1.6值域、核与不变子空间
1.6值域、核与不变子空间
定理1.14 设V是n维线性空间,线性变换T:VV 则以下条件等价: (1) T是单射; (2) T是满射; (3) T是双射。
二、R上线性方程组求解理论
设
A R
mn
把A看成RnRm的线性映射 A=(1, 2,…, n)
x Rn,xy=Ax Rm 则有 定理1.15
(1)R(A)=Span{ 1, 2,…, n} ; (2) dimR(A)=r(A) ,其中r(A)是A的秩.
由定理1.11知的T秩 =2. 事实上,由例1.34知:R3上的 投影变换f的值域就是xoy平面.
定理1.12设V,U分别是数域P上的n维和m维线性空间, T:VU的线性映射,则 Dim R(T)+dim N(T)=n
设A
阶矩阵,称R( A) Ax | x R orx C 为 mn
(3)线性方程组 Ax b 有无穷多解当且仅当
R ( A) R ( A, b) 且 dim R ( A) r n
推论 在上面的定理中,取b=0,则有
(1)线性方程组
Ax 0
必有解;
(2)线性方程组 Ax 0 只有零解当且仅当 dim R( A) n
(3)线性方程组 Ax 0 有无穷多解当且仅当 dim R( A) n
§1.6值域、核与不变子空间
一、定义和若干性质 定义 1.2.1 (P.23) 线性变换的象空间和零空间 设线性映射T:VU, 值域 R(T)={: V ,=T()}U 核空间 N(T)={: V,T ( ) =0 }
定理1.10 N(T), R(T)分别是V,U的子空间
基于以上原因,所以T值域又称为T的象子空间,T 的核子空间又称为T的零子空间.
博士研究生入学《矩阵分析》考试大纲
博士研究生入学《矩阵分析》考试大纲第一章线性空间和线性映射1.1线性空间;1.2基变换与坐标变换;1.3线性子空间(概念,子空间的交,和,子空间的直和,补子空间);1.4线性映射(概念,线性映射的矩阵表示);1.5线性映射的值域,核;1.6线性变换的不变子空间;1.7特征值与特征向量;1.8 矩阵的相似对角形;第二章λ-矩阵与矩阵的Jordan标准形2.1λ-矩阵及标准形;2.2初等因子与相似条件;2.3矩阵的Jordan标准形;第三章函数逼近与曲线拟合3.1内积空间;3.2函数的最佳平方逼近;3.3正交多项式(用正交函数系作最佳平方逼近);3.4曲线拟合的最小二乘法;3.5三次样条插值;第四章数值积分4.1数值求积公式的基本概念;4.2牛顿-柯斯特公式;4.3复化求积公式及其收敛性;4.4高斯型求积公式;4.5数值微分;第五章常微分方程的数值方法5.1欧拉方法及其截断误差和阶;5.2龙格-库塔方法;5.3单步法收敛性与稳定性;5.4线性多步法;5.5预测-校正技术和外推技巧;第六章线性代数方程组的解法6.1预备知识(向量与矩阵范数,范数的连续性定理,范数等价性定理范数收敛性,矩阵的算子范数矩阵特征值的上界等);6.2高斯消去法,高斯主元素消去法;6.3矩阵分解及其在解方程组中的应用;6.4误差分析;6.5线性代数方程组的迭代解法;第七章线性代数方程组的解法7.1二分法;7.2简单迭代法;7.3迭代过程的加速;7.4Newton迭代法;7.5弦截法与抛物线法;第八章矩阵特征值与特征向量计算8.1幂法与反幂法;8.2Jacobi方法;8.3QR方法;。
§74 不变子空间
§7.4 不变子空间教学目的 本节要求掌握不变子空间的概念及其不变子空间的判断方法,掌握值域和核的概念以及它们都是σ的不变子空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点 不变子空间的证明教学重点不变子空间的概念、值域和核的概念以及它们都是σ的不变子空间的证明 教 学 过 程备 注教学内容一、不变子空间的定义为了解决不变子空间的问题,我们需要不变子空间的概念.先看一个例子.在3V 中,设σ是数量变换,即有一个确定的数k ,使得对任意αασαk )(,3=∈V ,设W 是3V 中过原点的一个平面,W 是3V 的一个子空间,对W 中每一个向量ξ,ξ在σ作用之下的像)(ξσ仍是W 中的向量,这样的子空间W 就是σ的不变子空间.定义1 设σ是F 上向量空间V 的一个线性变换,W 是V 的一个子空间,若W 中向量在σ下的像仍在W 中,即对于W 中任一向量ξ,都有W ∈)(ξσ,则称W 是σ的一个不变子空间,或称W 在σ之下不变.例1 向量空间V 本身和零子空间是V 的任一个线性变换的不变子空间,称它们为V 的平凡不变子空间,其它不变子空间称为非平凡不变子空间.例2 向量空间V 的任一子空间都是数量变换的不变子空间.例3 在R [x]中,令x)(f (f(x))'=σ,对任意][],[)(x R x R x f n ∈是R [x]的子空间,并且]x [n R 是σ的不变子空间.例4 设σ是3V 中以过原点的一条直线L 为轴,旋转θ角的变换,则L 是σ的一维不变子空间;过原点且与L 垂直的平面H 是σ的一个二维不变子空间.二、不变子空间的判断下面给出一种判断不变子空间的方法定理7.4.1 设σ是n 维向量空间V 的一个线性变换,W 是V 的子空间,{}r 21,,,ααα 是W 的基.则W 是σ的不变子空间的充要条件是)(,),(),(r 21ασασασ 在W 中.设W 是向量空间V 的关于线性变换σ的不变子空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的一个线性变换,用Wσ表示,即对于任意W ∈ξ,)()(ξσξσ=W若W ∉ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变子空间与线性变换的矩阵的关系设σ是n 维向量空间V 的一个线性变换,W 是σ的一个非平凡不变子空间.在W 中取一个基{}r 21,,,ααα ,把它扩充成V 的一个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设r r a a a αααασ12211111)(+++= r r a a a αααασ22221212)(+++=…………r r a a a αααασr 2r 21r 1r )(+++=n r n a a a a ααααασ1,1r 1r 1r r 1r r 11r 11r )(++++++++++++= ,,,,…………n nn r n r r rn n n a a a a ααααασ+++++=++ 1,111)(因此,σ关于这个基的矩阵为,00002311,,11,11,111,1111⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++A A A a a a a a a a a a a a a nn r n n r r r rn r r rr r n r r这里1A 是Wσ关于W 的基{}r 21,,,ααα 的矩阵.如果V 可以分解成两个非平凡不变子空间1W 与2W 的直和,21W W V ⊕=那么选取1W 的一个基{}r 21,,,ααα 和2W 的一个基{}n 1,,αα +r ,凑成V 的一个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是⎪⎪⎭⎫ ⎝⎛=210A A A 这里1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα 的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵.若V 可分解成s 个非平凡子空间s 21,,,W W W 的直和,并且每一i W 都是σ的不变子空间,那么在每一子空间中取一个基,凑成V 的基,σ关于这个基的矩阵就为分块对角形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的一维子空间的直和,那么σ在适当选取的基下的 矩阵就是对角矩阵. σ的一维不变子空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下一节进行讨论.四、线性变换的值域与核定义2 设是向量空间的一个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的子空间,并且在σ之下不变.证 先证σm I 是σ的不变子空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,而σβασβσασηξIm )()()(∈+=+=+,σασασξIm )()(∈==k k k因此σm I 是V 的子空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变子空间.再证σKer 是σ的不变子空间.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s 21A A A因为σKer ∈0,所以σKer 非空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是0)()()(=+=+βσασβασ 0)()(==ασασk k即有,,σαβαKer k ∈+,所以σKer 是V 的子空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变子空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的一个线性变换,{}n 21,,,ααα 是V 的一个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈∀,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是))(,),(),(()()()()(212211n n n L a a a ασασασασασασησ ∈+++=故 ))(,),(),((Im 21n L ασασασσ ⊆又 σασασασIm ))(,),(),((21⊆n L ,所以(1)成立.(2) 由(1)知,(,),(),(())(,),(),((dim )dim(Im )(2121nn L ασασασασασασσσ 秩秩===而 A n n n ),,,())(,),(),((),,,(212121αααασασασααασ == 由定理5.2.14知,秩A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的一个线性变换,则n =+的零度秩σσ证 在V 中取定一个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3, σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=2-12-255213121-121A求σ的值域与核.解 先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令 β1=-2α123-α2+α3 , β2=-α1-2α2+α4那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).而由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又σ (α1), σ (α2)线性无关,所以Im σ =L (σ (α1), σ (α2)).作 业:P332-333,习题七,第19,20,21,22,23,24,25,26题.教学小结本节内容分为下面四个问题讲: 1. 加法运算 2. 数乘运算3. 乘法运算(1). 乘法运算(2). 线性变换σ的方幂4. 可逆线性变换及线性变换可逆的充要条件本课作业本课教育评注。
§7_不变子空间
上页
下页
返回
结束
命题
设 W1 ,W2 都是A-子空间,则 W1 I W2 和 W1 + W2 也都是A-子空间.
