江苏省南通中学2019—2020学年度第二次调研测试高三数学含附加题(教师版详解)(PDF版) (1)
南通市2019届高三第二次调研测试参考答案
南通市2019届高三第二次调研测试参考答案及评分建议数学I一、填空题:本大题共14小题,每小题5分,共70分. 1. 曲线32y x x =-在点(1,-1)处的切线方程是 ▲ . 2. 若15ii 3ia b +=+-(a b ∈,R ,i 为虚数单位),则ab = ▲ . 3.命题“若实数a 满足2a ≤,则24a <”的否命题是 ▲ 命题(填“真”、“假”之一). 4. 把一个体积为27cm 3的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为 ▲ .5. 某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为 ▲ 分.6.设{}(20)(01)M m m ==+∈R ,,,a a 和{}(11)(11)N n n ==+-∈R ,,,b b 都是元素为向量的集合,则M ∩N = ▲ .7. 在如图所示的算法流程图中,若输入m = 4,n = 3,则输出的a = ▲ .8.设等差数列{}n a 的公差为正数,若1231231580a a a a a a ++==,,则111213a a a ++= ▲ .9. 设αβ,是空间两个不同的平面,m ,n 是平面α及β外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α. 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: ▲ (用序号表示). 10.定义在R 上的偶函数()f x 满足()(2)f x f x =+,当[]35x ∈,时,()24f x x =--. 给出下列不等式:①()()sin cos 6π6πf f <;②(sin1)(cos1)f f >;③()()cos sin 332π2πf f <;④(cos2)(sin 2)f f >.其中正确的是 ▲ (用序号表示).11.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线2213y x -=的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin sin sin A BC-的值是 ▲ .12.在平面直角坐标系xOy中,设()11P x y ,、()22Q x y ,,定义:1212()d P Q x x y y =-+-,. 已知()10B ,,点M 为直线220x y -+=上动点,则使()d B M ,取最小值时点M 的坐标是 ▲ .13.若实数x ,y ,z ,t 满足110000x y z t ≤≤≤≤≤,则x z y t +的最小值为 ▲ .14.在平面直角坐标系xOy 中,设A 、B 、C 是圆x 2+y 2=1上相异三点,若存在正实数λμ,,使得OC =OA OB λμ+,则()223λμ+-的取值范围是 ▲ . 【填空题答案】1. x -y -2=02. 825-3. 真4. 26275. 26.(){}20, 7. 12 8. 1059. ①③④⇒②或②③④⇒① 10. ④ 11. 21- 12. ()312, 13. 15014. ()2+∞,二、解答题:本大题共6小题,共计90分,解答时应写出文字说明,证明或演算步骤. 15.(本小题满分14分)如图,平面PAC ⊥平面ABC ,点E 、F 、O 分别为边P A 、PB 、AC 的中点,点G 是线段CO 的中点,4AB BC AC ===,PA PC ==.求证: (1)PA ⊥平面EBO ; (2)FG ∥平面EBO .【证明】由题意可知,PAC ∆为等腰直角三角形,ABC ∆为等边三角形. …………………2分(1)因为O 为边AC 的中点,所以BO AC ⊥, 因为平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,PABCOEFG(第15题)BO ⊂平面ABC ,所以BO ⊥面PAC . …………………5分因为PA ⊂平面PAC ,所以BO PA ⊥,在等腰三角形PAC 内,O ,E 为所在边的中点,所以OE PA ⊥, 又BO OE O =,所以PA ⊥平面EBO ;…………………8分 (2)连AF 交BE 于Q ,连QO .因为E 、F 、O 分别为边P A 、PB 、PC 的中点,所以2AO OG =,且Q 是△P AB 的重心,…………………10分于是2AQAO QF OG==,所以FG //QO . …………………12分 因为FG ⊄平面EBO ,QO ⊂平面EBO ,所以FG ∥平面EBO . …………………14分【注】第(2)小题亦可通过取PE 中点,作过FG 且与平面EBO 平行的平面证得. 16.(本小题满分14分)已知函数)()2cos sin 222xx x f x =-.(1)设ππ22θ⎡⎤∈-⎢⎥⎣⎦,,且()1f θ=,求θ的值; (2)在△ABC 中,AB =1,()1f C =,且△ABC ,求sin A +sin B 的值.【解】(1)2()2sin cos 222x x xf x =-cos )sin x x +-=()π2cos 6x + (3)分由()π2cos 16x ++=,得()π1co s 62x +=, ………………5分 于是ππ2π()63x k k +=±∈Z ,因为ππ22x ⎡⎤∈-⎢⎥⎣⎦,,所以ππ26x =-或. ………………7分(2)因为(0π)C ∈,,由(1)知π6C =. ………………9分因为△ABC 1πsin 26ab =,于是ab =. ① 在△ABC 中,设内角A 、B 的对边分别是a ,b .PACOE FGQ由余弦定理得2222π12cos66a b ab a b =+-=+-,所以227a b +=. ② 由①②可得2a b =⎧⎪⎨=⎪⎩,或2.a b ⎧=⎪⎨=⎪⎩ 于是2a b +=. ………………12分由正弦定理得sin sin sin 112A B C a b ===,所以()1s i 2A B a b +=+=+. ………………14分 17.(本小题满分14分)在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)试判断直线11A B 与圆C 的位置关系; (3)若圆C 的面积为π,求圆C 的方程. 【解】(1)设椭圆E 的焦距为2c (c >0),因为直线11A B 的倾斜角的正弦为1313=,于是228a b =,即228()a a c =-,所以椭圆E 的离心率e == …………4分 (2)由e =可设()40a k k =>,c,则b =, 于是11A B的方程为:40x k -+=, 故2OA 的中点()20k ,到11A B 的距离d =242k kk +=, …………………………6分 又以2OA 为直径的圆的半径2r k =,即有d r =,所以直线11A B 与圆C 相切. …………………………8分 (3)由圆C 的面积为π知圆半径为1,从而12k =, …………………………10分设2OA 的中点()10,关于直线11A B:20x -+=的对称点为()m n , ,则1,112022n m m n ⎧=-⎪-⎨+⎪-+=⎩. …………………………12分解得13m n ==, 所以,圆C 的方程为()(22113x y -+=. …………………………14分18.(本小题满分16分)如图,实线部分的月牙形公园是由分别在半径都是2km 的圆P 上的一段优弧和圆Q 上的一段劣弧构成,点P 在圆Q 上,点Q 在圆P 上,现在要在公园里建一块顶点都在圆P 上的多边形活动场地.(1)如图甲,要建的活动场地为△RST ,求场地的最大面积;(2)如图乙,要建的活动场地为等腰梯形ABCD ,求场地的最大面积.【解】(1)如右图,过S 作SH ⊥RT 于H , S △RST =RT SH ⋅21. ……………………2分(第17题甲)(第17题乙)TQPNMSR甲乙由题意,△RST 在月牙形花园里, RT与圆Q只能相切或相离; ……………………4分RT 左边的部分是一个大小不超过半圆的弓形, 则有RT ≤4,SH ≤2,当且仅当RT 切圆Q 于P 时(如下左图),上面两个不等式中等号同时成立.此时,场地面积的最大值为S △RST =1422⨯⨯=4(km 2). (6)分(2)同(1)的分析,要使得场地面积最大,AD 左边的部分是一个大小不超过半圆的弓形,AD 必须切圆Q 于P ,再设∠BP A =θ,则有()11π22sin 222sin(π2)4(sin sin cos )0222ABCD S =⨯⨯⨯⨯+⨯⨯⨯-=+<<四边形θθθθθθ.……………………8分令θθθcos sin sin +=y ,则)sin (sin cos cos cos θθθθθ-++='y 1cos cos 22-+=θθ. ………………… 11分若0='y ,1πcos 23θθ==,,又()π03θ∈,时,0>'y ,()ππ32θ∈,时,0<'y , …………………14分函数θθθcos sin sin +=y 在π3θ=处取到极大值也是最大值,故π3θ=时,场地面积的最大值为36(km 2). …………………16分 19. (本小题满分16分)设定义在区间[x 1, x 2]上的函数y =f (x )的图象为C ,M 是C 上的任意一点,O 为坐标原点,设向量OA =()()11x f x ,,()()22OB x f x =,,OM =(x ,y ),当实数λ满足x =λ x 1+(1-λ) x 2时,记向量ON =λOA +(1-λ)OB .定义“函数y =f (x )在区间[x 1,x 2]上可在标准k 下线性近似”是指“MN ≤k 恒成立”,其中k 是一个确定的正数.(1)设函数 f (x )=x 2在区间[0,1]上可在标准k 下线性近似,求k 的取值范围;(2)求证:函数()ln g x x =在区间1e e ()m m m +⎡⎤∈⎣⎦R ,上可在标准k=18下线性近似.(参考数据:e=2.718,ln(e -1)=0.541). 【解】(1)由ON =λOA +(1-λ)OB 得到BN =λBA , 所以B,N,A三点在一条直线上, ……………………2分又由x =λ x 1+(1-λ) x 2与向量ON =λOA +(1-λ)OB ,得N 与M 的横坐标相同. ……………4分对于 [0,1]上的函数y=x 2,A (0,0),B (1,1), 则有()221124MN x x x =-=--+,故|104MN ⎡⎤∈⎢⎥⎣⎦,; 所以k 的取值范围是)14⎡+∞⎢⎣,. ……………………6分(2)对于1e e m m +⎡⎤⎣⎦,上的函数ln y x =,A (e m m ,),B (1e 1m m ++,), ……………………8分则直线AB 的方程11(e )ee mm my m x +-=--, ……………………10分令11()ln (e )eem m mh x x m x +=----,其中()1e e m m x m +⎡⎤∈∈⎣⎦R ,, 于是111()e em m h x x +'=--, ……………………13分列表如下: MN =(h x 又()1e 2(e e )ln e 1e 1m m h +--=--≈-0.12318<,从而命题成立. ……………………16分 20.(本小题满分16分)已知数列{}n a 满足2*12()n a a a n n +++=∈N .(1)求数列{}n a 的通项公式;(2)对任意给定的*k ∈N ,是否存在*p r ∈N ,(k p r <<)使111k p ra a a ,,成等差数列?若存在,用k 分别表示p 和r ;若不存在,请说明理由;(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为123,,n n n a a a . 【解】(1)当1n =时,11a =; 当*2n n ∈N ≥,时,2121(1)n a a a n -+++=-,所以22(1)21n a n n n =--=-;综上所述,*21()n a n n =-∈N . ……………………3分 (2)当1k =时,若存在p ,r 使111k p r a a a ,,成等差数列,则1213221r p k pa a a p -=-=-,因为2p ≥,所以0r a <,与数列{}n a 为正数相矛盾,因此,当1k =时不存在; …………5分当2k ≥时,设k p r a x a y a z ===,,,则112x z y+=,所以2xyz x y=-, ……………………7分令21y x =-得(21)z xy x x ==-,此时21k a x k ==-,212(21)1p a y x k ==-=--, 所以21p k =-,2(21)(43)2(452)1r a z k k k k ==--=-+-, 所以2452r k k =-+;综上所述,当1k =时,不存在p ,r ;当2k ≥时,存在221,452p k r k k =-=-+满足题设.……………………10分(3)作如下构造:12322(23)(23)(25)(25)n n n a k a k k a k =+=++=+,,,其中*k ∈N , 它们依次为数列{}n a 中的第2265k k ++项,第2288k k ++项,第221013k k ++项, ……12分显然它们成等比数列,且123n n n a a a <<,123n n n a a a +>,所以他们能组成三角形.由*k ∈N 的任意性,这样的三角形有无穷多个. ……………………14分下面用反证法证明其中任意两个三角形111A B C 和222A B C 不相似: 若三角形111A B C 和222A B C 相似,且12k k ≠,则11222212(23)(25)(23)(25)(23)(23)k k k k k k ++++=++, 整理得121225252323k k k k ++=++,所以12k k =,这与条件12k k ≠相矛盾, 因此,任意两个三角形不相似.故命题成立. ……………………16分 【注】1.第(2)小题当a k 不是质数时,p ,r 的解不唯一;2. 第(3)小题构造的依据如下:不妨设123n n n <<,且123n n n a a a ,,符合题意,则公比q >1,因123n n n a a a <<,又123n n n a a a +>,则21q q +>,所以1q <因为三项均为整数,所以q为1⎛ ⎝内的既约分数且1n a 含平方因子,经验证,仅含21或23时不合,所以12*(23)()n a k p k p =+∈N ,;3.第(3)小题的构造形式不唯一.数学II (附加题)21.【选做题】本题包括A ,B ,C ,D 四小题中,请选定其中.....两题..作答..,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—1:几何证明选讲自圆O 外一点P 引圆的一条切线,切点为A ,M 为P A 的中点, 过M 引圆的割线交圆于B ,C 两点,且∠BMP =100°,∠BPC =40°, 试求∠MPB 的大小.【解】因为MA 为圆O 的切线,所以2MA MB MC =⋅. 又M 为P A 的中点,所以2MP MB MC =⋅. 因为B M ∠=∠,所以B M∆∆. ………………5分 于是MPB MCP ∠=∠. 在△MCP中,由180MPB MCP BPC BMP ∠+∠+∠+∠=︒得,∠MPB =20°. ………………10分 B .选修4—2:矩阵与变换已知二阶矩阵A a b c d ⎡⎤=⎢⎥⎣⎦,矩阵A 属于特征值11λ=-的一个特征向量为111 ⎡⎤=⎢⎥-⎣⎦α,属于特征值24λ=的一个特征向量为232⎡⎤=⎢⎥⎣⎦α.求矩阵A .【解】由特征值、特征向量定义可知,A 1α1λ=1α, 即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩,……………………5分 同理可得3212328a b c d +=⎧⎨+=⎩,, 解得232, ,, a b c d ====.因此矩阵A 2321 ⎡⎤=⎢⎥⎣⎦. …………10分 C .选修4—4:坐标系与参数方程(第21—A 题)在平面直角坐标系xOy 中,已知曲线C 的参数方程为()2cos sin ,为参数x y ααα=⎧⎨=⎩.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()πc o s 24ρθ-=P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.【解】()πcos 4ρθ-=cos sin 4ρθρθ+=,则直线l的直角坐标方程为4x y +=. …………………4分设点P 的坐标为()2cos sin ,αα,得P 到直线l 的距离d =,即d =,其中cos sinϕϕ=…………………8分当()sin 1αϕ+=时,m i n d = ………………10分 D .选修4—5:不等式选讲若正数a ,b ,c 满足a +b +c =1,求111323232a b c +++++的最小值. 【解】因为正数a ,b ,c 满足a +b +c =1, 所以,()()()()()2111323232111323232a b c a b c +++++++++⎡⎤⎣⎦+++≥,………………5分即1111323232≥a b c +++++, 当且仅当323232a b c +=+=+,即13a b c ===时,原式取最小值1. (10)分【必做题】第22题、第23题,每题10分,共计20分. 解答时应写出文字说明,证明过程或演算步骤.22.在正方体1111ABCD A B C D -中,O 是BD 的中点,E 是D 1O 上一点,且D 1E =λEO .ABDO(第22题)EB 1A 1CC 1D 1(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若平面CDE ⊥平面CD 1O .求λ的值.【解】(1)不妨设正方体的棱长为1,以1,,DA DC DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是()111442DE =,,,()1011CD =-,,. 由cos 1DE CD 〈〉,=11||||DE CD DE CD ⋅⋅=. 所以异面直线AE 与CD 1所成角的余弦值为. ……………………5分 (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0得 1111110220x y y z ⎧-=⎪⎨⎪-+=⎩,, 取x 1=1,得y 1=z 1=1,即m =(1,1,1) . (7)分由D 1E =λEO ,则E 12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,,DE =12(1)2(1)1λλλλλ⎛⎫ ⎪+++⎝⎭,,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得 2222002(1)2(1)1y x y z λλλλλ=⎧⎪⎨++=⎪+++⎩,, 取x 2=2,得z 2=-λ,即n =(-2,0,λ) . 因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2. ……………………10分23.一种抛硬币游戏,规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和期望E ξ; (2)求恰好得到n 分的概率. 【解】(1)所抛5次得分ξ的分布列为(或P (ξ=i )= ()5551C 2i - (i =5,6,7,8,9,10) . Eξ=()5105551C2i i i -=⋅∑=152(分) . ……………………5分 (2)令p n 表示恰好得到n 分的概率. 不出现n 分的唯一情况是得到n -1分以后再掷出一次反面. 因为“不出现n 分”的概率是1-p n ,“恰好得到n -1分”的概率是p n -1, 因为“掷一次出现反面”的概率是12,所以有1-p n =12p n -1,……………………7分即p n -23=-12()123n p --. 于是{}23n p -是以p 1-23=12-23=-16为首项,以-12为公比的等比数列.所以p n -23=-16()112n --,即p n =()11232n⎡⎤+-⎢⎥⎣⎦. 答:恰好得到n 分的概率是()11232n⎡⎤+-⎢⎥⎣⎦. ……………………10分。
江苏省南通市2019-2020学年高考数学第二次调研试卷含解析
