分式的基本性质教案

合集下载

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。

内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。

二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。

2. 学会简化分式,并能运用简化后的分式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。

三、教学难点与重点教学难点:分式的基本性质的理解与应用。

教学重点:分式的定义、简化分式的方法以及分式的实际应用。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:学生用书、练习本、计算器。

五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。

2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。

(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

(3)简化分式:讲解如何将分式简化,并举例说明。

3. 例题讲解结合教材例题,详细讲解分式的简化过程。

4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。

(2)小组讨论,解决实际问题,培养学生的合作意识。

5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。

2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。

八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。

重点和难点解析1. 分式的基本性质的理解与应用。

2. 简化分式的方法。

3. 实际问题的解决。

4. 板书设计。

5. 作业设计与答案。

一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

分式的基本性质 优秀教案

分式的基本性质 优秀教案

分式的基本性质教学 目标知识与技能1.使学生理解分式的基本性质,并会运用分式的基本性质将分式进行变形;2.利用分式的基本性质归纳,归纳理解粉饰的变号法则,并灵活应用。

过程与方法通过对比分数和分式基本性质的异同点,渗透类比的思想方法。

情感态度与价值观通过学习中的研究、讨论、交流,提高学生的学习能力和与人合作、交流的能力。

并体会发现、成功的美。

教学重点: 正确理解分式的基本性质。

教学难点: 运用分式的基本性质,将分式进行变形。

教学方法: 启发式教学过程教学活动学生活动 教学意图 (一)引导学生复习分式的有关概念1.指定两名学生就下列各式分别回答哪些是整式、分式,请其他学生判断其答案的正误,并说明原因。

52+x , mn, 2a-3b , 32-y y ,)2)(1(92---x x x , 53-2.指定学生分别回答上列各分式何时有意义,请其他学生判断其答案的正误,并说明原因。

(二)讲解分式的基本性质1.引导学生回忆分式的意义是对照分数的意义明确的,因此继续学习分式的知识也对照着分数的知识来学习。

再使学生回忆分数的知识;约分、通分、加减、乘除法等,都是以分数的基复习与分数进与分数类比,培养学生独立获取知识的能力。

本性质为根据,从而引出继续学习分式的知识,也从学习分式的基本性质开始。

2.指定学生叙述分数的基本性质,并以21等为例说明:MM ⨯⨯==-⨯-⨯=⨯⨯=21)3(2)3(1222121 (M 表示不等于零的数)MM ⨯⨯==-⨯-⨯=⨯⨯=32)3(3)3(2232232 (M 表示不等于零的数)MB M A B A B A B A ⨯⨯==-⨯-⨯=⨯⨯= )3()3(22 上式当BA表示分数时,M 是不等于零的数;若BA表示的是分式,则M 可以表示不等于零的整式。

以“把各式中的‘×’号换成‘÷’号,还对吗?”提问,指定学生回答,订正后明确M B MA B A ÷÷=。

八年级数学上册《分式的基本性质》教案、教学设计

八年级数学上册《分式的基本性质》教案、教学设计
-设计意图:使学生在实践中掌握分式的运算方法,提高学生的运算能力。
6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。

5.1第2课时分式的基本性质(教案)2023-2024学年八年级下册数学北师大版(安徽)

5.1第2课时分式的基本性质(教案)2023-2024学年八年级下册数学北师大版(安徽)
3.重点难点解析:在讲授过程中,我会特别强调分式的基本性质和运算这两ห้องสมุดไป่ตู้重点。对于难点部分,如分式的乘除法、通分等,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如购物打折、制作饼干等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式的基本原理,如通分、约分等。
(3)分式的乘方运算:掌握分式乘方的运算规则,特别是指数法则的应用。
举例:分析分式乘方时,如何将分子和分母分别进行乘方运算,并简化结果。
(4)分式在实际问题中的应用:学会将现实问题转化为分式问题,并运用所学知识解决问题。
举例:讲解如何将现实生活中的问题转化为分式表达式,运用分式的性质和运算方法解决问题。
最后,我会在课后及时了解同学们的疑问和困惑,针对性地进行辅导,确保每个人都能在分式这部分内容上学有所得。同时,我也会在今后的教学中,更加注重培养同学们的动手能力和团队协作能力,让他们在解决实际问题的过程中,真正掌握分式的核心知识。
(1)分子、分母的符号变化:探讨分式分子、分母同时乘以或除以同一个非零数时,分式的值不变。
(2)分式的乘除法:分析分式乘法、除法的运算规律,以及分式乘除法的简化方法。
(3)分式的乘方:讲解分式乘方的运算方法,以及如何运用指数法则简化计算。
3.分式的基本运算:结合实际例题,引导学生掌握分式的加减运算、乘除运算以及乘方运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

