平面向量基本定理和向量坐标运算

合集下载

26平面向量基本定理及坐标运算

26平面向量基本定理及坐标运算
平面向量的基本定理及坐标表示
要点梳理
忆一忆知识要点
1.平面向量基本定理及坐标表示 (1)平面向量基本定理 如果 e1 和 e2 是一平面内的两个 不平行的向量, 那 么该平面内的任一向量 a, 存在唯一 的一对实数 a1, a2,使 a= a1e1+a2e2 . 其中, 不共线的向量 e1, 2 叫做表示这一平面内所 e 有向量的一组 基底,记为{e1,e2}.a1e1+a2e2 叫做向 量 a 关于基底{e1,e2}的分解式. (2)平面向量的正交分解及坐标表示 把一个向量分解为两个 互相垂直 的向量,叫做 把向量正交分解.
→ → → → → → → → → (3)设 O 为坐标原点,∵CM=OM-OC=3c, (3)设 O 为坐标原点,∵CM=OM-OC=3c, O 为坐标原点,∵CM=OM-OC=3c, (3)设 → → → → → =3c+OC=(3, 24)+(-3,-4)=(0, 20). → =(3, 24)+(-3,-4)=(0, 20). ∴OM=3c+OC=(3, 24)+(-3,-4)=(0, 20). ∴OM ∴OM =3c+OC → → → → → → → → → =ON-OC=-2b, ∴M(0, 20).又∵CN=ON-OC=-2b, ∴M(0, 20).又∵CN ∴M(0, 20).又∵CN =ON-OC=-2b, → → → → → → ∴ON=-2b+OC=(12, 6)+(-3,-4)=(9, 2), ∴ON=-2b+OC=(12, 6)+(-3,-4)=(9, 2), ∴ON=-2b+OC=(12, 6)+(-3,-4)=(9, 2), → → → =(9,-18). ∴N(9, 2).∴MN=(9,-18). ∴N(9, 2).∴MN ∴N(9, 2).∴MN =(9,-18).

平面向量基本定理及坐标表示

平面向量基本定理及坐标表示

3.平面向量共线的坐标表示 设 a=(x1,y1),b=(x2,y2),其中 b≠0.a,b 共线⇔ x1y2-x2y1=0 .
[熟记常用结论] 1.若 a 与 b 不共线,且 λa+μb=0,则 λ=μ=0. 2.已知 P 为线段 AB 的中点,若 A(x1,y1),B(x2,y2),则 P 点坐标为x1+2 x2,y1+2 y2. 3.已知△ABC 的顶点 A(x1,y1),B(x2,y2),C(x3,y3),则△ABC 的重心 G 的坐 标为x1+x32+x3,y1+y32+y3. 4.A(x1,y1),B(x2,y2),C(x2,y3)三点共线的充要条件为(x2-x1)(y3-y1)-(x3-x1)(y2 -y1)=0,或(x2-x1)(y3-y2)=(x3-x2)(y2-y1),或(x3-x1)(y3-y2)=(x3-x2)·(y3-y1).
(4)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可表示成xx21=yy12.( × ) (5)平面向量不论经过怎样的平移变换之后其坐标不变.( √ ) (6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )
题组二 教材改编 2.已知▱ABCD 的顶点 A(-1,-2),B(3,-1),C(5,6),则顶点 D 的坐标为________. 解析:设 D(x,y),则由A→B=D→C,得(4,1)=(5-x,6-y), 即14==65--yx,, 解得yx==51.,
边上一点,B→C=3E→C,F 为 AE 的中点,则B→F=( )
A.23A→B-13A→D C.-23A→B+13A→D
B.13A→B-23A→D D.-13A→B+23A→D
解析:如图,取 AB 的中点 G,连接 DG,CG,易知四边形 DCBG 为平行四边形,

平面向量的基本定理及坐标表示平面向量的坐标运算公式推导用已知向量表示未知向量

平面向量的基本定理及坐标表示平面向量的坐标运算公式推导用已知向量表示未知向量

一、共面向量基本定理1.如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。

(x,y不全为零)2.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。

3.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。

4.平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。

5.当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。

(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。

二、平面向量的坐标运算AB+BC=AC;ABAC=CB;(λμ)a=λ(μa);(λ+μ)a= λa+μa;a·a=|a|²;a·b=b·a等。

在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。

三、向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ四、基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。

五、用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。

平面向量基本定理及坐标表示

平面向量基本定理及坐标表示

5.已知向量a=(8, 1 x),b=(x,1),其中x>0,若(a-
2
2b)∥(2a+b),则x的值为 4 .
解析 a-2b=(8-2x, 1 x-2),2a+b=(16+x,x+1),
2
由已知(a-2b)∥(2a+b),显然2a+b≠0,故有(8-2x,
1 x-2)= (16+x,x+1)
2
8-2x= (16+x)
A.m≠-2 C.m≠1
B.m≠ 1
2
D.m≠-1
解析 若点A、B、C不能构成三角形,则只能共线.
∵ABOBOA(2,-1)-(1,-3)=(1,2), ACOC OA ( m+1 , m-2 ) - ( 1 , -3 ) =
(m,m+1).
假设A、B、C三点共线,
则1×(m+1)-2m=0,即m=1.
知能迁移3 已知点O(0,0),A(1,2),B(4,
5)且 OPOAtAB,
(1)求点P在第二象限时,实数t的取值范围;
(2)四边形OABP能否为平行四边形?若能,求出
相应的实数t;若不能,请说明理由.
解 ∵O(0,0),A(1,2),B(4,5),
∴ OA =(1,2),AB =(4-1,5-2)=(3,3). (1)设P(x,y),则 OP =(x,y),若点P在第二
同理 NO1a(11)b
2 2n
由MO ∥NO 得MO = NO

1 1 2m (1 1 2n
)
1 2 1
2
① ②
①×②整理得m+n=2.
答案 2
题型二 向量的坐标运算 【例2】已知点A(1,0)、B(0,2)、C(-1,

平面向量基本定理及坐标运算

平面向量基本定理及坐标运算

答案
D
解析
→ ⊥AB →, →, → 因为AB 分别以AB 1 2 所以以 A 为原点, 1 AB2所
在直线为 x 轴,y 轴建立平面直角坐标系.设 B1(a,0),B2(0,b), O(x,y), → =AB → +AB → =(a,b),即 P(a,b). 则AP 1 2 → |=|OB → |=1,得(x-a)2+y2=x2+(y-b)2=1. 由|OB 1 2 所以(x-a)2=1-y2≥0,(y-b)2=1-x2≥0. 1 → 2 2 1 由|OP|<2,得(x-a) +(y-b) <4, 1 即 0≤1-x +1-y <4.
x2-x12+y2-y12.
4.向量平行与垂直的条件 设 a=(x1,y1),b=(x2,y2),则 (1)a∥b⇔ x1y2-x2y1=0 .
x1x2+y1y2=0 . a ± (3)a≠0,则与 a 平行的单位向量为 |a| .
(2)a、b 均不为 0 时,a⊥b⇔
→ ⊥AB → ,|OB → |=|OB → |=1,AP →= 5.(2013· 重庆)在平面上,AB 1 2 1 2 1 → → → → |的取值范围是( AB1+AB2.若|OP|<2,则|OA 5 A.(0, 2 ] 5 C.( 2 , 2] 5 7 B.( 2 , 2 ] 7 D.( 2 , 2] )
答案 A
解析
B 中不能是空间向量,C 中 λ1e1+λ2e2 一定在平面 α
内,D 中 λ1,λ2 是唯一的.
→ =(3,7),AB → =(-2,3),对称中心为 O, 2.在▱ABCD 中,AD → 等于( 则CO ) 1 B.(-2,-5) 1 D.(2,5)
1 A.(-2,5) 1 C.(2,-5)

