介绍高中数学中曲线对称的解法及应用。
一、关于曲线对称的概念曲线对称是指一种坐标变换方式,将曲线中的某些点按照某条直线对称。
对称轴又称为对称线,是曲线对称的直线,对称轴两侧的点分别在对称线两侧,它们的横、纵坐标互为相反数。
二、曲线对称的判定通过观察曲线的方程,可以确定曲线是否具有对称性。
1. 关于x轴对称的判定:如果曲线上的每一个点,其相对于x轴的对称点也在曲线上,那么该曲线就关于x轴对称。
1. 关于曲线对称的轴对称图形位置关系:轴对称图形沿对称轴互相对称。
五、应用示例1. 判断椭圆与矩形的关系:设椭圆的方程为$\frac{(x-a)^2}{p^2} + \frac{(y-b)^2}{q^2} = 1$,矩形的顶点为$(m,n)$、$(m+2k,n)$、$(m,n+2h)$、$(m+2k,n+2h)$,若椭圆关于直线$x=m+k$对称,则有:$\frac{2a}{p}=m+2k$2. 利用对称性求解方程:求方程$x^3-3x+y^2-6y+63=0$的图形所在区域的面积。
由于$x^3-3x$关于$y=x$对称,因此图形所在区域关于$y=x$对称,即:$x^3-3x+y^2-6y+63=(y^2-6y+9)-(3x^2-9x+6)+54$该方程表示一个圆心为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{3(x-y+2)}}$的圆,其面积为:$S=\pi \cdot [3(x-y+2)]$$=6\pi$因此,图形所在区域的面积为$6\pi$。
总结:曲线对称是数学中重要的变换方式,应用广泛。
对于一些对称的图形、方程或函数,可以通过使用曲线对称性质,轴对称性质等方法来求解问题,提高了解题的效率。
对称在概率解题中的应用
、几
幼径 一 1 鉴又 落 径+ 1 , 又a > 1 j 最 大二 很+ 1 ,
2 产 ‘、
 ̄ 有
x 2 X I XI X 2 Y 2 Yt
因为 △>0 , 所以y t +y : 二 一 a 4 + b 4 ,
代人( 1 ) 式 幼 又+ y l y 2 = 一 a 4 + b 4 ,
4 b 2 C 2 a 2 b 4 2 a c b 3
这时 t +1二
= 径 一1 , 即 ( 与, = 径 了 + 1 幼t
2
1 = } e 2 = 2 一 径, 1 = >  ̄ 下 一 =很 一
解法2 以A ‘ 记事件“ 第i 对夫妇丈夫排在妻 子的后面” , 即就是要求( A , A 2 . . . A n ) . 首先由对称 性, P ( A i ) =1 / 2 . 因 为对每一对夫妇来说, 或丈夫在
前或妻子在前, 两者是等可能性的. 由对称性还可
进一步断定 A 1 , A 2 , . . - , A 。 是相互独立的, 因为不可
伍. 现在她的丈夫之前已有两人, 因此她有3 种位置 可选择. 排在第三位的丈夫的妻子进人队伍有 5 种 位置可选择, 依次下去, 最后一位丈夫的妻子有( 2 n 一1 ) 个位置可选择. 因此有利场合总数是 n ! x ( 1 ・
3 ・ 5 . . . ( 2 n 一 1 ) ) =n ! x ( 2 n 一 1 川, 所以要求的概
最后一步计算过程比较繁复, 在这里省略了. 解法2 假设从底里开始一张接一张地翻牌,
也翻到出 现第二张A 为 止, 翻 过的 纸牌数记为' 7 . 由
对称性, 从顶上开始翻与从底里开始翻情况是一样
交, 因 此两弦相交的概率为 1 / 3 . 例4 设在区间( 0 , 1 ) 上随机地取 n 个点, 以夸 表示相距最远的两点间的距离, 求证: E }二( n -
对称性在积分计算中的应用【文献综述】
文献综述信息与计算科学对称性在积分计算中的应用在数学计算中, 积分计算是一个非常重要的部分. 早在古希腊时期数学家阿基米德在《抛物线图形求积法》和《论螺线》中, 利用穷竭法, 借助于几何直观, 求出了抛物线弓形的面积及阿基米德螺线第一周围成的区域的面积, 其思想方法是分割求和,逐次逼近. 虽然当时还没有极限的概念, 不承认无限, 但他的求积方法已具有了定积分思想的萌芽.[1] 17 世纪中叶, 法国数学家费尔玛、帕斯卡均利用了“分割求和”及无穷小的性质的观点求积, 更加接近现代的求定积分的方法. 可见, 利用“分割求和”及无穷小的方法, 已被当时的数学家普遍采用.[2]17世纪下半叶牛顿和莱布尼兹创造了微积分的基本方法. 但是, 他们留下了大量的事情要后人去解决, 首先是微积分的主要内容的扩展,其次是微积分还缺少逻辑基础. 创立于17 世纪的微积分, 主要应用于天文学、力学、几何学中的计算.[3] 而到19 世纪下半叶微积分已经发展成为一门系统、严密、完整的学科. 积分概念也趋于逻辑化、严密化,形成我们现在使用的概念. 定积分的概念中体现了分割、近似、求和的极限思想. 其中分割既是将[,]a b 任意地分成n 个小间,12,,,,,i n x x x x ∆∆∆∆L L ,其中i x ∆ 表示第I 个小区间的长度, 在每个小区间上任取一点i ξ做()i i f x ξ∆并求和()i if x ξ∆∑,这体现了求和的思想, 当区间的最大长度趋于零时, 和式的极限若存在即为()f x 在[,]a b 上的定积分. 利用定积分可以解决很多实际问题,例如求由曲线围成的平面图形的面积;求由曲线绕坐标轴旋转所得旋转体的体积;平行截面面积为已知的立体的体积;求曲线的弧长以及物理中的功、水压力等等时,()ba f x dx ⎰的积分形式也可以推广: (1) 可以把积分区间[,]ab 推广到无限区间上,如[,)a +∞ 等,或者把函数推广到无界函数,也就是广义积分. (2) 可以把积分区间[,]a b 推广到一个平面区域,被积函数为二元函数, 那么积分就是二重积分; 同样当被积函数成为三元函数、积分区域变成空间区域时就是三重积分. (3) 还可以将积分范围推广为一段曲线弧或一片曲面, 即曲线积分和曲面积分. 无论积分推广到何种形式, 它始终体现了这种分割的极限思想, 比如二重积分的概念:设(,)f x y 在有界闭区域D 上有界,(1) 分割: 将D 任意分成n 个小区域i σ∆并表示面积;(2) 近似: 在每个i σ∆上任取一点(,)i i ξη作乘积;(3) 求和取极限:若各区域直径的最大值趋于零时, 和式(,)i i if ξησ∆∑的极限存在, 即为 (,)f x y 在D 上的二重积分. 由此我们发现定积分与重积分在概念的本质上是一致的, 同样三重积分亦是如此.[4]此外,不定积分与定积分之间关系为:如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()ba f x dx Fb F a =-⎰, 这是牛顿—莱布尼兹公式. 这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系. 它表明: 一个连续函数在区间[,]a b 上的定积分等于它的任一原函数在区间[,]a b 上的增量. 这就给求解定积分提供了一个简便而有效的计算方法. [5]积分在数学分析中有很重要的地位; 积分的计算方法有许多种, 相关文献都对其有探讨,但是对对称性的研究却很少涉及. 对称性在积分运算中有着很重要的意义, 通常可以简化计算. 本文研究了对称性在积分运算中的应用. 积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.[6] 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能.[7] 下面我们举出几个对称性在积分计算中的例子, 张振强他的一篇对称性在二重积分中的应用论文中介绍如何利用对称性来计算二重积分, 并提出了通过适当改造被积函数和积分区城以利用对称性来简化计算的方法. 在一般情况下, 不仅要求积分区域D 具有对称性, 而且被积分函数对于区域D 也要具有对称性. 但在特殊情况下, 即使积分区域D 不对称, 或者关于对称区域D 被积函数不具备对称性, 也可以经过一些技巧性的处理, 使之化为能用对称性来简化计算的积分.[8]常见对称形式的二重积分的简化运算有三种, 一: 积分区域D关于坐标轴对称; 二: 分区域D关于=±对称. 在进行二重积分计算时, 善于观察被积原点对称; 三: 积分区域D关于直线y x函数和积分区域的特点, 注意兼顾被积函数的奇偶性和积分区域的对称性, 恰当地利用对称性方法解题, 可以避免繁琐计算, 使二重积分问题的解答大大简化. 刘渭川, 在他的利用对称性计算曲线积分和曲面积分, 论文中提到, 借助于(平面)空间曲线及空间曲面的直观几何意义, 利用曲线, 曲面关于坐标轴及坐标面的对称性, 探讨了对于定义在具有对称性的曲线、曲面上的奇(偶)函数, 如何利用对称性计算曲线积分及曲面积分这种积分方法使得曲线(面)积分更为简便、快捷, 同时, 也有利于避免因符号处理不当而导致的积分错误. [9]因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用轮换对称性以求简便计算. [10]参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M]. 沈阳: 辽宁科技出版社, 1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 林源渠. 高等数学复习指导与典型例题分析[M]. 北京: 机械工业出版社, 2002.[6] 张云艳. 轮换对称性在积分计算中的应用[J]. 毕节师范高等专科学校学报(综合版),2002, 20(3): 90~92.[7] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[8] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,(10): 181.[9] D. Bennis, N. Mahdou . Strongly gornstein p rojective [J], injective, and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[10] I.M , Gelfand, G.E.Shilov. Generalized functions vol. I [M]. New York: Academic Press1964.。
《统计学对称性的解题方法归纳》
《统计学对称性的解题方法归纳》统计学对称性的解题方法归纳统计学是一门研究收集、整理、分析和解释数据的学科。
在统计学中,对称性是一个重要的概念,它包括正态分布、均匀分布等。
这篇文档将总结一些常见的统计学对称性的解题方法。
正态分布正态分布在统计学中非常常见,它是一种对称分布。
解题方法主要集中在以下几个方面:1. 计算均值和标准差:对于正态分布,均值和标准差是非常重要的参数。
可以使用样本数据来估计总体的均值和标准差,并用它们来进行推断和假设检验。
2. Z 分数标准化:正态分布有一个重要的性质,即标准化后的分布可以用 Z 分数表示。
通过将原始数据转化为 Z 分数,可以进行更方便的比较和推断,如计算置信区间和假设检验。
3. 使用正态分布表:正态分布表是一个预先计算好的表格,可以用于查找某个 Z 分数对应的累积概率值。