《5.1认识分式--分式的基本性质》教案

《5.1认识分式--分式的基本性质》教案
《5.1认识分式- -分式的基本性质》教案
一、教学内容
《5.1认识分式-分式的基本性质》教案,本节课将围绕以下内容展开:
1.分式的定义:根据教材,引导学生理解分式的概念,明确分子和分母的关系。
2.分式的性质:
(1)分式中的分子与分母同乘(或除以源自一个不等于0的整式,分式的值不变。
(2)分式的分子与分母互换,分式的值不变。
(3)分式的乘方与开方:对于分式的乘方和开方运算,学生可能会忽略分子分母分别进行运算。
-举例:分式(2/3)^3,学生可能会直接将2^3和3^3相除,得到8/27,而实际上应为8/27×(1/9)。
(4)分式在实际问题中的应用:学生可能难以将实际问题转化为分式问题,无法正确运用所学知识解决问题。
-举例:在速度、比例等问题中,学生可能不理解如何将问题转化为分式形式进行解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式构成的数学表达式,其中上面的整式称为分子,下面的整式称为分母。分式是表达比例关系的重要工具,它在数学和现实生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果要平均分给4个小朋友,我们可以用分式3/4来表示每个小朋友能得到的苹果数量。这个案例展示了分式在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质以及它在实际中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

分式的基本性质教案

分式的基本性质教案

分式的基本性质教案
2020-09-08
分式的基本性质教案
学习目标1.理解分式的基本性质.
2.会用分式的基本性质将分式通分。

教学重点理解分式的基本性质.掌握通分。

教学难点灵活应用分式的基本性质将分式变形。

教学方法自主学习、合作探究
学生自主活动材料
一、前置自学(自学课本7-8页内容,并完成下列问题)
1.判断下列约分是否正确:
(1)=(2)=(3)=0
2.通分
和、和
明确:(1)分式的通分与分数的.通分类似;
分式通分的依据——。

(2)最简公分母的确定:(1)系数取最小公倍数;(2)字母取所有不同字母;(3)所有字母的最高次幂。

特别强调,当分母是多项式时,应先将各分母分解因式,在确定最简公分母。

二、合作探究
1、下列分式的最简公分母是()?
(1)(2)
(3)(4)
2、通分:
(1);(2);(3)
三、拓展提升
通分:
(1)和(2)和
(3)和(4)和
四、当堂反馈
1.不改变分式的值,把分式中分子、分母各项系数化成整数为________.
2.分式的最简公分母是_________.
3.通分:
(1)、
(2)、
(3)、
4.某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,求他上、下坡的平均速度为()
(1)(2)(3)(4)
5.已知,求分式的值。

2024年分式的基本性质课时教案

2024年分式的基本性质课时教案

2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。

具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。

2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。

3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。

三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。

教学重点:分式的基本性质及其运用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生用书、练习本、文具。

五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。

2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。

(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。

(3)讲解分式的约分,通过例题使学生掌握约分的方法。

3. 随堂练习让学生独立完成教材第14页练习题1、2、3。

5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。

(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。

2. 答案:(1)见教材。

(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。

八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。

分式的基本性质教案

分式的基本性质教案

分式的基本性质优秀教案一、教学内容本节课我们将探讨《数学》教材第十五章第一节“分式的基本性质”。

具体内容包括分式的定义、分式的基本性质、分式的乘除法运算以及分式的约分。

二、教学目标1. 理解并掌握分式的定义及基本性质。

2. 学会分式的乘除法运算,并能熟练运用。

3. 能够对分式进行约分,并解释其约分原理。

三、教学难点与重点教学难点:分式的乘除法运算及约分。

教学重点:分式的定义、基本性质以及相关运算法则。

四、教具与学具准备1. 教具:PPT、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中分式的应用,如分数蛋糕、速度等,引发学生对分式的兴趣。

