3、三相变压器的联结组
三相变压器的联接组与标号(详细的原理阐述)
第5章三相变压器的联结组与不对称短路原理简述1.极性测定的依据高、低压线圈之间的相电压相位决定于两个线圈的标号及其绕向,如图5-1示。
若高、低压线圈的标号和绕向都相同(或都相反,图略),则高、低压侧的相电压同相,这时我们说两点同极性。
若只有标号(或绕向,图略)反了,如图5-2,则相电压的相位相反,这时我们说两点不同极性。
2.三相绕组的联接方法把三个单相绕组联成三相绕组将有好几种联法,其中最基本的形式有星形(或形)接法和三角形(D或形)接法两种,此外,还有曲折接法(或接法)。
它们的绕组联接图和电压相量图如图5-3所示。
形联接方法的副方每相绕组有一中间抽头,将绕组分成为相等的两半,和、和、和分别套在不同的铁芯柱上,把一个铁芯柱上的上半个绕组与另一铁芯柱上的下半个绕组反向串联,组成新的一相绕组后,再接成星形联接,其相量图每相相量连接线成曲折形,顾名思意称为曲折形(或形)接法。
从电压相量图可见,相电压只有原来绕组的,就是说在相同的电压下绕组匝数增加到倍,增加了用铜量和损耗。
但形联接的变压器能防止冲击波影响,运行在多雷雨地区可减少变压器雷击损耗。
还常使用于某些整流变压器中以防止中性点位移,使三相电压接近平衡来提高整流效率。
因此形接法近年来渐渐增多,国家标准GB1094-85中也被列为常用联结组之一。
图5-3 三相绕组联接的基本形式(1)形联接法(2)△形联接法(3)形联接法图 5-4 △联接和联接的左行接法在图5-4中画出了三角形接法和曲折形接法的另一种联接次序。
我们把图5-3称右行接法,图5-4就称左行接法。
由于联接次序不同,它们的线电压相位关系就不相同,这一点在下面的联结组别中应注意区别。
一般情况下三角形联接和曲折形联接只采用右行联接,以后不加说明的三角形联接和曲折形联接都是指右行联接。
3.三相变压器的联结组三相变压器高、低压侧线电压之间的相位关系,不但与标号和绕向有关,还与三相线圈的联接方式有关。
根据电机学理论,习惯上用“时钟法”来表示高、低压两侧间线电压的相位关系。
三相变压器的联结组实验报告
三相变压器的联结组实验报告实验目的:本实验旨在通过对三相变压器的联结组实验,探究不同联结组方式对电压和电流的影响,并验证三相变压器的基本原理。
实验原理:三相变压器是由三个独立的单相变压器通过特定的联结组方式连接而成。
根据不同的联结组方式,可以实现不同的电压和电流变换。
本实验中将研究Y-Δ联结组和Δ-Y联结组两种常见的联结方式。
实验步骤:1. 准备工作:将三台单相变压器编号为T1、T2、T3,并检查其绝缘性能。
2. Y-Δ联结组实验:a. 将T1、T2、T3的高压侧H1、H2、H3连接在一起,形成一个Y形连接。
b. 将T1、T2、T3的低压侧X1、X2、X3连接在一起,形成一个Δ形连接。
c. 将三相电源分别接入T1、T2、T3的高压侧,设置合适的电压值。
d. 使用电压表和电流表分别测量高压侧和低压侧的电压和电流数值。
e. 记录测量结果,并计算高压侧和低压侧的电流比值。
3. Δ-Y联结组实验:a. 将T1、T2、T3的高压侧X1、X2、X3连接在一起,形成一个Δ形连接。
b. 将T1、T2、T3的低压侧H1、H2、H3连接在一起,形成一个Y形连接。
c. 将三相电源分别接入T1、T2、T3的高压侧,设置合适的电压值。
d. 使用电压表和电流表分别测量高压侧和低压侧的电压和电流数值。
e. 记录测量结果,并计算高压侧和低压侧的电流比值。
实验结果与分析:通过Y-Δ联结组实验和Δ-Y联结组实验的测量结果,可以得到以下结论:1. 在Y-Δ联结组中,高压侧的电压和低压侧的电压呈一定的比例关系,即高压侧电压为低压侧电压的平方根的三倍。
2. 在Δ-Y联结组中,高压侧的电压和低压侧的电压呈一定的比例关系,即低压侧电压为高压侧电压的平方根的三倍。
3. 在Y-Δ联结组中,高压侧的电流和低压侧的电流呈一定的比例关系,即高压侧电流为低压侧电流的平方根的三倍。
4. 在Δ-Y联结组中,高压侧的电流和低压侧的电流呈一定的比例关系,即低压侧电流为高压侧电流的平方根的三倍。
三相变压器的联结组
三相变压器的联结组【知识文章】解密三相变压器的联结组1. 引言三相变压器作为电力系统中常见的重要元件之一,其联结组是决定其功能和工作方式的重要因素之一。