通过查表,可以轻松计算出一些概率和置信区间。
4. 中心极限定理:中心极限定理是指当样本量足够大时,样本均值的分布会接近于正态分布。
在实际问题中,可以利用这个定理来进行统计推断,而不需要了解总体的分布情况。
均匀分布均匀分布是另一种常见的对称分布。
解题方法如下:1. 计算概率密度函数:均匀分布的概率密度函数是一个常数,在给定区间内的取值是相等的。
通过计算概率密度函数,可以确定某个值落在给定区间内的概率。
2. 计算累积分布函数:累积分布函数是概率密度函数的积分,可以表示给定值落在某个区间内的概率。
通过计算累积分布函数,可以确定某个值落在给定区间的概率。
3. 设置等概率区间:均匀分布的一个重要特点是等概率性质,即给定区间内的概率相等。
可以利用这个特性来计算一些等概率区间和概率值。
4. 均匀性检验:在实际问题中,需要判断一组数据是否符合均匀分布。
可以使用一些统计方法来进行均匀性检验,如卡方检验。
综上所述,统计学对称性的解题方法包括计算均值和标准差、标准化,使用正态分布表,应用中心极限定理等方法;以及计算概率密度函数、累积分布函数,设置等概率区间,进行均匀性检验等方法。
对称性在解题中的应用
对称性思想在解题中的妙用天津市滨海新区汉沽第一中学 (300480) 史玉林在自然界和自然科学中,和谐的对称之美普遍存在。
对称性就是事物在变化时存在的某种不变性。
物理学中对称现象比比皆是,物理过程在时间和空间上的对称性、物理量在分布上的对称性、作用效果的对称性、结构上的对称、作用上的对称等等往往使得某些复杂问题的处理得到简化。
从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直观思维能力。
利用对称性思想解题时有时能一眼看出答案,大大简化解题步骤。
一、对称性思想在运动学中的应用例1 在离地H 高度,以相同的速率v 0同时抛出两小球A 和B ,A 球竖直上抛,B 球竖直下抛,两球落地时间差为Δt ,求速率v 0。
(重力加速度g 已知)解析 对于A 球的运动,当其上抛后再落回抛出点时,由于速度对称,向下的速度大小仍为v 0,所以A 球在抛出点以下的运动和B 球完全相同,落地时间也相同,因此,Δt 就是A 球在抛出点以上的运动时间。
根据时间对称,02v t g∆=,故02g t v ∆=。
二、对称性思想在简谐运动中的应用例2 如图示,一轻质弹簧与质量为m 的物体组成的弹簧振子,物体在同一条竖直线上的A 、B 间做简谐运动,O 为平衡位置,C 为AO 的中点,已知OC=h ,振子的周期为T ,某时刻物体恰好经过C 点向上运动,则从此时刻开始的半个周期内( )A.重力做功为2mgh B.重力的冲量为2mgT C.回复力做功为零 D.回复力的冲量为零解析 由简谐运动的对称性可知,从C 点开始经过半个周期时间,物体运动到C 点关于平衡位置对称的位置,即到达O 点下方h 的D 点处,故重力做功W=2mgh ,故A 正确;重力是恒力,则重力的冲量大小为2mgT I Gt ==,故B 正确;物体的回复力是重力与弹簧弹力的合力,由于初、末速度大小相等,由动能定理可知,半个周期内回复力做功为零,故C 正确;取向上方向为正,则由动量定理知回复力冲量为I=-mv-mv=-2mv≠0,故D 不正确。
对称性在积分计算中的应用研究【开题报告】
开题报告信息与计算科学对称性在积分计算中的应用研究一、综述本课题国内外研究动态, 说明选题的依据和意义对称性(symmetry )是现代物理学中的一个核心概念, 它泛指规范对称性(gaugesymmetry) , 或局域对称性local symmetry )和整体对称性(global symmetry ). 它是指一[1]个理论的拉格朗日量或运动方程在某些变数的变化下的不变性. 如果这些变数随时空变化, 这个不变性被称为规范对称性, 反之则被称为整体对称性. 物理学中最简单的对称性例子是牛顿运动方程的伽利略变换不变性和麦克斯韦方程的洛伦兹变换不变性和相位不变性. 数学上, 这些对称性由群论来表述. 上述例子中的群分别对应著伽利略群, 洛伦兹群和U(1)群. 对称群为连续群和分立群的情形分别被称为连续对称性(continuous symmetry)和分立对称性(discrete symmetry). 德国数学家外尔(Hermann Weyl)是把这套数学方法运用於物[2]理学中并意识到规范对称重要性的第一人. 1950年代杨振宁和米尔斯意识到规范对称性可以完全决定一个理论的拉格朗日量的形式, 并构造了核作用的SU(2)规范理论.[3]我这次论文方向主要涉及对称性在积分计算中的应用. 在积分的计算中充分利用积分区域的对称性及被积函数的奇、偶性, 往往可以简化计算, 达到事半功倍的效果. 近年来, 在全国研究生入学考试数学试题中不乏涉及对称性的积分试题. 本文将系统地介绍有关[4]内容并举出相关例子.以二重积分为例若积分区间关于变元具有轮换对称性, 则必有D ,x y 积分区域关于直线对称. 因此在某些复杂的积分过程中, 若能注意并充分利用积分D y x =区域的轮换对称性往往可以简化积分计算过程, 提高解题效率. 例如[6](1) , 1(,)(,)((,)(,))2D D f x y d f y x d f x y f y x d σσσ==+⎰⎰⎰⎰⎰⎰(2) 若关于直线对称,记为中位与直线上半部分区域, 则有D y x =1D D y x =. 12(,),(,)(,)(,)0,(,)(,)D D f x y d f x y f y x f x y d f x y f y x σσ⎧=⎪=⎨⎪=-⎩⎰⎰⎰⎰积分在数学分析中是相当重要的一项内容, 而在计算积分的过程中, 我们经常会碰到积分区域或者被积函数具有某种对称性的题型. 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对[7]于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能. 因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用对称性以求简便计算.[8]二、研究的基本内容, 拟解决的主要问题研究的基本内容: 对称性在积分计算中的应用研究解决的主要问题:1. 总结各种积分的计算方法2. 将应用对称性求解的方法, 与原来的方法比较看优化之处.三、研究步骤、方法及措施:一.研究步骤:1. 查阅相关资料, 做好笔记;2. 仔细阅读研究文献资料;3. 在老师指导下确定整个论文的思路, 列出论文提纲, 撰写开题报告;4. 翻译英文资料;5. 开题报告通过后撰写毕业论文;6. 上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.二.方法、措施: 通过到图书馆、上网等查阅收集资料, 参考相关内容在老师指导下, 归纳整理各类问题四、参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991,.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M] 沈阳: 辽宁科技出版社,1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[6] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,4(10): 181~183.[7] D. Bennis, N. Mahdou . Strongly gornstein p rojective, injective [J], and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[8] I.M , Gelfand, G.E.Shilov. Generalized functions, vol. I [M]. New York: Academic Press1964.。
对称性在中学物理解题中的应用数例
利用对称性 可 以简化 物 理 问题 , 找 到 简 捷 解 决 问 题 的 途
径. 学 会 利 用 对 称 性 分 析 问题 , 解 决问题 , 应 该 作 为 中学 物
理教学的要求.
常 见的 具 有 对 称 性 的物 理 事 物 分 两 类 : 一 类 是 分 布 关 于空间的对称 ; 另 一 类 是 过 程 关 于 时 间 的对 称 . 平面镜成像 , 像 与物 关 于 平 面 镜 对 称 , 称为镜 像对称.
1 9
E 。 、 F 之 间 的 电 阻 , 分 别为 3 r与 4 r 并联 电阻等 r . 再 计 算
,
斜 率 为负 值 的 直 线 , t 。时 刻 物 体到 达 最 高 点 , 速度为 o . 图
像 关 于坐 标 ( t O ) 中心对 称 ,
; \t o t o + A t
摘 要 : 对 称 是 一 种 自然 美 , 很 多事 物 具 有 对 称 性 , 分 析 研 究对 称 性 , 有 利 于 深 刻 认 识 事 物 的性 质 , 理 解 事 物 发 展 变 化 的 规 律. 无论是 力学、 电学 或 光 学 问题 , 我 们 都 可 以利 用 对 称 性 简 化 问题 , 解 决 问题 .
关键 词 :对 称 ; 认识 ; 利 用; 思想 ; 解决
自然 界 中很 多 事 物 具 有 对 称 的 特 征 . 研 究对称 性 , 能 更好地认识事 物的物 理性质 , 理 解其 所遵 循 的物 理规 律.
帮助. 例如, 图 2所 示
电路, 5 只 电 阻 都 相
同, 阻值均为 r , 要 求
成 像 有 问题 , 不符合 对称 性. 例如, 在平 面镜 前放 一 只钟 , 指针所指示 的时间是 3 点钟 , 但平 面镜所成 的像所 示时 间 却 是 9点 钟 . 平 面 镜 的 像 和 物 的 关 系犹 如 用 图 章 所 盖 的 印
例谈数学解题中对称性的巧用
据可所函表式 ( ) 此设求数达为 ++ ≥
.
个关 键 性 的条 件 。 许 多 数学 问 题 取得 使
把曰( , ) , - 求得 1 求 函数 13 4A ,  ̄ .所
一 一 一
蝴
“ 称 ” 仅 是 数学 内容 中一 个 重 要 对 不
的 概念 , 是 一种 重要 的思 想方 法 , 对 更 在“ 称” 中往 往 体 现 出数 学 的 “ ” 名 德 国 美 .著 象 过A( , ) 1 3 , ( 1 1 三 点 , 这 0 1 , ,)C 一 ,) ( 求 数 学 家 魏 尔 说 过 : 美 和 对 称 是 紧 密相 连 “ 个 二次 函数 的解 析式. 的.在 数 学 解题 中 , 时根 据 数 据 条 件 关 ” 有 系 等所 隐 含着 的对 称 性 特点 , 能够 迅 速有 解 i y= c s + c s ・i x 5i4 .  ̄ 2 o4 3 o ̄ s Z+ s x x x n n 分析 如 果 不仔 细观 察 三 个 点的 坐标
BC/ M. /D 这就给我们采取综合法证 明提供 了可贵的线索, 如何
添 加 辅 助 线 就 “ 之 欲 出” 而 不 再 是 “ 空 出世 ” 呼 . 横 .
突 破性 的进展 .
例4 若 曲线
解 析 式 为v 帆 +1 .