8.2 平面向量的分解及向量的坐标表示

8.2 平面向量的分解及向量的坐标表示
2 2
58
因为k a − b 与 a + 3b 平行,所以3(k − 2) + 7 = 0 ,即得 k = − 7 3 a − b = (k − 2, −1) = (− , −1) , a + 3b = (7,3) , 此时k 3
1
则 a + 3b
= −3(k a − b)
,即此时向量 a + 3b 与 ka − b 方向相反。
运算类型 几何方法
坐标方法
运算性质
a +b =b +a
(a +b) +c = a +(b +c)
向量的加 1.平行四 边形法则2. a+b=(x +x2, y +y2) 法 1 1 三角形法 则 向量的 减法
a−b =(x1 −x2, y1 −y2)
AB + BC = AC
a − b = a + (−b )
向量与函数的综合
高考总复习·数学 高考总复习 数学
已知向量 u = ( x, y) v = ( y,2 y − x) 的对应关系用 v = f (u) 表示。 与 (1)证明:对于任意向量 a, b 及常数m,n恒有 成立;
f (ma + nb) = mf (a) + nf (b)
(2)设 a = (1,1), b = (1,0) ,求向量 f (a) 及 f (b) 的坐标; (3)求使 f (c) = ( p, q) ,(p,q为常数)的向量 故 f (ma + nb) = (ma2 + nb2 ,2ma2 + 2nb2 − ma1 − nb1 )
e1
2
二.平面向量的坐标表示 在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 i , j → 作为基底。由平面向量的基本定理知,该平面内的任一向量 a 可 → a a 表示成 → = xi + yj ,由于→与数对(x,y)是一一对应的,因此把(x,y)叫 做向量 a 的坐标,记作 a =(x,y),其中x叫作在x轴上的坐标,y叫 做在y轴上的坐标。

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算【考纲要求】1、了解平面向量的基本定理及其意义.2、掌握平面向量的正交分解及其坐标表示.3、会用坐标表示平面向量的加法、减法与数乘运算.4、理解用坐标表示的平面向量共线的条件.【基础知识】一、平面向量基本定理如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得2211e e a λλ+=,不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.二、平面向量的坐标表示在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。

由平面向量的基本定理知,该平面内的任意一个向量a r 可表示成a xi y j =+r r r ,由于a r 与数对(,)x y 是一一对应的,因此把(,)x y 叫做向量a r 的坐标,记作(,)a x y =r ,其中x 叫作a r 在x 轴上的坐标,y 叫作a r 在y 轴上的坐标.规定:(1)相等的向量坐标相同,坐标相同的向量是相等的向量。

(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关。

三、平面向量的坐标运算1、设a r =11(,)x y ,b r =22(,)x y ,则a b +r r =1212(,)x x y y ++.2、设a r =11(,)x y ,b r =22(,)x y ,则a b -r r =1212(,)x x y y --.3、设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r .4、设a r =()y x ,,R ∈λ,则λa r =(,)x y λλ.5、设a r =11(,)x y ,b r =22(,)x y ,则b a //12210x y x y ⇔-=(斜乘相减等于零)6、设a r =()y x ,,则22a x y =+r四、两个向量平行(共线)的充要条件1、如果0a ≠r r ,则b a //的充要条件是有且只有一个实数λ,使得b a λ=r r (没有坐标背景)2、如果a r =11(,)x y ,b r =22(,)x y ,则b a //的充要条件是12210x y x y -=(坐标背景)五、三点共线的充要条件1、A 、B 、C 三点共线的充要条件是AB BC λ=u u u r u u u r2、设、不共线,点P 、A 、B 三点共线的充要条件是(1,,)OP OA OB R λμλμλμ=++=∈u u u r u u u r u u u r .特别地,当12λμ==时,P 是AB 中点。

《平面向量》第2讲 向量的基本定理和坐标运算

《平面向量》第2讲 向量的基本定理和坐标运算
课题:
向量的基本定理与坐标运算
一、坐标运算
【例题1】已知在□ABCD中,AC 为一条对角线,
=(2,4), AC =(1,3),则向量 BD 的 AB
坐标为________.
[训练1]向量a=(2,4),b=(1,3),则3a+b=_____.
一、坐标运算
[训练2]已知A(2,3),B(6,-3).二、平面 Nhomakorabea量基本定理
[例题3].已知向量 a=(3,2),b=(-1,2),c=(4,1), 求满足 c=ma +nb 的实数m,n.
[训练3].已知向量e1 ,e2不共线, 要使a= e1+2e2 , b= 2e1+λe2能成为平面内所有向量的一组基底, 则实数λ的取值范围是 .
二、平面向量基本定理
即:物理学上力的合成与分解.
3. 两个向量平行与垂直的向量表示.
若 AD AB AC ,则x =_____,y =_____.
例题与训练
【训练2】给定两个长度为1的平面向量 OA, OB ,它们 的夹角为120°,点C在以O为圆心的圆弧AB上变动. 若 OC xOA yOB , 则x+y的最大值是 ____.
小结
1. 坐标运算.
2. 平面向量的基本定理.
[例题2]如图,平面内有三个向量 OA, OB , OC ,其中
OA与 OB的夹角为 OA 与 OB 的夹角为120°,
30°,且
OA OB 1, OC 2 3

若 OC OA OB , 则λ+μ的值为____.
例题与训练
【训练1】如图,两块斜边长相等的直角三角板拼在一起,
① 线段AB的中点坐标为 . .

第二节 平面向量基本定理及坐标运算(知识梳理)

第二节 平面向量基本定理及坐标运算(知识梳理)