2. 分式的定义及性质(10分钟)讲解分式的定义,并通过例题讲解分式的基本性质。

3. 分式的乘除法运算(15分钟)介绍分式的乘除法运算规则,并进行例题讲解。

接着,布置随堂练习,让学生独立完成。

4. 分式的约分(10分钟)讲解分式约分的原理及方法,并进行例题演示。

随后,让学生进行随堂练习。

5. 小结与巩固(5分钟)6. 互动环节(10分钟)学生提问,教师解答。

针对学生在学习过程中遇到的问题进行解答。

七、作业设计1. 作业题目:2. 答案:(1)2(2)5/4(3)3/2八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对分式的定义、基本性质及运算法则有了更深入的理解,但仍有个别学生在约分环节存在困难,需要在课后进行个别辅导。

2. 拓展延伸:鼓励学生探索分式在其他数学领域的应用,如函数、不等式等,提高学生的综合运用能力。

重点和难点解析:1. 分式的定义及性质2. 分式的乘除法运算3. 分式的约分4. 互动环节5. 作业设计一、分式的定义及性质分式的定义:分式是由两个整式相除得到的表达式,其中被除数称为分子,除数称为分母。

分式的基本性质包括:1. 分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。

3、教学目标(1)了解分式的基本性质。

灵活运用“性质”进行分式的变形。

(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

(3)通过探索分式的基本性质,积累数学活动经验。

(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

4、教学重难点分析重点:理解并掌握分式的基本性质。

难点:灵活运用分式的基本性质,进行分式化简、变形。

二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。

学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。

学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

同时强化了学生以旧知识类比得出新知识的能力。

三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

分式的基本性质教案

分式的基本性质教案

分式的基本性质教案分式的基本性质教案分式的基本性质教案1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3、教材的处理学习是学生主动构建知识的过程。

学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。

学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。

本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。

让学生自我构建新知识。

通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。

教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。

为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的`基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

三、教法分析1、教学方法数学是一门培养人的思维,发展人的思维的重要学科。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

分式基本性质教案

分式基本性质教案

分式基本性质教案教案标题:分式基本性质教案教案目标:1. 理解和掌握分式的基本概念和表示方法。

2. 了解分式的基本性质,包括分式的约分、通分和运算法则。

3. 能够灵活运用分式的基本性质解决实际问题。

教案步骤:1. 导入新知识(5分钟)- 引导学生回顾分数的定义、简单运算和小数与分数之间的转换关系。

- 提问:你们还记得分数的基本性质吗?分数可以进行哪些运算操作?2. 提出学习目标(5分钟)- 向学生介绍本节课的学习目标,并强调学习分式基本性质的重要性。

- 说明学习本节课的知识对于解决实际问题和在日常生活中的应用的意义。

3. 分式的约分和通分(15分钟)- 通过示例演示如何约分和通分,并分类介绍两种运算的定义和步骤。

- 给学生提供一些练习题,让他们运用所学知识进行实践。

4. 分式的加减运算(15分钟)- 介绍分式的加减运算法则,强调在运算过程中需要通分。

- 利用具体例子和练习题让学生理解和掌握分式的加减运算方法。

5. 分式的乘法运算(10分钟)- 讲解分式的乘法运算法则,强调分子与分母的乘法规律。

- 通过示例演示分式的乘法运算步骤,并让学生进行练习。

6. 分式的除法运算(10分钟)- 介绍分式的除法运算法则,强调除法转化为乘法的原理。

- 通过具体例题和练习题帮助学生熟悉分式的除法运算方法。

7. 实际问题应用(10分钟)- 给学生提供一些实际问题,让他们运用所学分式的基本性质进行解决。

- 引导学生思考如何将实际问题转化为分式形式,并找到解决问题的方法。

8. 总结和作业布置(5分钟)- 对本节课所学知识进行总结,并与学生一起回顾和强化要点。

- 布置课后作业,让学生练习巩固所学的分式基本性质。

教学辅助工具:1. 教学课件或黑板2. 分式操练题3. 实际问题应用题目4. 学生作业本教学评估:1. 教师通过课堂观察评估学生对分式的基本性质的理解和掌握程度。

2. 对学生完成的练习题和实际问题的解答进行评分和批改。

初中数学精品教案《分式的基本性质》

初中数学精品教案《分式的基本性质》

初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。

2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会运用分式的基本性质对分式进行约分和通分。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。

2. 教学重点:分式的基本性质的运用,包括约分和通分。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、尺子、圆规。