和 (- ) = 有 x 1 l
三 个交 点 。 求 实数a 试 的值. 解 变量 在 两 个方程 中都 以平 方 的形
J
解 因 为 正 比例 函  ̄y- - 的 图 象 与 k
J
巧 用对称性求 最值
数学中的对称性与变换的性质与应用
电磁波:对称性在电磁波的传播和散射中的应用
相对论:对称性与时空结构的关系
对称性与化学分子的关系
对称性在化学分子中具有重要应用,可以预测分子的性质和行为。
对称性可以用于描述化学反应的过程和机制,帮助理解反应机理。
对称性在化学合成中具有指导作用,可以预测化合物的合成路线和产物结构。
对称性在化学分析中也有应用,可以通过对称性分析确定化合物的晶体结构和分子结构。
拉普拉斯变换:将时域函数转换为复平面上的函数,用于求解微分方程、控制系统等领域
Z变换:将离散信号转换为连续信号,用于数字信号处理、离散控制系统等领域
小波变换:用于多尺度分析、信号处理和图像压缩等领域
变换在几何学中的应用:刚体变换、仿射变换等
投影变换:将三维图形投影到二维平面上,包括正投影、斜投影和透视投影等。
对称性在几何学中的其他应用:除了对称空间和对称流形外,对称性在几何学中还有许多其他应用,如对称函数、对称群等。这些应用在数学和物理学等领域有广泛的应用。
对称性在数学中的重要性:对称性是数学中的重要概念之一,它在数学各个分支中都有广泛的应用。通过对称性的研究,可以深入了解数学对象和数学结构的基本性质和特点,为数学的发展和应用提供重要的理论支持和实践指导。
对称性在分析学中的应用:对称函数、对称级数等
对称函数:具有对称性质的函数,如正弦函数、余弦函数等
对称积分:利用对称性简化积分的计算,如奇偶函数积分性质等
对称微分:利用对称性简化微分方程的求解,如对称变换求解微分方程等
对称级数:具有对称性质的级数,如正项级数、交错级数等
对称性在几何学中的应用:对称空间、对称流形等
常见的变换包括平移、旋转、缩放、镜像反射等,这些变换在几何、代数和微积分等领域有着广泛的应用。
对称性在积分计算中的应用
对称性在积分计算中的应用【摘要】本文总结、归纳了积分区域的对称性(包括轮换对称性)和被积函数的奇偶性在积分计算中的一些重要结论,并通过例题演示了这些对称性的结论在计算积分时可以大大简化积分计算,提高解题效率.【关键词】积分;对称;应用一、引言在定积分的计算中,利用积分区间关于原点对称的特点和被积函数的奇偶性可以大大简化积分的计算量,起到事半功倍的效果.此性质经过推广,在二重积分、三重积分、第一型曲线积分、第一型曲面积分的计算中,利用积分区域关于坐标轴、坐标面对称的特点和被积函数的奇偶性,同样可以大大简化积分的计算.此外,在积分的计算过程中,利用积分区域和被积函数的轮换对称性也可有效地起到简化计算的作用,本文拟系统介绍这方面的结论,并举出相关应用实例给予说明.二、有关对称性的结论(一)在定积分的计算中若积分区间关于原点对称,则∫a-af(x)dx= 2∫a0f(x)dx,f(x)在[-a,a]上是偶函数,0,f(x)在[-a,a]上是奇函数.(二)在二重积分的计算中1.若积分区域D关于x轴对称,则D f(x,y)dσ=2 D 1 f(x,y)dσ,f(x,y)在区域D上关于变量y是偶函数,0,f(x,y)在区域D上关于变量y是奇函数,其中D1是区域D在x轴上方(或下方)的部分.2.若积分区域D关于y轴对称,则D f(x,y)dσ=2 D 2 f(x,y)dσ,f(x,y)在区域D上关于变量x是偶函数,0,f(x,y)在区域D上关于变量x是奇函数,其中D2是区域D在y轴右侧(或左侧)的部分.3.若积分区域D关于原点对称,则D f(x,y)dσ=4 D 3 f(x,y)dσ,f(x,y)在区域D上关于变量x和y都是偶函数,0,f(x,y)在区域D上关于变量x或y是奇函数,其中D3是区域D在第一象限的部分.4.若积分区域D关于直线y=x对称(轮换对称性),则D f(x,y)dσ= D f(y,x)dσ= 1 2 D [f(x,y)+f(y,x)]d σ.(三)在三重积分的计算中1.若积分区域Ω关于坐标面x=0对称,则Ωf(x,y,z)dv=2 Ω1 f(x,y,z)dv,f(x,y,z)关于变量x是偶函数,0,f(x,y,z)关于变量x是奇函数,其中Ω1是Ω中x≥0的部分.若把x换成y或z也有相同的结论.2.若积分区域Ω关于x,y,z具有轮换对称性,则Ωf(x,y,z)dv= Ωf(y,z,x)dv= Ωf(z,x,y)dv = 1 3 Ω[f(x,y,z)+f(y,z,x)+f(z,x,y)]dv.(四)在第一型曲線积分的计算中1.设平面分段光滑曲线L关于x轴对称,则∫Lf(x,y)ds= 2∫L1f(x,y)ds,f(x,y)关于变量y是偶函数,0,f(x,y)关于变量y是奇函数,其中L1是L上y≥0的部分(前半段).若把x换成y也有相同的结论.2.设空间分段光滑曲线L关于坐标面x=0对称,则∫Lf(x,y,z)ds=2∫L2f(x,y,z)ds,f(x,y,z)关于变量x是偶函数,0,f(x,y,z)关于变量x是奇函数,其中L2是L上x≥0的部分.若把x换成y或z也有相同的结论.3.若积分曲线L关于x,y具有轮换对称性(当x=y时曲线方程不变),则∫Lf(x,y)ds=∫Lf(y,x)ds= 1 2 ∫L[f(x,y)+f(y,x)]ds.4.若积分曲线L关于x,y,z具有轮换对称性(当x=y,y=z,z=x时曲线方程不变),则∫Lf(x,y,z)ds=∫Lf(y,z,x)ds=∫Lf(z,x,y)ds= 1 3 ∫L[f(x,y,z)+f(y,z,x)+f(z,x,y)]ds.(五)在第一型曲面积分的计算中1.设分片光滑曲面Σ关于坐标面x=0对称,则Σf(x,y,z)dS=2Σ1f(x,y,z)dS,f(x,y,z)关于变量x为偶函数,0,f (x,y,z)关于变量x为奇函数,其中Σ1是Σ上x≥0的部分(前半部分).若把x换成y或z也有相同的结论.2.(轮换对称性)若积分曲面Σ关于x,y,z具有轮换对称性,则Σf(x,y,z)dS=Σf(y,z,x)dS=Σf(z,x,y)dS= 1 3 Σ[f(x,y,z)+f(y,z,x)+f(z,x,y)]dS.三、应用举例例1 计算∫1 2 - 1 2 1-x 1-x2 dx.分析∫1 2 - 1 2 1-x 1-x2 dx=∫1 2 - 1 2 1 1-x2 dx-∫1 2 - 1 2 x 1-x2 dx,注意到积分区间关于原点对称,其中∫1 2 - 1 2 x 1-x2 dx的被积函数关于x是奇函数,所以此积分为0.而∫1 2 - 1 2 1 1-x2 dx的被积函数关于x是偶函数,由前面总结的性质可得:原式=∫1 2 - 1 2 1 1-x2 dx-∫1 2 - 1 2 x 1-x2 dx=2∫1 2 0 1 1-x2 dx=2arcsinx 1 2 0=2×π6 = π3 .例2 计算D (x2-2x+3y+2)dxdy,其中D:x2+y2≤a2.分析区域D既关于x轴对称又关于y轴对称,而x2关于x是偶函数,2x和3y分别关于x和y是奇函数,故:原式= D x2dxdy- D 2xdxdy+ D 3ydxdy+ D 2dxdy= D x2dxdy-0+0+2 D dxdy=∫2π0dθ∫a0(rcosθ)2rdr+2πa2= 9 4 πa2.例3 计算Ω(xy+1)zdv,其中Ω为曲面z= 1-x2-y2 和z= x2+y2 所围区域.分析Ω(xy+1)zdv= Ωxyzdv+ Ωzdv,Ω关于坐标面x=0对称,而xyz关于x是奇函数,故Ωxyzdv=0,所以Ω(xy+1)zdv= Ωzdv=∫2π0dθ∫π4 0dφ∫10rcosφ.r2sinφdr= π8 .例4 计算I=∮L[(x-1)2+(y-1)2+(z-1)2]ds,其中L:x2+y2+z2=R2,z= R 2 .分析原式=∮L[(x2+y2+z2)+3]ds-∮L2xds-∮L2yds-∮L2zds,考虑到曲线L关于yOz面对称,2x是关于x的奇函数,所以∮L2xds=0,同理,曲線L关于zOx面对称,2y是关于y的奇函数,所以∮L2yds=0,所以原式=∮L[(x2+y2+z2)+3]ds-∮L2zds=∮L(R2+3)ds-∮LRds=(R2-R+3)∮Lds=(R2-R+3)·2π· 3 2 R= 3 πR(R2-R+3).例5 计算曲面积分S(x+y+z)ds,其中S为上半球面z= a2-x2-y2 .分析曲面关于坐标面x=0,y=0对称,而x和y分别关于变量x和y为奇函数,故S(x+y)ds=0,又S在坐标面z=0上的投影为x2+y2≤a2.且ds= 1+z2x+z2y = 1+ x2 a2-x2-y2 + y2a2-x2-y2 = a2 a2-x2-y2 = a z ,原式=Szds=x2+y2≤a2z·a z dxdy=ax2+y2≤a2dxdy=πa3.例6 计算Ω(x2+z2)dv,其中Ω:x2+y2+z2≤1.分析积分区域是个单位球,关于x,y,z具有轮换对称性,所以Ω(x2+z2)dv= Ω(y2+x2)dv= Ω(z2+y2)dv,1 3 Ω(x2+z2+y2+x2+z2+y2)dv= 2 3 Ω(x2+y2+z2)dv= 2 3 ∫2π0dθ∫π0dφ∫10r4sinφdr= 8 15 π.例7 计算∮L(z+y2)ds,其中L:x2+y2+z2=R2,x+y+z=0.分析由空间曲线L的方程知道,当x=y,y=z,z=x时,曲线L的方程不变,具有轮换对称性,所以∮Lxds=∮Lyds=∮Lzds,∮Lx2ds=∮Ly2ds=∮Lz2ds,于是∮Lzds= 1 3 ∮L(x+y+z)ds= 1 3 ∮L0ds=0,∮Ly2ds= 1 3 ∮L[x2+y2+z2]ds= R2 3 ∮Lds= 2πR3 3 ,所以∮L(z+y2)ds= 2 3 πR3.例8 计算Σ(x+z+1)2dS,其中Σ:x2+y2+z2=R2.分析Σ(x+z+1)2dS= Σ(x2+z2+1+2xz+2x+2z)dS.由积分曲面Σ的对称性及被积函数为奇函数的特点,知ΣxdS=0,ΣzdS=0,ΣxzdS=0.又由积分曲面Σ的轮换对称性知,Σx2dS= Σy2dS= Σz2dS= 1 3 Σ(x2+y2+z2)dS,所以Σ(x+z+1)2dS= 2 3 Σ(x2+y2+z2)dS+ Σ1·dS = 2 3 R2 ΣdS+4πR2= 8 3 πR4+4πR2.通过上面这些例子的计算演示可以看出,在计算积分的过程中,如果能及时利用积分区域(区间)的对称性和被积函数的奇偶性以及积分区域的轮换对称性,在很多时候可以有效减少烦琐的计算量,提高解题效率.。
对称法在语文解题中的应用
对称法在语文解题中的应用作者:刘靖峰来源:《语文教学与研究(教研天地)》2005年第09期在语言的使用中,人们一般会注重语言形式上的对称美和语感上的节奏美,因而,常常使用对称句式。
我们可以根据这一特点反其道而行之,从“对称性”的角度来解答语文题目。
一、对称法在识别错别字中的应用先看下面题目:以下词语中有错别字的是:清山绿水、山青水秀、貌和神离、惹事生非、尔愚我诈、前距后恭以上词语,均是从近两年各地高三模拟考试试卷中选取下来的,粗粗看来,还真让人一头雾水,难辨是非。
面对面广量大、数不胜数的字词,而学生不会动脑去理解性记忆,而去死记硬背,那就实在难于应付了。
冷静分析以上词语便会发现,应用“对称法”可以帮助学生轻松发现错别字。
如“清山绿水”,只有“青”与“绿”才能构成对称(同属颜色),所以“清”应改为“青”;而“山青水秀”中,与“青”字位置相对称的字是“秀”,但只有“清”才能与“秀”构成对称,所以应改为“清”。
“貌和神离”中,与“离”相对称的明显不是“和”,而应该是“合”,所以应是“貌合神离”。
“惹事生非”、“尔愚我诈”、“前距后恭”分别应改为“惹是生非”、“尔虞我诈”、“前倨后恭”,道理同上,不一一赘述。
我这里所讲的“对称”,是指对称位置的字,它们的字义往往是相同相近或相反相对。
