流体运动学 PPT
合集下载
第三章 流体运动学.ppt

1786年,他接受法王路易十六的邀请, 定居巴黎,直至去世。近百余年来,数学领 域的许多新成就都可以直接或间接地溯源于 拉格朗日的工作。
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理
欧拉简介
瑞士数学家及自然科学家。1707年4月 15日出生於瑞士的巴塞尔,1783年9月18日 於俄国彼得堡去逝。欧拉出生於牧师家庭, 自幼受父亲的教育。13岁时入读巴塞尔大学, 15岁大学毕业,16岁获硕士学位。
流线不能是折线,是一条光滑的连续曲线。
在定常流动中,流线不随时间改变其位置和形状,流线和迹 线重合。在非定常流动中,由于各空间点上速度随时间变化, 流线的形状和位置是在不停地变化的。
3、流线微分方程 速度矢量 u uxi uy j uzk
通过该点流线上的微元线段
流体质点的位移
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
速度表达式 加速度表达式
ux
ux (a,b, c,t)
x(a,b, c,t) t
y(a,b, c,t)
uy uy (a,b, c,t)
t
uz
uz (a,b, c,t)
z(a,b, c,t) t
ax
欧拉是18世纪数学界最杰出的人物之一, 他不但为数学界作出贡献,更把数学推至几 乎整个物理的领域。他是数学史上最多产的 数学家,平均每年写出八百多页的论文,还 写了大量的力学、分析学、几何学、变分法 等的课本,《无穷小分析引论》、《微分学 原理》、《积分学原理》等都成为数学中的 经典著作。欧拉对数学的研究如此广泛,因 此在许多数学的分支中也可经常见到以他的 名字命名的重要常数、公式和定理。
第三章流体运动学
§3-1研究流体运动的方法 §3-2流场的基本概念 §3-3流体的连续性方程 §3-4流体微团的运动 §3-5速度势函数及流函数 §3-6简单平面势流 §3-7势流叠加原理
中职教育-《工程流体力学》课件:第3章 流体运动学(5).ppt

速度势 d udx vdy U0dx U0x
流函数 d vdx udy U0dy U0 y
y
φ=C
y
U0
o 图图33..2244 均 均流 流
Ψ=C' x
ox
U0 α
图图33..2255 一一般 般形形式式的的均流均流
工程流体力学
以上结果可推广到一般情况。
设均流速度与x轴成 角,如图3.25。
2
求:(1)该渠道的速度分布;
(2)t=0时,r=2m处流体的速度和加速度。
工程流体力学
【解】 (1)该渠道流量壁面交角1弧度时为
Q 1 t 1 2
则当交角为2π弧度时的流量为
m
2π
1 2
t
1
源的速度势
o
1rad
m 2π
ln
r
1 2
t
1 ln
r
r=2m
流场的速度场
3.18 水渠的流动
vr
若以直角坐标表示
图图3.32.72 7汇汇
工程流体力学
(x, y) m ln x2 y2
2π (x, y) m arctg y
2π x
在实际的油田中,对于均匀等厚的地层,在稳 定情况下,油流向生产井可看作是汇。
【例3.13】如图3.28,有一扩大的水渠,两壁面交
角为1弧度,在两壁面相交处有一小缝,通过该缝 流出的体积流量 Q 1 t 1 (m3/s)。
dr
m 2π
ln
r
rθ o
φ=C x
流函数
d
r
dr
d
图3.26 源
3.26 源
v
dr
vr rd
m rd
流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
流体力学课件(全)

X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
工程流体力学 第4章 流体运动学

质量表示时,为质量流量,以 qm 标记;以体积表示为体 积流量,以 qV 标记,可表示为
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y
工程流体力学流体运动学-PPT精选文档