五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。

2. 例题讲解:例题1:计算分式2/3+4/5。

解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。

例题2:计算分式6/83/4。

解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。

3. 随堂练习:练习1:计算分式3/5+2/7。

练习2:计算分式4/91/3。

4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。

这就是分式的基本性质。

5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。

六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。

2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

九年级数学上人教版《 分式的基本性质》教案

九年级数学上人教版《 分式的基本性质》教案

《分式的基本性质》教案
教学目标:
1.掌握分式的基本性质,能够熟练运用分式的基本性质进行分式的化简、求
值和解决相关问题。

2.通过观察、归纳、类比等数学方法,探究分式的基本性质,发展学生的数
学思维和解决问题的能力。

3.渗透“事物之间互相联系”的辩证唯物主义观点,培养学生的观察、分析、
概括的能力。

教学重点:
探究并掌握分式的基本性质。

教学难点:
运用分式的基本性质解决相关问题。

教学过程:
一、导入新课
1.教师出示几个简单的分式:x/y,4x/3y,(x+y)/z,(2x-3y)/(4z-1)。

2.请学生观察这些分式的共同特点,并归纳出分式的定义。

3.教师对学生的回答进行点评,并引出课题:分式的基本性质。

二、探究新知
1.观察教材中给出的几个分式,思考:如果改变这些分式的值,会有什么变
化?这个变化有什么规律?
2.学生分组讨论,并将讨论结果记录下来。

3.请各组代表发言,分享讨论结果。

4.教师对学生的回答进行点评,并引导学生探究分式的基本性质。

三、练习巩固
1.教材中的例题和练习题。

2.请学生自主选择一些题目进行练习,并互相交流答案。

3.教师对学生的练习进行点评和纠正,并对重点问题进行讲解。

四、小结作业
1.请学生回顾本节课所学内容,并进行口头总结。

2.布置课后作业,包括教材中的习题和相关的练习册题目。

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分

人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
五、教学反思
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。

分式的基本性质教案

分式的基本性质教案

课题:分式的基本性质教学目标1、 初步掌握分式的基本性质,理解约分、最简分式的意义,初步掌握分式约分的基本方法。

2、 经历运用类比的思想方法推导分式的基本性质、约分方法的过程,发展学生归纳总结的能力,互动游戏激发学生的学习热情。

教学重点将分式化简为最简分式。

教学难点运用类比的方法推导出分式基本性质及分式约分的过程。

教学方法引导探究,类比归纳教学过程一、复习旧知,导入新课1、分数基本性质复习〔互动游戏〕游戏名称:开启知识门(分数化简)游戏方法:锁为要化简的分数,钥匙表面空白,由学生化简分数后,完成解锁的过程。

每小组两位同学参加游戏。

游戏准备:卡纸、吸铁石等分数为: 91420361012627(1),;(2),;(3),;(4),1521-156025361281------2、分式基本性质学习〔类比推导〕533533159=⨯⨯= 933315535x x x x ⋅==⋅ 分数的分子与分母都除以 (分式的分子与分母都除以 同一个不为零的数,分数 同一个不为零的整式,分式 的值不变。

的值不变。

)159353353=⨯⨯= 3955315x x x x⋅==⋅ 分数的分子与分母都乘以 (分式的分子与分母都乘以 同一个不为零的数,分数 同一个不为零的整式,分式 的值不变。

的值不变。

)〔比较归纳〕分数的基本性质(0,0,0)a a m a n b m n b b m b n⋅÷==≠≠≠⋅÷分式的基本性质(,0,0,0)A A M A N M N B M N B B M B N⋅÷==≠≠≠⋅÷其中为整式,二、师生互动、探究新知1、分式约分〔分数的约分 933315535⨯==⨯所得分数为最简分数〕93(3)3155(3)5xx x x ⋅==⋅293(3)3155(3)5xy xy xy y xy y --⋅==-⋅2933(31)31555(31)5xy xy xy y y xy y -⋅-==-⋅-21(1)(1)11(1)1x x x x x x -+-==-++⋅〔概念呈现〕2、最简分式〔概念呈现〕〔尝试举例〕试写出几个最简分式三、回授调节、形成技能1、例题学习化简:2354222226(1)93(2)15(3)()24(4)2(5)x xa b a b x yx y x x xx yx y ++---〔尝试总结〕分式约分的具体方法2、以下约分的过程是否正确(1)2421x x x =(2)y x y x y x +=++34)()((3)24242122x x x x x ==++(4)y x y x y x +=++3344〔游戏升级〕化简223(1)6(2)9()x x x x yy x -----22155(3)26232(4)231b aa bx x x x ----++〔试一试〕2252.51025x x x x x -=-+当时,求的值四、自主归纳、小结提高1、分式的基本性质2、最简分式3、约分化简分式的方法五、分层作业、发展深化1、必做题书本第72页-第73页 练习10.2 1,2,3,42、选做题22222222294,2322a b a b ab b a b c ab a b c ac-=-=++-+-++(1)当时,求的值(2)化简:教学反思。