二、对称法在辨析字义解释中的应用其实,通过上面的题目,我们还可发现,“对称法”在辨析字义解释中,确实有独到的作用。
试看下面的题目:以下加点字义解释中有错的是:否极泰来(否定)、正襟危坐(高高地)、言简意赅(应该)、不矜不伐(讨伐)、不愧不怍(做作)、待人接物(事物)细加分析之后,我们就会发现,以上字义解释都是错的。
“否极泰来”,“否”与“泰”(好运气)”相对,应是“坏运气”之义;“正襟危坐”,“危”与“正(整理,使……端正)”相对,应是“端正、正直”之义;“言简意赅”,“赅”与“简(简单)”相对,应是“完备”之义;“不矜不伐”,“伐”与“矜(自大、自夸)”相对,应是“自我夸耀”之义;“不愧不怍”,“怍”与“愧(惭愧)”相对,应是“惭愧”之义;“待人接物”,“物”与“人”相对,应是“自己以外的人”之义。
对称性在积分计算中的应用
对称性在积分计算中的应用对称性在积分计算中的应用对称性是数学中重要的概念之一,它的应用涉及到各个数学领域中。
在积分计算中,对称性也是一个非常重要的工具和思想,能够帮助我们简化、优化和解决复杂的积分问题。
本文将介绍对称性在积分计算中的应用,以及如何利用对称性求解各类复杂积分。
一、对称性概述对称性是指物体或者数学对象的部分或整体运动具有某种规则性的现象。
常见的对称性包括轴对称、中心对称、对角线、对边对称、等等。
对称性是自然界现象和数学理论中广泛存在的一种现象,也是数学中强有力的工具和思想。
二、对称性在积分计算中的基本应用对称性在积分计算中的使用具有以下优点:1.减少计算量:使用对称性可以将积分的计算范围缩小为对称区间内的一半,从而大大减少了计算量,简化了计算过程。
2.避免重复计算:利用对称性可以避免重复计算某些部分,减少了计算量和出错的概率。
3.提高准确度和精度:对称性具有非常清晰的数学定义和可操作性,使用对称性可以提高准确度和精度,更好地描述数学对象的性质和特征。
下面分别对轴对称、中心对称、对角线对称、对边对称等对称性进行介绍,并说明其在积分计算中的具体应用。
1.轴对称轴对称是指数学对象在某个轴线旋转180度以后不改变其形状和大小。
在数学中,轴对称包括平面上的x轴、y轴和45度斜线轴等。
轴对称在积分计算中的应用非常广泛,常见的应用包括:(1)基本函数关于坐标轴对称的性质:例如正弦函数和余弦函数关于y轴对称,正切函数和余切函数关于x轴对称。
利用这些对称性质可以简化复杂函数的积分。
(2)轮换对称性:对于一类具有一定规则性的函数,可以通过对其进行轮换得到新的函数,这样可以将原函数分成几个对称的部分,从而提高计算效率。
例如,对于函数f(x,y) = x + y的积分计算,因为其具有xy的轮换对称性,可以将其分解成两部分f1(x,y) = x和f2(x,y) = y,从而使积分计算简化。
(3)利用轴对称性质求偶函数和奇函数的积分:如果f(x)是关于y轴对称的偶函数,则∫f(x)dx从-x到x之间的积分等于2∫f(x)dx从0到x之间的积分,即∫-xf(x)dx = 2∫0f(x)dx如果f(x)是关于y轴对称的奇函数,则∫f(x)dx从-x到x之间的积分等于0。
函数的对称技巧
函数的对称技巧函数的对称技巧在数学中有着重要的地位,这是因为对称性可以帮助我们更好地理解函数的性质和特点。
函数的对称性包括了几何意义上的对称和代数意义上的对称。
接下来,我将详细讨论几种常见的函数对称技巧,并解释它们在解题过程中的作用。
1. 奇偶对称当函数满足f(x)=f(-x)时,我们称函数具有奇偶对称。
其中,如果函数满足f(-x)=-f(x),则称函数具有奇对称;如果函数满足f(-x)=f(x),则称函数具有偶对称。
奇偶对称在函数的图像研究中起到了至关重要的作用。
通过奇偶对称,我们可以推断出函数图像的对称轴和对称点。
对于奇对称函数,其对称轴一定为原点(0,0),对于偶对称函数,其对称轴可以是任意直线x=a。
奇偶对称还能帮助我们简化函数的计算。
例如,对于奇偶对称函数,当x=0时,函数的值一定为0,因此我们可以通过奇偶对称性将复杂的表达式简化为更简单的形式。
2. 周期性当函数满足f(x+T)=f(x)时,我们称函数具有周期性,其中T为函数的周期。
周期函数在许多实际问题中非常常见,例如正弦函数和余弦函数。
周期性可以帮助我们预测函数的图像和性质。
通过观察函数的周期长度和振幅,我们可以了解到函数图像的重复规律和变化趋势。
周期性还可以帮助我们简化函数的计算。
例如,对于周期函数,我们只需要计算一个周期内的函数值,然后可以通过平移、拉伸等运算得到其他任意点的函数值。
这极大地简化了复杂函数的计算过程。
3. 对数对称当函数满足f(a^x) = f(x)时,我们称函数具有对数对称。
对数对称在函数的图像研究和计算中都起到了重要的作用。
对数对称可以帮助我们推断函数图像的性质。
例如,如果一个函数具有对数对称,那么它的图像一定关于y=x直线对称。
通过借助对数对称,我们可以在不求解具体函数表达式的情况下,推断出函数图像的形状和性质。
对数对称还可以帮助我们简化函数的计算。
例如,对于具有对数对称的函数,我们可以通过变量代换,将复杂的函数表达式转化为更简单的形式。
简谐振动对称性应用解题
巧用弹簧振子简谐振动过程的对称性解题对称性是简谐运动的重要性质之一,在关于平衡位置对称点上位移,回复力,加速度,速度,动能,势能数值均相等,振动物体沿不同方向经过同一路径或通过关于平衡位置两段对称路程的时间相等,利用对称规律解题,往往事半功倍,下面以弹簧振子为例加以说明:一、时间、速度的对称性例1、如图,在水平方向做简谐运动的弹簧振子,质量为m ,A 、B 两点关于平衡位置对称,经过A 点时速度为v 。
(1) 它从平衡位置O 点经过0.4s 第一次到达A 点,再经过0.2s 第二次到达A 点,从弹簧振子离开O 点开始计时,则振子第三次到达A 点时间是多少?(2)振子连续经过A 、B 两点,弹力所做的功以及弹力的冲量是多少?解析:(1)①若开始经过O 点速度方向向右由时间对称性:42.02124.0T T =⨯+-∴s T 32= ②若开始经过O 点的运动方向向左2.024.02+⨯=T T=2S(2)由速度的对称性知连续经过A 、B 两点v A 与v B 大小相等,但方向可能相同或相反。
∴W 弹=△Ek=0,I 弹=0或I 弹=2mv二、加速度、回复力的对称性例2、如图(1)所示,质量分别为m 和M 的A 、B 两重物用劲度系数为k 的轻质弹簧竖直地连接起来,若将A 固定在天花板上,用手托住B ,让弹簧处于原长,然后放手,B 开始振动,试问:(1)B 到达最低点时的加速度以及弹性势能多大?(2)B 振动具有最大速度Vm 时弹簧的弹性势能为多大?(3)如图(2)所示,若将A 从天花板上取下,使弹簧为原长时,让两物从静止开始自由下落,下落过程中弹簧始终保持竖直状态。
当重物A 下落距离h 时,重物B 刚好与地面相碰,假定碰后的瞬间重物B 不离开地面(B 与地面作完全非弹性碰撞)但不粘连。
为使重物A 反弹时能将重物B 提离地面,下落高度h 至少应为多少?解析:(1)B 释放时,弹簧原长,∴M 加速度 a=g 向下当B 到达最低点时,根据对称性a ′=g 向上最高点与最低点回复力大小相等,即Mg=kx-Mg∴最低点伸长量KMg x 2= 由最高点到最低点能量守恒得Kg M Mgx E 222==弹 (2)B 速度最大时,弹簧振子处于平衡位置,设伸长Mg Kx x =11能量守恒2121m Mv Ep Mgx += 22221m Mv K g M Ep -= (3)B 触地时,弹簧为原长,A 的速度gh v 2=,A 压缩弹簧后向上弹起,弹簧恢复原长后A 又继续上升拉伸弹簧,当v A =0时,弹簧伸长x 2,B 恰好被提离地面应有 Kx 2=Mg ∴x 2=x 1 ∴最高点弹性势能Ep ′=Ep弹簧由压缩到拉伸能量守恒p E mgx mv '+=222122221221m Mv K g M K Mg mg gh m -+⋅=⋅ mgMv km g M K Mg h m 222-+= 三、弹簧振子关于平衡位置对称的两点位移大小相等,关于原长对称的两位置由于形变量大小相等,弹力势能相同。
奥林匹克数学题型对称与计数
奥林匹克数学题型对称与计数奥林匹克数学竞赛是全球著名的数学竞赛之一,它以其高难度和复杂性而闻名。
在这些竞赛中,题目的对称性和计数方法被广泛应用,成为解题的关键。
本文将探讨奥林匹克数学题型中对称与计数的重要性,并分析其应用。
在奥林匹克数学竞赛中,对称性是一种常见的题型特征。
对称可以分为轴对称和中心对称两种情况。
轴对称是指某个直线作为对称轴,题目中的图形或数列在这条轴两侧是完全一致的。
中心对称则是以某个点为中心,题目中的图形或数列在以这个点为中心的对称轴两侧是完全一致的。
对称性在解题过程中具有重要的作用。
首先,对称性帮助简化问题,减少计算量。
通过发现题目中的对称特征,可以将题目条件简化,从而降低了题目的难度。
其次,对称性可以推导出一些结论,为解题提供线索。
通过研究对称的性质,可以得到一些定理或规律,从而帮助我们解决更复杂的问题。
最后,对称性可以用来构造证明或推理的思路。
通过利用题目中的对称性质,可以构建一种严密而简洁的证明过程,从而解决问题。
除了对称性,在奥林匹克数学竞赛中,计数方法也是解题的关键。
计数方法是指通过计数的方式来解决问题。
在奥林匹克数学竞赛中,问题经常涉及到物品的排列组合、集合的划分和选择等,这些都需要运用计数方法来解答。
计数方法有多种形式,包括排列计数、组合计数和选择计数等。
排列计数是指对一组物品进行排列的方式的计数方法,常用的方法有乘法原理和错位排列等。
组合计数是指从一组物品中选择若干个物品组成一个子集的计数方法,常用的方法有组合公式和二项式定理等。
选择计数是指从一组物品中选择满足一定条件的物品的计数方法,常用的方法有鸽巢原理和递归计数等。
计数方法在解题过程中发挥着重要的作用。
首先,它可以用来确定问题的范围和可能性。
通过计数方法,我们可以计算出问题中可能的结果数量,从而为问题的分析提供依据。
其次,计数方法可以用来确定问题的性质和规律。
通过计数方法,我们可以得到一些关于问题的结论,从而帮助我们寻找解题的思路。
对称性在积分计算中的应用精编
对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。
二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。
对称性在积分计算中的应用