第二节平面向量基本定理及坐标运算复习目标学法指导1.平面向量基本定理(1)平面向量基本定理.(2)平面内所有向量的一组基底.(3)向量夹角的概念.2.平面向量的正交分解及坐标表示(1)正交分解的概念.(2)向量的坐标表示.3.平面向量的加、减与数乘运算的坐标表示.4.平面向量共线的坐标表示. 1.平面向量基本定理在平面图形中的应用主要是利用线性法则进行向量的加法减法和数乘运算.2.数形结合,将平面向量转化为基底的和,要注意把握几何图形,了解几何图形中点的位置关系.3.学会转化常用基底,如三角形和平行四边形相邻的两边等.4.建立坐标系目的是几何图形运算转化为代数运算,建立合适的坐标系能将复杂问题简单化.5.注重对问题的转化,将不熟悉的基底转化成熟悉的基底方便运算.一、平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.1.概念理解(1)平面内的基底是不唯一的,同一向量在不同基底下的表示不相同,但基底确定后,表示唯一,即λ1和λ2唯一确定.(2)用平面向量基本定理可以将平面内任一向量分解成a=λ1e1+λ2e2的形式,这是线性运算的延伸.(3)可将向量的基本定理和物理中“力的分解”相联系,加深理解.2.与平面向量基本定理相关联的结论(1)0不能作为基底.(AB+AC).(2)△ABC中,D为BC的中点,则AD=12二、平面向量的正交分解1.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x,y,使得a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(2)若A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1).1.概念理解(1)正交分解是向量的一种特殊分解,是向量基本定理的一种特殊 情况.(2)正交分解是将基底看作x 轴正方向和y 轴正方向上的单位向量,体现数学中将一般结论特殊化的思想. 2.与向量的坐标表示相关联的结论 (1)若AB =(x 1,y 1),则BA =(-x 1,-y 1). (2)0=(0,0).(3)a=(x 1,y 1),则与a 方向相同的单位向量e=a a=(12211x x y+,12211y x y+).三、平面向量的坐标运算及共线向量的坐标表示 1.平面向量的坐标运算(1)若a=(x 1,y 1),b=(x 2,y 2),则a ±b=(x 1±x 2,y 1±y 2). (2)若a=(x,y),则λa=(λx,λy). 2.向量共线的充要条件的坐标表示若a=(x 1,y 1),b=(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.概念理解(1)向量共线常常解决交点坐标问题和三点共线问题,向量共线的充要条件表示为x 1y 2-x 2y 1=0,但不能表示为12x x =12yy .(2)向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系,两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.在平面直角坐标系中,O 为坐标原点,A,B,C 三点满足OC =23OA +13OB ,则AC AB= .解析:不妨设A(1,0),B(0,1), 所以OC =(23,13),所以|AC |=221133⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=23,|AB |=2,所以AC AB=13. 答案:13考点一 平面向量基本定理概念理解 [例1] (1)下列命题:①平面内的任何两个向量都可以作为一组基底. ②在△ABC 中,向量AB ,BC 的夹角为∠ABC.③若a,b 不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2. 其中错误的是 .(2)如图,在△ABC 中,AD=2DB,AE=12EC,BE 与CD 相交于点P,若AP =x AB +y AC (x,y ∈R),则x= ,y= .解析:(1)只有不共线的向量才能作为基底,所以①错误,②中两个向量的夹角指的是同起点两个向量之间的角,②错误,③正确. 解析:(2)由向量的三角形加法法则可知AP=AD+DP=AD+λDC=AD+λ(BC-BD )=23AB+λ(AC-AB-13BA)=23(1-λ)AB+λAC,同理AP=AE+EP=AE+μEB=AE+μ(CB-CE)=13AC+μ(AB -AC -23CA)=μAB +13(1-μ) AC ,所以可得2(1),31(1)3λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩⇒1,74,7λμ⎧=⎪⎪⎨⎪=⎪⎩所以AP=47AB+17AC,所以x=47,y=17.答案:(1)①②(2)471 7(1)平面向量基本定理中,作为基底的向量必须是不共线的;(2)基底选取的不同,要注意向量的表示也不相同,在平时的应用中,注意选取合理的基底能简化运算.已知点O是△ABC的重心,点P是OC上异于端点的任意一点,且OP=m OA+n OB,则m+n的取值范围是.解析:由题意知OA+OB+OC=0,设OP=λOC=λ(-OA-OB)(0<λ<1),OP=m OA+n OB,所以m+n=-2λ∈(-2,0).答案:(-2,0)考点二平面向量基本定理的应用[例2] 已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x,y,使得AO=x AB+y AC,且x+2y=1,则cos∠BAC 的值为( )(A)23(B)33(C)23(D)13解析:设M为AC的中点,则AO=x AB+y AC=x AB+2y AM,又x+2y=1,所以O,B,M三点共线,又O是△ABC的外接圆圆心,因此BM⊥AC,从而cos∠BAC=23.故选A.用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用该基底将条件和结论表示成向量形式通过向量的运算解决问题.(2)基底未给出时,合理地选择基底.在矩形ABCD中,AB=2,AD=4,AB⊥AD,点P满足AP=x AB+y AD,且x+2y=1,点M在矩形ABCD内(包含边)运动,且AM=λAP,则λ的最大值等于( C )(A)1 (B)2 (C)3 (D)4解析:由题意知,设AD的中点为E.如图所示,AP=x AB+y AD=x AB+2y·(12AD)=x AB+2y AE,因为x+2y=1,所以P,B,E三点共线,即点P在线段BE上运动,又AM=λAP,所以A,M,P三点共线,显然当M点与C点重合时,λ达到最大值,此时CPAP =CBAB=2,所以λ=3,故选C.考点三平面向量的坐标运算[例3] (2018·全国Ⅲ卷)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ= .解析:由题易得2a+b=(4,2),因为c ∥(2a+b),所以4λ=2,得λ=12.答案:12(1)向量的坐标表示是向量的代数表示,其中坐标运算法则是运算的关键.(2)要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两个信息,两向量共线有方向相同和相反两种情况.(3)两向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0;②若a∥b(b≠0),则a=λb.(4)向量共线的坐标表示既可以判定两向量平行,也可由平行求参数,当两向量坐标均非零时,也可利用坐标对应比例来求解.在梯形ABCD中,AB∥CD,且DC=2AB,三个顶点 A(1,2),B(2,1),C(4,2),则点D的坐标为.解析:由题意知DC=2AB,AB∥CD,所以DC =2AB .设点D 的坐标为(x,y), 则DC =(4-x,2-y),AB =(1,-1), 所以(4-x,2-y)=2(1,-1), 即(4-x,2-y)=(2,-2),42,22,x y -=⎧⎨-=-⎩解得2,4,x y =⎧⎨=⎩ 故点D 的坐标为(2,4). 答案:(2,4)类型一 平面向量基本定理的理解1.若α,β是一组基底,向量γ=x α+y β(x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量a 在基底p=(1,-1),q=(2,1)下的坐标为(-2,2),则a 在另一组基底m=(-1,1),n=(1,2)下的坐标为( D )(A)(2,0) (B)(0,-2) (C)(-2,0) (D)(0,2) 解析:因为a 在基底p,q 下的坐标为(-2,2), 即a=-2p+2q=(2,4), 令a=xm+yn=(-x+y,x+2y),所以2,24,x y x y -+=⎧⎨+=⎩即0,2.x y =⎧⎨=⎩ 所以a 在基底m,n 下的坐标为(0,2). 故选D.2.非零不共线向量OA ,OB ,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则点Q(x,y)的轨迹方程是( A ) (A)x+y-2=0 (B)2x+y-1=0 (C)x+2y-2=0 (D)2x+y-2=0 解析:PA =λAB , 得OA -OP =λ(OB -OA ), 即OP =(1+λ) OA -λOB . 又2OP =x OA +y OB ,所以22,2,x y λλ=+⎧⎨=-⎩ 消去λ得x+y-2=0.故选A. 类型二 平面向量基本定理的应用3.正三角形ABC 内一点M 满足CM =m CA +n CB (m,n ∈R),∠MCA=45°,则m n的值为( D )-1解析:令m CA =CD ,n CB =CE ,由已知CM =m CA +n CB 可得CM =CD +CE .根据向量加法的平行四边形法则可得四边形CDME 为平行四边形. 由已知可得△MCD 中∠MCD=45°,∠CMD=60°-45°, 由正弦定理可得CDMD=()sin 6045sin 45︒︒︒-=sin 60cos45cos60sin 45sin 45︒︒︒︒︒-,即CDCE. 由m CA =CD ,n CB =CE ,得m=CD CA,n=CE CB,所以m n=CDCA CE CB=CD CE·CBCA ·CBCA,因为△ABC 为正三角形,所以CB=CA.所以m n.故选 D.类型三 平面向量的坐标运算4.已知向量OA =(-1,3),OB =(1,2),OC =(2,-5),若G 是△ABC 的重心,则OG 的坐标是 .解析:设D 是BC 中点,则GB +GC =2GD =-GA , 即(OB -OG )+(OC -OG )=OG -OA ,所以OG =3OA OB OC ++=(1,3)(1,2)(2,5)3-++-=(23,0). 答案:(23,0)。

平面向量的线性运算,基本定理及坐标表示

平面向量的线性运算,基本定理及坐标表示

平面向量的线性运算,基本定理及坐标表示1、向量有关概念:(1)向量的概念:既有大小又有方向的量.向量常用有向线段来表示,注意不能说向量就是有向线段,(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(4)相等向量:长度相等且方向相同的两个向量叫相等向量(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。

三点共线共线;2.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1+e2。

3、实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向与的方向相同,当<0时,的方向与的方向相反,当=0时,,注意:≠0。