江苏省南通市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()2x x e f x x =的图像大致为( ) A . B .C .D .【答案】A【解析】【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可.【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x==,当0x →,()0f x →,排除B , 故选:A .【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.2.已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( )A .203πB .152πC .6πD .5π【答案】A【解析】【分析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC 中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥,分别取ABC V 与DBC V 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体A BCD -的球心,由AB AC DB DC BC 2=====,得正方形OEGF 36OG =, ∴四面体A BCD -的外接球的半径222265R OG BG ()133=+=+= ∴球O 的表面积为2520π4π33⨯=. 故选A .【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.3.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( )A .1B .2C .3D .6 【答案】B【解析】【分析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出5a .【详解】∵{a n }为等差数列,2343a 2a 1,a 2a 7=+=+,∴()()1111a d 2a 2d 1a 3d 2a 2d 7⎧+=++⎪⎨+=++⎪⎩, 解得1a =﹣10,d =3,∴5a =1a +4d =﹣10+11=1.故选:B .【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4.已知函数e 1()e 1x x f x -=+,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<【答案】B【解析】【分析】可判断函数()f x 在R 上单调递增,且0.30.30.3210.20log 2>>>>,所以c b a <<. 【详解】12()111e e x x xf x e -==-++Q 在R 上单调递增,且0.30.30.3210.20log 2>>>>, 所以c b a <<.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.5.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( )A .﹣2B .﹣1C .2D .4【答案】C【解析】【分析】根据对称性即可求出答案.【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2,故选:C .【点睛】本题主要考查函数的对称性的应用,属于中档题.6.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件.【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >.因此,“cos cos A B <”是“sin sin A B >”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.7.已知集合{}2|230A x x x =--<,集合{|10}B x x =-≥,则()A B ⋂=R ð( ). A .(,1)[3,)-∞+∞UB .(,1][3,)-∞+∞UC .(,1)(3,)-∞+∞UD .(1,3)【答案】A【解析】【分析】算出集合A 、B 及A B I ,再求补集即可.【详解】 由2230x x --<,得13x -<<,所以{|13}A x x =-<<,又{|1}B x x =≥,所以{|13}A B x x ⋂=≤<,故()A B ⋂=R ð{|1x x <或3}x ≥.故选:A.【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.8.数列{}n a 满足()*212n n n a a a n +++=∈N ,且1239a a a ++=,48a =,则5a =( ) A .212 B .9 C .172 D .7【答案】A【解析】【分析】先由题意可得数列{}n a 为等差数列,再根据1239a a a ++=,48a =,可求出公差,即可求出5a .【详解】数列{}n a 满足*212()n n n a a a n N +++=∈,则数列{}n a 为等差数列,1239a a a ++=Q ,48a =,1339a d ∴+=,138a d +=, 52d ∴=, 54521822a a d ∴=+=+=, 故选:A . 【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.9.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A 3B .36C 3D .33【答案】C【解析】【分析】 由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥, 其底面面积11(11)12S =⨯⨯+=,高3h = 故体积133V Sh == 故选:C .【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.10.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX <【答案】C【解析】【分析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】13X =表示取出的为一个白球,所以()14116233C P X C ===.12X =表示取出一个黑球,()12116123C P X C ===,所以()121832333E X =⨯+⨯=. 23X =表示取出两个球,其中一黑一白,()11422268315C C P X C ===,22X =表示取出两个球为黑球,()22226115C P X C ==,24X =表示取出两个球为白球,()242266415C P X C ===,所以()2816103241515153E X =⨯+⨯+⨯=.所以()()1233P X P X =>=,12EX EX <. 故选:C【点睛】 本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.11.函数sin (3sin 4cos )y x x x =+()x R ∈的最大值为M ,最小正周期为T ,则有序数对(,)M T 为( ) A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π 【答案】B【解析】函数23353sin (3sin 4cos )3sin 4sin cos 2sin 2cos 2sin(2)2222y x x x x x x x x x θ=+=+=-+=-+(θ为辅助角)∴函数的最大值为4M =,最小正周期为22T ππ== 故选B12.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .【答案】B【解析】考点:程序框图. 分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S 的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i <5时退出,故选B .二、填空题:本题共4小题,每小题5分,共20分。
【2019南通二模】江苏省南通市2019届高三第二次调研数学试卷(解析版)
2019届江苏南通高三第二次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】23. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()0αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分。
2019-2020学年江苏省南通市海安高中高三下学期第二次检测数学试卷 (解析版)
2019-2020学年江苏省南通市海安高中高三(下)第二次检测数学试卷(5月份)一、填空题(共14小题).1.(5分)已知集合M={2,0,x},集合N={0,1},若N⊆M,则x=.2.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.3.(5分)已知复数z满足(3+4i)z=1(i为虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,最后输出的S的值为.5.(5分)现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为.6.(5分)在△ABC中,若AB=1,BC=2,,则的值是.7.(5分)若实数x,y满足约束条件,则目标函数z=2x+y的最小值为.8.(5分)已知sin(15°﹣α)=,则cos(30°﹣2α)的值为.9.(5分)已知等比数列{a n}的前n项和为S n,若a2a8=2a3a6,S5=﹣62,则a1的值是.10.(5分)已知双曲线的一条渐近线与直线x﹣2y+3=0平行,则离心率e =.11.(5分)一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的倍.12.(5分)已知函数f(x)=,则不等式f(x)<(2﹣x)的解集为.13.(5分)已知函数y=a x+b(b>0)的图象经过点P(1,3),如图所示,则+的最小值为.14.(5分)已知直线x﹣y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若,则圆的半径r=.二、解答题(共6小题).15.(14分)设函数x.(1)求f(x)的单调增区间;(2)若x∈(0,4),求y=f(x)的值域.16.(14分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD;(2)求证:直线AC⊥平面ODE.17.(14分)如图,已知椭圆C:+=1(a>b>0),离心率为.过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB.(1)求椭圆C的右准线方程为:x=4.求椭圆C的方程;(2)设直线BD、AB的斜率分别为k1,k2,求的值.18.(16分)如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知OEF是一个游泳池,计划在地块OABC内修一条与池边EF相切于点M的直路l (宽度不计),交线段OC于点D,交线段OA于点N.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边EF满足函数y=﹣x2+2()的图象.若点M到y轴距离记为t.(1)当时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?19.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3xlnx﹣1(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在区间(,e)上有且只有一个极值点,求实数a的取值范围.20.(16分)已知数列{a n}的前n项和为S n,且对一切正整数n都有.(Ⅰ)求证:a n+1+a n=4n+2;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)是否存在实数a,使不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.参考答案一、填空题(共14小题).1.(5分)已知集合M={2,0,x},集合N={0,1},若N⊆M,则x=1.【分析】根据条件N⊆M,确定元素关系,进行求解即可,从而得到x的值.解:∵集合M={2,0,x},N={0,1},∴若N⊆M,则集合N中元素均在集合M中,故答案为:1.2.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.3.(5分)已知复数z满足(3+4i)z=1(i为虚数单位),则z的模为.【分析】复数方程两边求模推出结果即可.解:复数z满足(3+4i)z=1(i为虚数单位),可得:|(3+4i)z|=1,可得5|z|=8.故答案为:.4.(5分)根据如图所示的伪代码,最后输出的S的值为55.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1+2+3+4+5+…+10的值,利用等差数列的求和公式计算即可得解.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:由于:S=1+2+3+4+5+…+10=55,故答案为:55;5.(5分)现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为.【分析】利用组合的方法求出甲类试题2道,乙类试题3道,从中随机取2道试题的方法,全是甲类试题,有1种方法,利用对立事件的概率公式求出至少有1道试题是乙类试题的概率.解:甲类试题2道,乙类试题3道,从中随机取2道试题,共有=10种方法,全是甲类试题,有7种方法,故答案为:.6.(5分)在△ABC中,若AB=1,BC=2,,则的值是﹣5.【分析】由已知可得△ABC为直角三角形,以B为坐标原点建系,求出向量的坐标运算.解:由AB=1,BC=2,,可知△ABC为直角三角形,如图,∴=0﹣3﹣1=﹣5.故答案为:﹣5.7.(5分)若实数x,y满足约束条件,则目标函数z=2x+y的最小值为1.【分析】作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最小,由,解得,故答案为:18.(5分)已知sin(15°﹣α)=,则cos(30°﹣2α)的值为.【分析】直接利用二倍角公式化简求解即可.解:,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=1﹣2×=.故答案为:.9.(5分)已知等比数列{a n}的前n项和为S n,若a2a8=2a3a6,S5=﹣62,则a1的值是﹣2.【分析】由题意可知,q≠1,结合等比数列的通项公式及求和公式可得,解方程可求解:∵a2a8=2a3a6,S5=﹣62∴q≠1解方程可得,q=2,a1=﹣2故答案为:﹣210.(5分)已知双曲线的一条渐近线与直线x﹣2y+3=0平行,则离心率e=.【分析】利用双曲线的渐近线方程,求出a,然后求解离心率.解:双曲线的一条渐近线与直线x﹣2y+3=7平行,可得,解得a=,双曲线的离心率为:=.故答案为:.11.(5分)一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的2倍.【分析】根据几何体的性质,公式转化为用r表示的式子判断.解:∵一个圆柱和一个圆锥同底等高∴设底面半径为r,高为h,∴πrl=2πr2,l=2r∴圆柱的侧面积=2πrh=2πr2,∴圆柱的侧面积是其底面积的2倍,故答案为:.12.(5分)已知函数f(x)=,则不等式f(x)<(2﹣x)的解集为(1,+∞).【分析】判断函数f(x)的单调性,利用函数的单调性进行求解即可.解:当x≥0时,f(x)=e x为增函数,且f(x)≥1,当x<0时,f(x)=x+1为增函数,且f(x)<7,则不等式f(x)<f(2﹣x)等价为x<2﹣x,即不等式的解集为(1,+∞),故答案为:(1,+∞).13.(5分)已知函数y=a x+b(b>0)的图象经过点P(1,3),如图所示,则+的最小值为.【分析】函数y=a x+b(b>0)的图象经过点P(1,3),可得3=a+b,a>1,b>0.即(a﹣1)+b=2.再利用“乘1法”与基本不等式的性质即可得出.解:∵函数y=a x+b(b>0)的图象经过点P(1,3),∴3=a+b,a>1,b>4.∴(a﹣1)+b=2.故答案为:.14.(5分)已知直线x﹣y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若,则圆的半径r=.【分析】本题可以利用方程组得到交点间的坐标关系,然后将向量条件坐标化,得到关于半径的方程,求出半径的值.解:设M(x1,y1),N(x2,y2),由直线x﹣y+5=0与圆O:x2+y2=r2(r>0)联立,∴x1+x2=﹣3,x1x5=(9﹣r6).∵,∴(9﹣r3)+(9﹣r2)=3,故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)设函数x.(1)求f(x)的单调增区间;(2)若x∈(0,4),求y=f(x)的值域.【分析】(1)利用三角函数的恒等变换化简函数f(x),再根据正弦函数的单调性求出f(x)的单调增区间;(2)利用x的取值范围求出x﹣的取值范围,从而得出sin(x﹣)的取值范围,即是f(x)的值域.解:(1)函数f(x)=sin(x﹣)﹣cos x=sin x﹣cos x令﹣+8kπ≤x﹣≤+2kπ,k∈Z;∴函数f(x)的单调增区间为:[﹣+8k,+8k],k∈Z;…6分∴0<x<π,∴﹣<sin(x﹣)≤1;即函数f(x)的值域为:(﹣,].…14分.16.(14分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD;(2)求证:直线AC⊥平面ODE.【分析】(1)根据线线平行推出线面平行;(2)根据线面垂直的判定定理进行证明即可.【解答】证明(1)∵四边形ABCD是菱形,AC∩BD=O,∴点O是BD的中点,∵点G为BC的中点∴OG∥CD,…(3分)(8)∵BF=CF,点G为BC的中点,∴FG⊥BC,∵AC⊂平面ABCD∴FG⊥AC,∴四边形EFGO为平行四边形,∴FG∥EO,…(11分)∵AC⊥EO,AC⊥DO,EO∩DO=O,EO、DO在平面ODE内,∴AC⊥平面ODE.…(14分)17.(14分)如图,已知椭圆C:+=1(a>b>0),离心率为.过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB.(1)求椭圆C的右准线方程为:x=4.求椭圆C的方程;(2)设直线BD、AB的斜率分别为k1,k2,求的值.【分析】(1)运用椭圆的离心率公式和准线方程,及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1),运用直线的斜率公式,由两直线垂直的条件,可得AD的斜率,设直线AD的方程为y=kx+m(k、m≠0),代入椭圆方程,由韦达定理,结合直线的斜率公式可得BD的斜率,进而得到所求值.解:(1)离心率为,即为e==,右准线方程为:x=4,即为=4,则椭圆的方程为+=1;∵k AB=,AD⊥AB,∴直线AD的斜率k=﹣,消去y整理得:(b2+a2k2)x6+2ma2k2x+a7m2﹣a2b2=0,∴y1+y2=k(x2+x2)+2m=,即有的值为.则=,,即的值.18.(16分)如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知OEF是一个游泳池,计划在地块OABC内修一条与池边EF相切于点M的直路l (宽度不计),交线段OC于点D,交线段OA于点N.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边EF满足函数y=﹣x2+2()的图象.若点M到y轴距离记为t.(1)当时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?【分析】(1)求当时,代入函数y=﹣x2+2,得M(,),利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<2)上的极值,进而得出地块OABC在直路l不含泳池那侧的面积取到最大值.解:(1)把代入函数y=﹣x2+2,得M(,),∵y'=﹣2x,∴直线方程为y=﹣x+;令y=0,x=(t+),令x=0,y=t2+6,∴2﹣≤t≤1,令g(t)=(t3+4t+),当t=时,g'(t)=7,当t∈(,1)时,g'(t)>0,所以所求面积的最大值为6﹣.19.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3xlnx﹣1(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在区间(,e)上有且只有一个极值点,求实数a的取值范围.【分析】(1)当a=0时,化简函数f(x)=3xlnx﹣1并求定义域,再求导数f′(x)=3lnx+3=3(lnx+1),从而由导数确定函数的极值;(2)函数f(x)=ax3+3xlnx﹣1的定义域为(0,+∞),再求导f′(x)=3(ax2+lnx+1),再令g(x)=ax2+lnx+1,再求导g′(x)=2ax+=,从而由导数的正负性分类讨论以确定函数是否有极值点及极值点的个数.解:(1)当a=0时,f(x)=3xlnx﹣1的定义域为(0,+∞),f′(x)=3lnx+8=3(lnx+1),故f(x)在x=时取得极小值f()=﹣7﹣1;f′(x)=3(ax8+lnx+1),当a>0时,g′(x)>0在(8,+∞)恒成立,而f′()=3[a()8+ln+1]=3a()2>0,故f(x)在区间(,e)上单调递增,当a=0时,由(5)知,f(x)在区间(,e)上没有极值点;故g(x)=ax2+lnx+1在(0,)上是增函数,在(,+∞)上是减函数,①当g(e)•g()<0,即﹣<a<0时,g(x)在(,e)上有且只有一个零点,且在该零点两侧异号,②令g()=0得=0,不可能;③令g(e)=6得a=﹣,所以∈(,e),又g()<6,综上所述,实数a的取值范围是[﹣,0).20.(16分)已知数列{a n}的前n项和为S n,且对一切正整数n都有.(Ⅰ)求证:a n+1+a n=4n+2;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)是否存在实数a,使不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.【分析】(I)由,知,由此能够导出.(II)在中,令n=1,得a1=2,代入(I)得a2=4.由a n+1+a n =4n+2,知a n+2+a n+1=4n+6,故a n+2﹣a n=4,由此能导出数列{a n}的通项公式是a n=2n.(III)<等价于,令f(n)=,则f(n)>0,由此能够导出存在实数a,符合题意,并能求出其取值范围.解:(I)∵,∴∴,(II)在中,∵a n+1+a n=4n+4,∴a n+2+a n+1=4n+6,∴数列{a n}的偶数项a2,a8,a6,…,a26,…依次构成一个等差数列,∴当n为偶数时,=,a n=4n+2﹣a n+1=4n+8﹣2(n+1)=2n,(III)<,令f(n)=,∴==.∴n∈N*时,f(n)的最大值为,若存在实数a,符合题意,即,解得,或,其取值范围为.。