流体质点的加速度
du a dt
du x u u u u x x dx x dy x dz ax dt t xdt ydt z dt
同理:
u u u u x x x x u u u x y z t x y z
哈密顿算子
2 2 2 2 2 2 2 x y z
3.3 流体运动的基本概念
加速度:
x x x x ax x y z t x y z y y y y ay x y z t x y z z z z z az x y z t x y z
t 表示在某一固定空间点上,液体质点速度对时间的变化率。也就 是在同一地点,由于时间变化而引起的加速度,称为当地加速度。
u
其余几项表示液体质点在同一时刻因地点变化而引起的加速度,称为
迁移加速度。
u x u x u x u x a x a x ux uy uz D dt t x y z u y u y u y du x u y D a x a y ux uy uz D dt t x y z du x u z u z u z u z D a x a z ux uy uz D dt t x y z du x D
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
du a dt
du x u u u u x x dx x dy x dz ax dt t xdt ydt z dt
同理:
u u u u x x x x u u u x y z t x y z
哈密顿算子
2 2 2 2 2 2 2 x y z
3.3 流体运动的基本概念
加速度:
x x x x ax x y z t x y z y y y y ay x y z t x y z z z z z az x y z t x y z
t 表示在某一固定空间点上,液体质点速度对时间的变化率。也就 是在同一地点,由于时间变化而引起的加速度,称为当地加速度。
u
其余几项表示液体质点在同一时刻因地点变化而引起的加速度,称为
迁移加速度。
u x u x u x u x a x a x ux uy uz D dt t x y z u y u y u y du x u y D a x a y ux uy uz D dt t x y z du x u z u z u z u z D a x a z ux uy uz D dt t x y z du x D
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
u x u x u x u x a x t u x x u y y u z z u y u y u y u y a y u x u y u z x y z t u z u z u z u z a z u x u y u z x y z t
水力学 第三章 流体运动学

§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。
流体力学第二讲流体运动学

如可果得是不可压缩流体的平面无旋流动,必然同时存在速度势
和流函数。u x
= y x
uy
= x y
联系流函数与速度势的一对重要的关系式,在数学分析中 称柯西-黎曼(Cauchy-Riemann)条件,满足这种关系的两个 函数称为共轭函数。
grad
注 : rotgrad 0
2024/6/5
21
把
u
代入连续性方程
u 0
,可以得到:
0 0
在直角坐标系中:
2 2 2
x 2
y 2
z 2
0
----拉普拉斯方程。
它是一个线性的二阶偏微分方程。
线性方程的一个突出特点就是解的可以叠加性,
即如果 1,2,......, n是上式的解,则这些解的任意线性 组合 c11 c22 ...... cnn 也是上式的解。
解:(1)流线的微分方程是
dx dy xt yt
上式中的 t 是参数变量,当作常数,对上式积分,得
上式可写为
ln(x+t)=-ln(-y+t)+lnc
(x+t).(-y+t)=c
由上式可知,在流体中任一瞬时的流线是一双曲线族。
当 t=0,x=-1,y=-1,代入上式,得 c=-1。因此,通过点 A
x t 1
消去 t,得 x y 2
y t 1
2024/6/5
10
3、脉线:
是指运动流体中,用下述方法做成的一种“染色线” ,在流场中的一个固定点处,用某种装置(尽量小,而不 致于对所要考虑的流动发生明显干扰)连续不断的对流经 该点的流体质点染色,许多染色点形成一条纤细色线称为 脉线.
烟筒
2024/6/5
《水力学》课件——第三章 流体运动学

是否是接
均匀流 否
?
渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。
第3章流体运动学上PPT课件