4、向量的运算:(1)几何运算:(2)坐标运算:设,则:①向量的加减法运算:,。

②实数与向量的积:。

③若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

⑤向量的模:。

⑥两点间的距离:若,则。

5、向量平行(共线)的充要条件:=0。

12、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,①若,则其重心的坐标为。

一、选择题:1、已知向量,则用表示为( ) A.B.C.D.2、已知,则的取值范围是( )A. B. C. D.3、已知向量,,,,且,则( )A.B.C.D.4.(2010•四川)设点M是线段BC的中点,点A在直线BC外,=16,|则||=( )A.8B.4C.2D.1解析:由可知,⊥则AM为Rt△ABC斜边BC上的中线,因此,|选C.5.已知△ABC中,点D在BC边上,且则r+s的值是( )C.-3D.0解析:∵∴∴又∴r=,∴r+s=0.故选D.3.平面向量a,b共线的充要条件是()6.平面向量a,b共线则( )A.a,b方向相同B.a,b两向量中至少有一个为0C.存在λ∈R,使b=λaD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=0解析:a,b共线时,a,b方向相同或相反,故A错.a,b共线时,a,b不一定是零向量,故B错.当b=λa时,a,b一定共线,若b≠0,a=0.则b=λa不成立,故C错.排除A、B、C,故选D.7.若a=(2cosα,1),b=(sinα,1),且a∥b,则tanα等于( ) A.2 B. C.-2 D.-解析:∵a∥b,∴a=λb,∴∴2cosα=sinα,∴tanα=2. 答案:A8.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则+的值等于( ) A.1 B. C.D.解析:=(a-2,-2),=(-2,b-2),依题意,有(a-2)·(b-2)-4=0,即ab-2a-2b=0,所以+=. 答案:B9.设点A(2,0),B(4,2),若点P在直线AB上,且||=2||,则点P的坐标为( )A.(3,1) B.(1,-1) C.(3,1)或(1,-1) D.无数多个解析:设P(x,y),则由||=2||,得=2或=-2.=(2,2),=(x-2,y),即(2,2)=2(x-2,y),x=3,y=1,P(3,1),或(2,2)=-2(x-2,y),x=1,y=-1,P(1,-1).答案:C10.已知点A(2,1),B(0,2),C(-2,1),O(0,0),给出下面的结论:其中正确结论的个数是( )①直线OC与直线BA平行; ②③④A.1个 B.2个 C.3个 D.4个解析:kOC==-,kBA==-,∴OC∥BA,①正确;∵∴②错误; ∵∴③正确;∵v (-4,0), ∴④正确.故选C.11.设向量a=(3,),b为单位向量,且a∥b,则b=( )A.(,-)或(-,) B.(,) C.(-,-) D.(,)或(-,-)解析:设b=(x,y),由a∥b可得3y-x=0,又x2+y2=1得b=(,)或b=(-,-).答案:D12.在△ABC中,角A,B,C所对的边分别为a,b,c,且m=(b-c,cos C),n=(a,cos A),m∥n,则cos A的值等于( )A. B.- C. D.-解析:∵m∥n,∴(b-c)cos A=a cos C,∴( sin B-sin C)cos A=sin A cos C,即sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,易知sin B≠0,∴cos A=. 答案:C二、填空题:13、若,则; .14、若点O是△ABC所在平面内的一点,且满足,则△ABC的形状为________.解析:∴故A、B、C为矩形的三个顶点,△ABC为直角三角形. 15.(2010·陕西)已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.解析:由题知a+b=(1,m-1),c=(-1,2),由(a+b)∥c得1×2-(m-1)×(-1)=m+1=0,所以m=-1. 答案:-116.(2011·天津十二校联考)已知直角坐标平面内的两个向量a=(1,3),b=(m,2m-3),使平面内的任意一个向量c都可以唯一的表示成c=λa+μb,则m 的取值范围是________.解析:∵c可唯一表示成c=λa+μb,∴a与b不共线,即2m-3≠3m,∴m≠-3. 答案:{m|m∈R,m≠-3}17.如图,平面内有三个向量、、其中与的夹角为120°,与的夹角为30°,且||=||=1,| |=,若=λμ (λ,μ∈R),则λ+μ的值为________.解析:过C作与的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,|,得平行四边形的边长为2和4,故λ+μ=2+4=6. 答案:618.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若则m+n的值为________.解析:由于MN的任意性可用特殊位置法:当MN与BC重合时知m=1,n=1,故m+n=2.答案:2三、解答题:19.已知A(-2,4),B(3,-1),C(-3,-4),O为坐标原点.设=b,且(1)求3a+b-3c;(2)求满足a=m b+n c的实数m,n.解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb+nc=(-6m+n,-3m+8n)=(5,-5),∴,解得.20.已知向量a=(sinθ,cosθ-2sinθ),b=(1,2).(1)若a∥b,求tanθ的值; (2)若|a|=|b|,0<θ<π,求θ的值.解:(1)因为a∥b,所以2sinθ=cosθ-2sinθ,于是4sinθ=cosθ,故tanθ=.(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=12+22,所以1-2sin2θ+4sin2θ=5. 从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+)=-. 又由0<θ<π知,<2θ+<,所以2θ+=或2θ+=. 因此θ=或θ=.。

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN

1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.

第3讲 平面向量的基本定理与坐标运算(教师版)

第3讲 平面向量的基本定理与坐标运算(教师版)