江苏省南通市2019-2020学年高考数学二模考试卷含解析
江苏省南通市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .163【答案】D 【解析】 【分析】根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积. 【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为1122223⨯⨯⨯+11622223⨯⨯⨯⨯=.故选D. 【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题. 2.已知集合{|24}A x x =-<<,集合2560{|}B x x x =-->,则A B =I A .{|34}x x << B .{|4x x <或6}x > C .{|21}x x -<<- D .{|14}x x -<<【答案】C 【解析】 【分析】 【详解】由2560x x -->可得1)60()(x x -+>,解得1x <-或6x >,所以B ={|1x x <-或6}x >, 又{|24}A x x =-<<,所以{|21}A B x x ⋂=-<<-,故选C .3.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B= A .{}1 B .{}0,1C .{}1,2D .{}0,1,2【答案】A 【解析】 【分析】先解A 、B 集合,再取交集。
【详解】()2002x x x -<⇒<<,所以B 集合与A 集合的交集为{}1,故选A【点睛】一般地,把不等式组放在数轴中得出解集。
【全国百强校】江苏省南通中学2020届高三上学期第二次调研测试数学试题(含附加题,解答题含解析)
江苏省南通中学2019—2020学年度高三第二次调研测试高三数学试卷一、填空题:本大题共14小题.1.已知集合A ={-2,-1},B ={-1,2,3},则A ∪B = ▲ . 2.若复数z 满足(1+i)z =2i ,则复数z 的共轭复数为 ▲ .3.如果数据x 1,x 2,x 3,...,x n 的方差是a ,若数据3x 1-2,3x 2-2,3x 3-2,...,3x n -2的方差为36,则实数a 的值为 ▲ .4.在数字1,2,3,4四个数中,任取两个不同的数,其和大于积的概率是 ▲ . 5.如图所示的算法中,输出的结果是 ▲ .6.若函数f(x)=cos(2x +θ)(0<θ<π)的图象关于直线12x π=对称,则θ的值为 ▲ .7.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为 ▲ .8.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于 ▲ .9.如图,在正三棱柱ABC -A 1B 1C 1中,M 为A 1C 1的中点,已知四棱锥B 1-ACMA 1的体积为3,则三棱柱ABC -A 1B 1C 1的体积为 ▲ .10.若函数f(x)为定义在R 上的奇函数,当x >0时,f(x)=2x-4,则不等式xf(x +1)<0的解集为 ▲ .11.若a >0,b <0,且11a b -=,则14b a-的最小值为 ▲ . 12.已知点A(0,2),斜率为k 的直线l 与圆x 2+y 2=4交于B ,C 两点.设△ABC 与△OBC 的面积分别为S 1,S 2,若S 1=2S 2,∠BAC =60°,则实数k 的值为 ▲ .13.在△ABC 中,已知2AB AC BC BA ⋅=⋅u u u r u u u r u u u r u u u r ,且13BC =,则△ABC 面积的最大值为 ▲ .14.已知函数f(x)=x 2-(a +1)x -2有两个零点x 1,x 2,函数g(x)=lnx -2x -a 有两个零点x 3,x 4,且x 1<x 3<x 2<x 4,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3,26b =,B =2A . (1)求cosA 的值; (2)求c 的值. 16.如图,四棱锥V -ABCD 中,底面ABCD 是菱形,对角线AC 与BD 交于点O ,VO ⊥平面ABCD ,E 是棱VC 的中点.(1)求证:VA ∥平面BDE ;(2)求证:平面VAC ⊥平面BDE .17.在平面直角坐标系xOy 中,已知F 1,F 2分别为椭圆22221x y a b+=(a >b >0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e 为椭圆的离心率. (1)求椭圆的方程;(2)过点F 2的直线l 交椭圆于x 轴上方一点B ,过点F 1作直线l 的垂线交AB 于点M ,若MF 2与x 轴垂直,求直线l 的斜率.18.如图,半圆AOB 是某个旅游景点的平面示意图,为了保护景点和方便游客观赏,管理部门规划从公路l 上某点C 起修建游览线路C-D-E-F ,CD 、DE 、EF 分别与半圆相切,且四边形CDEF 是等腰梯形.已知半圆半径OA =1百米,每修建1百米游览道路需要费用为20万元,设EF 与圆的切点为P ,∠POB =θ(单位:弧度).(1)试将修建游览道路所需费用y 表示为θ的函数;(2)试求修建游览道路所需最少费用为多少万元?(精确到0.1,参考数据:3 1.732≈)19.已知函数()a f x ax x =-,函数g(x)=clnx 与直线2y x e=相切,其中a ,c ∈R ,e 是自然对数的底数.(1)求实数c 的值;(2)设函数h(x)=f(x)-g(x)在区间1()e e,内有两个极值点.①求a 的取值范围;②设函数h(x)的极大值和极小值的差为M ,求实数M 的取值范围.20.已知数列{a n}的前n项的和为S n,记1nnSbn+ =.(1)若{a n}是首项为a,公差为d的等差数列,其中a,d均为正数.①当3b1,2b2,b3成等差数列时,求ad的值;②求证:存在唯一的正整数n,使得a n+1≤b n<a n+2.(2)设数列{a n}是公比为q(q>2)的等比数列,若存在r,t(r,t∈N*,r<t)使得22trb tb r+=+,求q的值.参考答案 1.【答案】{-2,-1,2,3} 2.【答案】1-i 3.【答案】44.【答案】125.【答案】3 6.【答案】56π7.【答案】110 8.【答案】59.【答案】6 10.【答案】(-3,-1)∪(0,1) 11.【答案】9 12.【答案】3±13.【答案】11214.【答案】(-∞,-2) 【方法1】函数f(x)有两个零点即方程21a x x=--有两个根x 1,x 2,同理方程a =lnx -2x 有两个根x 3,x 4,即直线y =a 与曲线12:1C y x x=--,C 2:y =lnx -2x 的交点横坐标分别为x 1,x 2和x 3,x 4,要使x 1<x 3<x 2<x 4,只需直线y =a 在曲线C 1与C 2的交点A(1,-2)的下方即可,故有a ∈(-∞,-2)(如图1).【方法2】对于函数f(x)=x 2-(a +1)x -2,由x 1·x 2=-2,知两个零点x 1,x 2异号,而函数g(x)=lnx -2x -a 的两个零点x 3,x 4均为正,要使x 1<x 3<x 2<x 4,只需g(x 2)=lnx 2-2x 2-a >0①,又2222()(1)20f x x a x =-+-=,所以2221a x x =--②,将其代入①式,得2222ln 310x x x -++>,解得0<x 2<1,再由②式求得a ∈(-∞,-2).(如图2)15.【解】(1)在△ABC 中,因为a =3,26b =B =2A , 故由正弦定理得326sin A ,于是2sin cos 26sin A A A . 所以6cos A =(2)由(1)知6cos A =23sin 1cos A A -. 又因为B =2A ,所以21cos cos22cos 13B A A ==-=,从而222sin 1cos 3B B =-=. 在△ABC 中,因为A +B +C =π,所以53sin sin()sin cos cos sin C A B A B A B =+=+= 因此由正弦定理得sin 5sin a Cc C==. 16.【证明】(1)连结OE .因为底面ABCD 是菱形,所以O 为AC 的中点, 又因为E 是棱VC 的中点,所以VA ∥OE . 又因为OE ⊂平面BDE ,VA ⊄平面BDE , 所以VA ∥平面BDE . (2)因为VO ⊥平面ABCD ,又BD ⊂平面ABCD ,所以VO ⊥BD ,因为底面ABCD 是菱形,所以BD ⊥AC , 又VO ∩AC =O ,VO ,AC ⊂平面VAC , 所以BD ⊥平面VAC .又因为BD ⊂平面BDE ,所以平面VAC ⊥平面BDE . 17.【解】(1)因为椭圆经过点A(2,0)和点(1,3e), 所以22222219144a cb bc a =⎧⎪⎪+=⎨⎪⎪+=⎩,,,解得a =2,b =c =1,所以椭圆的方程为22143x y +=.(2)解法一:由(1)可得F 1(-1,0),F 2(1,0),设B(x 0,y 0)(-2<x 0<2,y 0>0),则22003412x y += ①, 直线AB 的方程为:00(2)2y y x x =--, 由MF 2与x 轴垂直,知点M 的横坐标为1, 所以M 点坐标为0012y x ⎛⎫- ⎪-⎝⎭,.所以01022y F M x ⎛⎫-= ⎪-⎝⎭u u u u r ,,200(1)F B x y =-u u u u r,,若MF 1⊥BF 2,则220000120002(1)(2)2(1)022y x x y F M F B x x x ---⋅=--==--u u u u r u u u u r, 所以2002(1)(2)y x x =-- ②, 由①②可得20112440x x -+=,即(11x 0-2)(x 0-2)=0, 所以0211x =或x 0=2(舍),0y =所以直线l的斜率为. 解法二:由(1)可得F 1(-1,0),F 2(1,0), 设直线AB 的方程为y =k(x -2).由方程组22(2)143y k x x y =-⎧⎪⎨+=⎪⎩,,消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0,解得x =2或228643k x k -=+,所以B 点坐标为22286124343k k k k ⎛⎫-- ⎪++⎝⎭,. 由MF 2与x 轴垂直,知点M 的横坐标为1,所以M 点坐标为(1,-k).所以1(2)F M k =-u u u u r ,,22222228612491243434343k k k k F B k k k k ⎛⎫⎛⎫----== ⎪ ⎪++++⎝⎭⎝⎭u u u u r -1,,.若12MF BF ⊥,则222122228181220180434343k k k F M F B k k k --⋅=+==+++u u u u r u u u u r .解得2910k =.又因为点B 在x 轴上方,所以k <0,所以310k =-,所以直线l 的斜率为210-. 18.【解】(1)Rt △POF 中,OP =1,所以PF =OP ·tan θ=tan θ, 设DE 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,OQ ⊥l ,且DQ =QE =EP ,∠QOE =∠POE ,Rt △POE 中,11()222POE POQ POF π∠=∠=-∠1()2242ππθθ=-=-,所以tan()tan()4242PE OP πθπθ=⋅-=-,所以20(24)40[tan tan()]42y PF PE πθθ=+=+-,即40[tan 2tan()]42y πθθ=+-,(0)2πθ∈,.(2)设tan (01)x θ=∈,,则222211()40280111xx x x y f x x x x --+⎛⎫==+⋅= ⎪-+-⎝⎭,x ∈(0,1), 因为22280(41)()(1)x x f x x -+-=-',x ∈(0,1),令f '(x)=0,解得23x =x (023)-,23-(231)-,f '(x) - 0+ f(x)↘极小值(23)f -↗从上表可知,当23x =6θ=时,f(x)取得极小值,这个极小值就是函数f(x)的最小值,值为(23)40369.3f =万元.答:(1)修建游览道路所需费用y 表示为θ的函数为40[tan 2tan()]42y πθθ=+-,(0)2πθ∈,.(2)修建游览道路所需最少费用约为69.3万元. 19.【解】(1)设直线2y x e=与函数g(x)=clnx 相切与点P(x 0,clnx 0),函数g(x)=clnx 在点P(x 0,y 0)处的切线方程为:000ln ()c y c x x x x -=-,02c x e=, 把x =0,y =0代入上式得x 0=e ,c =2. 所以,实数c 的值为2. (2)①由(1)知()2ln ah x ax x x=--, 设函数h(x)=f(x)-g(x)在区间1()e e ,内有两个极值点x 1,x 2(x 1<x 2),则ax 2-2x +a =0,设m(x)=ax 2-2x +a因为x 1x 2=1,故只需020()0a m e ∆>⎧⎪⎪>⎨⎪⎪>⎩,,,所以,2211e a e <<+.②因为x 1x 2=1,所以12112212()()2ln (2ln )a aM f x f x ax x ax x x x =-=----- 11111112ln (2ln )a a ax x ax x x x =----- 2111222ln aax x x =--. 由21120ax x a -+=,得12121x a x =+,且111x e<<. 122221111112211122211122ln 4(ln )112x x x x M x x x x x x +-=--=-++. 设21x t =,211t e <<,令11()4(ln )12t t t t ϕ-=-+, 222212(1)()4()0(1)2(1)t t t t t t ϕ--=-=<++', ()t ϕ在21(1)e ,上单调递减,从而21(1)()()t e ϕϕϕ<<, 所以,实数M 的取值范围是28(0)1e +,.20.【解】(1)①因为3b 1,2b 2,b 3成等差数列, 所以4b 2=3b 1+b 3,即334643(2)23a d a da d ++⨯=++, 解得,34a d =. ②由a n +1≤b n <a n +2,得(1)(1)2(1)n ndn a a nd a n d n++++≤<++,整理得222020a n n d a n n d ⎧--≤⎪⎪⎨⎪+->⎪⎩,,n <≤,1=0>. 因此存在唯一的正整数n ,使得a n +1≤b n <a n +2.(2)因为1111(1)2(1)(1)2(1)t t r r a q b t t q a q b r r q ++-+-==-+-,所以1111(2)(2)t r q q t t r r ++--=++. 设11()(2)n q f n n n +-=+,n ≥2,n ∈N*.则211211[(1)2(2)3]23(1)()(1)(3)(2)(1)(2)(3)n n n q q q q n q n n f n f n n n n n n n n n +++---+--+++-=-=++++++, 因为q >2,n ≥2,所以(q -1)n 2+2(q -2)n -3>n 2-3≥1>0,所以f(n +1)-f(n)>0,即f(n +1)>f(n),即f(n)单调递增. 所以当r ≥2时,t >r ≥2,则f(t)>f(r),即1111(2)(2)t r q q t t r r ++-->++,这与1111(2)(2)t r q q t t r r ++--=++互相矛盾. 所以r =1,即1211(2)3t q q t t +--=+. 若t ≥3,则42221111()(3)15353q q q q f t f --+-≥==⋅>, 即1211(2)3t q q t t +-->+,与1211(2)3t q q t t +--=+相矛盾.于是t =2,所以321183q q --=,即3q 2-5q -5=0. 又q >2,所以q =。
【精准解析】江苏省南通中学2020届高三上学期第二次调研测试数学试题
2 12
k
,
k
Z
,
k
6
,k
Z
,
Q 0
\=
5 6
,函数
f
(x)
cos
2x
5 6
,
5 故答案为: .
6
【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.
7.已知an 为等差数列,其公差为 2 ,且 a7 是 a3 与 a9 的等比中项, Sn 为an 的前 n 项和,
则 S10 的值为__________.
【答案】3
-2-
【解析】 【分析】 由程序语句可知:该程序的功能是利用循环结构计算并输出变量 S 的值,模拟程序的运行过程, 分析循环中各变量值的变化情况,可得答案. 【详解】该算法运行如下:
S 12 , x 1, S 11;
x 3, S 8;
x 5,S 3, x 7 ,终止, 输出 S 3,
1 i (1 i)(1 i) z 1i ,
故答案为:1 i 【点睛】本题主要考查了复数的除法运算,复数的共轭复数,属于容易题.
3.如果数据 x1 , x2 , x3 ,, xn 的方差是 a ,若数据 3x1-2 , 3x2-2 , 3x3-2 ,, 3xn-2 的 方差为 36,则实数 a 的值为__________.
解得 a1 20 ,
S10
10 20
1 2
10 9 2
110 .
故答案为:110.
【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.