了解三相变压器的联结组对于电力系统的设计、运行和维护都具有重要意义。
本文将全面评估三相变压器的联结组,探讨其深度和广度,以及相关的概念和理论,并加以个人观点和理解的分享。
2. 三相变压器的联结组2.1 联结组的定义和作用在三相变压器中,联结组指的是变压器的绕组在电路中相对连接的方式。
它决定了变压器的功能和性能,包括相数、相序、绕组方式等。
2.2 常见的联结组形式2.2.1 Y/Y联结组Y/Y联结组是指变压器的高压绕组和低压绕组都采用星形(Y)连接。
它具有性能稳定、输出电压平衡、适用于大型电力系统等优点。
2.2.2 Δ/Y联结组Δ/Y联结组则是指变压器的高压绕组采用三角形(Δ)连接,而低压绕组采用星形连接。
它适用于中小型电力系统,具有输入电流小、输出电压平衡等优点。
2.2.3 Y/Δ联结组和Δ/Δ联结组Y/Δ和Δ/Δ联结组分别指高压绕组采用星形连接,低压绕组采用三角形连接以及两者均采用三角形连接。
它们分别适用于不同的电力系统,并具有各自的特点和优势。
3. 三相变压器联结组的影响因素3.1 电压比电压比是指高压绕组与低压绕组之间的电压关系,它直接影响到变压器的变比和功率传输。
3.2 相位差相位差是指高压绕组和低压绕组之间的相角差异,决定了变压器的输出电压相位和功率因数。
3.3 绕组连接方式绕组连接方式决定了变压器的联结组形式,从而影响到其功能和性能。
4. 个人观点和理解三相变压器的联结组是其功能和性能的关键因素之一。
对于电力系统的设计、运行和维护来说,正确选择联结组形式非常重要。
在实际应用中,需要综合考虑电压比、相位差和绕组连接方式等因素,以满足系统的需求。
随着电力系统的不断发展和进步,联结组形式也在不断演变和完善,因此持续学习和探索变压器联结组的新技术和理论十分重要。
三相变压器联结组标号
三相变压器联结组标号
三相变压器的联结组标号有**YynO、Yd11、DynI1、DznO和YZn11**。
不同联结组标号对应不同的适用场合,具体如下:1YynO联结组别的变压器适用于三相负荷基本平衡,其低压中性线电流不至超过低压绕组额定电流的25%的场合。
2.Yd11联结组别常用于110∕10kV配电系统主变压器。
3.Dyn11联结组别的变压器适用于单相不平衡负荷引起的中性线电流,超过变压器低压绕组额定电流的25%时;供电系统中存在较大谐波源,3n次谐波电流比较突出时;IOkV配电系统;用于多累地区。
4.DznO联结组别的变压器适用于中性点可承受绕组额定电流;供电系统中存在较大谐波源,高次谐波电流比较突出时;由单相不平衡负荷引起的中性线电流超过变压器低压绕组额定电流25%时。
5.Yzn11联结组别的变压器也是适用于单相不平衡负荷引起的中性线电流,超过变压器低压绕组额定电流25%时的情况。
三相变压器联结组别判断方法
三相变压器联结组别(标号)的判定方法一、联结组别(标号)概念三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。
采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。
B.12639图1-1二、影响联结组别的因素三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。
(一)联结方法的影响变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。
常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax绕组的x端可以和b连接,也可以与c连接。
按照ax-by-cz-ax 顺序接线的称为顺接,按照ax-cz -by-ax 顺序接线的称为逆接;星形接法用Y 表示;三角形接法用D 表示,如图1-2所示。
Czcab .cca b图1-2(a )星形联结 (b )三角形联结(顺联) (c )三角形联结(逆联)在三相变压器里 ,一次绕组的首端用A 、B 、C 表示 ;末端用X 、Y 、Z ;二次绕组的首端用a 、b 、c 表示,末端用x 、y 、z 表 示。
星形接法中点可以引出中线,也可以不引出。
这样,一、二绕组的接法就有各组合:(1)Y,y 或YN,y 或Y,yn;(2)Y,d 或YN,d;(3)D,y 或D,yn;(4)D,d 。