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。

具体内容包括分式的概念、分式的基本性质以及分式的约分。

二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。

2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。

3. 学会分式的约分方法,能够熟练地进行分式的约分。

三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。

教学重点:分式的概念、分式的约分。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、铅笔。

五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。

2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。

(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。

(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。

3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。

六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。

(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。

2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。

2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。

重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。

分式的基本性质教案

分式的基本性质教案

11.2分式的基本性质教学目标1.理解分式的基本性质及其内涵要点;灵活运用分式的基本性质进行分式的变形.2.根据教师提供的素材,通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行恒等变形时的注意要点,并且在这一过程中获得一些探索定理性质的初步经验.重点:使学生理解并掌握分式的基本性质.难点:灵活运用分式的基本性质进行分式的恒等变形.教学流程一、组织学习任务一.1.提出任务——探究分式的基本性质.(1)阅读材料.分数的基本性质:分数的分子与分母都乘(或除)以同一个不等于零的数,分数的值不变.(2)问题探究.下列从左到右的变形成立吗?为什么?①1144x x⨯=⨯②11mx x m⨯=⨯③11(1)xx x x-=-(3)归纳结论.分式的基本性质:.2.自主探索.3.汇报交流.(1)汇报研究成果.根据学生的认知基础,预测学生会得到以下结论:利用类比法、归纳法得出分式的基本性质的部分内容——即“分式的分子与分母都乘以同一个不等于零的整式,分式的值不变”,不可能得出“分式的分子与分母都除以同一个不等于零的整式,分式的值也不变”的性质,因为教师提供的素材中没涉及到除法.此时,教师提醒学生思考乘除的互逆关系,由学生完善分式的基本性质.(2)提出疑难问题.教师让学生提出小组合作学习中仍然没能解决的问题,组织各小组进行讨论.预测学生的共性问题可能是:“分式的分子、分母都加上(或减去)同一个整式,分式的值变不变?如果分子、分母都平方或立方,分式的值变不变?”此时,教师提供以下素材,组织学生讨论:请同学们判断下列从左到右的变形是否正确,并由此归纳分式的基本性质的要点有哪些.()()322333221292262246330.30.5100.30.5350.20.2102x y x y x x x x x y xy y y xy x y x y x y a b a b a b a b a b a b +++===⨯=---+⨯++==--⨯+ 预测学生归纳出以下要点:①分子、分母应同时做乘或除中的同一种变换;②所乘或除的必须是同一个整式;③所乘或除的整式应该不等于零.二、组织学习任务二.1.自主探究.探究运用分式的基本性质时的注意事项.(1)下列等式的右边是怎样从左边得到的? 22(0) 22a ac a x a c b bc bx b=≠= 反思:为什么①中有附加条件c ≠0,而②中没有附加条件x ≠0?(2)填空:()()()2222+;;.y a b x xy x y x x ab a b x ++=== 反思:做这类题的关键是什么?2.汇报交流.学生可能会总结以下注意事项:(1)应注意分式基本性质的三个要点;(2)要注意题目中是否有隐含条件;(3)要注意变形的技巧,如要先看前后分式的分子或分母是怎么变化的,然后分母或分子也要作相应的变化.3.课堂练习.4.应用拓展.解答下列问题:(1)当x =25时,分式27421x x x ---的值是多少?当x =7呢? 学生自主探究合作交流后得出:当x =7时,分式的值不是110,而是当x =7时,该分式无意义.让其领悟思考问题一定要全面.(2)判断m 取何值时,等式()()()()3323212172x m x x x m +++=---成立?三、课堂小结(师生共同完成).1.分式的基本性质;2.运用分式基本性质进行恒等变形时的注意事项;3.分式基本性质得出的过程;4.解题应注意挖掘题目中的隐含条件.四、作业布置.五、板书设计.3m +2≠0 7-2m ≠0 3m +2=7-2m 所以m =1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.2 分式的基本性质
七年级(下) 第九章
教学目标
1、认知目标:通过类比分数的基本性质,使学生理解和掌握分
式的基本性质;掌握约分的方法和最简分式的化
简方法。