8.如果双曲线
x2 a2
y2 b2
1a
0, b
0 的渐近线与抛物线
y
x2
【附加15套高考模拟试卷】江苏省南通市2020届高三下学期第二次调研测试数学试题含答案
江苏省南通市2020届高三下学期第二次调研测试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于命题的说法错误的是( )A .命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”B .已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b <,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++≥”D .“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真命题2.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29s D .32x +,292s +3.如图,在ABC △中,AD AB ⊥,3BC BD =u u u r u u u r ,||1AD =u u u r ,则AC AD ⋅=u u u r u u u r( )A .23B .32C .33 D .34..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A .4πB .1123πC .283πD .16π5.阅读如图的程序框图,当程序运行后,输出S 的值为( )A .57B .119C .120D .2476.已知是抛物线的焦点,,是该抛物线上两点,,则的中点到准线的距离为( ) A .B .2C .3D .47.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .184C .183D .1768. “牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上(图1),好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如(图2)所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A .,a bB .,a cC .,c bD .,b d9.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥面ABC ,M ,N ,Q 分别为AC ,PB ,AB 的中点,3MN =,则异面直线PQ 与MN 所成角的余弦值为( )A .105B.155C.35D.4510.已知数列{}n a和{}n b的前n项和分别为n S和n T,且0na>,2*634()n n nS a a n N=+-∈,()()1111nn nba a+=--,若对任意的n*∈N,nk T>恒成立,则的最小值为()A.13B.19C.112D.11511.设a b,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是()A.若a b,与α所成的角相等,则a b∥B.若aαβ∥,b∥,αβ∥,则a b∥C.若a b a bαβ⊂⊂P,,,则αβ∥D.若a bαβ⊥⊥,,αβ⊥,则a b⊥r r12.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n=,则p的值可以是( )(参考数据: sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A.2.6B.3C.3.1D.14二、填空题:本题共4小题,每小题5分,共20分。
2019-2020年高三第二次调研测试数学试题
2019-2020年高三第二次调研测试数学试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷卡的相应位置上.1.(5分)(2013•南通二模)在平面直角坐标系中,已知向量=(2,1),向量=(3,5),则向量的坐标为(1,4).考点:平面向量的坐标运算.专题:计算题;平面向量及应用.分析:由=,代入坐标即可运算.解答:解:∵=(2,1),=(3,5),∴==(3,5)﹣(2,1)=(1,4)故答案为:(1,4)点评:本题主要考查了向量的坐标运算,属于基础试题2.(5分)(2013•南通二模)设集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣5x≥0},则A∩(∁R B)=(0,3].考点:交、并、补集的混合运算.分析:由题意,可先解一元二次不等式,化简集合A,B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确答案.解答:解:由题意B={x|x2﹣5x≥0}={x|x≤0或x≥5},故∁R B={x|0<x<5},又集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},∴A∩(∁R B)=(0,3].故答案为(0,3].点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,熟练掌握运算规则是解解题的关键.3.(5分)(2013•南通二模)设复数z满足|z|=|z﹣1|=1,则复数z的实部为.考点:复数求模.专题:计算题.分析:利用复数的运算法则和模的计算公式即可得出.解答:解:设z=a+bi(a,b∈R).∵复数z满足|z|=|z﹣1|=1,∴,解得.∴复数z的实部为.故答案为.点评:熟练掌握复数的运算法则和模的计算公式是解题的关键.4.(5分)(2013•南通二模)设f(x)是定义在R上的奇函数,当x<0时,f (x)=x+e x (e为自然对数的底数),则f(ln6)的值为ln6﹣6.考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:由x<0时的解析式,先求出f(﹣ln6),再由f (x)是定义在R上的奇函数,f(﹣x)=﹣f(x),得到答案.解答:解:∵当x<0时,f (x)=x+e x,∴f(﹣ln6)=﹣ln6+e ln6=6﹣ln6又∵f (x)是定义在R上的奇函数,∴f(ln6)=﹣f(﹣ln6)=ln6﹣6故答案为:ln6﹣6点评:本题考查的知识点是函数奇偶性的性质,函数的值,其中熟练掌握奇函数的定义f(﹣x)=﹣f(x),是解答的关键.5.(5分)(2013•南通二模)某篮球运动员在7天中进行投篮训练的时间(单位:分钟)用茎叶图表示(如图),图中左列表示训练时间的十位数,右列表示训练时间的个位数,则该运动员这7天的平均训练时间为72分钟.考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:先由茎叶图写出所有的数据,求出所有数据和,再利用和除以数据的个数,得到该运动员的平均训练时间.解答:解:有茎叶图知,天中进行投篮训练的时间的数据为64,65,67,72,75,80,81;∴该运动员的平均训练时间为:=72.故答案为:72.点评:解决茎叶图问题,关键是能由茎叶图得到各个数据,再利用公式求出所求的值.6.(5分)(2013•南通二模)根据如图所示的伪代码,最后输出的S的值为145.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28时,S的值.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28值.∵S=1+4+7+10+13+…+28=145,故输出的S值为145.故答案为:145.点评:本题考查的知识点是伪代码,其中根据已知分析出循环的循环变量的初值,终值及步长,是解答的关键.7.(5分)(2013•南通二模)在平面直角坐标系xOy中,设椭圆与双曲线y2﹣3x2=3共焦点,且经过点,则该椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据题意,双曲线y2﹣3x2=3焦点坐标为F1(﹣2,0),F2(2,0).然后根据椭圆的定义,结合两点的距离公式得2a=|AF1|+|AF2|=4,从而a=2,可得c,可得该椭圆的离心率.解答:解:∵双曲线y2﹣3x2=3,即,∴双曲线的焦距为4,∴c=2,焦点坐标为F1(0,﹣2),F2(0,2),∵椭圆经过点A,∴根据椭圆的定义,得2a=|AF1|+|AF2|=+=4,可得a=2,所以离心率e===.故答案为:.点评:本题给出椭圆的焦点和椭圆上一点的坐标,求椭圆的基本量,着重考查了椭圆的标准方程和简单几何性质,属于基础题.8.(5分)(2013•南通二模)若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2cm的半圆,则该圆锥的高为cm.考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:根据半圆的周长等于圆锥底面圆的周长求出底面圆的半径,再根据圆锥的轴截面图形求高即可.解答:解:设圆锥的底面圆半径为r,则2πr=2π⇒r=1cm,∴h==cm.故答案是.点评:本题考查圆锥的侧面展开图及圆锥的轴截面.9.(5分)(2013•南通二模)将函数的图象上每一点向右平移1个单位,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,则f(x)的一个解析式为.考点:函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:由左加右减上加下减的原则,可确定函数平移后的函数解析式,利用伸缩变换推出所求函数解析式.解答:解:图象上的每一点向右平移1个单位,得到函数,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得到函数的图象,函数y=f(x)的图象,则f(x)的一个解析式为.故答案为:.点评:本题主要考查三角函数的平移与伸缩变换.三角函数的平移原则为左加右减上加下减.10.(5分)(2013•南通二模)函数f(x)=(x﹣1)sinπx﹣1(﹣1<x<3)的所有零点之和为4.考点:数列的求和;函数的零点.专题:计算题;等差数列与等比数列.分析:画出图象,可看出交点的个数,并利用对称性即可求出.解答:解:由(x)=(x﹣1)sinπx﹣1=0(﹣1<x<3)可得sinπx=令g(x)=sinπx,h(x)=,(﹣a<x<3)则g(x),h(x)都是关于(1,0)点对称的函数故交点关于(1,0)对称又根据函数图象可知,函数g(x)与h(x)有4个交点,分别记为A,B,C,D 则x A+x B+x C+x D=4故答案为:4点评:熟练掌握数形结合的思想方法和函数的对称性是解题的关键11.(5分)(2013•南通二模)设α,β∈(0,π),且,.则cosβ的值为﹣.考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:由tan的值,利用二倍角的正切函数公式求出tanα的值大于1,确定出α的范围,进而sinα与cosα的值,再由sin(α+β)的值范围求出α+β的范围,利用同角三角函数间的基本关系求出cos(α+β)的值,所求式子的角β=α+β﹣α,利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:∵tan=,∴tanα==>1,∴α∈(,),∴cosα==,sinα==,∵sin(α+β)=<,∴α+β∈(,π),∴cos(α+β)=﹣,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=﹣×+×=﹣.故答案为:﹣点评:此考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.12.(5分)(2013•南通二模)设数列{a n}满足:,则a1的值大于20的概率为.考点:古典概型及其概率计算公式;等差数列的通项公式;等比数列的通项公式.专题:计算题.分析:由给出的等式得到数列递推式,说明数列是等差数列或等比数列,求出a3=8时对应的a1的值,则a1的值大于20的概率可求.解答:解:∵(a n+1﹣a n﹣2)(2a n+1﹣a n)=0,∴a n+1﹣a n﹣2=0或2a n+1﹣a n=0,分别取n=1,2.则a3﹣a2=2,a2﹣a1=2或a2=2a3,a1=2a2.当a3=8时,a2=6或a2=16,当a2=6时,a1=4或a1=12,当a2=12时,a1=10或a1=24,∴a1的值大于20的概率为.故答案为.点评:本题考查了等差数列和等比数列的通项公式,考查了古典概型及其概率计算公式,解答此题的关键是不能把数列看做等差数列或等比数列独立的求解,此题虽是基础题但容易出错.13.(5分)(2013•南通二模)设实数x1,x2,x3,x4,x5均不小于1,且x1•x2•x3•x4•x5=729,则max{x1x2,x2x3,x3x4,x4x5}的最小值是9.考点:进行简单的合情推理;函数的值.专题:新定义.分析:先根据基本不等式得x1x2+x3x4≥2,即取定一个x5后,x1x2,x3x4不会都小于,及x2x3+x4x5≥2+≥2,再研究使三个不等式等号都成立的条件,即可得出max{x1x2,x2x3,x3x4,x4x5}的最小值.解答:解:∵x1x2+x3x4≥2,即取定一个x5后,x1x2,x3x4不会都小于,同样x2x3+x4x5≥2,+≥2,使三个不等式等号都成立,则x1x2=x3x4=,x2x3=x4x5=,x1=x5即x1=x3=x5,x2=x4 x1x2=x2x3=x3x4=x4x5所以729=x13×x22=,(x1x2)3=729×x2x2最小为1,所以x1x2最小值为9,此时x1=x3=x5=9 x2=x4=1.故答案为:9.点评:本题主要考查了进行简单的合情推理及基本不等式的应用,属于中档题.14.(5分)(2013•南通二模)在平面直角坐标系xOy中,设A(﹣1,1),B,C是函数图象上的两点,且△ABC为正三角形,则△ABC的高为2.考点:点到直线的距离公式.专题:综合题.分析:设B、C为直线y=kx+b(k<0,b>0)与y=的交点,联立方程组⇒kx2+bx﹣1=0.设B(x1,y1),C(x2,y2),利用韦达定理,结合△ABC为正三角形,可求得k及|AD|,从而可得答案.解答:解:设B、C为直线y=kx+b(k<0,b>0)与y=的交点,由得kx2+bx﹣1=0.设B(x1,y1),C(x2,y2),则x1+x2=﹣,y1+y2=+==b,设BC的中点为D,则D(﹣,).因为A(﹣1,1),依题意,k AD•k BC=﹣1,即•k=﹣1,由于k<0,故1﹣k≠0,∴b=(b>0).∵|BC|=|x1﹣x2|=•=•=•∴d A﹣BC=|BC|,即=×|BC|=×2•,即=ו,解得:k=.∵b=>0,∴k=,k2=,∴d A﹣BC======2.故△ABC的高为2.故答案为:2.点评:本题考查韦达定理与点到直线的距离公式,考查方程思想与等价转化思想的综合运用,属于难题.二、解答题:本大题共6小题,共90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•南通二模)已知△ABC的内角A的大小为120°,面积为.(1)若AB=,求△ABC的另外两条边长;(2)设O为△ABC的外心,当时,求的值.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:计算题;解三角形;平面向量及应用.分析:(1)设△ABC的内角A,B,C的对边分别为a,b,c,由三角形的面积公式及已知AB,可求b,c,然后再利用余弦定理可求(2)由(1)可知BC,利用余弦定理可求b,设BC的中点为D,则,结合O为△ABC的外心,可得,从而可求解答:解:(1)设△ABC的内角A,B,C的对边分别为a,b,c,于是,所以bc=4.…(3分)因为,所以.由余弦定理得.…(6分)(2)由得b2+c2+4=21,即,解得b=1或4.…(8分)设BC的中点为D,则,因为O为△ABC的外心,所以,于是.…(12分)所以当b=1时,c=4,;当b=4时,c=1,.…(14分)点评:本题主要考查了三角形的面积公式及余弦定理的应用.还考查了向量的基本运算及性质的应用.16.(14分)(2013•南通二模)如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,BC∥平面PAD,∠PBC=90°,∠PBA≠90°.求证:(1)AD∥平面PBC;(2)平面PBC⊥平面PAB.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)由BC∥平面PAD,利用线面平行的性质定理即可得到BC∥AD,再利用线面平行的判定定理即可证明AD∥平面PBC;(2)自P作PH⊥AB于H,由平面PAB⊥平面ABCD,可得PH⊥平面ABCD.于是BC⊥PH.又BC⊥PB,可得BC⊥平面PAB,进而得到面面垂直.解答:证明:(1)因为BC∥平面PAD,而BC⊂平面ABCD,平面ABCD∩平面PAD=AD,所以BC∥AD.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.(2)自P作PH⊥AB于H,因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以PH⊥平面ABCD.因为BC⊂平面ABCD,所以BC⊥PH.因为∠PBC=90°,所以BC⊥PB,而∠PBA≠90°,于是点H与B不重合,即PB∩PH=H.因为PB,PH⊂平面PAB,所以BC⊥平面PAB.因为BC⊂平面PBC,故平面PBC⊥平面PAB.点评:本题综合考查了线面、面面垂直的判定与性质定理,线面平行的判定与性质定理,需要较强的推理能力和空间想象能力.17.(14分)(2013•南通二模)为稳定房价,某地政府决定建造一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.(每平方米平均综合费用=).(1)求k的值;(2)问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?考函数模型的选择与应用.点:分(1)求出每幢楼为5层时的所有建筑面积,算出所有建筑费,直接由每平方米平均综析:合费用=列式求出k 的值;(2)设小区每幢为n (n ∈N*)层时,每平方米平均综合费用为f (n ),同样利用题目给出的每平方米平均综合费用的关系式列出f (n )的表达式,然后利用基本不等式求出f (n )的最小值,并求出层数. 解答: 解:(1)如果每幢楼为5层,那么所有建筑面积为10×1000×5平方米, 所有建筑费用为[(k+800)+(2k+800)+(3k+800)+(4k+800)+(5k+800)]×1000×10,所以, 1270=,解之得:k=50.(2)设小区每幢为n (n ∈N*)层时,每平方米平均综合费用为f (n ),由题设可知 f (n )==+25n+825≥2+825=1 225(元).当且仅当=25n ,即n=8时等号成立.答:该小区每幢建8层时,每平方米平均综合费用最低,此时每平方米平均综合费用为1225元.点评: 本题考查了函数模型的选择及应用,考查了学生的数学建模能力和计算能力,是中档题.18.(16分)(2013•南通二模)已知函数f (x )=(m ﹣3)x 3+9x .(1)若函数f (x )在区间(﹣∞,+∞)上是单调函数,求m 的取值范围; (2)若函数f (x )在区间[1,2]上的最大值为4,求m 的值.考点: 利用导数研究函数的单调性;利用导数求闭区间上函数的最值. 专题: 计算题;综合题;导数的综合应用. 分析:(1)函数f (x )在R 上是单调函数,说明y=f'(x )在(﹣∞,+∞)上恒大于等于0或恒小于等于0,根据f'(x )=3(m ﹣3)x 2+9得f'(0)=9>0,从而得到只有f'(x )≥0在R 上恒成立,由此建立关于m 的不等式即可解出实数m 的取值范围. (2)根据(1)的结论,当m ≥3时f (x )在R 上为增函数,当m <3时在区间,上单调递减,在区间单调递增.再根据m 的取值结合函数的单调性建立关于m 的方程,解得m=﹣2符合题意,得到本题答案.解答: 解:(1)求导数,得f'(x )=3(m ﹣3)x 2+9∵f'(0)=9>0,∴f (x )在区间(﹣∞,+∞)上只能是单调增函数. …(3分)又∵f'(x )=3(m ﹣3)x 2+9≥0在区间(﹣∞,+∞)上恒成立,∴,解之可得m≥3,即m的取值范围是[3,+∞).…(6分)(2)由(1)的结论,得当m≥3时,f (x)在[1,2]上是增函数,所以[f (x)]max=f (2)=8(m﹣3)+18=4,解得m=<3,不合题意舍去.…(8分)当m<3时,f'(x)=3(m﹣3)x2+9=0,解之得.所以f (x)的单调区间为:在区间,上单调递减,在区间单调递增.…(10分)①当,即时,得,∴f (x)在区间[1,2]上单调增,可得[f (x)]max=f(2)=8(m﹣3)+18=4,m=,不满足题设要求.②当,即0<m<时,可得[f (x)]max=舍去.③当,即m≤0时,则,∴f (x)在区间[1,2]上单调减,可得[f (x)]max=f (1)=m+6=4,m=﹣2,符合题意综上所述,m的值为﹣2.…(16分)点评:本题给出三次多项式函数,讨论了函数的单调性,已知函数在区间[1,2]上的最大值为4的情况下求参数m的值.着重考查了利用导数研究函数的单调性、三次多项式函数在闭区间上最值的求法等知识,属于中档题.19.(16分)(2013•南通二模)在平面直角坐标系xOy中,已知圆C:x2+y2=r2和直线l:x=a(其中r和a均为常数,且0<r<a),M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为P、Q.(1)若r=2,M点的坐标为(4,2),求直线PQ方程;(2)求证:直线PQ过定点,并求定点的坐标.考点:直线与圆的位置关系;恒过定点的直线.专题:计算题;直线与圆.分析:(1)通过r=2,M点的坐标为(4,2),求出A1(﹣2,0),A2(2,0).然后推出P、Q坐标,即可求直线PQ方程;(2)证明法一:设A1(﹣r,0),A2(r,0).设M(a,t),求出直线MA1的方程,直线MA1的方程,通过直线与圆的方程联立,求出直线PQ的方程,然后说明经过定点,求定点的坐标.法二:设得A1(﹣r,0),A2(r,0).设M(a,t),求出直线MA1的方程,与圆C的交点P设为P(x1,y1).求出直线MA2的方程,与圆C的交点Q设为Q(x2,y2).点P(x1,y1),Q(x2,y2)在曲线[(a+r)y﹣t(x+r)][(a﹣r)y﹣t(x﹣r)]=0上,有P(x1,y1),Q(x2,y2)在圆C上,求出公共弦方程,说明经过定点,求定点的坐标.解答:解:(1)当r=2,M(4,2),则A1(﹣2,0),A2(2,0).直线MA1的方程:x﹣3y+2=0,解得.…(2分)直线MA2的方程:x﹣y﹣2=0,解得Q(0,﹣2).…(4分)由两点式,得直线PQ方程为:2x﹣y﹣2=0.…(6分)(2)证法一:由题设得A1(﹣r,0),A2(r,0).设M(a,t),直线MA1的方程是:y=(x+r),直线MA1的方程是:y=(x﹣r).…(8分)解得.…(10分)解得.…(12分)于是直线PQ的斜率k PQ=,直线PQ的方程为.…(14分)上式中令y=0,得x=,是一个与t无关的常数.故直线PQ过定点.…(16分)证法二:由题设得A1(﹣r,0),A2(r,0).设M(a,t),直线MA1的方程是:y=(x+r),与圆C的交点P设为P(x1,y1).直线MA2的方程是:y=(x﹣r);与圆C的交点Q设为Q(x2,y2).则点P(x1,y1),Q(x2,y2)在曲线[(a+r)y﹣t(x+r)][(a﹣r)y﹣t(x﹣r)]=0上,…(10分)化简得(a2﹣r2)y2﹣2ty(ax﹣r2)+t2(x2﹣r2)=0.①又有P(x1,y1),Q(x2,y2)在圆C上,圆C:x2+y2﹣r2=0.②①﹣t2×②得(a2﹣r2)y2﹣2ty(ax﹣r2)﹣t2(x2﹣r2)﹣t2(x2+y2﹣r2)=0,化简得:(a2﹣r2)y﹣2t(ax﹣r2)﹣t2 y=0.所以直线PQ的方程为(a2﹣r2)y﹣2t(ax﹣r2)﹣t2 y=0.③…(14分)在③中令y=0得x=,故直线PQ过定点.…(16分)点评:不考查直线与圆的位置关系,直线系方程的应用,考查计算能力与转化思想.20.(16分)(2013•南通二模)设无穷数列{a n}满足:∀n∈N*,a n<a n+1,.记.(1)若,求证:a1=2,并求c1的值;(2)若{c n}是公差为1的等差数列,问{a n}是否为等差数列,证明你的结论.考点:等差数列与等比数列的综合;等差关系的确定.专题:综合题;等差数列与等比数列.分析:(1)根据已知条件排除a1=1、a1≥3即可证得a1=2,,通过计算可得a 2=3,故=b2,代入数值可求得;(2)由a n+1>a n⇒n≥2时,a n>a n﹣1,由此可推得a n≥a m+(n﹣m)(m<n),从而,即cn+1﹣c n≥a n+1﹣a n,又{c n}是公差为1的等差数列,所以1≥a n+1﹣a n,又a n+1﹣a n≥1,故a n+1﹣a n=1,由此可判断{a n}是否为等差数列;解答:(1)因为,所以若a1=1,则矛盾,若,可得1≥a 1≥3矛盾,所以a1=2.