其中大写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接法的中心点引出标志。
(二)绕组电动势相位的影响在变压器的接线图中 ,一次绕组按A 、B 、C 相序排列,相位保持不变 ;二次绕组按a 、b 、c 相序排列,相位可有改变(abc 、bca 、cab )。
同一铁心柱上的绕组属于同一相,相位相同 ;错开一个铁心柱相位滞后1200,钟点数按顺时针方向增加4h ,错开两个铁心柱,相位滞后2400,钟点数按顺时针方向增加8h ,如图1-3(a )、(b )所示。
三相变压器联结组别判断方法
三相变压器联结组别(标号)的判定方法一、联结组另U (标号)概念三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。
采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。
图1-1二、影响联结组别的因素三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。
(一)联结方法的影响变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。
常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax绕组的X端可以和b连接,也可以与C连接(1)Y,y 或 YN,y 或 Y,yn;(2)Y,d 或 YN,d;(3)D,y 或 D,yn;(4)D,d 。
其中大 写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接 法的中心点引出标志。
(二)绕组电动势相位的影响在变压器的接线图中 ,一次绕组按 A 、B 、C 相序排列,相位保持不 变;二次绕组按 a 、b 、C 相序排列,相位可有改变(abc 、bca 、Cab )。
同一铁心柱上的绕组属于同一相,相位相同 ;错开一个铁心柱相位滞后1200,钟点数按顺时针方向增加4h ,错开两个铁心柱,相位滞后2400,钟点数按顺时针方向增加 8h ,如图1-3 (a )、(b )所示。
按照ax-by-cz-ax 顺序接线的称为顺接,按照 ax-cz -by-ax 顺序接线的称为逆接;星形接法用 Y 表示;二角形接法用 D 表示,如图 1-2所示。
* UC(a )星形联结 在三相变压器里 (b )三角形联结(顺联) ,一次绕组的首端用 A B 、 (C )三角形联结(逆联)C 表示;末端用X 、丫、Z 二次绕组的首端用a 、b 、C 表示,末端用x 、y 、Z 表 示。
三相变压器的联接组与标号
Y,y0(Y/y-12)联接组 联接组
项目 公式
பைடு நூலகம்
UBb Uab(K-1)
UCb
UBc
返回
Y,y6(Y/y-6)联接组 联接组
项目 公式
UBb Uab(1+K)
UCb
UBc
返回
Y,d11(Y/△-11)联接组 △ 联接组
项目 公式
UBb
UCb
UBc
返回
Y,d5(Y/△-5)联接组 △ 联接组
项目 公式
三相变压器的联结组 三相绕组的联结
星形联结、三角形联结、Z形联接
三相变压器绕组的首、末端标志如下:
A、B、C代表高压绕组的首端,X、Y、Z代表高压绕组的末端 a、b、c代表低压绕组的首端,x、y、z代表低压绕组的末端
星形联接
三角形联接 一种按AX→ CZ →BY 顺序联结
三角形联接 一种按AX→BY → CZ 逆序联接
测定三相变压器初、次级极性的接线及向量图
联接组标号的判别
按表2-5中各组的绕组接线图和公式,判别其标号。图中 “﹒”号为同极性对应端,三相电压加在高压侧。 将A、a两点相联,使A、a等电位。 K是初、次级线电压之比。 在低压侧接成三角形前,须在其最后两线端量取开口电 压,当电压接近零时,表示三角形接法正确。
UBb
UCb
UBc
返回
思考题 用公式验证的各联接组标号是否唯一?为什么? 如何根据三相变压器联接组标号画出对应的向量 图和接线图? 表2-6第I组(偶数组标号)中若改变线端排列标记 ,是否可将Y/y4变为Y/y0联接组标号? 表2-6第I组与第II组(均为偶数组标号)之间若改变 线端排列标记,是否可将Y/y6变为Y/y0联接组标 号?