上页
下页
返回
结束
定义
设A是线性空间V的线性变换,W是A 的不变子 空间. 由于W 中的向量在A下的像仍在W中,所以 由A自然诱导了W上的一个线性变换:
% A :W → W % A (α ) = A (α ),α ∈ W .
因为A的多项式 f (A)是和A可交换的,所以 f (A) 的值域和核都是A-子空间. 这种A-子空间是经常 碰到的. 例4 任何一个子空间都是数乘变换的不变子空间.
上页
下页
பைடு நூலகம்
返回
结束
例5 考虑线性变换一维A -子空间. ξ 设W是A 的一维不变子空间, 是W的任何一个 非零向量,则它构成W的基,即 W = L(ξ ). 由A-子空间的定义, Aξ ∈ W = L(ξ ). 于是存在数 λ0 , 使得 Aξ = λ0ξ . 由此可知, 是W的特征向量. ξ
上页
下页
返回
结束
反之,设 ξ 是A的属于特征值 λ0的特征向量. 对 ∀α ∈ L(ξ ), 即α = kξ , 则 Aα = kAξ = (k λ0 )ξ ∈ L(ξ ). 由此可知,由特征向量生成的子空间 L(ξ )就是A的 一维不变子空间. 例6 A的属于特征值 λ0 的特征子空间 Vλ0 也是A 的 不变子空间.
A1 = O
A3 . A2
(2)
上页
下页
返回
结束
并且左上角的k 级矩阵A1就是A|W在W的基 ε1 , ε 2 ,L, ε k 下的矩阵. 这是因为W是A-子空间,所以 Aε1 , Aε 2 ,L, Aε r ∈ W 它们可以通过W的基 ε1 , ε 2 ,L, ε k 线性表示,即 Aε1 = a11ε1 + a21ε 2 L + ak 1ε k , Aε 2 = a12ε1 + a22ε 2 L + ak 2ε k , LLL Aε k = a1k ε1 + a2 k ε 2 L + akk ε k , 从而A在基(1)下的矩阵具有形状(2),A|W在W的基 ε1 , ε 2 ,L, ε k 下的矩阵为A1.
不变子空间的概念
则Vi都是 A 旳不变 子空间;且V具有直和分解: V V1 V2 Vs .
7.7 不变子空间
证:令
fi (
)
f () ( i )ri
( 1 )r1
(
i1 )ri1 (
)ri1 i 1
( s )rs ,
Wi fi ( A)V , 则Wi 是 fi ( A) 旳值域, Wi是 A旳不变子空间.
第七章 线性变换 §7.7 线性变换旳定义
一、不变子空间旳概念 二、线性变换在不变子空间上旳限制 三、不变子空间与线性变换旳矩阵化简 四、线性空间旳直和分解
7.7 不变子空间
一、不变子空间
1、定义
设 A是数域P上线性空间V旳线性变换,W是V旳
旳子空间,若 W ,有 A( ) W 即A(W ) W
则称W是 A 旳不变子空间,简称为 A -子空间.
注:
V旳平凡子空间(V及零子空间)对于V旳任意一
个变换 A来说,都是 A -子空间.
7.7 不变子空间
2、不变子空间旳简朴性质
1)两个 A-子空间旳交与和仍是 A -子空间.
2)设 W L(1,2 , s ), 则W是 A -子空间 A(1), A(2 ), , A(s ) W .
A 在特征子空间 V0上引起旳线性变换是数乘变换,
即有 A V0 o E .
7.7 不变子空间
三、不变子空间与线性变换旳矩阵化简
1、设 A 是 n 维线性空间V旳线性变换,W是V 旳
A-子空间,1, 2 , , k为W旳一组基,把它扩允为 V旳一组基: 1, 2 , , k , k1, n .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
高等代数不变子空间
A -子空间.
任取 α ∈ ImA ,因为 A α ∈ ImA ,所以 ImA 是 A -子空间.
任取
α
∈
Vλi ,因为
A
α
=
λiα
∈
V ,所以 V 是 A -子空间. λi
λ . . . i . . . . . . . . . . . . .
. . . .... .... .... . .
. .. . . ..
证 任取 α ∈ ker A ,因为 A α = 0 ∈ ker A ,所以 ker A 是 A -子空间.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
不变子空间的定义
定义 设 A 是数域 P 上线性空间 V 的线性变换,W 是 V 的子空间. 如果 W 中的向量在 A 下的像仍在 W 中,即对于任意 α ∈ W, 都有 A α ∈ W,则称 W 是 A 的不变子空间,简称 A -子空间.
B(A α) = (BA )α = (A B)α = A (Bα) = A (0) = 0. 因此 A α ∈ ker B,从而 ker B 是 A -子空间.
. . . .... .... .... . . . . .... .... .... . .
显然,整个空间 V 和零子空间 0,对于 V 上的每个线性变换 A 来说,都是 A -子空间. 称 V 和 0 是 A 的平凡的不变子空间.
命题 V 上线性变换 A 的核与值域,A 的特征子空间都是 A -子空间.
证 任取 α ∈ ker A ,因为 A α = 0 ∈ ker A ,所以 ker A 是 A -子空间. 任取 α ∈ ImA ,因为 A α ∈ ImA ,所以 ImA 是 A -子空间.