第3讲 平面向量的基本定理与坐标运算一、考点梳理考点1 平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.例1.(1)下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;①一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;①零向量不可作为基底中的向量;①对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .①①B .①①①C .①①D .①①①答案 B 解析 因为不共线的任意两个向量均可作为平面的一组基底,故①①正确,①不正确;由平面向量基本定理知①正确.综上可得①①①正确.(2)如图所示,在①OAB 中,OA →=a ,OB →=b ,M 、N 分别是边OA 、OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →交于点P ,用向量a 、b 表示OP →.分析 利用“表示方法的唯一性”确定参数,进而确定λ1,λ2.解 ①OP →=OM →+MP →,OP →=ON →+NP →,设MP →=mMB →,NP →=nNA →,则OP →=OM →+mMB →=13a +m (b -13a )=13(1-m )a +m b ,OP →=ON →+nNA →=12(1-n )b +n a . ①a 与b 不共线,①⎩⎨⎧ 13(1-m )=n ,12(1-n )=m ,①⎩⎨⎧ m =25,n =15.①OP →=15a +25b . (3)如图所示,在①ABC 中,AB =2,BC =3,①ABC =60°,AD 为BC 边上的高,M 为AD 的中点,若AM →=λAB →+μBC →,则λ+μ的值为( )A.53 B.-12 C.12 D.23答案 D解析 ①在①ABC 中,AB =2,BC =3,①ABC =60°,AD 为BC 边上的高,①在①ABD 中,BD =12AB =1.又BC =3,①BD =13BC ,①AD →=AB →+BD →=AB →+13BC →.①M 为AD 的中点,①AM →=12AD →=12AB →+16BC →.①AM →=λAB →+μBC →,①λ=12,μ=16,①λ+μ=23.【变式训练1】.设{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能作为基底的是() A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2答案 B 解析:在B 中,因为6e 1-8e 2=2(3e 1-4e 2),所以(3e 1-4e 2)①(6e 1-8e 2).所以3e 1-4e 2和6e 1-8e 2不能作为基底,其他三个选项中的两组向量都不平行,故都可以作为一组基底.【变式训练2】.如图所示,已知在平行四边形ABCD 中,E 、F 分别是BC 、DC 边上的中点,若AB →=a ,AD →=b ,试以{a ,b }为基底表示DE →、BF →.解:①四边形ABCD 是平行四边形,E 、F 分别是BC 、DC 边上的中点,①AD →=BC →=2BE →,CD →=BA →=2CF →,①BE →=12AD →=12b , CF →=12CD →=12BA →=-12AB →=-12a . ①DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b . BF →=BC →+CF →=AD →+CF →=b -12a . 【变式训练3】.如图所示,在①ABC 中,点M 为AB 的中点,且AN =12NC ,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,试以a ,b 为基底表示AE →.解 ①AN →=13AC →=13b ,AM →=12AB →=12a , 由N ,E ,B 三点共线知存在实数λ满足AE →=λAN →+(1-λ)AB →=13λb +(1-λ)a . 由C ,E ,M 三点共线知存在实数μ满足AE →=μAM →+(1-μ)AC →=μ2a +(1-μ)b . ①⎩⎨⎧ 1-λ=μ2,1-μ=λ3,解得⎩⎨⎧ λ=35,μ=45.①AE →=25a +15b .考点2 平面向量的坐标表示及加减运算设OA →=x i +y j ,则向量OA →的坐标(x ,y )就是终点A 的坐标;反过来,终点A 的坐标(x ,y )就是向量OA →的坐标. 因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示,即以原点为起点的向量与实数对是一一对应的.若点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),O 为坐标原点,则OA →=(x 1,y 1),OB →=(x 2,y 2),AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.例2.(1)给出下面几种说法:①相等向量的坐标相同;①平面上一个向量对应于平面上唯一的坐标;①一个坐标对应于唯一的一个向量;①平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是( )A .1B .2C .3D .4答案 C 解析 由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故①错误.(2)如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),则AB →可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j答案:C 解析:记O 为坐标原点,则OA →=2i +3j ,OB →=4i +2j ,所以AB →=OB →-OA →=2i -j .(3)已知边长为单位长度的正方形ABCD ,若A 点与坐标原点重合,边AB 、AD 分别落在x 轴、y 轴的正方向上,则向量AB →-BC →+AC →的坐标为________.答案 (2,0) 解析 根据题意建立平面直角坐标系(如图),则各顶点的坐标分别为A (0,0),B (1,0),C (1,1),D (0,1),所以AB →=(1,0),BC →=(0,1),AC →=(1,1),所以AB →-BC →+AC →=(1,0)-(0,1)+(1,1)=(2,0).【变式训练1】.在平面直角坐标系中,向量a ,b ,c 的方向如图所示,|a |=2,|b |=3,|c |=4,向量a ,b ,c 的坐标分别为_____,________,________.答案 (2,2) ⎝⎛⎭⎫-32,332 (23,-2) 解析 设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2).a 1=|a |cos45°=2×22=2, a 2=|a |sin45°=2×22=2, b 1=|b |cos120°=3×⎝⎛⎭⎫-12=-32, b 2=|b |sin120°=3×32=332, c 1=|c |cos(-30°)=4×32=23, c 2=|c |sin(-30°)=4×⎝⎛⎭⎫-12=-2. ①a =(2,2),b =⎝⎛⎭⎫-32,332,c =(23,-2). 【变式训练2】.在平面直角坐标系中,|a |=4,且a 如图所示,则a 的坐标为( )A .(23,2)B .(2,-23)C .(-2,23)D .(23,-2)答案D 解析:x =|a |·cos(-30°)=4×32=23,y =|a |·sin(-30°)=4×(-12)=-2. 【变式训练3】.已知①ABCD 的三个顶点A ,B ,C 的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标. 答案 (2,2)解:设顶点D 的坐标为(x ,y ),在①ABCD 中,AD →=BC →,又AD →=(x +2,y -1),BC →=(4,1),①(x +2,y -1)=(4,1),即⎩⎪⎨⎪⎧ x +2=4,y -1=1,解得⎩⎪⎨⎪⎧x =2,y =2,①顶点D 的坐标为(2,2). 考点3 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示及中点坐标公式设向量a =(x 1,y 1),则λa =(λx 1,λy 1).中点坐标公式:若P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则⎩⎨⎧ x =x 1+x 22,y =y 1+y 22.两个向量共线的坐标表示向量a ,b 共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),则a ①b ①x 1y 2-x 2y 1=0.例3.(1)已知a =(2,1),b =(-3,4),求a +b ,a -b,3a +4b 的坐标.解 a +b =(2,1)+(-3,4)=(-1,5),a -b =(2,1)-(-3,4)=(5, -3),3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).(2)已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向? 分析 先计算出k a +b 与a -3b 的坐标,然后利用向量共线的坐标表示即可求k ,再根据符号确定方向.解 因为a -3b =(1,2)-3(-3,2)=(10,-4).k a +b =k (1,2)+(-3,2)=(k -3,2k +2),又(k a +b )①(a -3b ),故-4(k -3)=10(2k +2),即k =-13. 这时k a +b =⎝⎛⎭⎫-103,43,且a -3b 与-13a +b 的对应坐标异号,故当k =-13时,k a +b 与a -3b 平行,并且是反向的.(3)已知OA →=(3,4),OB →=(7,12),OC →=(9,16),求证:A ,B ,C 三点共线;证明:①AB →=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12).①4×12-8×6=0,即AB →与AC →共线.又①AB →与AC →有公共点A ,①A ,B ,C 三点共线.(4)已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c .解 设c =x a +y b ,则(10,-4)=x (-2,3)+y (3,1)=(-2x +3y,3x +y ),①⎩⎪⎨⎪⎧10=-2x +3y ,-4=3x +y ,解得x =-2,y =2,①c =-2a +2b . 【变式训练1】.已知a =(-1,2),b =(2,1),求:(1)2a +3b ;(2)a -3b ;(3)12a -13b .解 (1)2a +3b =2(-1,2)+3(2,1)=(-2,4)+(6,3)=(4,7).(2)a -3b =(-1,2)-3(2,1)=(-1,2)-(6,3)=(-7,-1).(3)12a -13b =12(-1,2)-13(2,1)=⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23.【变式训练2】.