于是,从而.(2){a n}是公差为1的等差数列,证明如下:a n+1>a n⇒n≥2时,a n>a n﹣1,所以a n≥a n﹣1+1⇒a n≥a m+(n﹣m),(m<n),即cn+1﹣c n≥a n+1﹣a n,由题设,1≥a n+1﹣a n,又a n+1﹣a n≥1,所以a n+1﹣a n=1,即{a n}是等差数列.点评:本题考查等差数列的判定及通项公式,考查学生的逻辑推理能力,难度较大.选做题:本大题包括A,B,C,D共4小题,请从这4题中选做2小题.每小题0分,共20分.请在答题卡上准确填涂题目标记.解答时应写出文字说明、证明过程或演算步骤.21.(10分)(2013•南通二模)如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D.连接CF交AB于点E.求证:DE2=DB•DA.考点:与圆有关的比例线段.专题:证明题.分析:欲证DE2=DB•DA,由于由切割线定理得DF2=DB•DA,故只须证:DF=DE,也就是要证:∠CFD=∠DEF,这个等式利用垂直关系通过互余角的转换即得.解答:证明:连接OF.因为DF切⊙O于F,所以∠OFD=90°.所以∠OFC+∠CFD=90°.因为OC=OF,所以∠OCF=∠OFC.因为CO⊥AB于O,所以∠OCF+∠CEO=90°.(5分)所以∠CFD=∠CEO=∠DEF,所以DF=DE.因为DF是⊙O的切线,所以DF2=DB•DA.所以DE2=DB•DA.(10分)点评:本题考查的与圆有关的比例线段、切线的性质、切割线定理的运用.属于基础题.22.(10分)(2013•南通二模)选修4﹣2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵(m>0)对应的变换作用下得到的曲线为x2+y2=1,求矩阵M的逆矩阵M﹣1.考点:逆变换与逆矩阵.专题:计算题.分析:确定点在矩阵对应的变换作用下得到点坐标之间的关系,利用变换前后的方程,即可求得矩阵M;再求出对应行列式的值,即可得到M的逆矩阵.解答:解:设曲线2x2+2xy+y2=1上任一点P(x,y)在矩阵M对应的变换下的像是P'(x',y'),由,得因为P'(x',y')在圆x2+y2=1上,所以(mx)2+(nx+y)2=1,化简可得(m2+n2)x2+2nxy+y2=1.…(3分)依题意可得m2+n2=2,2n=2,m=1,n=1或m=﹣1,n=1,而由m>0可得m=1,n=1.…(6分)故,故矩阵M的逆矩阵M﹣1=.…(10分)点评:本题考查矩阵与变换,考查逆矩阵的求法,确定变换前后坐标之间的关系是解题的关键.23.(2013•南通二模)选修4﹣4:坐标系与参数方程在平面直角坐标xOy中,已知圆,圆.(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1,C2的极坐标方程及这两个圆的交点的极坐标;(2)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:直线与圆.分析:(1)利用x=ρcosθ,y=ρsinθ,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标;(2)求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解答:解:(1)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程为ρ=4cosθ,由得,故圆C1,C2交点坐标为圆.…(5分)(2)由(1)得,圆C1,C2交点直角坐标为,故圆C1与C2的公共弦的参数方程为…(10分)注:第(1)小题中交点的极坐标表示不唯一;第(2)小题的结果中,若未注明参数范围,扣(2分).点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.24.(2013•南通二模)选修4﹣5:不等式选讲若正数a,b,c满足a+b+c=1,求的最小值.考点:一般形式的柯西不等式.专题:计算题.分析:利用柯西不等式,即可求得的最小值.解答:解:∵正数a,b,c满足a+b+c=1,∴()[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,即当且仅当a=b=c=时,取等号∴当a=b=c=时,的最小值为1.点评:本题考查求最小值,解题的关键是利用柯西不等式进行求解,属于中档题.必做题:本小题10分.解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•南通二模)如图,在三棱柱ABC﹣A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使二面角P﹣AB﹣A1的平面角的余弦值为.考点:用空间向量求平面间的夹角;异面直线及其所成的角;二面角的平面角及求法.专题:空间角.分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P﹣AB﹣A1的平面角的余弦值为转化为它们法向量所成角的余弦值,由此确定出P点的坐标.解答:解:(1)如图,以A为原点,AC、AB所在直线分别为x轴和y轴建立空间直角坐标系,则A(0,0,0),C(2,0,0),B(0,2,0),A1(0,2,2),B1(0,4,2),,.所以==,所以向量与所成的角为,故AA1与棱BC所成的角是.(2)设P为棱B1C1上的点,由,得P(2λ,4﹣2λ,2).设平面PAB的法向量为=(x,y,z),,,由,得,取x=1,得z=﹣λ,故=(1,0,﹣λ).而平面ABA1的一个法向量是=(1,0,0),则=,解得,即P为棱B1C1中点,其坐标为P(1,3,2).点评:本题考查了异面直线所成的角,考查了二面角的平面角的求法,解答的关键是首先建立正确的空间右手系,然后准确计算出一些点的坐标,此题是中档题.26.(10分)(2013•南通二模)设b >0,函数,记F (x )=f ′(x )(f ′(x )是函数f (x )的导函数),且当x=1时,F (x )取得极小值2. (1)求函数F (x )的单调增区间;(2)证明|[F (x )]n |﹣|F (x n )|≥2n ﹣2(n ∈N *).考点:利用导数研究函数的单调性;利用导数研究函数的极值;二项式定理的应用. 专题: 计算题;综合题;导数的综合应用. 分析:(1)将f'(x )求导数并化简得,然后再求F (x )的导数得,由F'(1)=0并结合a >0建立关于a 、b 的方程组,解之即可得到a=b=1,进而可得F (x )的单调增区间为(1,+∞).(2)利用二项式定理将不等式左边展开合并,得|[F (x )]n |﹣|F (x n)|=,利用基本不等式证出,由此即可证出原不等式对任意的n ∈N *恒成立.解答:解:(1)根据题意,得.于是,若a <0,则F'(x )<0,与F (x )有极小值矛盾,所以a >0.令F'(x )=0,并考虑到x >0,可知仅当时,F (x )取得极小值.所以解得a=b=1.…(4分)故,由F'(x )>0,得x >1,所以F (x )的单调增区间为(1,+∞).(2)因为x >0,所以记得g (x )=根据基本不等式,得,∴将此式代入g (x )表达式,可得,因此,|[F (x )]n|﹣|F (x n)|≥2n﹣2(n ∈N *).…(10分)点评:本题给出基本初等函数,在已知当x=1时函数取得极小值2的情况下求函数F (x )的单调增区间,并依此证明不等式恒成立.着重考查了基本初等函数的性质、利用导数研究函数的单调性、二项式定理和不等式的证明等知识,属于中档题.。
江苏省南通市通州区2019-2020学年高三第二次调研抽测数学试题(教师版)
2020届高三第二次调研抽测数学一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.己知复数z 满足(12)34z i i +=+ (i 为虚数单位),则z =__________【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:由(12)34z i i +=+,得34(34)(12)11212(12)(12)55i i i z i i i i ++-===-++-,z ∴=【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.己知集合{1A =,2a ,4},{2B a =,0},若A B ⋂≠∅,则实数a 的值为_______. 【答案】12【解析】【分析】根据题意对2a 的值分情况讨论,分别检验是否符合题意,即可求出a 的值.【详解】解:A B ⋂≠∅Q ,且元素之间互异,0a ∴≠,①当21a =时:12a =,此时集合{1A =,14,4},集合{1B =,0},符合题意, ②当24a =时:2a =,此时集合{1A =,4,4},集合{4B =,0},不符合元素的互异性,故舍去, ③当22a a =时:0a =或2,此时不符合元素的互异性,故舍去, 综上所求:12a =, 故答案为:12. 【点睛】本题主要考查了集合的基本运算,做题时注意集合元素的互异性,是基础题.3.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______。
【答案】85【解析】【分析】写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为78828484868893857++++++=,故答案为:85.【点睛】本题考查茎叶图及平均数的计算,属于基础题.4.执行如图所示的伪代码,则输出的结果为.【答案】11【解析】试题分析:I=1,1<7成立,S=3,I=3;3<7成立,S=7,I=5;5<7,S=11,I=7;7<7不成立,输出11;考点:1.程序框图;2.循环结构;5.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.【答案】1 3【解析】【求出所有可能,找出符合可能的情况,代入概率计算公式.【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有246=ð种,甲乙在同一个公司有两种可能,故概率为2163 P==,故答案为:13.【点睛】本题考查古典概型及其概率计算公式,属于基础题6.函数()f x=_____________.【答案】1|05 x x⎧⎫<≤⎨⎬⎩⎭【解析】【分析】由题意可得,2210xlgx⎧>⎪⎪⎨⎪-⎪⎩…,解不等式可求.【详解】解:由题意可得,2210 xlgx⎧>⎪⎪⎨⎪-⎪⎩…,解可得,15x <…,故答案为:1|05x x⎧⎫<⎨⎬⎩⎭….【点睛】本题主要考查了函数的定义域的求解,属于基础题.7.已知双曲线221412x y-=的右准线与渐近线的交点在抛物线22y px=上,则实数p的值为___________.【答案】3 2【解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线221412x y -=的右准线2414a x c ===,渐近线y =,双曲线221412x y -=的右准线与渐近线的交点(1,, 交点在抛物线22y px =上,可得:32p =, 解得32p =. 故答案为:32. 【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.8.已知高为3 的圆柱内接于一个直径为5的球内,则该圆柱的体积为_______.【答案】12π【解析】【分析】画出图形,求出圆柱的底面半径,然后求解体积.【详解】解:高为3的圆柱内接于一个直径为5的球内,如图:可得2r ==, 则该圆柱的体积为:22312ππ⨯⨯=.故答案为:12π.【点睛】本题考查球的内接体,圆柱的体积的求法,考查空间想象能力以及计算能力.考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.已知等比数列{}n a 的各项均为正数,若32a =,则152a a +的最小值为_____.【答案】【解析】【分析】由题意可得,0q >,10a >,122a q=,2152224a a q q +=+,利用基本不等式可求最小值。
南通市2019届高三第二次调研数学试卷与答案(word)
2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分 因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分 (2)因为π0α<<,所以02πα<<,又1tan 20α=-<,故π2πα<<.因为sin 21tan 2cos 27ααα==-,所以cos 27sin 20αα=-<, 又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分 因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos2sin 66αα=+(12⋅. ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.ABCA 1B 1C 1ED(第16题)又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C . 又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.①(第17题)②ABC DE F HMθ A BC DE F HMθ从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分(2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()-=f θθθ,π0θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为221y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA,1PB,则3PA PB ==- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P x 从而||||3||||PA P A PB P A x x x x PA PB x x x x --====--+所以3PA PB =- ……………………………………………………………8分②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根, 从而20122014y k k x -⋅=-.……………………………………………………………………14分(第18题)又点在00()P x y ,椭圆C 2:22182y x +=上,所以220012y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立, 即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x = ………………………………………………10分法二:变形得0022x x ++≥在()0+∞,上恒成立 ,因为2x x +=≥x =,所以002x x +,从而(200x ≤,所以0x =10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .x a x a x x x x ax x x a x x ax x x a ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,, 记1()2ln p t t t t =+-,则222(1)21()10t p t t t -'=--=-<, 所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=. 从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n ,且2340n n n S S T -+=,n *∈N . (1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分 (2)因为2340n n n S S T -+=, ① 所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立, 所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分 若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12nn n ≤(*), 从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2nn λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12nn n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t=+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分 所以AB =10分 C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤. 【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥ ……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤, 所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置. 【解】(1)由题意知,AB ,AD ,AP 两两垂直.以{}AB AD AP u u u r u u u r u u u r ,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,.从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,u u r u u u r u u u r 设平面PCD 的法向量()x y z =n ,,,则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u r uu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,. 所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分 (第22题)设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉=⋅n n nuu ruu ruu r, 即直线PB 与平面PCD.……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,u u u r设PN PC λ=,u u u r u u u r 则()22PN λλλ=,,-,u u u r而(002)AP =,,,u u u r 所以(222)MN MA AP PN a λλλ=++=--u u u r u u u r u u u r u u u r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N ≥,,,,均为非负实数,且122n a a a +++=.证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L ,则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =…. 由归纳假设,知122311++++1k k k x x x x x x x x -≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++≥≥,即1223+1+11++++1k k k a a a a a a a a ≤,也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。
江苏省南通市2019-2020学年中考数学第二次调研试卷含解析
江苏省南通市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°2.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为()A.80°B.70°C.60°D.40°3.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC4.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外5.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为UIR,当电压为定值时,I关于R的函数图象是()A.B. C.D.7.下列博物院的标识中不是轴对称图形的是()A .B .C .D .8.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .49.计算2a 2+3a 2的结果是( )A .5a 4B .6a 2C .6a 4D .5a 210.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( )A .1-B .1C .22-或D .31-或11.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤12.如图,点A 是反比例函数y=k x的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:102(2018)--=___.14.比较大小:45_____54.(填“<“,“=“,“>“)15.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.16.分解因式:21a-=________.17.分式方程231x x=+的解为x=_____.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).20.(6分)如图所示,一艘轮船位于灯塔P的北偏东60︒方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45︒方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)21.(6分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.22.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?23.(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.24.(10分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为(填“真”或“假”)命题,并说明理由;(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.25.(10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.26.(12分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.27.(12分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).请你用画树状图或列表的方法,写出点M 所有可能的坐标;求点M (x ,y )在函数y=﹣的图象上的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:已知m ∥n ,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD 的一个外角,可得∠3=∠2+∠A.即∠A =∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.2.B【解析】【分析】根据平行线的性质得到°140ABD ∠=,根据BE 平分∠ABD ,即可求出∠1的度数. 【详解】解:∵BD ∥AC ,∴°180ABD A ∠+∠=,°140ABD ∠=,∵BE 平分∠ABD , ∴°°1111407022ABD ∠=∠=⨯= 故选B .【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.3.A【解析】【分析】根据锐角三角函数的定义得出sinB 等于∠B 的对边除以斜边,即可得出答案.【详解】根据在△ABC 中,∠C=90°,那么sinB=B ∠的对边斜边 =AC AB, 故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.4.D【解析】【分析】先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系. 【详解】由题意可求出∠A=30°,∴AB=2BC=4, 由勾股定理得Q>3,∴点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.5.A【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。