3.2 描述流体运动的两种方法
3.2.1 Lagrange法
1.基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化
2.拉格朗日变数:(a,b,c,t)——区分流体 质点的标志
3.质点物理量:B(a,b,c,t), 如:
pp(a,b,c,t) (a,b,c,t)
3.2 描述流体运动的两种方法
3.2 描述流体运动的两种方法
3.2.0 流体质点和空间点
•流体质点:是个物理点,它是在 两者相互关系:流场
连续介质中取出的,在几何尺寸 中空间某一点,先后由 上无限小,可以看作一点,但包 不 同 的 流 体 质 点 所 占 含许多分子,具有一定物理量。 据;流体质点物理量会
发生变化,而空间点是
•空间点:几何点,表示空间位置 不动的。
Reynolds数的物理意义:
惯性力 Re 粘性力
惯性使扰动放大,导致湍流,粘性抑制扰动使流动保持稳定。 当 Re 时,流动趋于理想流体运动。
2. 机翼绕流风洞试验
机翼绕流流场的特点:
流线(streamline): 上翼面:流线密 下翼面:流线稀
(a) Re~1
3. 卡门涡街(Karman vortex street)
第3章 流体运动学
(Fluid Kinematics)
第3章 流体运动学
从几何的观点研究流体的运动,不 讨论运动产生的动力学原因。
ma F
rrx,y,z,t vvx,y,z,t aax,y,z,t
3.1 流动图形观察 (flow visualization)
观察几个典型流动,感受实际流动现象和特征。 圆管流动——流动状态 机翼绕流——升力、阻力 圆柱绕流——涡激振荡
内科大水力学课件03流体运动学