§74不变子空间
§74不变⼦空间§7.4 不变⼦空间教学⽬的本节要求掌握不变⼦空间的概念及其不变⼦空间的判断⽅法,掌握值域和核的概念以及它们都是σ的不变⼦空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点不变⼦空间的证明教学重点不变⼦空间的概念、值域和核的概念以及它们都是σ的不变⼦空间的证明教学过程备注教学内容⼀、不变⼦空间的定义为了解决不变⼦空间的问题,我们需要不变⼦空间的概念.先看⼀个例⼦.在3V 中,设σ是数量变换,即有⼀个确定的数k ,使得对任意αασαk )(,3=∈V ,设W 是3V 中过原点的⼀个平⾯,W 是3V 的⼀个⼦空间,对W 中每⼀个向量ξ,ξ在σ作⽤之下的像)(ξσ仍是W 中的向量,这样的⼦空间W 就是σ的不变⼦空间.定义1 设σ是F 上向量空间V 的⼀个线性变换,W 是V 的⼀个⼦空间,若W 中向量在σ下的像仍在W 中,即对于W 中任⼀向量ξ,都有W ∈)(ξσ,则称W 是σ的⼀个不变⼦空间,或称W 在σ之下不变.例1 向量空间V 本⾝和零⼦空间是V 的任⼀个线性变换的不变⼦空间,称它们为V 的平凡不变⼦空间,其它不变⼦空间称为⾮平凡不变⼦空间.例2 向量空间V 的任⼀⼦空间都是数量变换的不变⼦空间.例3 在R [x]中,令x)(f (f(x))'=σ,对任意][],[)(x R x R x f n ∈是R [x]的⼦空间,并且]x [n R 是σ的不变⼦空间.例4 设σ是3V 中以过原点的⼀条直线L 为轴,旋转θ⾓的变换,则L 是σ的⼀维不变⼦空间;过原点且与L 垂直的平⾯H 是σ的⼀个⼆维不变⼦空间.⼆、不变⼦空间的判断下⾯给出⼀种判断不变⼦空间的⽅法定理7.4.1 设σ是n 维向量空间V 的⼀个线性变换,W 是V 的⼦空间,{}r 21,,,ααα是W 的基.则W 是σ的不变⼦空间的充要条件是)(,),(),(r 21ασασασ在W 中.设W 是向量空间V 的关于线性变换σ的不变⼦空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的⼀个线性变换,⽤Wσ表⽰,即对于任意W ∈ξ,)()(ξσξσ=W若W ?ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变⼦空间与线性变换的矩阵的关系设σ是n 维向量空间V 的⼀个线性变换,W 是σ的⼀个⾮平凡不变⼦空间.在W 中取⼀个基{}r 21,,,ααα,把它扩充成V 的⼀个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设r r a a a αααασ12211111)(+++= r r a a a αααασ22221212)(+++=…………r r a a a αααασr 2r 21r 1r )(+++=n r n a a a a ααααασ1,1r 1r 1r r 1r r 11r 11r )(++++++++++++= ,,,,…………n nn r n r r rn n n a a a a ααααασ+++++=++ 1,111)(因此,σ关于这个基的矩阵为,00002311,,11,11,111,1111=?++++++A A A a a a a a a a a a a a a nn r n n r r r rn r r rr r n r r这⾥1A 是Wσ关于W 的基{}r 21,,,ααα的矩阵.如果V 可以分解成两个⾮平凡不变⼦空间1W 与2W 的直和,21W W V ⊕=那么选取1W 的⼀个基{}r 21,,,ααα和2W 的⼀个基{}n 1,,αα +r ,凑成V 的⼀个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是=210A A A 这⾥1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵.若V 可分解成s 个⾮平凡⼦空间s 21,,,W W W 的直和,并且每⼀i W 都是σ的不变⼦空间,那么在每⼀⼦空间中取⼀个基,凑成V 的基,σ关于这个基的矩阵就为分块对⾓形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的⼀维⼦空间的直和,那么σ在适当选取的基下的矩阵就是对⾓矩阵. σ的⼀维不变⼦空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下⼀节进⾏讨论.四、线性变换的值域与核定义2 设是向量空间的⼀个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的⼦空间,并且在σ之下不变.证先证σm I 是σ的不变⼦空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,⽽σβασβσασηξIm )()()(∈+=+=+,σασασξIm )()(∈==k k k因此σm I 是V 的⼦空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变⼦空间.再证σKer 是σ的不变⼦空间.s 21A A A因为σKer ∈0,所以σKer ⾮空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是0)()()(=+=+βσασβασ 0)()(==ασασk k即有,,σαβαKer k ∈+,所以σKer 是V 的⼦空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变⼦空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的⼀个线性变换,{}n 21,,,ααα是V 的⼀个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈?,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是))(,),(),(()()()()(212211n n n L a a a ασασασασασασησ∈+++=故 ))(,),(),((Im 21n L ασασασσ ?⼜σασασασIm ))(,),(),((21?n L ,所以(1)成⽴.(2) 由(1)知,(,),(),(())(,),(),((dim )dim(Im )(2121nn L ασασασασασασσσ秩秩===⽽ A n n n ),,,())(,),(),((),,,(212121αααασασασααασ == 由定理5.2.14知,秩A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的⼀个线性变换,则n =+的零度秩σσ证在V 中取定⼀个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3,σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性⽅程组= 00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性⽅程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任⼀向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的⼀个基,线性变换σ关于这个基的矩阵为A ,并且=2-12-255213121-121A求σ的值域与核.解先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有---2122552131211201 ??????? ??4321x x x x =??0000解得该齐次线性⽅程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令β1=-2α123-α2+α3 , β2=-α1-2α2+α4那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).⽽由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极⼤⽆关组含有两个向量,⼜σ (α1), σ (α2)线性⽆关,所以Im σ =L (σ (α1), σ (α2)).作业:P332-333,习题七,第19,20,21,22,23,24,25,26题.教学⼩结本节内容分为下⾯四个问题讲: 1. 加法运算 2. 数乘运算3. 乘法运算(1). 乘法运算(2). 线性变换σ的⽅幂4. 可逆线性变换及线性变换可逆的充要条件本课作业本课教育评注。
不变子空间——精选推荐
在 Im中任取一个向量 (),其中 k1i ,则
i 1
n
( ) ki (i ) km1 (m1 ) kn (n ) . (6)
i 1
因此,Im= L( (m1),, (n )) .从而 Im是有限维的.我们来证 (m1),, (n ) 线性无关.设
第 7.6.3 页
辽东学院教案纸
1V () [u1( ) f1( ) u2 ( ) f2 ( )]()
u1( ) f1( )() u2 ( ) f2 ( )() .
第 7.6.5 页
辽东学院教案纸
课程:高等代数
令 1 u2 ( ) f2 ( )(),2 u1( ) f1( )() ,则
f1( )(1) f1( )[u2 ( ) f2 ( )()] u2 ( )[ f1( ) f2 ( )]() u2 ( )( f ( )()) .
对于 Ker、Im,我们有
ቤተ መጻሕፍቲ ባይዱ
定理 7.6.2 设 V 是有限维向量空间,∈Hom(V,W),则 Ker
与 Im都是有限维的,并且
dim Ker+dim Im=dimV.
(5)
证 因为 V 是有限维的,所以它的子空间 Ker是有限维的.取
Ker的一个基 1,,m ,把它们扩充成 V 的一个基
1,,m , m1,,n .
则 是单射的,当 且仅当 是满 射.
证 是单射 Ker=0dimIm=dimV=dimWIm=W是满
射.
推论 7.6.2 有限维向量空间 V 上的线性变换是单射的,当且仅
当它是满射 .
请注意,对于有限维向量空间 V 上的线性变换,虽然子空间 Ker
与 Im的维数之和等于 dimV,但是 Ker+Im并不一定是空间 V .例
不变子空间的概念
若 在基 W
1,下的2 ,矩L阵,为 k
,则
在基 1 , 2 ,下L的,矩阵n 具有下列形状:
§7.7 不变子空间
A1 0
A2 A3
.
A1 P kk
反之,若
1 , 2 ,L
,n
1 , 2 ,L
,n
A1 0
A2 A3
,
A1 P kk . 则由 1 , 2 ,生L成,的 k子空间必为 的
2)设 W L(1,则2 ,WL是 s-)子, 空间
(1), (2 ),L , (s ) W .
证: " 显然"成立.
" " 任取 设W , k11 k22 L kss ,
则 ( ) k1 (1) k2 (2 ) L ks (s ).
由于 (1), (2 ),L , (s ) W , ( ) W .
设 是线性空间V的线性变换,W是V的一个 的
不变子空间. 把 看作W上的一个线性变换,称作
在不变子空间W上引起的线性变换,或称作 在
不变子空间W上的限制 . 记作
. W
§7.7 不变子空间
注:
① 当 时,W W ( ) ( ).
当 时W,
无意W义(. )
② W W W .
③ 任一线性变换 在它核上引起的线性变换是零
一、不变子空间
1、定义
设 是数域P上线性空间V的线性变换,W是V的
的子空间,若
有 W , ( )W 即 (W ) W
则称W是 的不变子空间,简称为 -子空间.
注:
V的平凡子空间(V及零子空间)对于V的任意一
个变换 来说,都是 -子空间.
§7.7 不变子空间是 -子空间.