(知道分式的基本性质,学会简单的约分,知道最简分式)
2、能力目标:使学生学习类比的思想方法,培养类比转化的思
维能力;使学生掌握分式的基本性质,培养正确
进行分式变形的运算能力。

(知道分式的基本性质与分数的基本性质之间非常类似)
3、情感目标:通过与分数的类比,导出分式的基本性质,渗透
事物是联系及变化发展的辨证关系。

即类比— —联系— —归纳— —发展。

(让她感受课堂的快乐以及一起学习的愉悦)
教学重点及难点
重点是理解并掌握分式的基本性质。

难点是灵活运用分式的基本性质进行分式的恒等变形及最简分
式的化简方法。

(区分最简分式,把分式约分变为最简分式)
教学过程设计
一、 情景引入
1.观察
在括号内填写每一步骤的依据
计算:
解:(由她来完成这个题目)
[通过填空和观察,使学生明确分数的计算和化简实质是进行分数
=12=36=16+2613+16
B ≠0,M ≠0,N ≠0
的通分和约分,而通分和约分的依据是分数的基本性质]
2.思考
问题(1):还记得分数的基本性质吗?
(在其他学生的引导下,让她再次重复一遍)
问题(2):分式是否也有这样的性质?
[通过提问的方式先使学生回忆复习分数的基本性质,继而引导
学生与分数的基本性质相类比,导出分式的基本性质,并让学生了解
分式的基本性质是今后学习与研究分式变形的依据。

]
3.讨论
(1)对照分数的基本性质,改写成分式的基本性质:
分式的分子与分母同时乘以(或除以)一个不为零的整式,分
式的值不变,即:

其中M 、N 为整式,且 (大家朗读完了以后,由她再次朗读一遍,并且在书上帮她自己划好
重点)
(2)两者有何区别和联系?
[通过讨论使学生理解从分数到分式是把“数”引伸到“式”.
分数是分式的特殊情形。

]
二、学习新课
1.概念辨析
分式中的A ,B ,M ,N 四个字母都表示整式,其中B 必须含有字
母,除A 可等于零外,B ,M ,N 都不能等于零.因为若B=0,分式无意
义;若M=0或N=0,那么不论乘以或除以分式的分母,都将使分式无
意义.
(找出重点以后由她再来重复一遍)
2.例题分析
例1:
(1)某人先写出分式9x
15x
,再写出分数?
3
5
说这两个是相等的,请问他的根据是什么?
(2)某人先写出分式3y
5x
-6xy2
10x2y
说这两个是相等的,请问他的根据是什么??
[通过此例(书上的例题,稍有改动)的练习,使学生初步熟悉分式的基本性质,并注意分式基本性质中的关键词语。

继而引出约分和最简分式的概念。

]
例2
化简:
(1)6x2y 9xy2
;
(2)
x+y
x2-y2
;
(3) -2x+3x2
2x
.
(教师板书一道后,站在她旁边看着她模仿完成其中一道)
[通过简单例题(书上例1)的练习,使学生能正确找出分子分母的相同因式,然后将分式化简。

并归纳出将分式化简到最简分式的方法。

]
例3:
化简?
(1)
x-2
x2-4x+4
;
(2) x2-x-6 x2-9
;
(3) 15b-5a 2a-6b
.
[通过例三的练习,向学生强调化简分式的最后结果应是最简分式。

练习中涉及到分式的变号法则,是一个教学难点,可适当举例让学生体会,但不必特别强调和给出分式的变号法则这一名称。

]
3.巩固练习
课后练习10.2
[第一题可在导出分式的基本性质后练习,第二、三、四题可在相应例题1、2、3讲解后练习。

也可集中练习,教师可根据实际情况选择。

]
三、问题拓展
(1)对于分式的基本性质的应用学生较容易出错的情况辨析:
a b =
a+1
b+1
,
x
y
=
x2
y2

(2)对于利用分式的基本性质将分式的分子、分母化成整系数形
式的习题,如不改变分式的值,把分式中分子、
分母的多项式各项系数化成整数,并使最高次项的系数为正.(3)对于可将分式先化简再求值的题目的练习。

已知a=3
4
,b=-
2
3
求分式
4a2-4ab
a2-4ab+3b2
的值。

[以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。

]
四、课堂小结
1、分式的基本性质?分式的基本性质是分式变形和运算的理论
依据。

2、约分的方法?约分是实现化简分式的一种手段.通过约分将
分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。

五、作业布置
练习册10.2。

相关文档
最新文档