(3—6) (3—7)
当t为常数,x,y,z为变数时,我们可以求得在同一时刻流场 中不同空间点上流体质点的速度分布情况(流速场)。当x,y,
z 为常数,t为变数时,我们可以求得在某一坐标点上,不同时 刻通过的流体的速度变化情况。
流场中,不同坐标点上的流速分布在同一时刻是不同的,另 一方面,同一坐标点上,不同时刻通过的流体质点流速也是不 同的。
图3—2
若出水管是等直径的直管,且水位H保持不变(图3—3),
则管内流动的液体质点,既无当地加速度,也无迁移加速
度, ax 。0
(3—12)
图3—3等直径直管出流
[例3-1] 已知速度场 ux 2t 2,x 2y u,y t y ,z 试uz求 t x时,z 位 于 t 3s 处质点的(加0.速8,0度.8。,0.4)
[解] 将 t 3s, x 0.8m, y 代0.入8m速, z度场0方.4m程,得:
§3.1流动描述
流体运动学研究流体的运动规律,包括描述流体 运动的方法、质点速度、加速度的变化和所遵循的 规律。本章不涉及流体的动力学性质,所研究的内 容及其结论,对无粘性流体和粘性流体均适用。
流体和固体不同,流体运动是由无数质点 构成的连续介质的流动。怎样用数学物理 的方法来描述流体的运动?这是从理论上 研究流体运动规律首先要解决的问题。
的表达式,求质点的加速度,就要跟踪观察这个质点沿程速度的
变化,这样一来,速度表达式中的坐标x,y,z是质点运动轨迹 上的空间点坐标,不能视为常数,而是时间t的函数,即x=x(t)、 y=y(t)、z=z(t)。因此,加速度需按复合函数求导法则导出:
a du u u dx u dy u dz dt t x dt y dt z dt u u u u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a,b,c,t)称拉格兰日变数
(a,b,c)作为不同质点的区别标志。
(a,b,c,t)是各自独立的,质点的初始坐标(a,b,c)与时 间t无关,时间t只影响质点的运动坐标、速度和加速度
3-1
流 体 运 动 的 描 述
表3-1 用拉格兰日法描述流体运动的表达式
质点运动坐标
质点速度
质点-加速度
xx(a,b,c,tຫໍສະໝຸດ uxddxtux(a,b,c,t) yy(a,b,c,t) uyd dytuy(a,b,c,t) zz(a,b,c,t) uzd dztuz(a,b,c,t)
迁移导数或位变导数 uxN xuyN yuzN z (u)N 质点的空间位置变化时,物理量N对时间的变化率,反映流场 的非均匀性。在均匀流动时,物理量N在流场中处处相等, NN因N而0均, 匀流场中迁移导数必然为零。
x y z
注意:迁移导数 uxN xuyN y中u的z自N z 变量仍然是时间t
3-2
z
uz 1, uz 0, uz 1 x y z
u x 8.4m / s u y 2.7 m / s u z 3.3m / s
ax 28.422.723.3024.2m/s2
质点的加速度为 ay18.402.7(1)3.311.6m/s2
[答]略。
az 18.412.703.3(1)6.1m/s2
流 体 运 动 的 描 述
欧拉法与控制体
空间场或控制体法——分析某一区域内流体的总体特征 不关心个别流体质点的运动,只观察经过空间每个位置的 运动情况,所以不需关心质点系的变形问题。
表演舞台
3-1
流 体 运 动 的 描 述
欧拉法与控制体
流体经过的一个固定空间,其中充满连续不断的流体质点,每 个质点都具有一定的物理量。是物理量连续分布的场,即流场 如速度场、密度场、温度场、压强场等 z
!!也可以用多元函数的泰勒级数展开公式得到此式
3-2
因为位移对时间的导数就是质点的速度,既
流 体
d dx tux,d dy tuy,d d ztuz
运
所以质点导数又可写成
动 的
d dN tux N xuy N yuz N z N t
几
个
或
d N(u)NN
dt
t
基
本
式中
i j k x y z
z
拉格兰日法与质点系
质点系法——分析每个质点的运动
B
u
(x,y,z)
流体质点系的特点——在运动中变形
首先需要将不同流体质点加以标志识别!
(a,b,c)
OA
y
如图,在时间t=0 的初始时刻, x 各流体质点有唯一坐标——初始坐标:
图3-1
拉格兰日变数
( x 0 a ,y 0 )b ,z ,0用 c 质点的
开始飘动,高的草开始摇动; 3级称为微风,3.4—5.4m/s,树叶及小枝摇动不息,旗子展开,
高的草摇动不息; 4级称为和风,5.5—7.9m/s,能吹起地面灰尘和纸张,树枝动摇
,高的草呈波浪起伏; 5级称为清劲风,8.0—10.7m/s,有叶的小树摇摆,内陆的水面
有小波,高的草波浪起伏明显; 6级称为强风,10.8—13.8m/s,大树枝摇动,电线呼呼有声,撑
流线的特征:
1、一般地,两条流线不相交,任一条流线是无转折的 光滑曲线,除非该点的流速大小为零或无穷大。
2、起点在不可穿透的光滑固体边界上的流线将与该边 界的位置重合。因为沿边界法向的流速分量等于零。
3-2
流 体 运 动 的 几 个 基 本 概 念
流线的性质中的例外
驻点或奇点。当流体绕尖头直尾的物体流动时,物体的前缘点 A是一个实际的驻点,驻点上流线相交,因为驻点速度为零。
z