(完整版)不变子空间、若当、最小多项式(简介)
§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念. 一、定义与例子1.定义:)(n V L ∈σ,W 是σ的不变子空间W ⇔是V 的子空间,且,W ∈∀ξ有W ∈)(ξσ.简称σ-子空间. (注意:与线性变换有关)2.例子:设)(n V L ∈σ,则下列子空间W 都是σ的不变子空间:1){}0=W 2)V W = 3))0(1-=σW 4))(V W σ= 5){}ξλξσξλ0)(|0=∈==V V W 例1若线性变换A 与B 是可交换的,则B 的核与值域都是A -子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W 是)(n V L ∈σ的不变子空间,可只在W 中考虑σ,记为W |σ.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V 可分解为若干-σ子空间i W 的直和,那么对V 的线性变换σ的研究就归结为对各个子空间i W 的直和研究.2.区别:W |σ与σ的作用结果一样,但作用范围不同.即σξξσξ=⇒∈)|(W W ;ξσξ)|(W W ⇒∉无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)设V 可分解为若干个σ-子空间的直和:s W W W V ⊕⊕⊕= 21,在每个不变子空间i W 中取基k i i i εεε,,,21 ,s i ,2,1=,并把他们合并为V 的一组基,则在这组基下,σ的矩阵具有准对角形⎪⎪⎪⎭⎫ ⎝⎛s A A 1,其中i A ,s i ,2,1=是i W A |在对应基下的矩阵. 进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换)(n V L ∈σ的特征多项式)(λf 可分解成一次因式:S r S r r f )()()()(2121λλλλλλλ---= ,则V 可以分解成不变子空间的直和:s V V V V ⊕⊕⊕= 21,其中}0)(|{=-∈=ξλσξi r i i E V V .§8 若当(Jordan )标准形介绍若当(Jordan )标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλ1000010000010000),(t J (λ是复数;注意对角元相同)2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵) 【问题】若当形矩阵的特征值=?例1求所有的三阶若当形矩阵.(若当块不计排列顺序) 二、主要结论定理13: ))((C V L n ∈∀σ,在V 中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论) 三、若当标准形的求法(第八章介绍)【特例】若A 可对角化,则若当标准形就是相似的对角矩阵.【第二届中国大学生数学竞赛预赛2010】设⎪⎪⎪⎭⎫⎝⎛=00020100030100B ,证明B X =2无解,这里X 为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan 矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Cayley Hamilton -定理:方阵A 的特征多项式是A 的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:)(x ϕ是方阵A 的最小多项式0)(=⇔A f 且)(x ϕ次数最低、首项系数为1. 例 数量矩阵kE 的最小多项式是 二、基本性质引理1矩阵A 的最小多项式必唯一. 证法 带余除法引理2)(x f 是A 的零化多项式)(x f ⇔是A 的最小多项式)(x ϕ的倍式,即)(|)(x f x ϕ. 【特例】最小多项式是特征多项式的因式. 证法 带余除法例 求⎪⎪⎪⎭⎫ ⎝⎛=1111A 的最小多项式. 2)1(-x【问题】相似矩阵有相同的最小多项式?例 k 阶若当块kk a a a J ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=11的最小多项式是 (直接计算,k a x )(-) 三、主要结论定理 数域P 上矩阵A 可对角化的充要条件是A 的最小多项式是P 上互素的一次因式的乘积. 推论 复数域上A 可对角化的充要条件是A 的最小多项式无重根.例 设A 是n 阶幂等矩阵,且秩为r .试求A 的相似标准形,并说明理由;求A E -2. 解法:由A A =2知A 有最小多项式)1()(2-=-=λλλλλg 且无重根,所以A 相似于对角矩阵,且特征值只能是1或0.又r A r =)(,故存在可逆矩阵P 使⎪⎪⎭⎫ ⎝⎛=-0001rE AP P .从而 rn r n rA E E E AP P E P A E P ----=-⇒⎪⎪⎭⎫ ⎝⎛=-=-222002)2(11. 矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A 与B 相似,则存在可逆矩阵P 使得1-=PBP A ,于是1-=P PB A k k . 进一步有:当)(x ϕ是多项式时,1)()(-=P B P A ϕϕ.特例:当A 相似于对角矩阵时,由1-=P PB A k k 容易计算方幂kA .2.求Fibonacci 数列通项:)1,0(1012==+=++a a a a a n n n解法 用矩阵形式表示递推关系式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+011101110111a a a a a a nn n n n⎪⎪⎭⎫ ⎝⎛=0111A 的特征值为2512,1±=λ,对应的特征向量为'⎪⎪⎭⎫ ⎝⎛±1,251,⎪⎪⎭⎫⎝⎛=-211λλAP P 由此可求nA ,即得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151. 3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗? 解 设最初城市、农村人口分别为00,y x ,第k 年末人口分别为k k y x ,,则 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛00118.01.02.09.0y x y x ,⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--118.01.02.09.0k k k k y x y x 记⎪⎪⎭⎫⎝⎛=8.01.02.09.0A ,可得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x k k k . 为计算kA ,可考虑把A 相似对角化.特征多项式)7.0)(1(--=-λλλA E .1=λ对应的特征向量为)1,2(1'=α;7.0=λ对应的特征向量为)1,1(2'-=α取⎪⎪⎭⎫⎝⎛-==1112),(21ααP ,得⎪⎪⎭⎫ ⎝⎛-=-2111311P ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-21117.00011112317.00011k kk P P A令∞→k ,有07.0→k ,得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-→12223121110001111231k A ⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛3132)(1222310000y x y x y x k k 可见当∞→k 时,城市与农村人口比例稳定在1:2.定理7:设A 为实对称矩阵,则必存在正交矩阵T ,使得1T AT T AT -'=为对角阵.(注意:对角元恰好是A 的全体特征值) (常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n 个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A 用两次正交相似变换化为对角阵.证明:设σ在n 维欧氏空间V 的标准正交基下的矩阵是A ,则σ是对称变换. 1=n 时,)(αL V =,取V e ∈=αα/1,则V e ∈)(1σ,有11)(ke e =σ,1e 即为所求. 设1-n 时命题成立(含义?),考虑n 的情形.设法把n V 分解成11-+n V V ,才能使用归纳假设:1)σ对称σ−−→−引理有实数特征值1λ(才能保证特征向量)(1R V ∈α,正交矩阵要求实数矩阵);2)取111/αα=e ,则是实.特征向量.设1V 是)(1e L 的正交补,则1V 是σ-子空间,维数为1-n ,且1|V σ是1V 的对称变换.于是利用归纳假设,1V 有1-n 个特征向量n e e ,,2 标准正交,联合n e e e ,,,21 即为V 的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:1=n 显然. 设1-n 时命题成立,A 必有实数特征值1λ(特征向量n R ∈1α),取111/αα=e ,则也是实.特征向量.扩充成n R 的标准正交基n e e e ,,,21 ,以它们为列作n 级矩阵1T ,则1T 正交,且),,,(),,,(),,,(1121111112111211111n n n Ae T Ae T e T Ae Ae Ae T e e e A T AT T -----===' λ注意到),,,(),,,(112111112111111n n e T e T e T e e e T T T E -----=== ,故111e T -是E 的第一列,于是11AT T '形如⎪⎭⎫⎝⎛B C 01λ,而A 对称,11AT T '也对称,得0=C ,且B 是1-n 级对称矩阵. 