三相变压器绕组的联结组别
三相变压器绕组的联结组别1.变压器联接组别标号的常用确定方法确定变压器联接组别标号通常采用国际上规定的时钟表示法,即规定原绕组线电动势向量EAB当作钟表的指针固定指“12”位置,副绕组电动势向量Eab当作时针指向钟表的那个数字,该数字就是三相变压器联接组别的标号。
下面以Yy0为例,阐述确定联接组标号的具体步骤。
分别画出原绕组和副绕组接线图(见图1(a))。
注意画图时同一芯柱的绕组上下对齐,找同一芯柱上的绕组感应电动势的同极性端。
图1 Yy0连接组按照原边接线画出原边绕组的电势向量图。
按照副边接线画出把A和a(见图1(b))看成等电位点的副边绕组电势向量图。
在原、副绕组电动势向量图中找出对应的线电动势相位差。
即Eab当作钟表的分针固定在“12”位置,Eab当作时针所指数字就是该变压器联接组别标号(图1中Eab指“12”,通常用“0”表示)。
联接组组成:原边接线、副边接线组别号。
由此得图1的联接组为Yy0。
应用此法,对应每一个联接组别都要画出对应原边接线和副边接线的电势向量图,步骤繁琐,也容易出错,掌握起来有一定的难度,尤其对从事变电站运行的职工更是如此。
笔者将所有的联接组别进行全面的分析,反复推敲,找出了它们之间的相互联系及变化规律,总结出了不用画向量图的简易确定联接组标号的方法。
2 变压器中各电动势向量的相位变化规律用国际上规定的方法确定三相变压器的联接组别,较关键的步骤是画原、副绕组电动势向量图,找原、副边绕组对应的线电动势相位差。
由于三相变压器结构的特点,三相变压器原、副绕组电动势向量的相位变化及相位差也有一定的规律可循。
三相变压器同一侧(原边或副边)各相电动势相位互等120°。
同一铁芯柱上原、副绕组相电动势要么同相,相位差为0°,要么反相,相位差为+180°(如图1 Yy0)。
不论怎样联接,电势向量组成的三角形为等边三角形。
高压绕组线电势EAB和对应的低压绕相线电势Eab之间的相位差总是30°的整倍数。
三相变压器联结组别实验
华北电力大学电机学实验报告实验名称三相变压器的联结组系别班级姓名学号同组人姓名实验台号日期教师成绩一、实验目的1、掌握用实验方法测定三相变压器的极性。
2、掌握用实验方法判别变压器的联接组。
二、预习要点1、联接组的定义。
为什么要研究联接组。
国家规定的标准联接组有哪几种。
2、如何把Yy0联接组改成Yy6联接组;以及如何把Yd11改为Yd5联接组(每种Yd联结组别都有两种不同的绕组连接方式)。
三、实验项目1、测定极性2、连接并判定以下联接组1) Yy0 2) Yy6 3) Yd11 4) Yd5四、实验方法1、实验设备2、测定极性1) 测定相间极性被测变压器选用三相心式变压器DJ12,用其中高压和低压两组绕组,额定容量PN =152/152W,UN=220/55V,IN=0.4/1.6A,Yy接法。
测得阻值大的为高压绕组,用A、B、C、X、Y、Z标记。
低压绕组标记用a、b、c、x、y、z。
a) 按图1接线。
A、X接电源的U、V两端子,Y、Z短接。
b) 接通交流电源,在绕组A、X间施加约50%的额定相电压。
c) 用电压表测出电压U BY、U CZ、U BC,若U BC=│U BY-U CZ│,则首末端标记正确;若U BC=│U BY+U CZ│,则标记不对。
须将B、C两相任一相绕组的首末端标记对调。
d) 用同样方法,将B、C两相中的任一相施加电压,另外两相末端相联,定出每相首、末端正确的标记。
cabx yz图1 测定相间极性接线图 图2 测定原、副方极性接线图2) 测定原、副方极性a) 暂时标出三相低压绕组的标记a 、b 、c 、x 、y 、z,然后按图2接线,原、副方中点用导线相连。
b) 高压三相绕组施加约50%的额定线电压,用电压表测量电压U AX 、U BY 、U CZ 、U ax 、U by 、U cz 、U Aa 、U Bb 、U Cc ,若U Aa =U Ax -U ax ,则A 相高、低压绕组同相,并且首端A 与a 端点为同极性。
三相变压器联结组
便于维护
适用范围广
三相变压器联结组结构简单,便于安装、 调试和维护,降低了运维成本。