物理量的质点导数
M(t+ t)
运动中的流体质点所具有的物理量 N(如速度、压强、密度、温度、质量、 动量、动能等)对时间的变化率
s M(t)
B(x+ x,y+ y,z+ z)
O
A(x,y,z) y
dN N lim
dt t0 t
x 图3-2 流体的质点导数
limN(xΔx,yΔy,zΔz,tΔt)N(x,y,z,t)
源或汇。流体沿射线从B点流出 或者向B点流入,B点速度趋于无 穷,奇点处流线也是相交的。
流线不能突然转折,如下图尾部, 必然有一部分流体不能参与主流方向的运动,而被主流带动产 生旋涡,消耗了主流的能量,增大了运动物体的阻力。
B
B
A
(1) 驻点
图3-6 驻点与奇点
(2) 奇点
3-2
流 体 运 动 的 几 个 基 本 概 念
伞困难,高的草不时倾伏;
3-1
流 体 运 动 的 描 述
7级称疾风,13.9—17.1m/s,整个树摇动,大树枝弯下来,迎风 步行感觉不便;
8级称为大风,17.2—20.7m/s,可折毁小树枝,人迎风前行感觉 阻力甚大;
9级称为烈风,20.8—24.4m/s,草房遭受破坏,屋瓦被揪 起,大树枝可折断;
概
念
称哈密尔登(Hamilton)算子, 读“Nabla”或矢性 微分算子,它虽然具有矢量形式,但并非矢量,
只是微分运算的一种符号。
3-2
流 体 运 动 的 几 个 基 本 概 念
质点的物理量N可以是压强、密度、温度,也可以 是流体运动的速度。
d d p t u x p x u y p y u z p z p t (u )p p t
定常均匀流 定常非均匀流 (u)u0
A
B
C
图3-3 当地加速度与迁移加速度
非定常 均匀流
u 0 t
非定常 非均匀流
(u)u0
u 0 t
A
B
C
3-2
流 体 运 动 的 几 个 基 本 概 念
[例题3-1]已知流速场为(单位:m/s)
u x 2 t 2 x 2 y , u y t y z , u z t x z
的
描
随空间位置的变化规律
述
随时间连续变化的规律
与边界条件的相互作用力规律
流过机翼 橄榄球运动 乒乓球运动
流动远比 固体运动 复杂!
运动+变 形
3-1
流 体 运 动 的 描 述
• 风力的分级
0级称为无风, 0—0.2m/s,陆地上的特征是烟直上; 1级称为软风,0.3—1.5m/s,烟能表示风向,树叶略有摇动; 2级称为轻风,1.6—3.3m/s,人面感觉有风,树叶有微响,旗子
uuxiuyjuzk
流线上的微元线段矢量为
x
u1 u2
4
O
3 2
1
流线
u3 u4
y
d sdi xdj ydkz
因为两个矢量方向一致,矢量积为零,流线矢量为 uds0
写成投影形式为
dx ux
udyy, 这udzz就是最常用的流线微分方程.
3-2
流 体 运 动 的 几 个 基 本 概 念
下图表示一条流线上1、2、3各点的流速矢量方向,在充满 流动的空间内可以绘出一族流线,所构成的流线图称为流谱。
迹线 是某一流体质点的运动轨迹线。它是单个质点在运动
过程中所经过的空间位置随时间连续变化的轨迹。
恒定流:所有各质点均会沿流线运动,迹线与流线重合。
非恒定流:质点不一定沿着流线运动, 但运动方向仍与该瞬时某一条流线相切
z
非恒定流在什么情况下,流线可能与迹线重合?
第 2-1 流体运动的描述 三
章
2-2 流动的几个基本概念
流 体
2-3 流动的分类
运
动
2-4 流体运动的质量守恒方程
学
子
在
川
上
曰
:
逝
者
如
斯
夫
!
人不能两次踏进同一条河流
请君试问东流水,别意与之谁短长
莫 让
问君能有几多愁?恰似一江春水向东流
年 君不见黄河之水天上来,奔流到海不复回
华 飞流直下三千尺,疑是银河落九天
用流体质点的空间位置坐标(x,y,z)与 时间变量t表达空间内流体运动规律( x,y,z,t)叫作欧拉变数。各不独立
xx(t) yy(t) zz(t)
速度场的表达式
u u ( x ,y ,z ,t ) u [ x ( t )y ( t , )z ( t , )]
ux ux(x,y,z,t)ux[x(t),y(t),z(t)] uy uy(x,y,z,t)uy[x(t),y(t),z(t)] uz uz(x,y,z,t)uz[x(t),y(t),z(t)]
试求t=3m/s时位于(0.6,0.6,(0m.3))处流体质点的加速度
[解]质点导数的各项为 ux2, uy 1, uz 1
t
t
t
ux 2, ux 2, ux 0 将 x 0 .6 , y 0 .6 , z 代 入0 .3 速, 度t 表3 达式
x y z
得
uy 0, uy 1, uy 1
x y
t0
t
称为物理量N的质点导数(或随体导数)
。对多元复合函数 N N [x ( t)y ( , 求t)导z ( ,,t可)t得] ,质点导数
dN Nd xNd yNd zN dt xdtydtzdtt
质点导数是数学上多元复合函数对独立自变量t的导数。数学 上没有这种名称,是联系流体力学的物理内容而定的
t2时刻
流体与固体边界的相互作用 任何时刻物理量在场上的分布规律
3-1
流 体 运 动 的 描 述
流场划分:定常场和均匀场
定常场 如果流场中的速度、 压强、密度、温度等等物理量的 分布与时间t无关,即满足下式 ,则称为定常场,或定常流动, 此时物理量具有对时间的不变性 。