对称摘 要 对称性是解决数学问题的重要方法之一.在积分学中充分利用积分区域的对称性和被积函数的奇偶性,使得数学积分的计算过程得到简化.本文通过总结定理和性质并借助实例说明对称性在定积分、重积分、曲线积分、曲面积分计算中的应用.关键词 对称性 定积分 重积分 曲线积分 曲面积分1. 前言在许多人眼里,数学是抽象和复杂的,但在此背后,也有着它和谐的旋律.如果我们能够更多的理解和掌握数学中的很多规律,就会对数学有更深的认识和感受.目前人们普遍认识到的数学美的基本内容有:统一美、对称美、简洁美、奇异美.它们各有内涵,各有吸引人之处,而对称美是指数学内容中的部分与部分、部分与整体之间和谐一致,以及各种数学概念和理论之间所存在的“对等美”.关于对称性在积分计算中的应用,首先明确以下问题:(1)关于对称性的了解,以简单点为例:点),(y x 关于x 轴的对称点为),(y x -;点),(y x 关于y 轴的对称点为),(y x -;点),(y x 关于原点对称的对称点为),(y x --;点),(y x 关于x y =对称的对称点为),(x y .(2)函数的奇偶性判断,以及两个函数和差积运算后的奇偶性.(3)本文所涉及内容都是R —可积函数.(],[b a 上的连续函数在],[b a 上必可积;只有有限个第一类不连续点的函数是可积的,即分段函数是可积的;单调有界函数必定可积.)(4)清楚的区分各种积分的表达式.(5)用极坐标将二、三重积分化为累次积分时应该注意的地方.(6)数学分析就是用极限的思想来研究函数的一门学科,需对研究内容的产生和如何解决的方式有一定的了解.(7)基本积分公式、倍角公式的熟悉应用.2. 对称性在定积分计算中的应用定理1[4] 设函数)(x f 在],[a a -上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰-aaax f x f x x f x f x f x x f 0)()(,d )(2)()(,0d )( 2.1 计算.d 11lnI 442⎰-+-=ππx xxx分析:定积分在研究区间]4,4[ππ-是关于原点对称的, 又因为2x 为偶函数,xx+-11ln是奇函数,故由定理1可知,0=I . 2.2 计算.d cos21)arctan 1(I 22⎰-++=ππx x x分析:定积分在研究区间是关于原点对称的,又因为⎰-++=22d cos21)arctan 1(I ππx x x⎰-+++=22d )2cos 1arctan 2cos 1(ππx x x x因为x 2cos 1+为偶函数,x x2cos 1arctan +为奇函数,故由定理1知 ,0d 2cos 1220++=⎰πx x⎰=202d cos 22πx x⎰=20d cos 22πx x22 =2.3[8] 计算.d 4cos I 224⎰-=ππx x 分析:定积分研究区间]4,4[ππ-是关于原点对称的, 因为x 4cos 4为偶函数,故由定理1知,23d cos 8d cos 42I 204204πππ===⎰⎰x x x x (进行积分计算时,有x x x x n nn d cos d sin 2020⎰⎰==I ππ,且有递推公式21-I -=I n n nn 成立.) 2.4 计算.d 1)(arcsin I 232322x xx ⎰--=分析:先用凑分法,再做代换,最后利用对称性,则有 x xx d 1)(arcsin I 232322⎰--=x x darcsin )(arcsin 23232⎰-=⎰=33-2d ππt t27d 330-2ππ==⎰t t2.5 计算.d )1ln(I 22⎰-+=x e x x分析:显然积分区间关于原点对称,但)1ln(x e +既不是奇函数也不是偶函数,我们可以利用2)()(2)()()(x f x f x f x f x f --+-+=,其中2)()(x f x f -+为偶函数, 2)()(x f x f --为奇函数,把它分解成为一个奇函数和一个偶函数的和. 令)1ln()(xe xf +=,则)2ln(212)()(x x e e x f x f -++=-+,22)()(x x f x f =--所以有, ⎰-+=22d )1ln(I xe x x⎰--+++=22d )]2ln([21xe e x x x x 然而)2ln(xxe e x -++是关于x 的奇函数,2x 是关于x 的偶函数,由定理1知,⎰⎰-==202222d d 21x x x x 38= 2.6 计算.d 1I 112⎰-=x x分析:定积分在研究区间]1,1[-是关于原点对称的,又因为21x 是偶函数,由定理1知, ⎰-=112d 1I x x⎰=102d 12x x2-=然而这个答案是不正确的,事实上,由于被积函数012>x ,所以当积分存在时,其值必大于零,原因在于在区间]1,1[-上有第二类间断点0=x ,因而不能用对称性或者莱布尼茨公式计算. 小结 在定积分对称性的应用中,我们看到,这里所指的对称性是区间是否关于原点对称,而与被积函数的图像是否关于对称轴或者原点对称无关,但是与被积函数的奇偶性密切相关;另外经过奇偶函数的和差积得到的新函数的奇偶性,倍角公式,特殊公式的熟练掌握和应用也是非常重要的;最重要的是无论用公式还是用对称性来解题都要首先确定被积函数是R —可积函数.3. 对称性在二重积分计算中的应用定理2 [5][7][9] 设函数),(y x f 在D 上连续,且⎰⎰=I Dy x y x f d d ),(存在,记}0,),(|),{(1≥∈=x D y x y x D }0,),(|),{(2≥∈=y D y x y x D}0,0,),(|),{(3≥≥∈=y x D y x y x D }0,),(|),{(4≥∈=y D y x y x D(1)设D 关于轴x 对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰2),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(2)设D 关于y 轴对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰1),(),(,d d ),(2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(3)设D 关于原点对称,D y x ∈∀),(,()⎪⎩⎪⎨⎧=---=--=⎰⎰⎰⎰3),(),(,d d ,2),(),(,0d d ),(D Dy x f y x f y x y x f y x f y x f y x y x f(4)设D 关于直线x y =对称,D y x ∈∀),(,⎪⎩⎪⎨⎧=-==⎰⎰⎰⎰4),(),(,d d ),(2),(),(,0d d ),(D Dy x f x y f y x y x f y x f x y f y x y x f(5)设D 关于x 轴和y 轴均对称,D y x ∈∀),(⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰⎰⎰3),(),(),(),(,d d ),(4),(),(),(),(,0d d ),(D Dy x f y x f y x f y x f y x y x f y x f y x f y x f y x f y x y x f 或者或者(6)(变量可轮换性)若积分区域关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++===DDDDy x x z f z y f y x f yx x z f y x z y f y x y x f d d ),(),(),(31d d ),(d d ),(d d ),(3.1 计算⎰⎰=I Dy x y x d d sin 其中D 由双纽线)()(222222y x a y x -=+围成. 分析:已知D 关于y 轴对称,且是关于x 的奇函数,所以0=I . 3.2[8] 计算⎰⎰++-=I Dy x zy x x y d d 22222,其中}1|),{(≤+=y x y x D分析:由于D 关于直线y x =对称,且被积函数具有性质),(),(y x f z y f -=,所以0=I . 3.3[5] 计算()⎰⎰+=I Dy x y x d d 22,其中D :122≤+y x 分析:()⎰⎰+=I Dy x y x d d 22⎰⎰++=Dy x xy y x d d 4422积分区域D 关于x 轴对称,且被积函数xy 4为y 的奇函数,所以,0d d 4=⎰⎰Dy x xy又因为在积分区域D 中y x ,的地位相同,则有⎰⎰⎰⎰=DDy x y y x x d d d d 22,所以, ⎰⎰=I Dy x y d d 52⎰⎰+=Dy x y x d )d (2522 ⎰⎰=10320d d 25r r πθ45π=3.4 计算⎰⎰+=I Dy x y x d )d (,其中D :1y x22≤+.分析:积分区域D :1y x 22≤+关于x 轴,y 轴均对称,而且被积函数关于y 和x 是偶函数, 固有 ⎰⎰+=I 3d )d (4D y x y x⎰⎰+=120d )d sin cos (4r r r r πθθθ⎰⎰+=12220)d sin cos (d 4r r r θθθπ38=3.5[5] 设D 是()()()1-1-1,1-1,1,、、为顶点的三角形区域,1D 为D 在第一象限的部分,则) (d d )sin (22=+⎰⎰--Dy x y x ye xy分析:如图4321D D D D D =,由对称性可知0d d 21=⎰⎰D D y x xy ,0d d 43=⎰⎰D D y x xy 所以0d d =⎰⎰Dy x xy .在43D D 上,22--sinye y x 是关于y 的奇函数,故有,0d d esin 4322-=⎰⎰D D -y xy x y在21D D 上 是关于x 的偶函数,所以,⎰⎰⎰⎰=+12222d d sinye 2d )d sinye (--D -y xD-y xy x y x xy3.6 计算⎰⎰++=I Dy x y x yf x d d ])(1[22,其中D 由1,1,3-===x y x y 围成. 分析:如图所示,做辅助线3x y -=的左半部分,则积分区域被分为21D D 和,其中21D 表示1D 位于x 轴上方的部分,1D 关于x 对称,2D 关于y 轴对称,由于被积函数是关于x 的奇函数,故有,0d d ])(1[222=++=I ⎰⎰D y x y x yf x 又由于)(22y x xyf +是关于y 的奇函数,故有,⎰⎰++=I 1d d ])(1[22D y x y xyf x0d d 21+=⎰⎰D y x x⎰⎰-=2001d d 2x y x x⎰--=014d 2x x52-= 小结 )(x,y f 关于x,y 的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑,即若区域关于x 轴对称,就要考虑)(x,y f 关于y 的奇偶性,若区域关于y 轴对称,就要考虑)(x,y f 关于x 的奇偶性,且容易看出对称性应用过程中被积函数一般比较复杂和抽象.4.对称性在三重积计算分中的应用定理3 设函数)(x,y,z f 在空间区域Ω上连续,且⎰⎰⎰Ω=I z y x x,y,z f d d d )(存在,记}0,)(|){(1≥Ω∈=Ωz x,y,z x,y,z }0,)(|){(2≥Ω∈=Ωx x,y,z x,y,z{}0)(|)(3≥Ω∈=Ωy x,y,z x,y,z ,(1)设Ω关于xoy 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ1)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f(2)设Ω关于yoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ2)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (3)设Ω关于xoz 面对称,Ω∈∀)(x,y,z ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰⎰⎰ΩΩ3)(),,(,d d d )(2)(),,(,0d d d )(x,y,z f z y x f z y x x,y,z f x,y,z f z y x f z y x x,y,z f (4)(变量可轮换性)若积分区域Ω关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++===z y x z,x,y f y,z,x f x,y,z f zy x z,x,y f z y x y,z,x f z y x x,y,z f d d d )()()(31d d d )(d d d )(d d d )(4.1 计算z y x z y x z y x z d d d 1)1ln(222222⎰⎰⎰Ω++++++=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是z 的奇函数,而积分区域Ω关于平面xoy 对称,故有,0d d d 1)1ln(222222=++++++=I ⎰⎰⎰Ωz y x z y x z y x z 4.2 计算z y x e xd d d ⎰⎰⎰Ω=I ,其中Ω是球体1222≤++z y x . 