三相变压器联结组适用于各种不同的电力 系统和设备,如发电机、电动机、变压器 等,具有广泛的应用价值。
缺点
成本较高
01
相对于单相变压器,三相变压器的制造成本较高,价格相对较
贵。
占用空间大
02
由于三相变压器需要同时处理三相电压和电流,其体积相对较
大,占用空间较多。
对称性要求高
03
三相变压器联结组需要保证三相电压和电流的对称性,对设备
的配置和运行要求较高,否则容易引发故障。
06
三相变压器联结组的发 展趋势与未来展望
发展趋势
01
高效能
随着电力需求的增长和能源资源的紧张,三相变压器联结组正朝着高效
能、低损耗的方向发展,以提高能源利用效率和减少能源浪费。
星形接线
总结词
星形接线是一种常见的三相变压器联结组表示方法,通过将三个线圈的末端连接在一起,形成一个中 性点,实现三相电压的平衡输出。
详细描述
在星形接线中,三个线圈的末端连接在一起,形成一个中性点。这种接线方式能够实现三相电压的平 衡输出,并且可以提供三相四线制电源,满足用户对三相和单相负荷的需求。星形接线具有结构简单 、经济实用的优点,广泛应用于中小型三相变压器中。
储能系统
在新能源储能系统中,三相变压器联结组用于连接储能电池和电力 系统,实现电能的储存和释放。
05
三相变压器联结组的优 缺点
优点
平衡性
高效节能
三相变压器联结组具有良好的平衡性,能 够减小各相之间的电压和电流差异,提高 系统的稳定性和可靠性。
三相变压器联结组采用三相交流电,能够 充分利用磁场和电场的对称性,降低能耗 和运行成本。
三相变压器联结组标号判定
与Yy0对比
观察发现:副边按相序移位 按相序移位一次,abc cab 则副边相电动势顺时针转动了 120°组别号加“4” 即Yy4
B
Aa x’
x C
x
c
b
与Yd11对比
观察发现:副边相序改变 三角形逆序变顺序,当三角形 接线在副边时,相当于钟表的 时针顺时针转了60°,组别号 加“2” 即Yd2
三相变压器联结组标号判定
联结组别(标号)概念: 三相变压器的联结组别是指三相变 压器一次(高压)绕组的线电压(电动势与二次(低压)绕 组的线电压(电动势)之间的相位关系。采用所谓的时钟表 示法,就是把高压绕组的电压向量看成是时钟的长针,低压 绕组的电压向量看成时钟的短针,长针指向12,看短针指在 哪个数字上,这个数字即连接组号,如图1-1C
与Dd0对比
观察发现:副边相序改变,且 发生移相 三角形顺序变逆序,当三角形 接线在副边时,相当于钟表的 时针逆时针转了60°,组别号 减“2” 按相序移位一次,则副边相电 动势顺时针转动了120°组别 号加“4” 即应该为Dd2
B
B
x
b/x C
b/x’ A/a
图1-1
简易方法----对比法
• 一个对比,两个规则
• 对比:以Yy0、Yd11、Dd0等简单联结组向量图为参考 • 移相规则:当原边接线、标记、极性固定时,副边绕组三相出
线标记按相序移位一次,相当于副边相电动势顺时针转动了 120°组别号加“4”(ABC CAB BCA ABC ) • 反相规则:(1)星形极性反相,对应电势相位差为180°(P56) • (2)三角形顺序变逆序,当三角形接线在副边时, 相当于钟表的时针逆时针转了60°,组别号减“2”;三角形接 线在原边时,相当于钟表的时针顺时针转了60°,组别号加 “2”。
三相变压器连接组别
Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数国家标准规定,单相双绕组电力变压器只有ⅠⅠ0联结组别一种。
三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
据GB/T6451-1999《三相油浸式电力变压器技术参数和要求》和GB/T10228-1997《干式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。
而我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。