江苏省南通市2019届高三第二次调研数学试卷与答案
2019届高三第二次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{13}=A a,,,{45}=B,.若A B=I{4},则实数a的值为▲.【答案】42.复数2i2iz=+(i为虚数单位)的实部为▲.【答案】2 53.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为▲.【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.【答案】235.执行如图所示的伪代码,则输出的S的值为▲.【答案】306.函数y=的定义域为▲.【答案】[2)+∞,7.将函数2sin3y x=的图象向左平移π12个单位长度得到()y f x=的图象,则π3f的值为▲.【答案】8.在平面直角坐标系xOy中,已知双曲线22221(00)yx a ba b-=>>,的右顶点(20)A,到渐近线的b的值为▲.【答案】29.在△ABC中,已知C= 120°,sin B= 2 sin A,且△ABC的面积为AB的长为▲ .【答案】10.设P,A,B,C为球O表面上的四个点,P A,PB,PC两两垂直,且P A= 2 m,PB= 3 m,PC= 4 m,则球O的表面积为▲m2.【答案】29πWhile i< 711.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小 值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元 素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<. (1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分 因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分(2)因为π02α<<,所以02πα<<,又1tan 207α=-<,故π2π2α<<.因为sin 21tan 2cos 27ααα==-,所以cos27sin20αα=-<,又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos 2sin 66αα=+(12=⋅= ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C . 又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?ABCA 1B 1C 1ED(第16题)【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分 (2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()cos -=f θθθ,π04θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)①(第17题)②ABC DE F HMθ A BC DE F HMθ如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为22182y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA =,1PB =,则3PA PB =- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P x =从而||||3||||PA P A PB P A x x x x PA PB x x x x --====--+ 所以3PA PB =- ……………………………………………………………8分 ②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分B(第18题)又点在00()P x y ,椭圆C 2:22182y x +=上,所以2200124y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立,即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x =. ………………………………………………10分法二:变形得0022x x x x ++≥在()0+∞,上恒成立 ,因为2x x+=≥x 时,等号成立), ()f x ↗极大值↘极小值↗所以002x x +,从而(200x ≤,所以0x =.……………………………10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .22x a x a x x x x ax x x a x x ax x x a x x ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,,记1()2ln p t t t t =+-,则222(1)21()10t p t t t t -'=--=-<,所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=.从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n , 且2340n n n S S T -+=,n *∈N .(1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分(2)因为2340n n n S S T -+=, ① 所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立,所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12n n n ≤(*),从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2n n λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12n n n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t =+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长. 【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分 由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分 所以()()333AB =.…………………………………………………10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤. 【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤,所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置. 【解】(1)由题意知,AB ,AD ,AP 两两垂直. 以{}AB AD AP uu u r uuu r uu u r,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,.从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,.uu r uu u r uu u r设平面PCD 的法向量()x y z =n ,,, 则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u ruu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,.所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分 设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉==⋅n n nuu ruu ruu r, 即直线PB 与平面PCD.……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,uuu r设PN PC λ=,uuu r uu u r 则()22PN λλλ=,,-,uuu r而(002)AP =,,,uu u r 所以(222)MN MA AP PN a λλλ=++=--uuu r uuu r uu u r uuu r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N ≥,,,,均为非负实数,且122n a a a +++=.证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L ,则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =…. 由归纳假设,知122311++++1k k k x x x x x x x x -≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++≥≥,即1223+1+11++++1k k k a a a a a a a a ≤,也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。
2019江苏省南通市高三二模数学试卷含答案
南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。
江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)
2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C = 120°,sinB = 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA = 2 m,PB = 3 m,PC = 4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA = 2 m,PB = 3 m,PC = 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(3, 1),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量=,= ,其中.(1)若∥,求的值;(2)若,求的值.【答案】(1);(2)【解析】【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥,所以,所以.因为,所以.于是解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)证明A1B1⊥平面BCC1B1,进而A1B1⊥BC1,进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C = B1,A1B1,B1C ⊂平面A1B1C,所以BC1⊥平面A1B1C.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH = .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ⊂平面ABCD,得FH⊥HM.在Rt△FHM中,HM = 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.① 射线与椭圆C1依次交于点,求证:为定值;② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。
2019-2020学年南通市、扬州市、泰州市高考数学二模试卷(有答案)
江苏省南通市、扬州市、泰州市高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为______.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为______.3.如图是一个算法流程图,则输出的k的值是______.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是______.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是______.6.已知函数f(x)=loga(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是______.7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为______.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是______.9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为______.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为______.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为______.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是______.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是______.14.若存在α,β∈R,使得,则实数t的取值范围是______.二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.18.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,A为椭圆上异于顶点的一点,点P满足=2.(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为﹣,求实数m的值.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.20.设数列{an }的各项均为正数,{an}的前n项和,n∈N*.(1)求证:数列{an}为等差数列;(2)等比数列{bn}的各项均为正数,,n∈N*,且存在整数k≥2,使得.(i)求数列{bn}公比q的最小值(用k表示);(ii)当n≥2时,,求数列{bn}的通项公式.[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.[附加题]22.在平面直角坐标系xOy 中,已知直线(t 为参数)与曲线(θ为参数)相交于A ,B 两点,求线段AB 的长.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N *),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元. (1)求概率P (X=0)的值;(2)为使收益X 的数学期望不小于0元,求k 的最小值. (注:概率学源于赌博,请自觉远离不正当的游戏!)24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ). (1)当k=2时,求m (1)的值; (2)求m (3)关于k 的表达式,并化简.江苏省南通市、扬州市、泰州市高考数学二模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+2i)•z=3,得,∴复数z的实部为.故答案为:.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为 1 .【考点】交集及其运算.【分析】由A,B,以及两集合的交集确定出a的值即可.【解答】解:∵A={﹣1,0,1},B={a﹣1,a+},A∩B={0},∴a﹣1=0或a+=0(无解),解得:a=1,则实数a的值为1,故答案为:13.如图是一个算法流程图,则输出的k的值是17 .【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的k的值,当k=17时满足条件k>9,退出循环,输出k的值为17.【解答】解:模拟执行程序,可得k=0不满足条件k>9,k=1不满足条件k>9,k=3不满足条件k>9,k=17满足条件k>9,退出循环,输出k的值为17.故答案为:17.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400 .【考点】频率分布表.【分析】利用频率、频数与样本容量的关系进行求解即可.【解答】解:根据题意,估计该批灯泡使用寿命不低于1100h的灯泡的只数为5000×=1400.故答案为:1400.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,由“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,利用对立事件概率计算公式能求出“立德树人”主题被该队选中的概率.【解答】解:电视台组织中学生知识竞赛,共设有5个版块的试题,某参赛队从中任选2个主题作答,基本事件总数n==10,“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,∴“立德树人”主题被该队选中的概率p=1﹣=.故答案为:.(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是.6.已知函数f(x)=loga【考点】对数函数的图象与性质;函数的图象.【分析】由函数f(x)=log(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,构造方a程组,解得答案.(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,【解答】解:∵函数f(x)=loga∴,解得:∴a+b=,故答案为:7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为 2 .【考点】正弦函数的图象.【分析】根据题意,得出ω+=+2kπ,k∈Z,求出ω的值即可.【解答】解:∵函数,且0<x<π,ω>0,∴<ωx+<ωπ+,又当且仅当时,y取得最大值,∴<ωx+<ωπ+<,∴ω+=,解得ω=2.故答案为:2.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是.【考点】等比数列的通项公式.【分析】由题意和等差数列可得q的方程,解方程由等比数列的通项公式可得.【解答】解:∵在等比数列{an }中a2=1,公比q≠±1,a1,4a3,7a5成等差数列,∴8a3=a1+7a5,∴8×1×q=+7×1×q3,整理可得7q4﹣8q2+1=0,分解因式可得(q2﹣1)(7q2﹣1)=0,解得q2=或q2=1,∵公比q≠±1,∴q2=,∴a6=a2q4=故答案为:9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为.【考点】棱锥的结构特征.【分析】由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度.【解答】解:如图,在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高,∵,AB=1,∴由,得.又BC=2,BD=3,得,得sinB=,∴cosB=.当cosB=时,CD2=22+32﹣2×2×3×=7,则CD=;当cosB=﹣时,CD2=22+32﹣2×2×3×()=19,则CD=.∴CD长度的所有值为,.故答案为:,.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为 4 .【考点】直线与圆的位置关系.【分析】设过点P(﹣2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=,不妨取k=,由勾股定理得PT=RS=,再由圆心(a,)到直线y=(x+2)的距离能求出结果.【解答】解:设过点P(﹣2,0)的直线方程为y=k(x+2),∵过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,∴=1,解得k=,不妨取k=,PT==,∴PT=RS=,∵直线y=(x+2)与圆相交于点R,S,且PT=RS,∴圆心(a,)到直线y=(x+2)的距离d==,由a>0,解得a=4.故答案为:4.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7 .【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是.【考点】平面向量数量积的运算.【分析】建立如图所示的坐标系,得到点A、B、C的坐标,由,求得a+b=±3,分类讨论,利用二次函数的性质求得的最大值.【解答】解:由点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3,可得平行线m、n间的距离为2,以直线m为x轴,以过点A且与直线m垂直的直线为y轴建立坐标系,如图所示:则由题意可得点A(0,1),直线n的方程为y=﹣2,设点B(a,0)、点C(b,﹣2),∴=(a,﹣1)、=(b,﹣3),∴+=(a+b,﹣4).∵,∴(a+b)2+16=25,∴a+b=3,或a+b=﹣3.当a+b=3时, =ab+3=a(3﹣a)+3=﹣a2+3a+3,它的最大值为=.当a+b=﹣3时, =ab+3=a(﹣3﹣a)+3=﹣a2﹣3a+3,它的最大值为=.综上可得,的最大值为,故答案为:.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是6+4.【考点】双曲线的简单性质.【分析】设出双曲线的参数方程,代入所求式,运用切割化弦,可得+= [(1﹣sinα)+(1+sinα)](+),展开再由基本不等式即可得到所求最小值.【解答】解:由﹣y2=1,可设x=2secα,y=tanα,则3x2﹣2xy=12sec2α﹣4secαtanα=﹣==+,其中﹣1<sinα<1,[(1﹣sinα)+(1+sinα)](+)=12++≥12+2=12+8,当且仅当=,解得sinα=3﹣2(3+2舍去),取得最小值.则3x2﹣2xy的最小值是6+4.故答案为:6+4.14.若存在α,β∈R,使得,则实数t的取值范围是[,1] .【考点】三角函数中的恒等变换应用.【分析】由α≤α﹣5cosβ,得到cosβ<0,由已知α≤t,即,令,则f′(t)=,令f′(t)=0,则sinβ=0,当sinβ=0时,f(t)取得最小值,然后由t≤α﹣5cosβ,即,令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.【解答】解:∵α≤α﹣5cosβ,∴0≤﹣5cosβ.∴cosβ<0.∵α≤t,∴,即.令,则f′(t)==,令f′(t)=0,则sinβ=0.∴当sinβ=0时,f(t)取得最小值.f(t)=.∵t≤α﹣5cosβ,∴α≥t+5cosβ.∴即.令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.f(t)=.则实数t的取值范围是:[,1].故答案为:[,1].二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.【考点】两角和与差的正切函数;正弦定理.【分析】(1)由条件利用两角和差的正切公式,诱导公式求得tanC的值可得C的值.(2)由条件利用正弦定理、两角和差的正弦公式求得a、b的值,可得△ABC的周长.【解答】解:(1)斜三角形ABC中,∵tanA+tanB+tanAtanB=1,∴tanA+tanB=1﹣tanAtanB,∴tan(A+B)==1,即﹣tanC=1,tanC=﹣1,∴C=135°.(2)若A=15°,则B=30°,∵,则由正弦定理可得===2,求得a=2sin(45°﹣30°)=2(sin45°cos30°﹣cos45°sin30°)=,b=•2=1,故△ABC的周长为a+b+c=+1+=.