分析:被积函数是x 的偶函数,而积分区域Ω关于平面yoz 对称, 故z y x e z y x e xxd d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I ,其中1Ω是半球体:0,1222≥≤++x z y x . 从而 , z y x e z y x e xx d d d 2d d d 1⎰⎰⎰⎰⎰⎰ΩΩ==I⎰⎰⎰=xD 1d de d 2z y x x⎰=102d )z -1(e2x xππ2=4.3 计算z y x z y x d d d )(⎰⎰⎰Ω++=I ,其中Ω是球体)0,0,0(2222≥≥≥≤++z y x R z y x . 分析:由变量的轮换性可知,z y x z z y x y z y x x d d d d d d d d d ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z d d d 3⎰⎰⎰Ω=I⎰⎰⎰=RD Zy x z z 0d d d 3 ( 4.3.1 )z z R Rd )(3022⎰-=π443R π= 此题容易在(4.3.1)式中将z 判断为奇函数,则积分为零,但是在条件0,0,0≥≥≥z y x 下,区域不是关于平面0=z 对称的,故有以上做法,这也充分说明了,区域的对称性和被积函数的奇偶性必须同时满足才能进行积分计算.4.4 计算z y x z y x d d d )532(222⎰⎰⎰Ω++=I ,其中Ω是球体)0(2222≥≤++R R z y x . 分析:由变量的轮换性可得,z y x z z y x y z y x x d d d d d d d d d 222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==,设)0,0(:2222≥≥-≤+y x z R y x D Z .则有,z y x z z y x y z y x x d d d 5d d d 3d d d 2222⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ++=Iz y x z d d d 102⎰⎰⎰Ω= ⎰⎰⎰=RD Zy x z z 02d d d 20⎰-=Rz z z 0222d )R (20π385R π=4.5 计算z y x z x d d d )(2⎰⎰⎰Ω+=I ,其中Ω是球体)0(,1222≥≤++z z y x . 分析:z y x xz z x d d d )2(22⎰⎰⎰Ω++=I (xz 2关于yoz 平面对称,又是关于x 的奇函数) z y x z x d d d )(22⎰⎰⎰Ω+=(根据Ω具有轮换性,z y x z z y x x d d d d d d 22⎰⎰⎰⎰⎰⎰ΩΩ=) z y x z d d d 22⎰⎰⎰Ω=(由于条件0≥z ,2z 关于xoy 面不对称,所以不能用其偶函数的性质) =⎰⎰⎰102d d d 2ZD y x zz⎰-=1022)d (12z z zπ154π=小结 4.3和4.5充分说明当且仅当积分区域的对称性与被积函数),,(z y x f 奇偶性同时具备才能使用定理3.5.对称性在第一类曲线积分计算中的应用第一型曲线积分的奇偶性与二重积分类似. 定理4 函数),(y x f 在曲线L 上连续,s y x f Ld ),(⎰=I 存在,记}{0,),(|),(1≥∈=y L y x y x L }{0,),(|),(2≥∈=x L y x y x L}{0,0,),(|),(3≥≥∈=y x L y x y x L }{y x L y x y x L ≥∈=,),(|),(4(1)设积分曲线L 关于x 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f s y x f y x f y x f s y x f L L(2)设积分曲线L 关于y 轴对称,则⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(2y x f y x f s y x f y x f y x f s y x f L L(3)设积分曲线L 关于原点对称,则⎪⎩⎪⎨⎧=---=--=⎰⎰),(),(,d ),(2),(),(,0d ),(3y x f y x f s y x f y x f y x f s y x f L L(4)设积分曲线L 关于x y =对称,则⎪⎩⎪⎨⎧=-==⎰⎰),(),(,d ),(2),(),(,0d ),(4y x f x y f s y x f y x f x y f s y x f L L(5)设积分曲线L 关于x 轴, y 轴均对称,则⎪⎩⎪⎨⎧=-=--=--=-=⎰⎰),(),(),().(,d ),(4),(),(),(),(,0d ),(3y x f y x f y x f y x f s y x f y x f y x f y x f y x f s y x f L L或者或者5.1[4] 计算s x Ld ⎰=I ,其中L 是双纽线:)()(22222y x y x -=+.分析: 被积函数x 为偶函数,双纽线关于x 轴、y 轴均对称, 故s x s x L Ld 4d 1⎰⎰==I ,其中1L 是L 在第一象限的部分,将双纽线化为极坐标表示:θ2cos 2=r ,则1L :40,2cos πθθ≤≤=r ,θθθd 2cos 1d 'd 22=+=r r s则 22d 2cos 1cos 2cos 4d 4401===I ⎰⎰πθθθθs x L5.2 计算⎰++=I s y x xy )d 23(22,设L 为椭圆13222=+y x ,其周长为a . 分析:由于L 关于x 轴(或y 轴)对称, 且xy 是关于y (或x )的奇函数, 故有, 0xyd =⎰s ,那么 , ⎰+=I s y x )d 23(22a s 66d ==⎰5.3 计算s z y x Ld )573(⎰++=I ,已知积分曲线L :⎩⎨⎧=+=++1122y x z y x ,其周长为a . 分析:已知积分曲线L 中y x ,的位置对称,可得⎰⎰=LLs s x yd d ,所以, s z y x Ld )573(⎰++=Is z y x Ld )(5⎰++=a s L5d 5==⎰5.4 计算s x Ld 2⎰=I ,其中L 为圆周2222a z y x =++,0=++z y x .分析:由对称性知,s z s y s x LLLd d d 222⎰⎰⎰==.于是,s z y x s x LLd )(31d 2222⎰⎰++= ⎰=Ls a d 32 332a π= 5.5 计算s xy Ld ⎰=I ,其中L :2y x =上从)1,1(A -到)1,1(B 的一段弧.分析:由于L 关于x 轴对称,被积函数xy 是关于y 的奇函数,所以, 0d ==I ⎰s xy L6.[10]对称性在第二类曲线积分计算中的应用定理15[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设为)(),(b x a x y y ≤≤±=.记21,L L 分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在x 轴上的投影方向相反,函数()y x f ,在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的左半部分和右半部分,21,L L 分别在y 轴上的投影方向相反,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“反对偶零,反对奇倍”,其中“反”指21,L L 在x (或y )轴上的投影方向相反;“对”指L 关于x (或y )轴对称;“偶”指被积函数在L 上关于y (或x )为偶函数;“零”指曲线积分的结果等于零.反对奇倍的含义类似解释.定理25[10] 设L 为xoy 平面上关于x 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于x 轴的上半部分和下半部分,21,L L 分别在y 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧=--=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f x y x f y x f y x f x y x f L L同理:设L 为xoy 平面上关于y 轴对称的一条光滑曲线弧,其方程是一双值函数,设21,L L 为分别为L 位于y 轴的右半部分和左半部分,21,L L 分别在x 轴上的投影方向相同,函数),(y x f 在L 上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰),(),(,d ),(2),(),(,0d ),(1y x f y x f y y x f y x f y x f y y x f L L应用口诀:“同对奇零 ,同对偶倍”,其中“同”指21,L L 在x 轴上的投影方向相同;“对”指L 关于y 轴对称;“奇”指被积函数在L 上关于x 为奇函数;“零”指曲线积分的结果等于零.同对偶倍的含义类似解释.6.1 计算x xy Ld ⎰=I ,其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对奇倍”,故有 , x xy Ld ⎰=Idx 21⎰=L xy⎰=1d 2x x x54=其中,x 从点0变化到点1.小结 6.1和 5.5很相似,它们唯一的区别在于积分式子x xy Ld ⎰=I ,s xy Ld ⎰=I 的不同,其根本原因是第二类曲线积分具有方向性.6.2 计算x y x Ld ⎰=I 其中L :2y x =上从A(1,-1)到B(1,1)的一段弧.分析:满足“反对偶零”.故有0d ==I ⎰x xy L6.3 计算y y y x x y x Ld )sin (d )(222+-+=I ⎰,其中L :)0(222>=+a a y x 按逆时针方向从)0,A(a ,)0,(B a -的上半圆周.分析:y y y x x xy x y x LL Ld )sin (d 2d )(222⎰⎰⎰+-++=I(三个积分分别适合“同对偶倍”、“同对奇零”、“反对偶零”) ⎰+=I 1d )(22L x y x⎰+=02d )(2a x y x32a -= 其中, x 从点a 变化到点0.6.4[4] 计算⎰++=I ABCDAy x yx d d ,其中ABCDA 是以A(1,0)、B(0,1)、C(-1,0)、D(0,-1)为顶点的正方形正向边界线.分析:⎰++=I ABCDA y x y x d d ⎰⎰+++=ABCDAABCDA y x yy x x d d 对于第一个积分,因为曲线关于x 轴对称,且在x 轴上的投影方向相反,被积函数yx +1是y 的偶函数,所以积分为零.对于第二个积分,因为曲线关于y 轴对称,且方y 轴上的投影方向相反,被积函数yx +1是x 的偶函数,所以积分为零.7.对称性在第一类曲面积分计算中的应用第一类曲面积分的奇偶性与三重积分相似. 