现在国际上大多数国家的配电变压器均采用Dyn11联结,主要是由于采用Dyn11联结较之采用Yyn0联结有优点:3.1D联结对抑制高次谐波的恶劣影响有很大作用3.1.1在D联结绕组中的三次谐波环流能够在变压器中产生三次谐波磁动势,它与低压绕组的三次谐波磁动势平衡抵消;3.1.2高压相绕组的三次谐波电动势在D联结回路中环流,三次谐波电流可在D联结的一次绕组内形成环流,使之不致注入公共的高压电网中去。
3.2Dyn11联结变压器的零序阻抗比Yyn0联结变压器小得多,有利于低压单相接地短路故障的切除。
三相变压器的联结组别
三相变压器原、副边三相绕组均可采用Y(y) 联结或YN(yn)联结,也可采用D(d)联结, 括号内为低压三相绕组联结方式的表示符号。因 此三相变压器的联结方式有Y,yn、Y,d、YN, d、Y,y、YN,y、D,yn、D,y、D,d等多种 组合,其中前三种为最常见的联结方式,逗号前 的大写字母表示高压绕组的联结,逗号后的小写 字母表示低压绕组的联结,N(或n)表示有中性 点引出。
2. Y,d联结
V1 U1 E UV
V1
W1
E W
E U
E V
v1, w2
E UV
E V
E v
U2 V2 u1 E uv v1
E u
W2 w1
E w
W2 w1, u2 U2 EW V2 E u E
U
U1 u1, v2
W1
E v
u2
三相变压器的联结组别
由于三相绕组可以采用不同联接,使得三相 变压器原、副绕组的线电动势之间出现不同的相 位差,因此按原、副边线电动势的相位关系把变 压器绕组的连接分成各种不同的联结组别。由于 无论怎样联结,原、副边线电动势的相位差总是 30º 的整数倍。因此,可采用时钟表示法。
三相变压器的联结组别
具体方法是:分别作出高、低压侧电动势相 作为时钟的 量图,把高压绕组线电动势相量 E UV 长针,并固定指在“12”上,其对应的低压绕组线 作为时钟的短针,这时短针所指 电动势相量 E uv 的数字即为三相变压器联结组别的组别号,将该 数字乘以30º ,就是副绕组线电动势滞后于原绕组 相应线电动势的相位角。
三相变压器的联结组别
如何根据变压器绕组联结图判断联结组别: (1)首先画出原边绕组相电势的相量图,并根据 连接方式求出其线电动势 E UV (2)然后把U点当做u点,再根据同名端来确定 副边绕组相电动势与原边绕组相电动势的相位关 系,画出副边绕组相电动势的相量图后,由其连 接方式求出副边的线电动势 E uv (3)最后根据相量图所示的原 副边绕组线电动 势相位差,得出其联结组别号。
三相变压器的连接组别
OCCUPATION 1492011 10三相变压器的连接组别文/陈玉江变压器的并联运行,是指变压器的一次绕组都接在某一电压等级的公共母线上,而各变压器的二次绕组也都接在另一电压等级的公共母线上,共同向负载供电的运行方式。
变压器并联运行有如下优点:一是提高了供电的可靠性。
多台变压器并联运行时,如果其中一台变压器发生故障或需要检修,那么另外几台变压器可分担它的负载继续供电。
二是提高运行效率。
可根据电力系统中负荷的变化,调整投入并联的变压器台数,以减小电能损耗。
三是减少一次投资。
可根据用电量的增加,分期分批安装变压器。
三相变压器并联运行的条件有三个:联结组别相同;变比相同;短路电压相同。
当连接组别不同的变压器并联运行时会导致短路烧毁变压器。
变压器的连接组别是指变压器一、二次绕组的连接方式和组别号的总称。
组别号是指用时钟表示法表示一、二侧同名线电压的相量关系。
规定一次侧线电压相量(E AB )为分针指向12点,二次侧对应线电压相量(E ab )为时针,它指向几点就是变压器连接的组别号。
下面以常见的Y,y和Y,d接法探讨总结变压器连接的规律。
一、Y,y接法已知变压器的绕组连接图,及各相一,二次侧的同名端,判断连接组别。
题图变压器绕组连接图一次侧相量图二次侧相量图时钟标号图例1图例2图例3图图1例1:如图1所示,根据给定绕组连接图,分别做出一次侧相量图和二次侧相量图。
需要注意的是:根据时钟表示法的要求,一次侧相量图最好按图中方位画出;而二次侧需要根据一、二次侧间相位关系画出。
最后,根据E AB 和E ab的相位关系确定连接组标号为Y,y0。