已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ①(2a +b ),则λ= .答案12. 解析:2a +b =(4,2),因为c ①(2a +b ),所以4λ=2,得λ=12.【变式训练3】.设向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),当k 为何值时,A ,B ,C 三点共线?解 ①AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),①(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.【变式训练4】.已知a =(10,-5),b =(3,2),c =(-2,2),试用b ,c 表示a .解 设a =λb +μc (λ,μ①R ).则(10,-5)=λ(3,2)+μ(-2,2)=(3λ,2λ)+(-2μ,2μ)=(3λ-2μ,2λ+2μ).①⎩⎪⎨⎪⎧ 10=3λ-2μ,-5=2λ+2μ,解得⎩⎪⎨⎪⎧ λ=1,μ=-72,①a =b -72c . 考点4 平面向量数量积的坐标表示面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.即两个向量的数量积等于相应坐标乘积的和.平面向量长度(模)的坐标表示向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.两向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ①x 1x 2+y 1y 2=0.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.例4.(1)若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12)解析 ①a·b =2×(-1)+3×(-2)=-8,①(a·b )·c =-8×(2,1)=(-16,-8).①b·c =(-1)×2+(-2)×1=-4,①a·(b·c )=(2,3)×(-4)=(-8,-12).(2)向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( )A .(-7,8)B .(9,-4)C .(-5,10)D .(7,-6)解析 (1)①向量AB →与向量a =(-3,4)的夹角为π,①设AB →=k a =k (-3,4)=(-3k,4k )(k <0).由此可得|AB →|=(-3k )2+(4k )2=10,解之得k =-2(k =2舍去).①AB →=(6,-8),设B (m ,n ),得AB →=(m -1,n -2)=(6,-8),则有⎩⎪⎨⎪⎧m -1=6n -2=-8,解得m =7,n =-6,①B (7,-6),故选D.(3)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.答案 7 解析 因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.(4)已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2答案 B 解析 ①|a |=10,|b |=5,a ·b =5.①cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又①a ,b 的夹角范围为[0,π].①a 与b 的夹角为π4. 【变式训练1】.已知a 与b 同向,b =(1,2),a·b =10.(1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,①λ=2,①a =(2,4).(2)①b·c =1×2-2×1=0,a·b =1×2+2×4=10,①a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).【变式训练2】已知在①ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2),①D 在直线BC 上,即BD →与BC →共线,①存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).①⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ. ①x -3=2(y -2),即x -2y +1=0.①又①AD ①BC ,①AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,①-6(x -2)-3(y +1)=0.即2x +y -3=0.①由①①可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ①|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).【变式训练3】.已知向量()5,a m =,()2,2b =-,若()a b b -⊥,则实数m = ( )A. -1B. 1C. 2D. -2 答案:B 解析 因为向量()5,a m =,()2,2b =-,所以()3,2a b m +=+,因为()a b b -⊥,所以()0a b b -⋅=,所以()6220m -+=,解得1m =.【变式训练4】.设向量a 与b 的夹角为θ,且a =(3,3),2b -a =(-1,-1),cos θ=________.答案 1 解析 b =12a +12(-1,-1)=(1,1),a·b =6.又|a |=32,所以cos θ=a·b |a |·|b |=66=1.二、课堂检测1.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;①一个平面内有无数多对不共线向量可作为该平面所有向量的基底;①零向量不可作为基底中的向量.A .①①B .①①C .①①D .①①①答案 B2.若a 、b 不共线,且λa +μb =0(λ,μ①R ),则( )A .a =0,b =0B .λ=μ=0C .λ=0,b =0D .a =0,μ=0答案 B3. 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1+e 2,e 1+12e 2 C .2e 2-3e 1,6e 1-4e 2 D .e 1+e 2,e 1-e 2 答案 D4. 已知向量a =(1,2),b =(3,1),则b -a 等于( )A .(-2,1)B .(2,-1)C .(2,0)D .(4,3)答案 B 解析 b -a =(3,1)-(1,2)=(2,-1),故选B.5. 若AB →=(1,1),AD →=(0,1),BC →+CD →=(a ,b ),则a +b =( )A .-1B .0C .1D .2答案:A 解析:BC →+CD →=BD →=AD →-AB →=(0,1)-(1,1)=(-1,0),故a =-1,b =0,a +b =-1.6. 已知向量()2,3a =-,()3,b m =且//a b ,则m =( )A. -2B. 2C. 92-D. 92①①①C ①①①//a b ,(2,3)a =-,(3,)b m = ∴290m --=,解得92m =- 7. 如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.答案 14a +34b 解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b . 8. 若向量a =(2x -1,x 2+3x -3)与AB →相等,已知A (1,3),B (2,4),则x = .答案:1 解析:①AB →=(2,4)-(1,3)=(1,1),AB →=a ,①⎩⎪⎨⎪⎧2x -1=1,x 2+3x -3=1,解得x =1. 9. 已知点(0,1)A ,B (2,5),(,3)C x -,则向量AB 的坐标是________;若A ,B ,C 三点共线,则实数x =________. 答案:(2,4) -2①①:因为(0,1)A ,B (2,5),所以()()20,512,4AB =--=;向量()()0,31,4AC x x =---=-, 因为A ,B ,C 三点共线,所以//AB AC ,所以()2440x ⨯--=,解得2x =-10. 已知点A (0,1),B (3,2),向量(4,3)AC =--,则向量AB =____,向量BC =____.答案:(3,1) (-7,-4);解析:由点(0,1)A ,(3,2)B ,向量(4,3)AC =--,先求出点C 坐标为(4,2)--,由此利用平面向量坐标运算法则能求出向量AB 和向量BC .点(0,1)A ,(3,2)B ,向量(4,3)AC =--,∴点C 坐标为(4,2)--,∴向量(3,1)AB =,向量(7,4)BC =--.11 已知()1,3OA =-,()2,1OB =-,()1,2OC k k =+-,若A 、B 、C 三点在同一直线上,则k =______. 答案:1解析:(1,2)AB OB OA =-=,(,1)AC OC OA k k =-=+. A 、B 、C 三点共线,2(1)0k k ∴-+=,解得1k =.12. 设向量(12)(23)a b ==,,,,若向量a b λ+与向量(47)c =--,共线,则λ= 答案:2解析:a b λ+=(,2(2,3)(2,23λλλλ+=++)),由向量共线的充分必要条件有:()()(2)7(23)42λλλ+⋅-=+⋅-⇒=.13. 若向量()1,2a =,()2,1b =,则a b +与a b -的夹角等于______. 答案:2π 解析:()3,3a b +=,()1,1a b -=-,()()=0+⋅-a b a b ,∴()()a b a b +⊥-,a b +与a b -的夹角等于2π. 14. 已知向量()1,2a =,向量()3,2b =-.(1)求向量2a b -的坐标;(2)当k 为何值时,向量ka b +与向量2a b -共线.答案:(1)()7,2-(2)12k =-解析:(1)()()()21,223,27,2a b -=--=-(2)()()()1,23,23,22ka b k k k +=+-=-+,()()()21,223,27,2a b -=--=-①ka b +与2a b -共线,①()()72223k k +=--①12k =-15 已知在①ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2),①D 在直线BC 上,即BD →与BC →共线,①存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).①⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.①x -3=2(y -2),即x -2y +1=0.① 又①AD ①BC ,①AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,①-6(x -2)-3(y +1)=0.即2x +y -3=0.①由①①可得⎩⎪⎨⎪⎧ x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2).①|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).。