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)推导出四边形AMC 1P 为平行四边形,从而AP ∥C 1M ,由此能证明AP ∥平面C 1MN . (2)连结AC ,推导出MN ⊥BD ,DD 1⊥MN ,从而MN ⊥平面BDD 1B 1,由此能证明平面B 1BDD 1⊥平面C 1MN . 【解答】证明:(1)在正方体ABCD ﹣A 1B 1C 1D 1中, ∵M ,N ,P 分别为棱AB ,BC ,C 1D 1的中点, ∴AM=PC 1,又AM ∥CD ,PC 1∥CD ,故AM ∥PC 1, ∴四边形AMC 1P 为平行四边形, ∴AP ∥C 1M ,又AP ⊄平面C 1MN ,C 1M ⊂平面C 1MN , ∴AP ∥平面C 1MN .(2)连结AC ,在正方形ABCD 中,AC ⊥BD , 又M 、N 分别为棱AB 、BC 的中点,∴MN ∥AC , ∴MN ⊥BD ,在正方体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面ABCD , 又MN ⊂平面ABCD ,∴DD 1⊥MN , 而DD 1∩DB=D,DD 1、DB ⊂平面BDD 1B 1, ∴MN ⊥平面BDD 1B 1,又MN ⊂平面C 1MN ,∴平面B 1BDD 1⊥平面C 1MN .17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案: 方案①多边形为直角三角形AEB (∠AEB=90°),如图1所示,其中AE+EB=30m ; 方案②多边形为等腰梯形AEFB (AB >EF ),如图2所示,其中AE=EF=BF=10m . 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.【考点】定积分在求面积中的应用;基本不等式.【分析】设方案①,②的多边形苗圃的面积分别为S 1,S 2,根据基本不等式求出S 1的最大值,用导数求出S 2的最大值,比较即可.【解答】解:设方案①,②的多边形苗圃的面积分别为S 1,S 2, 方案①,设AE=x ,则S 1=x (30﹣x )≤ []2=,当且仅当x=15时,取等号, 方案②,设∠BAE=θ,则S 2=100sinθ(1+cosθ),θ∈(0,),由S 2′=100(2cos 2θ+cosθ﹣1)=0得cosθ=(cosθ=﹣1舍去), ∵θ∈(0,),∴θ=,当S 2′>0,解得0<x <,函数单调递增, 当S 2′<0,解得<x <,函数单调递减, ∴当θ=时,(S 2)max=75,∵<75,∴建立苗圃时用方案②,且∠BAE=.18.如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,A 为椭圆上异于顶点的一点,点P 满足=2.(1)若点P 的坐标为(2,),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且=m ,直线OA ,OB 的斜率之积为﹣,求实数m 的值.【考点】椭圆的简单性质. 【分析】(1)由已知得A (﹣1,﹣),代入椭圆,得,再由椭圆离心率为,得=,由此能求出椭圆方程.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),推导出P (﹣2x 1,﹣2y 1),(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),从而得到()+()﹣()=1,由直线OA ,OB 的斜率之积为﹣,得到=0,由此能求出实数m 的值.【解答】解:(1)∵A 为椭圆上异于顶点的一点,点P 满足=2,点P 的坐标为(2,),∴A (﹣1,﹣),代入椭圆,得,①∵椭圆+=1(a >b >0)的离心率为,∴=,②联立①②,解得a 2=2,b 2=1, ∴椭圆方程为.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), ∵=2,∴P (﹣2x 1,﹣2y 1),∵=m,∴(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),∴,∴,代入椭圆,得=1,即()+()﹣()=1,③∵A,B在椭圆上,∴+=1, =1,④∵直线OA,OB的斜率之积为﹣,∴=﹣,结合②,知=0,⑤将④⑤代入③,得=1,解得m=.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.【考点】根的存在性及根的个数判断.【分析】(1)若k=0,先化简不等式即可解不等式•f(x)≥•g(x);(2)若k≥0,化简方程f(x)=x•g(x),然后讨论k的取值范围即可得到结论.【解答】解:(1)若k=0,f(x)=(x+1),g(x)=,则不等式•f(x)≥•g(x)等价为•(x+1)≥•,此时,即x≥0,此时不等式等价为(x+1)x≥(x+3),即2x2+x﹣3≥0,得x≥1或x≤﹣,∵x≥0,∴x≥1,即不等式的解集为[1,+∞).(2)若k≥0,由f(x)=x•g(x)得(x+k+1)=x,①.由得,即x ≥k ,∴当x ≥0时x ﹣k+1>0,方程①两边平方整理得(2k ﹣1)x 2﹣(k 2﹣1)x ﹣k (k+1)2=0,(x ≥k ),② 当k=时,由②得x=,∴方程有唯一解, 当k ≠时,由②得判别式△=(k+1)2(3k ﹣1)2, 1)当k=时,判别式△=0,方程②有两个相等的根x=,∴原方程有唯一解.2)0≤k <且k ≠时,方程②整理为[(2k ﹣1)x+k (k+1)](x ﹣k ﹣1)=0, 解得x 1=,x 2=k+1,由于判别式△>0,∴x 1≠x 2,其中x 2=k+1>k ,x 1﹣k=≥0,即x 1≥k ,故原方程有两解,3)当k >时,由2)知,x 1﹣k=<0,即x 1<k ,故x 1不是原方程的解,而x 2=k+1>k ,则原方程有唯一解,综上所述,当k ≥或k=时,原方程有唯一解, 当0≤k <且k ≠时,原方程有两解.20.设数列{a n }的各项均为正数,{a n }的前n 项和,n ∈N *.(1)求证:数列{a n }为等差数列; (2)等比数列{b n }的各项均为正数,,n ∈N *,且存在整数k ≥2,使得.(i )求数列{b n }公比q 的最小值(用k 表示); (ii )当n ≥2时,,求数列{b n }的通项公式.【考点】数列的求和;等差关系的确定. 【分析】(1)数列{a n }的前n 项和,n ∈N *.利用递推关系可得:a n ﹣a n ﹣1=2,再利用等差数列的通项公式即可得出.(2)(i )由(1)可得:a n =2n ﹣1,S n =n 2.根据存在整数k ≥2,使得.可得b 1=.b n =k 2•.由,n ∈N *,可得:q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,利用导数研究其单调性可得:的最大值为k ,q ≥.当n ≤k ﹣1时,q ≤.可得q 的最小值为(整数k ≥2). (ii )由题意可得:q ∈N *,由(i )可知:q ∈,(k ≥2),可得:q ≥>1,q ≤≤4,q ∈{2,3,4},分类讨论即可得出.【解答】(1)证明:∵数列{a n }的前n 项和,n ∈N *.∴当n=1时,,解得a 1=1. 当n ≥2时,a n =S n ﹣S=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0,∵数列{a n }的各项均为正数,∴a n +a n ﹣1>0(n ≥2),a n ﹣a n ﹣1=2, ∴数列{a n }是等差数列,公差为2.(2)解:(i )由(1)可得:a n =1+2(n ﹣1)=2n ﹣1,S n =n 2. ∵存在整数k ≥2,使得.∴,可得b 1=.∴b n ==k 2•,∵,n ∈N *,∴k 2•q n ﹣k ≥n 2,∴q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,∴≥,令f (x )=,(x >1),则f′(x )=,令g (t )=1﹣t+lnt ,(0<t <1),则g′(t )=>0,因此函数g (t )在(0,1)内单调递增,∴g (t )<g (1)=0,∴f′(x )<0,∴函数f (x )在(1,+∞)为减函数,∴的最大值为k,∴≥k,∴q≥.当n≤k﹣1时,q≤.∴q的最小值为(整数k≥2).(ii)由题意可得:q∈N*,由(i)可知:q∈,(k≥2),∴q≥>1,q≤≤4,=,舍去.∴q∈{2,3,4},当q=2时,≤2≤,只能取k=3,此时bn=4,舍去.当q=3时,≤3≤,只能取k=2,此时bn=22n﹣3,符合条件.当q=4时,≤4≤,只能取k=3,此时bn=22n﹣3.综上可得:bn[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.【考点】几种特殊的矩阵变换.【分析】设B′(x,y),=,求得A′的坐标,写出向量,,=,即可求得x和y,求得点B′的坐标.【解答】解:设B′(x,y),由题意可知:=,得A′(1,2),则=(2,2),=(x﹣1,y﹣2),即旋转矩阵N=,则=,即=,解得:,所以B′的坐标为(﹣1,4).[附加题]22.在平面直角坐标系xOy中,已知直线(t为参数)与曲线(θ为参数)相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【分析】直线(t为参数),消去参数t化为普通方程.由曲线(θ为参数),利用倍角公式可得y=1﹣2sin2θ,联立解出,再利用两点之间的距离公式即可得出.【解答】解:直线(t为参数)化为普通方程:y=2x+1.由曲线(θ为参数),可得y=1﹣2sin2θ=1﹣2x2(﹣1≤x≤1),联立(﹣1≤x≤1),解得,或,.∴A(﹣1,﹣1),B(0,1),∴|AB|==.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,由此能求出P(X=0).(2)依题意,X的可能取值为k,﹣1,1,0,分别求出相应的概率,由此求出E(X),进而能求出k的最小值.【解答】解:(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则P (X=0)=3×=.(2)依题意,X 的可能取值为k ,﹣1,1,0,且P (X=k )=()3=, P (X=﹣1)=()3=, P (X=1)=3×=, P (X=0)=3×=,∴参加游戏者的收益X 的数学期望为:E (X )==,为使收益X 的数学期望不小于0元,故k ≥110,∴k 的最小值为110.24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ).(1)当k=2时,求m (1)的值;(2)求m (3)关于k 的表达式,并化简.【考点】整除的定义.【分析】(1)当k=2时,由题意可得数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,可得m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0,然后用组合数表示m (3),同理用组合数表示m (1),结合m (1)=m (3),求出m (1)+m (3),即可求得m (3).【解答】解:(1)当k=2时,数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,∴m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0, ∴m (3)=, 同理得:m (1)=, ∵, ∴m (1)=m (3).又m (1)+m (3)==24k ﹣1,∴m (3)=24k ﹣2=42k ﹣1.。
江苏省南通市2019届高三第二次调研测试-数学
·1·(第4题)南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤2. 设1i i 1ia b +=+-(i 为虚数单位,a ,b ∈R ),则ab 的值为 ▲ .【答案】03. 设集合{}11 0 3 2A =-,,,,{}2 1B x x =≥,则A B = ▲ .【答案】{}1 3-,4. 执行如图所示的伪代码,则输出的结果为 ▲ .【答案】115. 一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm 2) 如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ .【答案】0.026. 若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为 ▲ .【答案】π27. 在平面直角坐标系xOy 中,若曲线ln y x =在e x =(e 为自然对数的底数)处的切线与直线 30ax y -+=垂直,则实数a 的值为 ▲ .【答案】e -8. 如图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD - 的体积为 ▲ cm 3.【答案】19. 已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S . 若544k k S a +-=(k *∈N ),则k 的值为 ▲ .【答案】7AA 1 B不CB 1不C 1不D 1不D不(第8题)·2·BDC(第12题)AA B CDMNQ(第15题) 10.设32()4(3)f x x mx m x n =++-+(m n ∈R ,)是R 上的单调增函数,则m 的值为 ▲ .【答案】611.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 ▲ .12.如图,在△ABC 中,3AB =,2AC =,4BC =,点D 在边BC 上,BAD ∠=45°,则tan CAD ∠的值为 ▲ .13.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg lg 4lg lg z zx y+的最小值为 ▲ . 【答案】9814.在平面直角坐标系xOy 中,圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA AB =, 则半径r 的取值范围是 ▲ . 【答案】[]5 55,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤. 15.(本小题满分14分)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,BAD ∠=90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证://CD 平面MNQ ; (2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以//MQ CD , …… 2分 又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故//CD 平面MNQ . …… 6分 (2)因为M ,N 分别为棱AD ,BD 的中点,所以//MN AB ,又90BAD ∠=°,故MN AD ⊥. …… 8分 因为平面BAD ⊥平面CAD ,平面BAD平面CAD AD =, 且MN ⊂平面ABD ,·3·所以MN ⊥平面ACD . …… 11分又MN ⊂平面MNQ ,平面MNQ ⊥平面CAD . …… 14分(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”证明“MN ⊥平面ACD ”,扣1分.)16.(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下: (1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;(2)测试成绩为“优”的3名男生记为1a ,2a ,3a ,2名女生记为1b ,2b .现从这5人中 任选2人参加学校的某项体育比赛. ① 写出所有等可能的基本事件; ② 求参赛学生中恰有1名女生的概率.解:(1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件1A ,“测试成绩为中” 为事件2A ,事件1A ,2A 是互斥的. …… 2分 由已知,有121923()()5050P A P A ==,. …… 4分因为当事件1A ,2A 之一发生时,事件A 发生, 所以由互斥事件的概率公式,得1212192321()()()()505025P A P A A P A P A =+=+=+=. …… 6分(2)① 有10个基本事件:12()a a ,,13()a a ,,11()a b ,,12()a b ,,23()a a ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,,12()b b ,. …… 9分 ② 记“参赛学生中恰好有1名女生”为事件B .在上述等可能的10个基本事件中,事件B 包含了11()a b ,,12()a b ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,. 故所求的概率为63()105P B ==.答:(1)这名学生的测试成绩为“良”或“中”的概率为2125;(2)参赛学生中恰有1名女生的概率为35. ……14分(注:不指明互斥事件扣1分;不记事件扣1分,不重复扣分;不答扣1分.事件B 包含的6种基本事件不枚举、运算结果未化简本次阅卷不扣分.)17.(本小题满分14分)在平面直角坐标系xOy 中,已知向量=a (1,0),=b (0,2).设向量=+x a (1cos θ-)b , k =-y a 1sin θ+b ,其中0πθ<<.(1)若4k =,π6θ=,求x ⋅y 的值;(2)若x //y ,求实数k 的最大值,并求取最大值时θ的值.解:(1)(方法1)当4k =,π6θ=时,(12=,x ,=y (44-,), …… 2分则⋅=x y (1(4)244⨯-+⨯=- …… 6分(方法2)依题意,0⋅=a b , …… 2分则⋅=x y (()(22142421⎡⎤+⋅-+=-+⨯⎢⎥⎣⎦a b a b a b(421443=-+⨯⨯= . …… 6分(2)依题意,()122cos θ=-,x ,()2sin k θ=-,y , 因为x //y ,所以2(22cos )sin k θθ=--,整理得,()1sin cos 1kθθ=-, …… 9分令()()sin cos 1f θθθ=-,则()()cos cos 1sin (sin )f θθθθθ'=-+-()()2cos 1cos 1θθ=+-. …… 11分令()0f θ'=,得1cos 2θ=-或cos 1θ=,又0πθ<<,故2π3θ=.列表:故当θ=…… 14分·5·(注:第(2)小问中,得到()122cos θ=-,x ,()2sin k θ=-,y ,及k 与θ的等式,各1分.)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222 1 ( 0 )y x a b a b+=>>的左顶点为A ,右焦点为(0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b =0x 的值; (2)若00x =,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的右准线2a x c=相切.解:(1)因为3a =,b =2224c a b =-=,即2c =, 由PA PF ⊥得,0000132y y x x ⋅=-+-,即22006y x x =--+, …… 3分 又2200195x y +=,所以204990x x +-=,解得034x =或03x =-(舍去) . …… 5分 (2)当00x =时,220y b =, 由PA PF ⊥得,001y y a c⋅=--,即2b ac =,故22a c ac -=, …… 8分 所以210e e +-=,解得e =. …… 10分 (3)依题意,椭圆右焦点到直线2a x c =的距离为2a c c -,且2200221x y a b+=,① 由PA PF ⊥得,00001y y x a x c⋅=-+-,即2200()y x c a x ca =-+-+, ② 由①②得,()2002()0a b ac x a x c ⎡⎤-⎢⎥++=⎢⎥⎣⎦, 解得()2202a a ac c x c --=-或0x a =-(舍去). …… 13分所以PF ==0c a x a=-()222a a ac c c a a c --=+⋅2a c c =-,(第18题)·6·所以以F 为圆心,FP 为半径的圆与右准线2a x c=相切. …… 16分(注:第(2)小问中,得到椭圆右焦点到直线2a x c =的距离为2a c c-,得1分;直接使用焦半 径公式扣1分.) 19.(本小题满分16分)设a ∈R ,函数()f x x x a a =--. (1)若()f x 为奇函数,求a 的值;(2)若对任意的[2 3]x ∈,,()0f x ≥恒成立,求a 的取值范围; (3)当4a >时,求函数()()y f f x a =+零点的个数.解:(1)若()f x 为奇函数,则()()f x f x -=-, 令0x =得,(0)(0)f f =-,即(0)0f =,所以0a =,此时()f x x x =为奇函数. …… 4分(2)因为对任意的[2 3]x ∈,,()0f x ≥恒成立,所以min ()0f x ≥.当0a ≤时,对任意的[2 3]x ∈,,()0f x x x a a =--≥恒成立,所以0a ≤; …… 6分 当0a >时,易得22 () x ax a x a f x x ax a x a ⎧-+-<⎪=⎨--⎪⎩,,,≥在(2a ⎤-∞⎥⎦,上是单调增函数,在 2a a ⎡⎤⎢⎥⎣⎦,上 是单调减函数,在[) a +∞,上是单调增函数, 当02a <<时,min ()(2)2(2)0f x f a a ==--≥,解得43a ≤,所以43a ≤;当23a ≤≤时,min ()()0f x f a a ==-≥,解得0a ≤,所以a 不存在;当3a >时,{}{}min ()min (2)(3)min 2(2)3(3)0f x f f a a a a =----,=,≥,解得92a ≥, 所以92a ≥;综上得,43a ≤或92a ≥. …… 10分(3)设[]()()F x f f x a =+, 令()t f x a x x a =+=-则()y f t ==t t a a --,4a >,·7·第一步,令()0f t =t t a a ⇔-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ∆=->,解得1t =2t =; 当t a ≥时,由()0f t =得,即()t t a a -=,解得3t =第二步,易得12302a t t a t <<<<<,且24a a <,① 若1x x a t -=,其中2104a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2a x a =<,1()0p a t =>,且21140a t ∆=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴2a x a =<,1()0q a t =-<,且22140a t ∆=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;② 若2x x a t -=,其中2204a t <<,由①知,方程2x x a t -=有3个不同的实根;③ 若3x x a t -=,当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,3()0r a t =-<,且23340a t ∆=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴2a x a =<,3()0s a t =>,且2334a t ∆=-,2340a t ->⇔324160a a --<, …… 14分记32()416m a a a =--,则()(38)0m a a a '=->,故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,,·8·若04a a <<,即30∆<,方程230x ax t -+=有0个实根; 若0a a =,即30∆=,方程230x ax t -+=有1个实根; 若0a a >,即30∆>,方程230x ax t -+=有2个实根,所以,当04a a <<时,方程3x x a t -=有1个实根; 当0a a =时,方程3x x a t -=有2个实根; 当0a a >时,方程3x x a t -=有3个实根.