由归纳假设,存在1-n 级正交矩阵Q ,使得),,(2n diag BQ Q λλ =',取212,001T T T Q T =⎪⎭⎫ ⎝⎛=可得T 是正交矩阵,并且),,(1111n diag Q B Q AT T λλλ ==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛'=' 又AT T AT T 1-='与A 相似,有相同的特征值,于是n λλ,,1 是A 的全部特征值.《欧氏空间》复习一、主要概念 1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T ,使得1T AT T AT -'=为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补) 2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别? 四、例题选讲 ◎ A 正定1>+⇒E A证1:A 正定⇒特征值E A i +⇒>0λ的特征值11>+i λ 于是1111)1()1)(1(21=⋅>+++=+ n E A λλλ 证2:A 正定⇒0),,,(11>=-i n diag AT T λλλ1111)1()1)(1()1,,1(),,(1211111=⋅>+++=++=+=+--- TT T Tdiag E T Tdiag E A n n n λλλλλλλ《期末总复习》一、考试题型填空、计算、证明、讨论或判断 二、复习依据作业(习题集)、例题、课外提高 三、各章主线 1.线性空间线性空间……定义、线性运算、基、维数、坐标子空间……两个封闭性、基、维数、生成子空间、扩充基、维数公式、和、直和 同构……构造、判定、意义 2.线性变换线性变换……验证(定义)、运算、关于基的矩阵及变换问题的转化、不变子空间 特征值与特征向量……证明、求法(可验证)、结论、对角化判定及求可逆矩阵C 值域与核……基、维数、两者维数关系 3.Jordan 标准形不变因子 初等因子 Jordan 标准形4.欧氏空间(注意:涉及的概念都与内积有关)内积……验证(四条公理)、长度、夹角、标准正交基(求法,可验证) 正交变换……判定、不变性、正交矩阵(可验证)对称变换……判定、特征值、对角化(求正交矩阵[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵.2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基)3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、')正交矩阵(行[或列]向量组标准正交,或EAA=3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现。
不变子空间
§7 不变子空间问题:在前面内容中,我们讲到矩阵等价,每一个等价类都有一个矩阵的等价标准型,例如:对于n阶矩阵来讲,有1n+类对于矩阵的合同,我们也有过类似的内容那么对于矩阵的相似,我们同样讨论这种问题:在一切彼此相似的n阶矩阵中, 如何选出一个形式尽可能简单的矩阵.由于一个线性变换关于不同基的矩阵是相似的. 换句话讲,就是对于给定的n维线性空间V, A∈)(VL, 如何才能选到V的一个基, 使A关于这个基的矩阵具有尽可能简单的形式.这一节介绍不变子空间的概念,来说明线性变换的矩阵的化简与线性变换的内在联系.一、不变子空间1.定义7设A是数域P上线性空间V的线性变换, W是V的一个子空间. 如果Wξ,中的向量在A下的像仍在W中,换句话说, 对于W中任一向量ξ,有A W∈就称W是A 的不变子空间,简称A -子空间.2.例题例1整个空间V和零子空间{}0,对于每个线性变换A 都是A-子空间.例2 A的值域与核都是A-子空间.例3若线性变换A与β是可交换的,则β的核与值都是A-子空间.因为A的多项式f(A)是和A交换的,所以f(A)的值域与核都是A-子空间.例4任何一个子空间都是数乘变换的不变子空间.例 5 特征子空间与一维不变子空间之间有着紧密的联系.设W 是一维A -子空间,ξ是W 中任何一个非零向量,它构成W 的一个基. 按A -子空间的定义, A W ∈ξ, 它必是ξ的一个倍数: A ξλξ0=.这说明ξ是A 的特征向量,而W 即是由ξ生成的一维A -子空间.反过来,设ξ是A 属于特征值0λ的一个特征向量,则ξ以及它任一倍数在A 下 的像是原像的0λ倍,仍旧是ξ的一个倍数.这说明ξ的倍数构成一个一维A -子空间.例 6,A 的属于特征值0λ的一个特征子空间0λV 也是A 的一不变子空间. 例 7 A —子空间的和与交还是A -子空间.二、矩阵化简与不变子空间1.A |W设A 是线性空间V 的线性变换, W 是A 的不变子空间. 由于W 中向量在A 下的像 仍在W 中,这就使得有可能不必在整个空间V 中来考虑A ,而只在不变子空间W 中 考虑A ,即把A 看成是W 的一个线性变换,称为A 在不变子空间W 上引起的变换. 为了区别起见,用符号A |W 来表示它;但是在很多情况下,仍然用A 来表示而 不致引起混淆.必须在概念上弄清楚A 与A |W 的异同:A 是V 的线性变换, V 中每个向量在A 下 都有确定的像;A |W 是不变子空间W 上的线性变换,对于W 中任一向量ξ,有(A |W )ξ=A ξ.但是对于V 中不属于W 的向量η来说,(A |W )η 是没有意义的.例如,任一线性变换在它的核上引起的变换就是零变换,而在特征子空间0λV 上 引起的变换是数乘变换0λ.2.结论:如果线性空间V 的子空间W 是由向量组s ααα,,,21 生成的,即),,,(21s L W ααα =,则W 是A -子空间的充要条件为A 1α,A 2α,…, A s α全属于W .3.下面讨论不变子空间与线性变换矩阵化简之间的关系.1)设A 是维线性空间V 的线性变换,W 是V 的A -子空间.在W 中取一组基k εεε,,,21 ,并且把它扩充成V 的一组基n k k εεεεε,,,,,,121 +. (1)那么,A 在这组基下的矩阵就具有下列形状⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++2311,,11,11,111,11110000A O A A a a a a a a a a a a a a nnk n n k k k knk k kk k n k k. (2) 并且左上角的k 级矩阵1A 就是A |W 在的基k εεε,,,21 下的矩阵.2) 设V 分解成若干个A -子空间的直和:s W W W V ⊕⊕⊕= 21.在每一个A -子空间i W 中取基),,2,1(,,,21s i iin i i =εεε (3)并把它们合并起来成为V 的一组基 I .则在这组基下,A 的矩阵具有准对角形状⎪⎪⎪⎪⎪⎭⎫⎝⎛s A A A 21 (4) 其中),,2,1(s i A i = 就是A |W 在基(3)下的矩阵.反之,如果线性变换A 在基 I 下的矩阵是准对角形(4),则由(3)生成的 子空间 i W 是A -子空间.由此可知,矩阵分解为准对角形与空间分解为不变子空间的直和是相当的.三、 按特征值分解线性空间下面应用哈密尔顿-凯莱定理将空间V 按特征值分解成不变子空间的直和. 定理12 设线性变换A 的特征多项式为)(λf ,它可分解成一次因式的乘积s r s r r f )()()()(2121λλλλλλλ---=则V 可分解成不变子空间的直和s V V V V ⊕⊕⊕= 21其中 {}V A V i r i i ∈=-=ξξελξ,0)(|. 证明:(1)设 ()()()ii r i f f λλλλ=-, ()i i V f A V =,即是 ()i f A 的值域,利用 12,,,s f f f 互素来证明 12s V V V V =+++(2) 再证明 12s V V V V =+++ 是直和首先设 120s βββ+++=,(*) 这里()0i r i i A λεβ-=另一方面, ()(),j rj i f i j λλλ-≠ , 所以 ()i f A 中含有因式 ()j rj A λε-, 用 ()i f A 作用于 (*), 我们得到 ()0i i f A β=最后因为 ()i f λ 与 ()i r i λλ- 互素, 我们推出 0i β=其次注意到 如果 i i V β∈,即存在 i V α∈, 使 ()i i i f A βα=, 我们得到()()()()0i i r r i i i i i i A A f A f A λεβλεαα-=-==, 显然可以推出 0i β=,从而 12s V V V V =+++ 是直和(3) 证明 {}V A V i r i i ∈=-=ξξελξ,0)(|, 即 i V 是 ()i r i A λε- 的核显然 {}|()0,ir i iV A V ξλεξξ⊆-=∈, 对于 {}|()0,ir iA V αξλεξξ∈-=∈,我们知道 1i s αααα=++++, 从而 1()0i s αααα++-++=,重复 (2) 的证明, 我们得到 i αα=, 命题成立.。
§74-不变子空间