平面向量基本定理及坐标表示考点与提醒归纳

平面向量基本定理及坐标表示考点与提醒归纳

平面向量基本定理及坐标表示考点与提醒归纳一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.[解] ∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组. (2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→(0<λ<1), 由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知, m +n =-2λ,所以m +n ∈(-2,0). 答案:(-2,0)考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b , ∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________. 解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.答案:-1 -12.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.答案:72[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分.考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2). a -3b =(1,2)-3(-3,2)=(10,-4),则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.(2019·唐山模拟)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD , ∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)[课时跟踪检测]1.(2019·昆明调研)已知向量a =(-1,2),b =(1,3),则|2a -b |=( ) A.2 B .2 C.10D .10解析:选C 由已知,易得2a -b =2(-1,2)-(1,3)=(-3,1),所以|2a -b |=(-3)2+12=10.故选C.2.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.4.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( )A.12AC ―→+13AB ―→B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→解析:选C 如图,因为EC ―→=2AE ―→,所以EC ―→=23AC ―→,所以EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→.5.已知点A (8,-1),B (1,-3),若点C (2m -1,m +2)在直线AB 上,则实数m =( ) A .-12 B .13 C .-13D .12解析:选C 因为点C 在直线AB 上,所以AC ―→与AB ―→同向.又AB ―→=(-7,-2),AC ―→=(2m -9,m +3),故2m -9-7=m +3-2,所以m =-13.故选C.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2 D .42解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.7.已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→, 点C 在线段AB 上,∠AOC =30°.设OC ―→=m OA ―→+n OB ―→(m ,n ∈R ),则m n等于( )A.13 B .3 C.33D.3解析:选B 如图,由已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→,可得AB =2,∠A =60°,因为点C 在线段AB 上,∠AOC =30°,所以OC ⊥AB ,过点C 作CD ⊥OA ,垂足为点D ,则OD =34,CD =34,所以OD ―→=34OA ―→,DC ―→= 14OB ―→,即OC ―→=34OA ―→+14OB ―→,所以m n=3.8.(2019·深圳模拟)如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2解析:选B 以点A 为坐标原点,分别以AB ―→,AD ―→的方向为x 轴,y 轴的正方向,建立平面直角坐标系(图略).设正方形的边长为2,则A (0,0),C (2,2),M (2,1),B (2,0),D (0,2),所以AC ―→=(2,2),AM ―→=(2,1),BD ―→=(-2,2),所以λAM ―→+μBD ―→=(2λ-2μ,λ+2μ),因为AC―→=λAM ―→+μBD ―→,所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.9.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-310.已知向量a =(1,m ),b =(4,m ),若有(2|a |-|b |)(a +b )=0,则实数m =________. 解析:因为a +b =(5,2m )≠0,所以由(2|a |-|b |)(a +b )=0得2|a |-|b |=0, 所以|b |=2|a |, 所以42+m 2=212+m 2,解得m =±2.答案:±211.(2019·南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =________.解析:∵a =(m ,n ),b =(1,-2), ∴由|a |=25,得m 2+n 2=20, ① 由a =λb (λ<0),得⎩⎪⎨⎪⎧m <0,n >0,-2m -n =0, ②由①②,解得m =-2,n =4. ∴m -n =-6. 答案:-612.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:1213.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A ―→+PB ―→+PC ―→=0,求|OP ―→|;(2)设OP ―→=m AB ―→+n AC ―→(m ,n ∈R ),用x ,y 表示m -n .解:(1)∵P A ―→+PB ―→+PC ―→=0,P A ―→+PB ―→+PC ―→=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得x =2,y =2, 即OP ―→=(2,2),故|OP ―→|=2 2.(2)∵OP ―→=m AB ―→+n AC ―→,AB ―→=(1,2),AC ―→=(2,1). ∴(x ,y )=(m +2n,2m +n ),即⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .。

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算好啦,今天我们来聊聊平面向量的基本定理和坐标运算。

这可是个很有趣的话题,别被那些数学术语吓跑哦!你知道吗,向量其实就像是一把钥匙,可以打开很多数学大门。

听上去挺高大上的,但实际上,我们生活中处处都离不开它们,就像你每天都离不开饭一样。

想象一下,你在操场上跑来跑去,运动会的时候,标记你起跑的地方和终点的地方。

用坐标来表示,就是一个个的点,比如 (2, 3) 代表着你起跑的地方,(5, 7) 是终点。

平面向量就像是连接这两个点的一根线,从 A 点到 B 点的过程就叫做向量的运算。

听起来是不是有点神秘?其实也没那么复杂。

向量不仅有方向,还有长度,这样一来,我们就能把它当成一个小箭头,指向目标,越远越好,嘿嘿。

再来看看坐标运算,简单来说,就是把这些向量在坐标系上转来转去。

比如说你要把一条向量从起点搬到终点,怎么搬?很简单,向量的加法就可以搞定。

想象一下,你有一个从 (2, 3) 到 (5, 7) 的向量,再加上一个从 (5, 7) 到 (8, 10) 的向量,结果就是从 (2, 3) 直接到 (8, 10)。

这就像你在操场上先跑到朋友那儿,然后一起跑到更远的地方,简直爽翻了。

向量的减法也好玩,想象你在吃汉堡,先吃了一个大汉堡,接着又吃了一个小汉堡。

这样一来,你的胃口就会受到影响嘛,向量的减法就是把一部分“胃口”给减掉。

把(5, 7) 的向量减去 (2, 3),就好比把你吃过的那部分减掉,最后留下的结果就是 (3, 4)。

这就像是记账,进账和出账的过程,清清楚楚,明明白白。

平面向量的基本定理告诉我们,两个向量如果相加,结果其实就是个新向量。

这和我们日常生活的积累特别像,不管是友情还是经历,都是点点滴滴积累起来的。

你在学校交了朋友,跑步时又认识了新伙伴,这些都是向量的相加。

每个人都是一个小向量,带着自己独特的方向和长度,拼凑起来就是一幅美丽的画面。

再说说方向和大小,向量的大小就是它的长度,方向就是箭头指向的地方。

高考数学一轮复习 5.2 平面向量的基本定理与坐标运算课件 文 新人教A版

高考数学一轮复习 5.2 平面向量的基本定理与坐标运算课件 文 新人教A版
§5.2 平面向量的基本定理与坐标运算
知识诠释 思维发散
一、平面向量的基本定理Leabharlann 坐标表示1.平面向量基本定理
定理:如果e1、e2是同一平面内的两个不共线的向量,那么对 于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1 e1+λ2e2,其中,不共线的向量e1、e2叫做表示这一平面内所有 向量的一组基底.
2.平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分 解.
3.平面向量的坐标表示
(1)在平面直角坐标系中分别取与x轴、y轴方向相同的两个 单位向量i、j作为基底,对于平面内的一个向量a,有且只有一 对实数x,y,使a=xi+yj,把有序数对(x,y)叫做向量a的坐标,记作 a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.
(A)k=1且c与d同向.
(B)k=1且c与d反向.
(C)k=-1且c与d同向.
(D)k=-1且c与d反向.
【解析】d=a-b=(1,-1),c=ka+b=(k,1), ∵c∥d,∴1×1-k×(-1)=0, ∴k=-1, 此时c=(-1,1),c与d反向. 【答案】D
3.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m= .
(2)设O A=xi+yj,则向量O A的坐标(x,y)就是终点A的坐标,即若
O A=(x,y),则点A的坐标为(x,y),反之亦成立(O是坐标原点).
二、平面向量坐标运算
1.加法、减法、数乘运算
向量 a
b
a+b
a-b
λa
坐标 (x1,y1) (x2,y2) (x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1)

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示

∵A,B,C三点共线,∴―A→B ,―A→C 共线,
∴-2×(4-k)=-7×(-2k),
解得k=-23.
课前·双基落实
答案:A
课·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
2.(2017·贵阳监测)已知向量m=(λ+1,1),n=(λ+2,2),若 (m+n)∥(m-n),则λ=________. 解析:因为m+n=(2λ+3,3),m-n=(-1,-1),又 (m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得 λ=0. 答案:0
a∥b⇔ x1y2-x2y1=0 .
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[小题体验] 1.已知a=(4,2),b=(-6,m),若a∥b,则m的值为______.
答案:-3 2.(教材习题改编)已知a=(2,1),b=(-3,4),则3a+4b=_____.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[谨记通法]
平面向量坐标运算的技巧 (1)向量的坐标运算主要是利用向量加、减、数乘运算的法 则来进行求解的,若已知有向线段两端点的坐标,则应先求向 量的坐标. (2)解题过程中,常利用向量相等则其坐标相同这一原则, 通过列方程(组)来进行求解.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
考点二 平面向量的坐标运算
[题组练透]
1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为( )
A.(-3,4)
B.(3,4)
C.(3,-4)