综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7; 当0a a =时,函数[]()y f f x a =+的零点个数为8;当0a a >时,函数[]()y f f x a =+的零点个数为9. …… 16分(注:第(1)小问中,求得0a =后不验证()f x 为奇函数,不扣分;第(2)小问中利用分离参数法参照参考答案给分;第(3)小问中使用数形结合,但缺少代数过程的只给结果分.)20.(本小题满分16分)设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列.记n n n c a b =+. (1)求证:数列{}1n n c c d +--为等比数列; (2)已知数列{}n c 的前4项分别为4,10,19,34. ① 求数列{}n a 和{}n b 的通项公式;② 是否存在元素均为正整数的集合A ={1n ,2n ,…,} k n (4k ≥,k *∈N ),使得数列 1n c ,2n c ,…,k n c 为等差数列?证明你的结论. 解:(1)证明:依题意,()()111n n n n n n c c d a b a b d +++--=+-+-(1)0n b q =-≠, …… 3分 从而2111(1)(1)n n n n n n c c d b q q c c d b q ++++---==---,又211(1)0c c d b q --=-≠,所以{}1n n c c d +--是首项为1(1)b q -,公比为q 的等比数列. …… 5分(2)① 法1:由(1)得,等比数列{}1n n c c d +--的前3项为6d -,9d -,15d -, 则()29d -=()()615d d --,·9·解得3d =,从而2q =, …… 7分 且11114 3210 a b a b +=⎧⎨++=⎩,,解得11a =,13b =,所以32n a n =-,132n n b -=⋅. …… 10分法2:依题意,得1111211311410219334a b a d b q a d b q a d b q +=⎧⎪++=⎪⎨++=⎪⎪++=⎩,,,, …… 7分 消去1a ,得1121132116915d b q b d b q b q d b q b q +-=⎧⎪+-=⎨⎪+-=⎩,,,消去d ,得2111321112326b q b q b b q b q b q ⎧-+=⎪⎨-+=⎪⎩,,消去1b ,得2q =,从而可解得,11a =,13b =,3d =,所以32n a n =-,132n n b -=⋅. …… 10分 ② 假设存在满足题意的集合A ,不妨设l ,m ,p ,r A ∈()l m p r <<<,且l c ,m c , p c ,r c 成等差数列, 则2m p l c c c =+,因为0l c >,所以2m p c c >, ① 若1p m >+,则2p m +≥,结合①得,112(32)32(32)32m p m p --⎡⎤-+⋅>-+⋅⎣⎦13(2)232m m ++-+⋅≥, 化简得,8203m m -<-<, ②因为2m ≥,m *∈N ,不难知20m m ->,这与②矛盾, 所以只能1p m =+, 同理,1r p =+,所以m c ,p c ,r c 为数列{}n c 的连续三项,从而122m m m c c c ++=+, 即()11222m m m m m m a b a b a b +++++=+++,故122m m m b b b ++=+,只能1q =,这与1q ≠矛盾,所以假设不成立,从而不存在满足题意的集合A . …… 16分·10·(注:第(2)小问②中,在正确解答①的基础上,写出结论“不存在”,就给1分.)南通市2019届高三第二次调研测试数学Ⅱ(附加题)A .[选修4-1:几何证明选讲](本小题满分10分)如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点. 求证:AP BC AC CP ⋅=⋅. 证明:因为PC 为圆O 的切线,所以PCA CBP ∠=∠,3分 又CPA CPB ∠=∠,故△CAP ∽△BCP , …… 7分 所以AC AP BC PC=,即AP BC AC CP ⋅=⋅. …… 10分 B .[选修4-2:矩阵与变换](本小题满分10分)设23⎡⎤⎢⎥⎣⎦是矩阵232a ⎡⎤=⎢⎥⎣⎦M 的一个特征向量,求实数a 的值. 解:设23⎡⎤⎢⎥⎣⎦是矩阵M 属于特征值λ的一个特征向量,则232a ⎡⎤⎢⎥⎣⎦23λ⎡⎤=⎢⎥⎣⎦23⎡⎤⎢⎥⎣⎦, …… 5分 故262 123 a λλ+=⎧⎨=⎩,,解得4 1. a λ⎧⎨=⎩=,…… 10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, …… 4分 联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=, P(第21 - A 题)·11·解得112x =,22x =,所以AB 中点的横坐标为12524x x +=…… 8分 化为极坐标为()5π 23,. …… 10分 (方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,, …… 2分 消去θ,得2540ρρ-+=,解得11ρ=,24ρ=, …… 6分 所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. …… 10分 (注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分.) D .[选修4-5:不等式选讲](本小题满分10分)设实数a ,b ,c 满足234a b c ++=,求证:22287a b c ++≥.证明:由柯西不等式,得()()222222123a b c ++++≥()223a b c ++, …… 6分 因为234a b c ++=,故22287a b c ++≥, …… 8分当且仅当123a b c ==,即27a =,47b =,67c =时取“=”. …… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中,点(84)A -,,(2)P t ,(0)t <在抛物线22y px =(0)p >上. (1)求p ,t 的值;(2)过点P 作PM 垂直于x 轴,M 为垂足,直线AM 与抛物线的另一交点为B ,点C 在直线 AM 上.若PA ,PB ,PC 的斜率分别为1k ,2k ,3k ,且1232k k k +=,求点C 的坐标. 解:(1)将点(84)A -,代入22y px =,得1p =, …… 2分 将点(2)P t ,代入22y x =,得2t =±,(第22题)·12·因为0t <,所以2t =-. …… 4分 (2)依题意,M 的坐标为(20),, 直线AM 的方程为2433y x =-+,联立224332y x y x⎧=-+⎪⎨⎪=⎩,并解得B ()112,, …… 6分 所以113k =-,22k =-,代入1232k k k +=得,376k =-, …… 8分从而直线PC 的方程为7163y x =-+,联立24337163y x y x ⎧=-+⎪⎨⎪=-+⎩,并解得C ()823-,. …… 10分23.(本小题满分10分)设A ,B 均为非空集合,且AB =∅,AB ={ 123,,,…,}n (n ≥3,n *∈N ).记A ,B 中元素的个数分别为a ,b ,所有满足“a ∈B ,且b A ∈”的集合对(A ,B )的个数为n a . (1)求a 3,a 4的值; (2)求n a .解:(1)当n =3时,AB ={1,2,3},且AB =∅,若a =1,b =2,则1B ∈,2A ∈,共01C 种;若a =2,b =1,则2B ∈,1A ∈,共11C 种,所以a 3=01C 11+ C 2=;…… 2分 当n =4时,A B ={1,2,3,4},且A B =∅,若a =1,b =3,则1B ∈,3A ∈,共02C 种; 若a =2,b =2,则2B ∈,2A ∈,这与AB =∅矛盾;若a =3,b =1,则3B ∈,1A ∈,共22C 种,所以a 4=02C 22+ C 2=. …… 4分(2)当n 为偶数时,A B ={1,2,3,…,n },且A B =∅,·13·若a =1,b 1n =-,则1B ∈,1n -A ∈,共02C n -(考虑A )种; 若a =2,b 2n =-,则2B ∈,2n -A ∈,共12C n -(考虑A )种; ……若a =12n -,b 12n =+,则12n -B ∈,12n +A ∈,共222C n n --(考虑A )种; 若a =2n ,b 2n =,则2n B ∈,2n A ∈,这与A B =∅矛盾;若a 12n =+,b 12n =-,则12n +B ∈,12n -A ∈,共22C nn -(考虑A )种; ……若a =1n -,b 1=,则1n -B ∈,1A ∈,共(考虑A )22C n n --种,所以a n =02C n -+12C n -+…+222C n n --+22C nn -+…+122222C 2C n n n n n -----=-; …… 8分当n 为奇数时,同理得,a n =02C n -+12C n -+…+222C 2n n n ---=, 综上得,122222C 2 .n n n n n n a n ----⎧⎪-=⎨⎪⎩,为偶数,,为奇数 …… 10分。
2019-2020学年江苏省南通市高考第二次调研数学模拟试卷有答案
南通市高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲./分(第3题)7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()23P -,,则双曲线C 的焦距为▲.8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组3330330x x y x y ⎧⎪-+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a 为常数,函数22()1xf x a x x =---的最小值为23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()312=-,c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC A 1B 1C 1中,AB AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于端点),且∠ABE∠ACF ,AE ⊥BB 1,AF ⊥CC 1.求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .AA 1B 1C 1B C FE(第16题)l 1l 2 AB C(第18题)17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为42. (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案:方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.(第17题)0B 1B 2PQOP xy20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市高三第二次调研测试数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)1T ,2T 在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.ABDOC(第21—A 题)D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图 所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲./分(第3题)【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲.【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪-+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲. 【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b , ()3122=-,c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b ,()3122=-,c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a22a ⋅b b 21,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()312=-,a .依题意,()31sin cos 2ββ+=--+,b c .……8分因为()//+a b c ,所以()()3311cos sin 022ββ--+--=.化简得,311sin cos 22ββ-=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC A 1B 1C 1中,AB AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于端点),且∠ABE∠ACF ,AE ⊥BB 1,AF ⊥CC 1.求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分AA 1B 1C 1B C FE(第16题)又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE ∠ACF ,AB AC ,所以Rt △AEB ≌Rt △AFC . 所以BECF .…… 9分又由(1)知,BE CF .所以四边形BEFC 是平行四边形. 从而BCEF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为42. (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b 3.…… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a =-+.…… 4分因为()22100032PB x y x =+-=,所以226229a a=+,解得218a =. 所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. (第17题)0B 1B 2PQO P xy同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, 因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分 所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(第18题)(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, …… 4分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤,…… 9分方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,, 则()p x 在(0,上单调递增,在)⎡+∞⎣上单调递减, 所以当x =max ()px =所以当x =a =max V =3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x=max V =3.…… 14分答:(1dm;(2)当x 为 16分 【评分说明】①直接“由()21002x x x ⋅+=得,x =2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a ad a a d a a d a a d -+-+=-+-+.两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e b x -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-.所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)ABDC(第21—A 题)EO在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积. 解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .则点P 的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l 40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形. 所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i 0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn kn knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由方程组
x
2
4
y2 3
1,
消去
y
,整理得 (4k 2
3)x 2
16k 2 x
16k 2
12
0,
( ) 解得 x 2 或 x 8k 2 6 ,所以 B 点坐标为 8k2 6,12k . …………………9 分
4k 2 3
4k2 3 4k2 3
【解】(1)在△ABC 中,因为 a 3,b 2 6 ,B 2A ,
故由正弦定理得
3 sin A
2 sin
6 2A
,于是
2sin Acos sin A
A
26 3
.
所以 cos A 6 .………………………………………………………………………6 分 3
(2)由(1)知 cos A 6 ,所以 sin A 1 cos2 A 3 .
8
且 x1 x3 x2 x4 ,则实数 a 的取值范围是 ▲ .
6
【答案】 (, 2)
4
【方法
1】函数
f
(x)
有两个零点即方程
a
x
2 x
1有
2
a
25
20
15
10
两个根 x1 ,x2 ,同理方程 a ln x 2x 有两个根 x3 ,x4 ,
5
C1 2
A
5
10
即直线
y
2(x0
1)
y02 x0 2
2(x0
1)(x0 2) x0 2
y02
0,
所以 y02 2(x0 1)(x0 2) ②,………………………………………………………11 分
由①②可得11x02 24x0 4 0 ,即 (11x0 2)(x0 2) 0 ,
的值为
▲
.
【答案】 5π 6
7. 已知{an}为等差数列,其公差为-2,且 a7 是 a3 与 a9 的等比中项,Sn 为{an}的前 n 项和,则 S10 的值 为▲.
【答案】110 8. 设双曲线ax22-by22=1(a>0,b>0)的渐近线与抛物线 y=x2+1 相切,则该双曲线的离心率等于 ▲ .
E
(2)求证:平面 VAC⊥平面 BDE. 【证明】(1)连结 OE. 因为底面 ABCD 是菱形,所以 O 为 AC 的中点,
D
C
O
A
B
(第 16 题)
又因为 E 是棱 VC 的中点,所以VA ∥OE. 又因为 OE 平面 BDE,VA 平面 BDE, 所以VA ∥平面 BDE. ……………………………………………………………………7 分 (2)因为VO ⊥平面 ABCD, 又 BD 平面 ABCD,所以VO ⊥BD, 因为底面 ABCD 是菱形,所以 BD⊥AC, 又VO ∩AC=O,VO ,AC 平面 VAC, 所以 BD⊥平面 VAC. 又因为 BD 平面 BDE,所以平面 VAC⊥平面 BDE. ………………………………14 分
10
3
18.(本题满分 16 分)
如图,半圆 AOB 是某个旅游景点的平面示意图,为了保护景点和方便游客观赏,管理部门规划从
公路 l 上某点 C 起修建游览线路 C-D-E-F,CD、DE、EF 分别与半圆相切,且四边形 CDEF 是等腰
梯形.已知半圆半径 OA=1 百米,每修建 1 百米游览道路需要费用为 20 万元,设 EF 与圆的切点为
F2 B
8k 2 18 4k 2 3
12k 2 4k 2
3
20k 2 4k 2
18 3
0
.
解得 k 2 9 .…………………………………………………………………………12 分 10
又因为点 B 在 x 轴上方,所以 k 0 ,
所以 k 3 10 ,所以直线 l 的斜率为 2 10 .……………………………………14 分
(2)解法一:由(1)可得 F1(1,0) ,F2 (1,0) ,设 B(x0 , y0 ) ( 2 x0 2,y0 0 ),
则 3x02 4y02 12 ①, …………………………………………………………… 7 分
直线 AB 的方程为: y y0 (x 2) , x0 2
3
3
又因为 B=2A,所以 cos B cos 2A 2 cos2 A 1 1 , 3
从而 sin B 1 cos2 B 2 2 . 3
在△ABC 中,因为 A B C π ,
所以 sin C sin(A B) sin Acos B cos Asin B 5 3 . 9
x2 x 1 1 x2
,x∈(0,1),
( ) 80 x2 4x 1
因为 f ′(x)=
,x∈(0,1),令 f ′(x)=0,解得 x= 2 3 .……………11 分
【答案】 1 2
5. 如图所示的算法中,输出的结果是 ▲ .
【答案】3
开始
S ←12, x ←1
x6 Y
S ←S x
N 输出 S
x←x2
结束
( 第5题 )
C1 M
A1
B1
C
A
B
( 第9题 )
6.
若函数
f (x) cos(2x ) ( 0 ຫໍສະໝຸດ π)的图象关于直线
x
π 12
对称,则
【方法 2】对于函数 f (x) x2 (a 1)x 2 ,由 x1 x2 2 ,
知两个零点
x1
,x2
异号,而函数
g
(
x)
ln
x
2x
10
a
的两个零点 x3 ,x4 均为正,要使 x1 x3 x2 x4 ,
6
8
(图 1) 10 4
12
142
f(x) = x2 (a + 1)∙x 216
二、解答题:本大题共 6 小题,共 90 分.请在答.题.卡.指.定.区.域.内作答.解答时应写出文字说明、证明过 程或演算步骤.
15.(本题满分 14 分)
在△ABC 中,角 A,B,C 的对边分别为 a,b,c.已知 a 3,b 2 6 ,B 2A . (1)求 cosA 的值; (2)求 c 的值.
由 MF2 与 x 轴垂直,知点 M 的横坐标为 1,
( ) 所以 M 点坐标为 1, y0 .…………………………………………………………9 分 x0 2
( ) 所以 F1M
2 , y0 x0 2
, F2B (x0 1,y0 ) ,
若 MF1
BF2 ,则 F1M
F2B
5 a x1
18 x3 x2
x4
5
g(x) = ln(x) 2∙x a
2
只需 g(x2 ) ln x2 2x2 a 0 ①,
4
(图 2)
6
又
f
(x2 )
x22
(a
1)x2
2
0
,所以 a
x2
2 x2
1②,将其代入①式,得 ln x2
3x2
2 x2
1
0
,
解得 0 x2 1,再由②式求得 a (, 2) .(如图 2)
【答案】 5
9. 如图,在正三棱柱 ABC-A1B1C1 中,M 为 A1C1 的中点,已知四棱锥 B1-ACMA1 的体积为 3,则三棱柱 ABC-A1B1C1 的体积为 ▲ . 【答案】6
10. 若函数 f (x) 为定义在 R 上的奇函数,当 x>0 时, f (x) 2x 4 ,则不等式 xf (x 1) 0 的解集
设 DE 与半圆相切于点 Q, 则由四边形 CDEF 是等腰梯形知,
D
Q
E
OQ⊥l,且 DQ=QE=EP,∠QOE=∠POE,
P
Rt△POE 中,∠POE=12∠POQ=12(2π-∠POF) l
CA
O
BF
=12(2π-θ)=π4-θ2,
所以 PE=OP·tan(π4-θ2)=tan(π4-θ2), …………………………………………………5 分
【答案】 3
13.在△ABC
中,已知
AB
AC
2BC
BA
,且
BC
1 3
,则△ABC
面积的最大值为
▲
.
【答案】 1 12
10
14.已知函数 f (x) x2 (a 1)x 2 有两个零点 x1 ,x2 ,函数 g(x) ln x 2x a 有两个零点 x3 ,x4 ,
垂直,求直线 l 的斜率.
y B
M
【解】(1)因为椭圆经过点 A(2,0) 和点 (1,3e) ,
a 2,
所以
1 4
9c2 4b2
1,
…………………………………………… 2
分
b2 c2 a2,
F1 O
F2 A x
(第 17 题)
解得 a 2,b 3,c 1, 所以椭圆的方程为 x 2 y 2 1 . ………………… 6 分 43
所以 x0
2 11
或 x0
2
(舍),
y0
6 10 11
.