§7.4 不变子空间教学目的本节要求掌握不变子空间的概念及其不变子空间的判断方法,掌握值域和核的概念以及它们都是σ的不变子空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点不变子空间的证明教学重点不变子空间的概念、值域和核的概念以及它们都是σ的不变子空间的证明教学过程备注教学内容一、不变子空间的定义为了解决不变子空间的问题,我们需要不变子空间的概念.先看一个例子.在3V中,设σ是数量变换,即有一个确定的数k,使得对任意αασαk)(,3=∈V,设W是3V中过原点的一个平面,W是3V的一个子空间,对W中每一个向量ξ,ξ在σ作用之下的像)(ξσ仍是W中的向量,这样的子空间W就是σ的不变子空间.定义1 设σ是F上向量空间V的一个线性变换,W是V的一个子空间,若W中向量在σ下的像仍在W中,即对于W中任一向量ξ,都有W∈)(ξσ,则称W是σ的一个不变子空间,或称W在σ之下不变.例1 向量空间V本身和零子空间是V的任一个线性变换的不变子空间,称它们为V的平凡不变子空间,其它不变子空间称为非平凡不变子空间.例2 向量空间V的任一子空间都是数量变换的不变子空间.例3 在R[x]中,令x)(f(f(x))'=σ,对任意][],[)(xRxRxfn∈是R[x]的子空间,并且]x[nR是σ的不变子空间.例4 设σ是3V中以过原点的一条直线L为轴,旋转θ角的变换,则L是σ的一维不变子空间;过原点且与L垂直的平面H是σ的一个二维不变子空间.二、不变子空间的判断下面给出一种判断不变子空间的方法定理7.4.1 设σ是n维向量空间V的一个线性变换,W是V的子空间,{}r21,,,ααα 是W的基.则W是σ的不变子空间的充要条件是)(,),(),(r21ασασασ 在W中.设W是向量空间V的关于线性变换σ的不变子空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的一个线性变换,用Wσ表示,即对于任意W ∈ξ,若W ∉ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变子空间与线性变换的矩阵的关系设σ是n 维向量空间V 的一个线性变换,W 是σ的一个非平凡不变子空间.在W 中取一个基{}r 21,,,ααα ,把它扩充成V 的一个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设……………………因此,σ关于这个基的矩阵为 这里1A 是Wσ关于W 的基{}r 21,,,ααα 的矩阵. 如果V 可以分解成两个非平凡不变子空间1W 与2W 的直和那么选取1W 的一个基{}r 21,,,ααα 和2W 的一个基{}n 1,,αα +r ,凑成V 的一个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是这里1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα 的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵. 若V 可分解成s 个非平凡子空间s 21,,,W W W 的直和,并且每一i W 都是σ的不变子空间,那么在每一子空间中取一个基,凑成V 的基,σ关于这个基的矩阵就为分块对角形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的一维子空间的直和,那么σ在适当选取的基下的 矩阵就是对角矩阵. σ的一维不变子空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下一节进行讨论.四、线性变换的值域与核定义2 设是向量空间的一个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的子空间,并且在σ之下不变.证 先证σm I 是σ的不变子空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,而σβασβσασηξIm )()()(∈+=+=+,因此σm I 是V 的子空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变子空间.再证σKer 是σ的不变子空间.因为σKer ∈0,所以σKer 非空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是即有,,σαβαKer k ∈+,所以σKer 是V 的子空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变子空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的一个线性变换,{}n 21,,,ααα 是V 的一个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈∀,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是故 ))(,),(),((Im 21n L ασασασσ ⊆又 σασασασIm ))(,),(),((21⊆n L ,所以(1)成立.(2) 由(1)知,而 A n n n ),,,())(,),(),((),,,(212121αααασασασααασ ==A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的一个线性变换,则证 在V 中取定一个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3, σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此 故例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且 求σ的值域与核.解 先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000 解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令 β1=-2α123-α2+α3 , β2=-α1-2α2+α4 那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).而由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又σ (α1), σ (α2)线性无关,所以Im σ =L (σ (α1), σ (α2)).作 业:P332-333,习题七,第19,20,21,22,23,24,25,26题. 教学小结本节内容分为下面四个问题讲: 1. 加法运算 2. 数乘运算 3. 乘法运算(1). 乘法运算 (2). 线性变换σ的方幂4. 可逆线性变换及线性变换可逆的充要条件 本课作业本课教育评注。
不变子空间个数
不变子空间个数不变子空间是线性代数中一个重要的概念,它在矩阵理论、向量空间以及图像处理等领域中有着广泛的应用。
在本文中,我们将介绍不变子空间的概念、性质和计算方法。
1. 不变子空间的定义不变子空间指的是对于一个线性变换,存在某个向量空间的子空间,使得该线性变换作用于该子空间中的向量后,仍然在该子空间内。
换句话说,如果一个向量属于该子空间,那么该线性变换作用在该向量上得到的向量仍然属于该子空间。
2. 不变子空间的性质在讨论不变子空间的性质时,我们需要先回顾一下线性变换的基本性质。
设有线性变换T:V->V,其中V是n维向量空间。
假设有V的一个k维子空间W,且W对于T是不变的,即对于W中任意一个向量x,有T(x)依然在W中。
(1)对于任意一个子空间W,其零空间和整个向量空间V都是不变子空间。
证明:由于零向量属于任意向量空间的子空间,所以零空间是不变子空间。
对于任意一个向量v属于整个向量空间V,有T(0+v)=T(0)+T(v)=T(v),即T(v)也属于整个向量空间V,所以整个向量空间V也是不变子空间。
(2)两个不变子空间的交集仍然是不变子空间。
证明:设W1和W2是T的两个不变子空间,对于任意一个向量x属于W1∩W2,由于x同时属于W1和W2,所以T(x)同时属于T(W1)和T(W2)。
由于W1和W2分别是不变子空间,所以T(x)属于W1和W2,即T(x)属于W1∩W2。
因此,W1∩W2是T的不变子空间。
3. 不变子空间的计算方法在实际应用中,我们需要计算给定线性变换的不变子空间。
以下是一种常用的计算方法:(1)找到线性变换T的特征值和特征向量。
(2)对于每一个特征值,以其为特征向量的生成子空间即为不变子空间。
可以通过求解特征方程来找到特征值,然后通过求解特征方程关联的特征向量方程来找到特征向量。
特征值和特征向量的计算方法超出了本文的范围。
4. 不变子空间的应用不变子空间在很多学科中都有着广泛的应用。
§74-不变子空间
§7.4 不变子空间T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此σσ秩秩-n dim dim =-==A n W Ker故n =+的零度秩σσ例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且⎪⎪⎪⎪⎪⎭⎫⎝⎛=2-12-255213121-1201A求σ的值域与核.解 先求ker , 设ker(), 关于{1,2,3,4}的坐标为(x 1, x 2, x 3, x 4), ()在{1,2,3,4}下的坐标为(0,0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令1=-2123-2+3 , 2=-1-22+4那么ker ()=L (1, 2),σ的零度=2 .再求Im . 由定理7.4.3,Im =L ( (1),(2),(3),(4)).而由定理7.4.4, 的秩为 2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又(1),(2)线性无关,所以Im =L ( (1), (2)).作 业:P332-333,习题七,第19,20,21,22,23,24,25,26题.本节内容分为下面四个问题讲: 1. 加法运算 2. 数乘运算 3. 乘法运算 (1). 乘法运算(2). 线性变换的方幂4. 可逆线性变换及线性变换可逆的充要条件。
1-6 线性变换的不变子空间
σ (ξ ) = σ (τ (α )) = στ (α ) = τσ (α ) = τ (σ (α )) ∈τ (V )
∴τ (V ) 为σ 的不变子空间.
其次,由 N (τ ) = {α α ∈V ,τ (α ) = 0}
对 ∀ξ ∈ N (τ ) 有τ (ξ ) = 0.
Department of Mathematics
Department of Mathematics
不变子空间与线性变换的矩阵化简
1. 设σ 是 n 维线性空间V的线性变换,W是V 的
σ-子空间,ε1,ε 2 , ,ε k 为W的一组基,把它扩允为
V的一组基: ε1,ε 2 , ,ε k ,ε k+1, ε n .
若 σ 在基ε1,ε 2 , ,ε k 下的矩阵为 A1 ∈ P k×k ,则
所以,只需证明 τ (σ (ξ )) = 0 ,即有: σ (ξ )∈ N (τ )
τ (σ (ξ )) = τσ (ξ ) = στ (ξ ) = σ (τ (ξ )) = σ (0) = 0.
σ (ξ ) ∈ N (τ )
故 N (τ ) 为σ 的不变子空间.
3)任何子空间都是数乘变换Κ 的不变子空间.