为了后面分析的方便,及便于记忆,特作以下规定:一次侧接线图及相量图不变。
二次侧绕组的同名端侧,称为同名端出线;反之,称为异名端出线。
例1中图示即为同名端出线。
二次侧各相量的方向与一次侧同一铁心的相量方向对应。
例2:如图1所示,通过作图,可以确定连接标号为Y,y6。
需要注意的是由于同名端与例1不同,使得二次侧相电势与一次电势相反。
三相变压器的连接组别
三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位置Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。
当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。
而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。
所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。
但 Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。
1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。
在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装置。
2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。
这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。
若低压侧为三相供电的动力负载,一般均配置缺相保护,故此不会造成动力负载因缺相运行而烧毁。
三相变压器的联结组
长针
U1
•
E U 1U 2
U2
u1
u2
•
E u1u 2
短针
电动势反向
(A与a异名端)
I/I-12(标准)
2020/7/6
I/I-6
导入
三相变压器一次、二次绕组 不同的连接方式的组合,形成不 同的联结组。可以有下列几种:
Y,y
Y,d
D,d
D,y 2020/7/6
三相变压器的联结组
1、三相变压器的联结组用高、低压 侧对应线电势之间的相位关系来描述。
U2 V2 W2 u1 v1 w1
2020/7/6
u2 v2 w2
小结 :
作业: 1、必做:画出Y,y0联结组电路图及 相量图 2、选作:怎样由Y,y0联结组得到 Y,y4联结组和 Y,y8联结组?
2020/7/6
五、标准连接组
• 为生产使用方便,国家标准规定5种:
– Y,yn0 – Y,d11 – YN,d11 – YN,y0 – Y,y0
❖ 将一次侧的某
线电势
•
E
UV
固定在0
点(12),二次侧对应
相的线电势
•
E
u的相位差,即可以
用来表征联结组。
2020/7/6
时钟表示法
•
E UV
150
•
E uv
2020/7/6
2020/7/6
练习 Y,y0二次侧改变同名端后,
判断联结组
U1 V1 W1
2020/7/6
(1)正序接法(前首接后尾) (2)负序接法(前尾接后首)
U1 V1 W1
U1 V1 W1
U2 V2 W2 u1 v1 w1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华北电力大学
电机学实验报告
实验名称三相变压器的联结组
系别班级
姓名学号
同组人姓名
实验台号日期
教师成绩
一、实验目的
1、掌握用实验方法测定三相变压器的极性。
2、掌握用实验方法判别变压器的联接组。
二、预习要点
1、联接组的定义。
为什么要研究联接组。
国家规定的标准联接组有哪几种。
2、如何把Yy0联接组改成Yy6联接组;以及如何把Yd11改为Yd5联接组(每种Yd联结组别都有两种不同的绕组连接方式)。
三、实验项目
1、测定极性
2、连接并判定以下联接组
1) Yy0 2) Yy6 3) Yd11 4) Yd5
四、实验方法
1、实验设备
2、测定极性
1) 测定相间极性