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示

例3、已知 ABCD的三个顶点 A、B、C的坐标分别为(2,1)、 (1,3)、(3, 4),求顶点D的坐标.
巩固练习: 已知A(1,1)、B(3, 0)、C(2, 5)是 平行四边形的三个顶点,求第 四个顶点D的坐标.
四、向量平行的坐标表示
设a (x1, y1),b (x2, y2 ),其 中b 0,则a b的充要条件是
a b x1 x2且y1 y2
4、向量平行的坐标表示
a b x1y2 x2 y1 0
六、作业
➢习题5.4第3、4、 7、8题.
➢ 完成《三维设计》
谢谢同学们
再 见
例1、如图,用基底i、j表示向量a、
b、c、d,并求出它们的坐标.A2 5 Nhomakorabea4
b
a
3
2
A
1 j -4 -3 -2 -1 o i 1 2 3
-1
-2
c
-3 d
-4
B
A1 4x
-5
三、平面向量的坐标运算
已知a (x1, y1),b (x2, y2 ),则
a b __(x_1___x_2_, _y_1 __y_2_)_____;
一、复 习 引 入
1、平面向量基本定理
已知e1、e2是同一平面内的两不共线向量, 那么对这一平面内的任意向量a,有且
只有一对实数1、2,使a 1e1 2 e2.
2、什么是平面向量的基底?
不共线向量e1、e2叫做这一平面内所有 向量的一组基底.
二、平面向量的坐标表示
在直角坐标系中,我们分别取与x轴、
a b _(_x_1___x_2_, _y_1 ___y_2 )_____; a ___(__x_1_, __x_2 )__________ .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解析】设点 P(x,y),由 MP =12 MN 得
(x-3,y+2)=12(-8,1),
从而xy-+32==-12 4 ,求得xy==--132 ,故选 A.
3.已知 a=(4,5),b=(8,y),且 a∥b,
则 y 等于( B )
A.5
B.10
32 C. 5
D.15
4.若 α,β 是一组基底,向量 γ=x·α+y·β(x, y∈R),则称(x,y)为向量 γ 在基底 α,β 下的坐标, 现已知向量 a 在基底 p=(1,-1),q=(2,1)下的 坐标为(-2,2),则 a 在另一组基底 m=(-1,1),n
联立①②解得xy= =-3 6 或xy= =2-1 .
【点评】在(1)的解答中,为了将的坐标表示出来, 用到了性质:a1,a2,…,an是首尾相连的向量,则 a1+a2+…+an=0.
(2)证明:E→M=(17-p)a+37b,E→F=-pa+qb, ∵E→F与E→M共线, ∴17--pp=37q,17q-pq=-37p,即71p+73q=1.
即一个向量的坐标,等于表示此向量的有向线段的终点
坐标减去始点坐标.
(4)若 a=(x1,y1),λ∈R,则 λa=(λx1,λy1) .
即向量数乘积的坐标,等于数乘以向量的相应坐标.
4.两向量平行和垂直的坐标表示 (1)设 a=(x1,y1),b=(x2,y2),则 a∥b⇔x1y2-y1x2=0. (2)设 a=(x1,y1),b=(x2,y2),则 a⊥b⇔x1x2+y1y2=0.
A.(3,1)
B.(-1,-3)
C.(-4,-4)
D.(4,4)
【解析】a=(-1-3,-3-1)=(-4,-4), 故选 C.
2.已知点 M(3,-2),N(-5,-1),点 P
满足 MP =12 MN ,则点 P 的坐标是( A )
ห้องสมุดไป่ตู้A.(-1,-32)
B.(1,32)
C.(32,1)
D.(-32,-1)
平面向量基本定量是向量正交分解的依据,是向量坐标运 算的基础,理解了该定理就能很好地掌握平面向量的各种知识.
(2)向量的正交分解. 如果基底的两个基向量 e1、e2 互相垂直,则称这个基底
为 正交基底,在正交基底下分解向量,叫做正交分解.事实
上向量的正交分解就是把一个向量分解为两个互相垂直的向
量.
3.向量的坐标运算
(则1)若a+ab==(x(1x,1+y1x),2,b=y1+(x2y,2)y.2),
即两个向量的和的坐标,等于这两个向量相应坐标的和.
(则2)若a-ab==((xx1,1-y1x)2,,by=1-(xy2,2) y.2).
即两个向量的差的坐标,等于这两个向量相应坐标的差.
(3)若 A(x1,y1),B(x2,y2),则A→B=(x2-x1,y2-y1.)
【点评】选择一组基底表示平面内的所有向量,这 是化归的思想,可给解题带来很多方便.
(3)设 a=(a1,a2),b=(b1,b2). 则 ma+nb=(ma1+nb1,ma2+nb2), 所以 f(ma+nb)=(ma2+nb2,2ma2+2nb2-ma1-nb1), 又 mf(a)+nf(b) =m(a2,2a2-a1)+n(b2,2b2-b1) =(ma2,2ma2-ma1)+(nb2,2nb2-nb1) =(ma2+nb2,2ma2+2nb2-ma1-nb1) =f(ma+nb).
AD=2,BC=1,P 是腰 DC 上的动点,则|P→A+3P→B|的最小值为__5__.
【解析】解法一:以 D 为原点,分别以 DA、DC 所在直线为 x、y 轴建立如图所示的平 面直角坐标系,设 DC=a,DP=x.
∴D(0,0),A(2,0),C(0,a), B(1,a),P(0,x), P→A=(2,-x),P→B=(1,a-x), ∴P→A+3P→B=(5,3a-4x), |P→A+3P→B|2=25+(3a-4x)2≥25, ∴|P→A+3P→B|的最小值为 5.
第28讲 平面向量的基本定理和 向量的坐标运算
【学习目标】
(1)了解平面向量的基本定理及其意义,掌握平面向量的 正交分解及其坐标表示;
(2)会用坐标表示平面向量的加法、减法与数乘运算,理 解用坐标表示平面向量共线和垂直的条件.
【基础检测】
1.若向量 a 的起点坐标为(3,1),终点坐标
为(-1,-3),则向量 a 的坐标为( C )
【点评】本例是新定义题型,分析求解的关键是阅 读理解“新定义”即“向量函数”,领会“向量函 数”对应下坐标的转换法则,并应用该法则解决相 关问题.
〔备选题〕例 5 设 A1,A2,A3,A4,A5 是平面坐
标系中给定的 5 个不同的点,则使M→A1+M→A2+M→A3+
M→A4+M→A5=0 成立的点 M 的个数为( B )
A.0
B.1
C.5
D.10
【解析】建立平面直角坐标系,设 Ai(xi,yi), i=1,2,3,4,5
M(x,y),则 x=∑ i=551xi,y=∑ i=551yi,故这样的点 M
只有一个.
【点评】解决向量问题常用的方法有:几何法、 代数法,选择合适的方法解题,如本题用代数方 法比几何法优越.
(2011 天津)已知直角梯形 ABCD 中,AD∥BC,∠ADC=90°,
【解析】(1)∵A→B+B→C+C→D+D→A=0, 即(6,1)+(x,y)+(-2,-3)=A→D, ∴A→D=(4+x,y-2), 又B→C∥D→A, ∴x(y-2)-y(4+x)=0⇒x+2y=0.① (2)由A→C=A→D+D→C=(6+x,y+1), B→D=B→A+A→D=(x-2,y-3). 又A→C⊥B→D, ∴(x-2)(x+6)+(y-3)(y+1)=0, ∴x2+y2+4x-2y-15=0,②
解法二:设D→P=xD→C(0≤x≤1),∴P→C=(1-x)D→C, P→A=D→A-D→P=D→A-xD→C, P→B=P→C+C→B=(1-x)D→C+12D→A, ∴P→A+3P→B=52D→A+(3-4x)D→C,|P→A+3P→B|2=245D→A2 +2×52×(3-4x)D→A·D→C+(3-4x)2·D→C2=25+(3-4x)2·D→C 2≥25, ∴|P→A+3P→B|的最小值为 5.
=(1,2)下的坐标为 (0,2) .
【知识要点】 1.平面向量的基本定理. (1)如果 e1 和 e2 是一个平面内的两个不平行的向量,那么对
于该平面内的任一向量 a,存在 惟一 的一对实数 λ1、λ2,使
a=λ1e1+λ2e2.我们把不共线向量 e1、e2 叫做向量 a 关于基底{e1, e2}的分解.
相关文档
最新文档