矩阵论电子教程
哈尔滨工程大学理学院应用数学系
Department of Mathematics, College of Sciences
第一章
线性空间与线性映射
Department of Mathematics
§1.6 线性映射与线性变换 在讨论线性空间的同构时,我们考虑的是一种
保持向量的加法和数量乘法的一一对应. 我们常称 两线性空间之间保持加法和数量乘法的映射为线性 映射,这即是本节要讨论的内容
(完整版)不变子空间、若当、最小多项式(简介)
(完整版)不变子空间、若当、最小多项式(简介)§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念. 一、定义与例子1.定义:)(n V L ∈σ,W 是σ的不变子空间W ?是V 的子空间,且,W ∈?ξ有W ∈)(ξσ.简称σ-子空间. (注意:与线性变换有关)2.例子:设)(n V L ∈σ,则下列子空间W 都是σ的不变子空间:1){}0=W 2)V W = 3))0(1-=σW 4))(V W σ= 5){}ξλξσξλ0)(|0=∈==V V W 例1若线性变换A 与B 是可交换的,则B 的核与值域都是A -子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W 是)(n V L ∈σ的不变子空间,可只在W 中考虑σ,记为W |σ.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V 可分解为若干-σ子空间i W 的直和,那么对V 的线性变换σ的研究就归结为对各个子空间i W 的直和研究.2.区别:W |σ与σ的作用结果一样,但作用范围不同.即σξξσξ=?∈)|(W W ;ξσξ)|(W W ??无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)设V 可分解为若干个σ-子空间的直和:s W W W V ⊕⊕⊕=Λ21,在每个不变子空间i W 中取基k i i i εεε,,,21Λ,s i Λ,2,1=,并把他们合并为V 的一组基,则在这组基下,σ的矩阵具有准对角形s A A O 1,其中i A ,s i Λ,2,1=是i W A |在对应基下的矩阵. 进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换)(n V L ∈σ的特征多项式)(λf 可分解成一次因式:S r S r r f )()()()(2121λλλλλλλ---=Λ,则V 可以分解成不变子空间的直和:s V V V V ⊕⊕⊕=Λ21,其中}0)(|{=-∈=ξλσξi r i i E V V .§8 若当(Jordan )标准形介绍若当(Jordan )标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块=λλλλλ10010000010000),(ΛΛΛΛΛΛΛΛΛΛt J (λ是复数;注意对角元相同) 2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵)【问题】若当形矩阵的特征值=?例1求所有的三阶若当形矩阵.(若当块不计排列顺序)二、主要结论定理13:))((C V L n ∈?σ,在V 中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论)三、若当标准形的求法(第八章介绍)【特例】若A 可对角化,则若当标准形就是相似的对角矩阵.【第二届中国大学生数学竞赛预赛2010】设=00020100030100B ,证明B X =2无解,这里X 为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan 矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Cayley Hamilton -定理:方阵A 的特征多项式是A 的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:)(x ?是方阵A 的最小多项式0)(=?A f 且)(x ?次数最低、首项系数为1. 例数量矩阵kE 的最小多项式是二、基本性质引理1矩阵A 的最小多项式必唯一. 证法带余除法引理2)(x f 是A 的零化多项式)(x f ?是A 的最小多项式)(x ?的倍式,即)(|)(x f x ?. 【特例】最小多项式是特征多项式的因式. 证法带余除法例求=1111A 的最小多项式. 2)1(-x【问题】相似矩阵有相同的最小多项式?例 k 阶若当块kk a aaJ=11O O 的最小多项式是(直接计算,k a x )(-)三、主要结论定理数域P 上矩阵A 可对角化的充要条件是A 的最小多项式是P 上互素的一次因式的乘积. 推论复数域上A 可对角化的充要条件是A 的最小多项式无重根.例设A 是n 阶幂等矩阵,且秩为r .试求A 的相似标准形,并说明理由;求A E -2. 解法:由A A =2知A 有最小多项式)1()(2-=-=λλλλλg 且无重根,所以A 相似于对角矩阵,且特征值只能是1或0.又r A r =)(,故存在可逆矩阵P 使=-0001r E AP P .从而 rn r n rA E E E AP P E P A E P ----=-=-=-222002)2(11. 矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A 与B 相似,则存在可逆矩阵P 使得1-=PBP A ,于是1-=P PB A k k . 进一步有:当)(x ?是多项式时,1)()(-=P B P A ??.特例:当A 相似于对角矩阵时,由1-=P PB A k k 容易计算方幂kA .2.求Fibonacci 数列通项:)1,0(1012==+=++a a a a a n n n解法用矩阵形式表示递推关系式=???? ?????? ?=???? ??-+011101110111a a a a a a nn n n n=0111A 的特征值为2512,1±=λ,对应的特征向量为'±1,251,=-211λλAP P 由此可求nA ,即得--???? ??+=nn n a 25125151. 3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗?解设最初城市、农村人口分别为00,y x ,第k 年末人口分别为k k y x ,,则 ?=00118.01.02.09.0y x y x ,=???? ??--118.01.02.09.0k k k k y x y x 记=8.01.02.09.0A ,可得???? ??=???? ??00y x A y x k k k . 为计算kA ,可考虑把A 相似对角化.特征多项式)7.0)(1(--=-λλλA E .1=λ对应的特征向量为)1,2(1'=α;7.0=λ对应的特征向量为)1,1(2'-=α取-==1112),(21ααP ,得???? ??-=-2111311P-???? ?????? ??-=???? ??=-21117.00011112317.00011k kk P P A令∞→k ,有07.0→k ,得=???? ??-???? ??-→12223121110001111231k A+=???? ?????? ??→???? ??3132)(1222310000y x y x y x k k 可见当∞→k 时,城市与农村人口比例稳定在1:2.定理7:设A 为实对称矩阵,则必存在正交矩阵T ,使得1T AT T AT -'=为对角阵.(注意:对角元恰好是A 的全体特征值)(常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n 个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A 用两次正交相似变换化为对角阵.证明:设σ在n 维欧氏空间V 的标准正交基下的矩阵是A ,则σ是对称变换. 1=n 时,)(αL V =,取V e ∈=αα/1,则V e ∈)(1σ,有11)(ke e =σ,1e 即为所求. 设1-n 时命题成立(含义?),考虑n 的情形.设法把n V 分解成11-+n V V ,才能使用归纳假设:1)σ对称σ??→?引理有实数特征值1λ(才能保证特征向量)(1R V ∈α,正交矩阵要求实数矩阵);2)取111/αα=e ,则是实.特征向量.设1V 是)(1e L 的正交补,则1V 是σ-子空间,维数为1-n ,且1|V σ是1V 的对称变换.于是利用归纳假设,1V 有1-n 个特征向量n e e ,,2Λ标准正交,联合n e e e ,,,21Λ即为V 的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:1=n 显然. 设1-n 时命题成立,A 必有实数特征值1λ(特征向量n R ∈1α),取111/αα=e ,则也是实.特征向量.扩充成n R 的标准正交基n e e e ,,,21Λ,以它们为列作n 级矩阵1T ,则1T 正交,且),,,(),,,(),,,(1121111112111211111n n n Ae T Ae T e T Ae Ae Ae T e e e A T AT T -----==='ΛΛΛλ注意到),,,(),,,(112111112111111n n e T e T e T e e e T T T E -----===ΛΛ,故111e T -是E 的第一列,于是11AT T '形如??B C 01λ,而A 对称,11AT T '也对称,得0=C ,且B 是1-n 级对称矩阵. 由归纳假设,存在1-n 级正交矩阵Q ,使得),,(2n diag BQ Q λλΛ=',取212,001T T T Q T =??=可得T 是正交矩阵,并且),,(1111n diag Q B Q AT T λλλΛΛ=='=' 又AT T AT T 1-='与A 相似,有相同的特征值,于是n λλ,,1Λ是A 的全部特征值.《欧氏空间》复习一、主要概念 1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T ,使得1T AT T AT -'=为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补)2.内积与标准正交基有何联系?3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别?四、例题选讲◎ A 正定1>+?E A证1:A 正定?特征值E A i +?>0λ的特征值11>+i λ 于是1111)1()1)(1(21=?>+++=+ΛΛn E A λλλ 证2:A 正定?0),,,(11>=-i n diag AT T λλλΛ1111)1()1)(1()1,,1(),,(1211111=?>+++=++=+=+---ΛΛΛΛTT T Tdiag E T Tdiag E A n n n λλλλλλλ《期末总复习》一、考试题型填空、计算、证明、讨论或判断二、复习依据作业(习题集)、例题、课外提高三、各章主线 1.线性空间线性空间……定义、线性运算、基、维数、坐标子空间……两个封闭性、基、维数、生成子空间、扩充基、维数公式、和、直和同构……构造、判定、意义 2.线性变换线性变换……验证(定义)、运算、关于基的矩阵及变换问题的转化、不变子空间特征值与特征向量……证明、求法(可验证)、结论、对角化判定及求可逆矩阵C 值域与核……基、维数、两者维数关系3.Jordan 标准形不变因子初等因子 Jordan 标准形4.欧氏空间(注意:涉及的概念都与内积有关)内积……验证(四条公理)、长度、夹角、标准正交基(求法,可验证)正交变换……判定、不变性、正交矩阵(可验证)对称变换……判定、特征值、对角化(求正交矩阵[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵.2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基)3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、')正交矩阵(行[或列]向量组标准正交,或EAA=3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1. 40 设W1,W2分别是齐次线性方程组
x1 + x2 + L + xn = 0
与
x1 = x2 = L = xn
的解空间,试证明Rn=W1⊕W2. 的解空间,试证明
D 0 −1 A = P P 0 0
,其中 是n阶可逆矩阵,D的r阶可逆矩阵,r=r(A). 其中P是 阶可逆矩阵 阶可逆矩阵, 的 阶可逆矩阵 阶可逆矩阵, 其中 8) A=QA2. )
定理1.19 设AΙ Rn≅n,则以下条件等价: 则以下条件等价: 定理 Ι ≅ 则以下条件等价
(2)
推论 (1) ) dim R(T ) + dim N (T ) = dimV (2) dim R( A) = rank ( A) ) 的列数。 (3) dim R( A) + dim N( A) = n n为A的列数。 ) 为 的列数
,
例1.36 设 A = 1
1 在R2×2上的线性变换定义为 × − 1 − 1
1)A2=A; ) 2)R(A+I)=N(A-I)以及 ) 以及R(A-I)=N(A+I); 以及 - + ; 3) r(A+I)+r(A-I)=n; ) 4) Rn=N(A+I)+N(A-I).