被测变压器选用三相心式变压器DJ12,用其中高压和低压两组绕组,额定容量P N=152/152W,U N=220/55V,I N=0.4/1.6A,Yy接法。
测得阻值大的为高压绕组,用A、B、C、X、Y、Z标记。
低压绕组标记用a、b、c、x、y、z。
a) 按图1接线。
A、X接电源的U、V两端子,Y、Z短接。
b) 接通交流电源,在绕组A、X间施加约50%的额定相电压。
c) 用电压表测出电压U BY、U CZ、U BC,若U BC=│U BY-U CZ│,则首末端标记正
=│U BY+U CZ│,则标记不对。
须将B、C两相任一相绕组的首末端标记确;若U
BC
对调。
d) 用同样方法,将B、C两相中的任一相施加电压,另外两相末端相联,定出每相首、末端正确的标记。
c
a
b
x y
z
图1 测定相间极性接线图 图2 测定原、副方极性接线图
2) 测定原、副方极性
a) 暂时标出三相低压绕组的标记a 、b 、c 、x 、y 、z,然后按图2接线,原、副方中点用导线相连。
b) 高压三相绕组施加约50%的额定线电压,用电压表测量电压U AX 、U BY 、U CZ 、U ax 、U by 、U cz 、U Aa 、U Bb 、U Cc ,若U Aa =U A x -U ax ,则A 相高、低压绕组同相,并且首端A 与a 端点为同极性。
若U Aa =U AX +U ax ,则A 与a 端点为异极性。
c) 用同样的方法判别出B 、b 、C 、c 两相原、副方的极性。
d) 高低压三相绕组的极性确定后,根据要求连接出不同的联接组。
3、检验联接组
1)Yy0
E E
(a)
(b )
图3 Yy0联接组
按图3接线。
A 、a 两端点用导线联接,在高压方施加三相对称的50%额定线电压,测出U AB 、U ab 、U Bb 、U Cc 及U Bc ,将数据记录于表3-1中。
ab
AB L L L ab Bc
ab
L Cc Bb
U
U
K K K U U
U K U U =+-=-==1
)1(2
表3-1
根据Yy0联接组的电势相量图可知:
为线电压之比
若用两式计算出的电压U Bb ,U Cc ,U Bc 的数值与实验测取的数值相同,则表示绕组连接正确,属Yy0联接组。
2) Yy6
(a)
(b)
图4 Yy6联接组
将Yy0联接组的副方绕组首、末端标记对调,A 、a 两点用导线相联,如图4所示。
按前面方法测出电压U AB 、U ab 、U Bb 、U Cc 及U Bc ,将数据记录于表 3- 2中。
表3-2
)
1()1(2
++=+==L L ab
Bc
ab L Cc Bb
K K U U
U K U U 根据Yy6联接组的电势相量图可得
若由上两式计算出电压U Bb 、U Cc 、U Bc 的数值与实测相同,则绕组连接正确,属于Yy6联接组。
3) Yd11
按图 5接线。
A 、a 两端点用导线相连,高压方施加对称的50%额定线电压,测取U AB 、U ab 、U Bb 、U Cc 及U Bc ,将数据记录于表3-3中
(a)
(b)
图5 Yd11联接组
表3-3
根据 Yd11联接组的电势相量可得
若由上式计算出的电压U Bb 、U Cc 、U Bc 的数值与实测值相同,则绕组连接正确,属Yd11联接组。
4) Yd5
将Yd11联接组的副方绕组首、末端的标记和连接顺序改成如图6所示。
实验方法同前,测取U AB 、U ab 、U Bb 、U Cc 和U Bc ,将数据记录于表3-4中。
1
32
+-
===L L ab
Bc Cc Bb K K U U U U
(a) (b)
图6 Yd5联接组
表3-4
根据Yd5联接组的电势相量图可得
若由上式计算出的电压U Bb 、U Cc 、U Bc 的数值与实测相同,则绕组联接正确,属于Yd5联接组。
五、实验报告
计算出不同联接组的U Bb 、U Cc 、U Bc 的数值与实测值进行比较,判别绕组连接是否正确。
计算结果见表中,绕组连接正确。
六、附录
变压器联接组校核公式 (设ab L AB ab K U K U U =⨯==,1) 1
32
++
===L L ab
Bc Cc Bb K K U U U U。