定理6 设函数),,(z y x f 在曲面S 中连续,⎰⎰=I Ss z y x f d ),,(存在,记{}0,),,(|),,(1≥∈=z S z y x z y x S{}0,),,(|),,(2≥∈=x S z y x z y x S{}0,),,(|),,(3≥∈=y S z y x z y x S(1)设积分曲面关于xoy 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(1z y x f z y x f s z y x f z y x f z y x f s z y x f S S(2)设积分曲面关于yoz 面对称,S z y x ∈∀),,(,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(2z y x f z y x f s z y x f z y x f z y x f s z y x f S S(3)设积分曲面关于xoz 面对称, S z y x ∈∀),,( ,⎪⎩⎪⎨⎧=--=-=⎰⎰⎰⎰),,(),,(,d ),,(2),,(),,(,0d ),,(3z y x f z y x f s z y x f z y x f z y x f s z y x f S S(4)(变量可轮换性)若积分曲面关于z y x ,,具有轮换对称性,则[]⎰⎰⎰⎰⎰⎰⎰⎰++-===-SSSSs y x z f x z y f z y fx sy x fz s x z y f s z y fx d ),,(),,(,,31d ,,d ),,(d ,,7.1 计算⎰⎰=I Ss z d 2,其中S :2222R z y x=++.分析:由S 的轮换对称性知,⎰⎰⎰⎰⎰⎰==SSSs z s y s x d d d 222,故有,⎰⎰=I Ss z d 2⎰⎰++=Ss z y x )d (31222 ⎰⎰=Ss R d 312 434R π=7.2 计算⎰⎰++=I Ss z y x )d (,其中S 为球面2222a z y x =++上满足)0(a h h z <<≥的部分.分析:由S 的对称性知,0d d ==⎰⎰⎰⎰SSs y s x ,那么,⎰⎰++=I Ss z y x )d (⎰⎰=Ss z d⎰⎰++--=xyD y x s z z y x a d ''1222⎰⎰=xyD s a d)(22h a a -=π7.3 计算⎰⎰+=I Ss z y x )d 2(224,其中S 是闭曲面:2222=++z y x . 分析:由S 的轮换对称性知, ⎰⎰+=I Ss z y x )d 2(224 ⎰⎰+++++=Ss y x z z x y z y x]d )2()2()2([224224224⎰⎰++=Ss z y x d )(312222 ⎰⎰=Ss 4d 31ο332=7.4 计算⎰⎰=I Ss x d 2,其中S 为圆柱面:222a y x =+,介于平面0=z 和h z =之间的部分.分析:由于在S 中,x 与y 的地位是等价的,所以, ⎰⎰⎰⎰==I SSs y s x d d 22,于是, ⎰⎰⎰⎰+==I SSs y x s x )d (21d 222 ⎰⎰=Ss a d 212h a a ⋅⋅=π2212h a 3π=8. 对称性在第二类曲面积分计算中的应用定理7[10] 设∑为关于xoy 面对称的有向光滑曲面,其方程是一双值函数,设为xy D y x y x z z ∈±=),(),,((其中xy D 为∑在xoy 平面上的投影),记21,∑∑分别为位于xoy 平面的上半部分和下半部分,21,∑∑的侧关于xoy 平面相反,函数),,(z y x f 在∑上连续,那么⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f y x z y x f z y x f z y x f ds z y x f同理有:(1)设积分曲面关于xoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z x z y x f z y x f z y x f ds z y x f(2)设积分曲面关于yoz 面对称,∑∈∀),,(z y x ,⎪⎩⎪⎨⎧-=-=-=⎰⎰⎰⎰∑∑),,(),,(,d d ),,(2),,(),,(,0),,(1z y x f z y x f z y z y x f z y x f z y x f ds z y x f8.1 计算()⎰⎰∑++++=I 23222d d d d d d z y xyx z z x y z y x ,其中∑是球面:2222a z y x =++的外侧.分析:由∑的轮换对称性知,⎰⎰∑++=I y x z z x y z y x a d d d d d d 13⎰⎰∑=z y x a d d 33]d )d y -x -a (d d y -x -a [32222223⎰⎰⎰⎰--=xy xyD D y x y x a ⎰⎰=xyD y x a d d y -x -a 6222333326a a π⋅=π4=8.2 计算⎰⎰∑=I y x xyz d d ,其中∑是球面:1222=++z y x的外侧,位于0,0≥≥y x 的部分.分析:∑关于xoy 面对称,而xyz 是关于z 的奇函数,满足“反对奇倍”, 故有, ⎰⎰∑=I 1d d 2y x xyz⎰⎰=xyD y x xy d d y -x -1222 ⎰⎰=13320d r -1d sin r r πθθ152=其中1∑: 22y -x -1=z , }0,0,1|),{(),(22≥≥=+=∈y x y x y x D y x xy8.3[10] 计算y x z z x z y yz x d d 2d d )xz -y (d )d (22++-=I ⎰⎰∑,其中∑是锥面:221y x z +-=被平面0=z 所截得的部分,取上侧.分析:y x z z x z y yz xd d 2d d )xz -y (d )d (22++-=I ⎰⎰∑⎰⎰⎰⎰⎰⎰∑∑∑++-=y x z z x z y yz x d d 2d xz)d -(y d )d (22 ⎰⎰∑++=y x z d d 200⎰⎰+-=xyD y x y x d d )1(222 ⎰⎰-=120d )1(d 2r r r πθπ32=其中}1|),{(22≤+=y x y x D xy8.4[10] 计算⎰⎰∑++=I y x r z z x r y z y r x d d d d d d 333,其中222z y x r ++=, ∑是球面:)0(2222>=++a a z y x 的外侧.分析:根据∑的轮换对称性,可知, ⎰⎰∑=I z y zd d r33⎰⎰∑=1d d r63z y z(反对奇倍) ⎰⎰--=xyD y x a y x a d d 63222π4=8.5 设∑是球面:2222R z y x =++,在下面四组积分中,同一组的两个积分均为0的是:(C )A . ⎰⎰∑=I s x d 2, ⎰⎰∑=I z y x d d 2B . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d dC . ⎰⎰∑=I s x d , ⎰⎰∑=I z y x d d 2D . ⎰⎰∑=I s xy d , ⎰⎰∑=I z y y d d分析:由于曲面∑关于yoz 平面对称,被积函数 xy x ,关于x 为奇函数,被积函数2x 关于x 为偶函数.故有, 第一型曲面积分 0d ==I ⎰⎰∑s x , 0d ==I ⎰⎰∑s xy ,⎰⎰⎰⎰∑∑++==I s z y x s x )d (31d 22224234d 31R s R π==⎰⎰∑第二型曲面积分 0d d 2==I ⎰⎰∑z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R x y z x z x R z y y8.6 [6] 设∑是球面:1222=++z y x 的上半部分,则下列错误的是:(B )A . 0d d 2==I ⎰⎰∑z y x B . 0d d ==I ⎰⎰∑z y xC . 0d d 2==I ⎰⎰∑z y y D . 0d d ==I ⎰⎰∑z y y分析:由于曲面∑关于yoz 面对称,被积函数x 关于x 为奇函数,被积函数22,,y y x 关于x 为偶函数.0d d 2==I ⎰⎰∑z y x ,0d d ==I ⎰⎰∑z y y ,0d d 2==I ⎰⎰∑z y y0d d 2d d 222222>--==I ⎰⎰⎰⎰≤+∑R z y z y z y R z y x9.总结(1)对称的对象:积分区间对称,积分区域对称.(2)关于对称性,除关于原点和x y =对称外,都遵循关于谁对称谁不变的原则. (3)变量的轮换性是指对称的对象∑由0),,(≤z y x f 表示,若将z y x ,,的位置变换后,0),,(≤z y x f 仍然表示∑.在其他书籍和相关资料中提及的y x ,具有相同的地位,y x ,具有循环性都是这里所指的轮换性.(4)当且仅当积分区域对称性与被积函数),(y x f 奇偶性同时具备才能使用本文中提及的定理.(5)),(y x f 关于y x ,的奇偶性,只能分别对一个变量来考虑,而不能将两个变量混在一起来考虑.若关于x 轴对称,就要考虑关于y 的奇偶性,若关于y 轴对称,就要考虑关于x 的奇偶性. 若关于xoy 面对称,就要考虑被积函数关于z 的奇偶性依次类推.(6)第二类曲线积分和第二类曲面积分如果关于对称对象方向相反,那么它们的积分结论刚好与第一类曲线积分和第一类曲面积分结论相反.根据以上总结,对称性的问题便能很好的被应用,使数学积分的计算过程得到简化.参考文献:[1] 明清河著.数学分析的思想与方法[M].济南:山东大学出版社,2004.7(2006.9重印) [2] 殷锡鸣等编著.高等数学(下册)[M].上海:华东理工大学出版社,2005.2(2007.6重印)[3] 吴良森等编著.数学分析学习指导书(下册)[M].北京:高等教育出版社,2004.8[4] 费定辉,周学圣编演.吉米多维奇数学分析习题集题解(第三版)[M].济南:山东科学技术出版社,2005.1(2005.3重印)[5] 顾庆凤.关于重积分、曲线积分、曲面积分的对称性定理的应用[J].中国教育研究论丛,2006[6] 苏海军.对称性在定积分中的应用[J].四川文理学院学报(自然科学),2007.9,17(5)[7] 赵云梅,李薇. 对称性在积分中的妙用[J].红河学院学报,2005.6,3(3)[8] 常浩.对称性在积分学中的应用[J].高等数学研究,2011.3,14(2)[9] 于宁丽,王静.利用对称性计算两类区面积分时的差异问题[J].专题研究,2009.7[10] 刘福贵,鲁凯生.利用对称性计算第二类曲线积分与曲面积分的方法[J].武汉理工大学学报,2006,30(6):1069-1072[11] 西北工业大学高等数学教研室编.高等数学学习辅导:问题、解法、常见错误剖析[M].北京:科学出版社,2007[12] 魏平等编著.高等数学复习指导[M].西安:西安交通大学出版社,1999.11[13] 华罗庚著.高等数学引论[M].沈阳:科学出版社.2003[14] 朱学炎等编著.数学分析[M].北京:高等教育出版社,2007.4[15] 裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,2006.4[16]邹本腾等编著.高等数学辅导[M].北京:科学技术文献出版社,1999.6数学系数学与应用数学2009级本科毕业论文Application of symmetry in the integral calculation Abstract The s ymmetry is one of the important methods to solve mathematical problems. In integral calculus, it can make the integral calculation process simplified to make full use of symmetry of integral region and the parity of integrand. This paper illustrates the application of symmetry in definite integral, multiple integrals, curve integrals, and surface integrals in the calculation through summary theorem and its nature and with the aid of examples.Key words definite integral multiple integrals curve integrals surface integrals第21页共22页。