平面上全体向量, 例1.37 平面上全体向量,对如下定义的加法和数乘 α ⊕β =α −β k o α = −kα
按照上述定义不构成R上的线性空间 上的线性空间。 则R2按照上述定义不构成 上的线性空间。
1 0 例38.设 A = . 0 2
记
L( A) = B B ∈ R 2×2 , AB = BA
{
}
求证L(A)为R2×2的线性子空间,并求 为 × 的线性子空间,并求dimL(A). 求证
=
T是满射当且仅当R(T)=U. 是满射当且仅当R(T)=U.
定理1.14 设V是n维线性空间,线性变换T:V→V 维线性空间,线性变换T 定理 则以下条件等价: 则以下条件等价: (1) T是单射; 是单射; 是满射; (2) T是满射; 是双射。 (3) T是双射。
二、R上线性方程组求解理论 上线性方程组求解理论
不等式: 推论 Sylverster不等式: 不等式 min{r(A),r(B)}∴r(AB)∴r(A)+r(B)-n ∴ ∴ 其中, 是矩阵 的列数。 是矩阵A的列数 其中,n是矩阵 的列数。 证明:左边显然成立。对于右边,由于 证明:左边显然成立。对于右边,由于dim[R(B)∩N(A) ≤dimN(A) ∩ 利用上面的定理则有R(AB)=r(B)- dim[R(B)∩N(A) 利用上面的定理则有 ∩ ∴r(B)-dimN(A)=r(B)-[n-r(A)]=r(B)+r(A)-n.
Ax = 0
必有解; 必有解;
(2)线性方程组 Ax = 0 只有零解当且仅当 dim R( A) = n ) (3)线性方程组 Ax = 0 有无穷多解当且仅当 dim R ( A) < n )
关于矩阵秩的有关结论 定理1.17 定理 设A∈Rm×n,B∈Rn×l,则 ∈ × ∈ × 则
(1)r(AB)=r(B)-dim[N(A)∩R(B)] ) ∩ (2)r(AB)=r(A)-dim[N(BT)∩R(AT)] ) ∩ 证明:我们定义线性映射 证明:我们定义线性映射C :R(B)→R(A),x→y=Ax∈ R(A) → → ∈ 则N(C)=R(B)∩N(A),R(C)=R(AB). ∩ 事实上, 事实上,若x∩ R(B)且Ax=0,则x∈ R(B) ∩N(A),从而 ∩ 且 则 ∈ 从而 N(C)™R(B)∩N(A),反之若 ∈R(B) ∩N(A),则 x ∈R(B)且x ∈ N(A), ™ 反之若x ∩ 反之若 则 且
我们利用线性映射中零空间与值域的概念, 我们利用线性映射中零空间与值域的概念,来讨论 线性方程组的求解问题
定理1.16 定理 设 A ∈ R m×n b ∈ R n 则
Ax = b 有解当且仅当 dim R( A) = dim R( A, b) or R( A) = R( A, b) R( A) = R( A, b) 且 Ax (2)线性方程组 = b有唯一解当且仅当 )
§1.6值域、核与不变子空间 1.6值域 值域、
一、定义和若干性质 (P.23) 定义 1.2.1 (P.23) 线性变换的象空间和零空间 设线性映射T 设线性映射T:V→U, R(T)={ =T(α 值域 R(T)={β: ∃α∈ V ,β=T(α)}™U 核空间 N(T)={α:α∈ V,T ( α) =0 }
设
看成R 看成 A∈R 把A看成 n→Rm的线性映射 A=(Α1, Α2,…, Αn) Α
m×n
xΙ Rn,x→y=Ax ∈ Rm Ι → 则有 定理1.15 定理
(1)R(A)=Span{ Α1, Α2,…, Αn} ; (2) dimR(A)=r(A) ,其中 其中r(A)是A的秩. 的秩. 是 的秩
所以Ax=0,从而 ∈N(A),故 N(C)∏R(B)∩N(A), 从而x∈ 所以 从而 故 ∏ ∩ 于是N(C)=R(B)∩N(A)。 = 于是 ∩ 。 又 R(C)=A(R(B))=A(B(Rl)=AB(Rl)=R(AB) 由维数公式知 dimR(B)= dimR(C)+dimN(C) =dimR(AB)+ dim[N(A)∩R(B)] ∩ 也即r(AB)=r(B)-dim[N(A)∩R(B)]。 ∩ 也即 。 又由r(B 以及r(B)=r(BT)知 又由 TAT)=r(AB)以及 以及 知 r(AB)=r(A)-dim[N(BT)∩R(AT)]成立。 ∩ 成立。 成立
R (T ) = span (T ( ε1 ) , T ( ε 2 ) ,L , T ( ε n ) )
(2)T的秩 =r(A).
由例1.31知R3上的投影变换 例1.35 由例 知 上的投影变换f:(a,b,c)→(a,b,0),在 → , 自然基e 自然基 1=(1,0,0),e2=(0,1,0),e3-(0,0,1)下的矩阵为 下的矩阵为
设A
阶矩阵, 为 m × n阶矩阵,称R ( A) = Ax | x ∈ R orx ∈ C
n
{
n
}
的值域; 的值域 N 为矩阵 A的值域; ( A) = x | x ∈R orx ∈C , Ax = 0
n n
{
}
的核。 为A的核。 的核
、
的秩和零度。 dim R( A) dim N ( A)称为 A 的秩和零度。
ห้องสมุดไป่ตู้
设有R 的两个子空间: 例1.39 设有 3的两个子空间:
V1 = {( x1 , x 2 , x3 ) 2 x1 + x 2 − x3 = 0}
V2 = {(x1 , x 2 , x3 ) x1 + x 2 = 0, 3x1 + 2 x 2 − x3 = 0}
分别求子空间W 的基与维数. 分别求子空间 1+W2,W1 ∩W2的基与维数
定理1.18 设A∈Rn×n,则下列条件等价 定理 ∈ × 则下列条件等价
1) N(A)=N(A2); ) 3) r(A)=r(A2); )
2) dimN(A)=dimN(A2); ) 4) R(A)=R(A2); )
5) N(A)ΗR(A)={0}; 6) Rn=N(A⊕R(A); ) Η ) ⊕ 7) )
的值域R(T)及核子空间 及核子空间N(T)基与维数,并问 基与维数, 求T的值域 的值域 及核子空间 基与维数 R(T)+N(T)是否是直和? 是否是直和? 是否是直和
定理1.13 设V,U是有限维线性空间,线性变换 是有限维线性空间, 定理 T:V→ T:V→U 则T是单射当且仅当N(T)={0 }; 是单射当且仅当N
定理1.10 定理1.10 N(T), R(T)分别是V,U的子空间 R(T)分别是 分别是V
基于以上原因,所以T值域又称为T的象子空间,T 基于以上原因,所以T值域又称为T的象子空间,T 的核子空间又称为T的零子空间. 的核子空间又称为T的零子空间.
定义1.14 定义1.14
设T是线性空间V上的线性变换,R(T)的维数 是线性空间V上的线性变换,R(T)的维数
1 0 0 A = 0 1 0 0 0 0
知的T秩 事实上,由例1.34知 由定理1.11知的 由定理1.11知的T秩 =2. 事实上,由例1.34知:R3上的 投影变换f的值域就是 平面 的值域就是xoy平面 平面. 投影变换 的值域就是
定理1.12设V,U分别是数域 上的 维和 维线性空间, 设 分别是数域P上的 维和m维线性空间 定理 分别是数域 上的n维和 维线性空间, T:V→U的线性映射,则 → 的线性映射, 的线性映射 Dim R(T)+dim N(T)=n
称为T的秩,记为rankT; N(T)的维数称为 的零度或亏度, 称为T的秩,记为rankT;而N(T)的维数称为T的零度或亏度, 的维数称为T 记为nullT. 记为nullT. T 的秩=dim R(T); T 的零度=dim N(T) 的秩=dim R( 的零度=dim N( 定理1.11 维线性空间V上的线性变换, 定理1.11 设T是n维线性空间V上的线性变换,且T在V的一组 下的矩阵是A 基 ε1 , ε 2 ,L , ε n下的矩阵是A,则 T 的值域R(T)是 生成的子空间, (1)T的值域R(T)是 ( ε1 ) , T ( ε 2 ) ,L , T ( ε n ) 生成的子空间,即
(1)线性方程组 ) (3)线性方程组 Ax = b 有无穷多解当且仅当 )
R( A) = R( A, b) 且 dim R( A) = r < n
dim R( A) = n, or , N ( A) = {0)