函数对称性、周期性的应用(含解析)
函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要“对称性在数学解题中的应用”是数学学习中重要内容之一,是高考数学备考中的重要环节.“对称性的探究及应用”也是中学数学中的难点之一,学生在学习过程中,往往感到困惑,从而提出种种质疑,在对称性的应用问题中条件和结论容易混淆.本文整理了对称性在几何、代数、微分、积分中的应用问题,同时对一些典型例题给予解释,对定理证明与条件的分析,给出论证及说明.通过“对称性”在各方面解题中的应用,进一步探究“对称性在解题中应用”的条件.体会到数学源于生活,又应用于生活.通过对“对称性在解题中应用”的条件理解,提高了学习者的数学素养和人文精神,培养了学习者分析问题和解决问题的能力.关键词:对称性,函数图像,轮换对称,轴对称,中心对称目录一、引言 (1)(一)研究工作的背景和发展概况 (1)1.对称性在代数中的应用 (1)2.对称性在几何中的应用 (2)3.对称性在微分学中的应用 (2)4.对称性在积分学中的应用 (3)(二)文章结构安排和主要结论 (3)二、对称关系在解题中的应用 (4)(一)利用对称关系解轮换对称题 (4)(二)对称性在函数中的应用 (6)1.对称性在基本初等函数中的应用 (6)2.对称性在三角函数中的应用 (9)3.对称性在解析几何中的应用 (11)三、结束语 (16)四、参考文献 (16)一、引言(一) 研究工作的背景和发展概况对称性是数学研究的一个重要组成部分,它普遍存在于初等数学和高等数学的各个分支.古希腊哲学家、数学家普洛克拉斯曾说:”哪里有数学,哪里就有美,哪里就有发现……”对称性的内容十分丰富,对称性的应用也十分广泛.1.对称性在代数中的应用对称是代数中随处可见的现象.譬如,实数a 与a -互为相反数,复数bi a +与bi a -互为共轭复数,导数的运算法则,()v u v u '+'='+,()v u v u uv '+'=', 这些有着明显的对称性.还有,原函数与反函数的图像关于直线x y =对称,偶函数的图像关于y 轴对称,奇函数的图像关于原点对称,都给人以赏心悦目之感.例1.古人发现的“杨辉三角”,又称贾宪三角形﹑帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
15101051146411331121111它具有的性质:(1)每行数字左右对称,由1开始逐渐变大,然后变小,回到1;(2)第n 行的数字个数为n 个;(3)第n 行数字和为)1(2-n ;(4)每个数字等于上一行的左右两个数字之和。
可用此性质写出整个杨辉三角形.“杨辉三角”形式上所具有的对称性和谐统一,令人叹为观止.例 2.似乎黄金分割点(618.0=ω处)不是对称点,但若将左端点记为A ,右端点记为B ,黄金分割点记为C ,则AB CA CA BC ::=,而且C 关于中点的对称点D 也是AB 的黄金分割点,因为AB DB DB AB ::=,再进一步,D 又是的黄金分割点,C 是DB 的黄金分割点。
由此讨论下去,可以视为一种连环对称.2.对称性在几何中的应用几何图形的对称性是数学解题中最通俗、最直观的解题方法。
在几何图形中,平行四边形是中心对称的,等腰三角形是轴对称的,球形最为特殊,它既是中心对称,又是轴对称,也是面对称的图形。
正如毕达哥拉斯所说:“一切立体图形中最完美的是球形,一切平面图形中最完美的是圆。
”正是由于几何图形中有这些点对称、线对称、面对称,才有了美丽的图案,有了巧夺天工的建筑,进而渲染出五彩斑斓的世界.反过来,在几何中,许多问题的解决也运用了对称性原理。
笛卡尔创建的解析几何学可以说是对称性思想在数学领域的成功运用.在笛卡尔直角坐标系中,代数方程与几何图形之间建立了一种对称,使代数与几何化为一体,达成完美的统一.而在各种曲线方程标准形式的推导中,更是充分利用了图形本身的对称性.例3.柯西总喜欢把空间里过点),,(321x x x 的直线方程写成对称形式:γβαcos cos cos 321x x x x x x -=-=-; 其中γβαcos ,cos ,cos 为直线的方向余弦;同时,他把曲面方程),(y x f z =写成对称形式0),,(=z y x F ,这样写不仅美观,而且便于书写和记忆.例 4.在笛卡尔坐标系中,伯努利双曲线θρ2cos 22a =关于坐标原点对称,坐标原点是具有切线x y ±=的拐点。
曲线的形状类似于横写的阿拉伯数字8,更像表示无穷大的符号∞.3.对称性在微分学中的应用对称现象在微分学中并不少见.如,连续与间断,有限与无限,无穷小与无穷大,曲线的凹凸等概念前后呼应,成对出现。
在多元复合函数求偏导数时,可以利用函数关于自变量的对称性简便计算.定义1(对称多项式) 若函数),,,(21n x x x f z =中任意两个自变量交换后,仍然表示原来的函数,则称此函数关于自变量对称.结论:若函数),(y x f z =在点),(y x 处可微,且),(),(x y f y x f =,则),(),(x y f y x f y x =.由结论可知,对于二元的关于自变量对称的可微函数,求其关于y 的偏导数,只需将函数关于x 的偏导数中的x 与y 交换位置即可,此结论还可推广到n 阶导数.4.对称性在积分学中的应用对称性在积分学中的应用更是极为常见.在定积分的计算中,如果合理利用对称性,则可以大大地简化计算,达到事半功倍的效果.例5.计算积分xdx e x cos ⎰.解:令xdx e M x cos ⎰=,可构造对称式xdx e N x sin ⎰=,则, x e N M x sin =+,x e N M x cos =-;从而=N 12(sin cos )x c e x x +-, 12(sin cos )x M c e x x =++ 本文主要依赖已有结果开展的研究, 有助于加深理解和认识自然界中的对称现象, 揭示各种对称性之间的相互作用关系以及它们对解题过程的影响.综上所述,从古至今数学中的对称性,都不仅给我们带来了计算上的方便,更给我们的思维以启迪,从而促进创造性思维的萌生.在高中数学教学中,教师有意识地揭示数学中的对称性在解题中的应用,加强数学对称性的启示教育,引导学生去发现对称性、运用对称性来解题,学生的学习积极性必将会大大的调动起来,从而使我们的课堂展现出更强的活力与魅力.(二) 文章结构安排和主要结论本文主要从轮换对称学,函数角度及平面解析几何这三个角度来对对称性在数学中的应用加以表述,引言第一节中介绍了对称性的研究背景、实际应用及现有研究成就. 下面给出本文的结构布局.本文重点,结构内容安排如下:第一节中,通过几道典型轮换对称性的例题具体说明运用常规方法很繁琐的类型题如运用他们的对称性来解题会使解题的过程与思路大为简化清晰.第二节中,对称性在函数中的应用:1、对称性在基本初等函数中的应用a 、首先是函数自身对称性。
主要结论有:定理 1.函数)(x f y =的图像关于点),(b a A 对称的充要条件是b x a f x f 2)2()(=-+.定理 2. 函数 )(x f y =的图像关于直线a x =对称的充要条件是)()(x a f x a f -=+,即)2()(x a f x f -=.定理 3. ①若函数)(x f y =图像同时关于点),(c a A 和点),(c b B 成中心对称 ()b a ≠,则)(x f y =是周期函数,且b a -2是其一个周期.②若函数)(x f y =图像同时关于直线a x = 和直线b x =成轴对称 ()b a ≠,则)(x f y =是周期函数,且b a -2是其一个周期.③若函数)(x f y =图像既关于点),(c a A 成中心对称又关于直线b x =成轴对称()b a ≠,则)(x f y =是周期函数,且b a -4是其一个周期.b 、其次是不同函数对称性的探究主要结论有:定理 4. 函数)(x f y =与)2(2x a f b y --=的图像关于点),(b a A 成中心对称.定理5. ①函数)(x f y =与)2(x a f y -=的图像关于直线a x =成轴对称。
②函数)(x f y =与)(y a f x a -=-的图像关于直线a y x =+成轴对称。
③函数)(x f y =与)(a y f a x +=-的图像关于直线a y x =-成轴对称。
2、对称性在三角函数中的应用:a 、利用三角函数对称性的特殊隆求解对称问题.b 、利用一般函数的对称性解决三角函数的对称问题.第三节中通过中心对称与轴对称来分别详细论述对称性在解析几何中的应用.二、对称关系在解题中的应用(一)利用对称关系解轮换对称题在数学中客观对称性的特征,几何中有中心对称、轴对称、镜象对称,代数中有互补对称、轮换对称、关系对称,如21x x +,12x x ,123x x x ++,222222122331x x x x x x ++ ,.均称为对称多项式(即一个多项式12()n f x x x 中任何两个变元,i j x x 对调后所得的多项式与原来的多项式相同). 下面笔者结合多年的学习实践,通过以下几个实例来剖析对称性在解题中的功能与作用.例6.已知:0=++c b a ,求证:3333a b c abc ++=.分析: 根据对称关系给等式0=++c b a 赋予活的数学内容,那将出现一种新的格局.首先,它不再是一个静止的等式,而是方程0=++cz by ax 有非零解1===z y x 其次,它不再是一个孤立的等式,而是三个同样的等式0;0;0.a b c c a b b c a ++=⎧⎪++=⎨⎪++=⎩最后,将上述两个等式结合起来,得齐次线性方程组:0;0;0.ax by cz cx ay bz bx cy az ++=⎧⎪++=⎨⎪++=⎩有非零解从而系数行列式等于零,又由于 3333a b cc a b a b c abc b c a=++-,所以33330a b c abc ++-=,即:3333.a b c abc ++=评注:这里既没有用到乘方公式,也没有用到因式分解的技巧,是对方程解的定义的理解,把0=++c b a 转化为齐次线性方程组,从而归结为行列式的简单展开.例7.设 0=++z y x ,0≠xyz ,求)11()11()11(yx z z x y z y x +++++的值. 分析:条件式具有对称性.为追求欲求式中三项的和谐统一和考虑出现0=++z y x ,在每个括号里添一项,得到关于zy x 111++的对称统一式. 解:原式=3111)11()11()11(-⋅+⋅+⋅++++++zz y y x x y x z z x y z y x=3)111)((-++++zy x z y x =-3.评注:根据式子中z y x ,,的轮换对称,通过“添项”,实现了整体形式的高度统一,从而获得解题突破口,问题得解。