典型环节的模拟研究 自动控制原理实验报告
典型环节的模拟研究实验报告
第三章 自动控制原理实验3.1 线性系统的时域分析3.1.1典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.典型环节的结构图及传递函数方 框图传递函数比例(P )K (S)U (S)U (S)G i O ==积分(I )TS1(S)U (S)U (S)G i O ==比例积分(PI ))TS11(K (S)U (S)U (S)G i O +==比例微分(PD ))TS 1(K (S)U (S)U (S)G i O +==惯性环节(T )TS1K(S)U (S)U (S)G i O +==比例积分微分(PID )ST K ST K K (S)U (S)U (S)G d p i p p i O ++==三.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数: ;单位阶跃响应: 01(S)(S)(S)R R K KU U G i O ===K)t (U =实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
自动控制原理实验报告
自动控制原理实验报告实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验接线前必须先将实验箱上电,以对运放仔细调零。
然后断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
无上位机时,利用实验箱上的信号源单元U2所输出的周期阶跃信号作为环节输入,即连接箱上U2的“阶跃”与环节的输入端(例如对比例环节即图1.1.2的Ui),同时连接U2的“锁零(G)”与运放的锁零G。
然后用示波器观测该环节的输入与输出(例如对比例环节即测试图1.1.2的Ui和Uo)。
注意调节U2的周期阶跃信号的“频率”电位器RP5与“幅值”电位器RP2,以保证观测到完整的阶跃响应过程。
有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A通道的输出端),将Uo连到实验箱 U3单元的I1(A/D 通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的USB2.0通信线。
自动控制原理实验报告一
自动控制原理实验报告实验时间:201X 年XX 月 XX 日 地点:XXXX 实验报告人(签名):倪马 同组实验人(签名):1 实验名称:典型环节的模拟研究2 实验目的:(1)了解和掌握主实验板及虚拟示波器的构造原理和操作方法。
(2)学习掌握几种典型环节的模拟研究。
(3)通过几种典型环节的模拟研究归纳出其研究方法及思路。
3 实验内容:(1)主实验板和虚拟示波器构造原理的学习及操作方法的掌握。
(2)比例环节、惯性环节、积分环节、比例积分环节和比例-微分环节的模拟研究。
4 实验步骤 4.1 实验操作4.1.1 比例环节典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K K U U G i O ===;单位阶跃响应:K )t (U =实验内容及步骤(1) 构造模拟电路:按图3-1-1安置短路套及插孔连线。
(2) 运行、观察、记录:选择线性系统时域分析/典型环节/比例环节,确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。
4.1.2 惯性环节典型惯性环节模拟电路如图3-1-2所示。
图3-1-2 典型惯性环节模拟电路传递函数:C R T R R K TS K U U G i O 1011(S)(S)(S)==+==;单位阶跃响应:)1()(0T te K t U --=实验内容及步骤(1) 构造模拟电路:按图3-1-2安置短路套及插孔连线。
(2) 运行、观察、记录:选择线性系统时域分析/典型环节/惯性环节,确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。
实验停止后,移动虚拟示波器横游标到输出稳态值×0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T 。
4.1.3 积分环节典型积分环节模拟电路如图3-1-3所示。
图3-1-3 典型积分环节模拟电路传递函数:C R T TS U U G i i O 01(S)(S)(S)===; 单位阶跃响应:t Ti1)(t U 0=实验内容及步骤构造模拟电路:按图3-1-3安置短路套及插孔连线。
自动控制原理实验.doc
实验一 典型环节的模拟研究一、实验目的:1. 了解并掌握XG2003自控理论教学实验系统模拟电路的使用方法,掌握典型环节模拟电路的构成方法,培养学生实验技能。
2. 熟悉各种典型环节的阶跃响应曲线。
3. 了解参数变化对典型环节动态特性的影响。
二、实验要求:1. 观测各种典型环节的阶跃响应曲线。
2. 观测参数变化对典型环节阶跃响应的影响。
三、实验仪器:1. XG2003教学实验板 一台 2. 示波器一台 3. 万用表一块四、实验原理和电路:本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种典型环节。
典型环节块图及其模拟电路如下:1.比例(P )环节。
其方块图如图1-1A 所示。
图1-1B 比例环节模拟电路比例环节的模拟电路如图1—1B 所示,其传递函数为1)()(R R s Ui s Uo = (1-2)比较式(1-1)和(1-2)得 K = R1/R0 (1-3)当输入为单位阶跃信号时,即)()(t l t U i = 时,SS U i 1)(=则由式(1-1)得 SKS U 1)(0= , 所以输出响应为 K t U =)(0 (t ≥0) (1-4) 其输出方波如图1-1C 。
2.积输分(I )环节。
其方块图如图1—2A 所示。
图1-1C 比例环节输出波形图 图1-2A 积分环节方块图 其传递函数为TSs Ui s Uo 1)()(=(1-5) 积分环节的模拟电路如图1—2B 所示。
图1-2B 积分环节模拟电路 积分环节模拟电路的传递函数为RoCSs Ui s Uo 1)()(=(1-6) 比较式(1-5)和(1-6)得C R T 0= 当输入为单位阶跃信号,即)()(t l t U i =时,S S U i 1)(=,则由式(1-5)得到TS S U 1)(0=·S 1=21TS 所以输出响应为:t T t U 1)(0=其输出波形如图1-2C 所示。
自动控制原理实验报告 (1)
实验1 控制系统典型环节的模拟实验(一)实验目的:1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
实验原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
实验内容及步骤实验内容:观测比例、惯性和积分环节的阶跃响应曲线。
实验步骤:分别按比例,惯性和积分实验电路原理图连线,完成相关参数设置,运行。
①按各典型环节的模拟电路图将线接好(先接比例)。
(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。
③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。
改变比例参数,重新观测结果。
④同理得积分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线。
实验数据实验二控制系统典型环节的模拟实验(二)实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
实验仪器1.自动控制系统实验箱一台2.计算机一台实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
实验内容及步骤内容:观测PI,PD和PID环节的阶跃响应曲线。
步骤:分别按PI,PD和PID实验电路原理图连线,完成相关参数设置,运行①按各典型环节的模拟电路图将线接好。
自动控制原理实验报告
实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。
实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。
利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。
时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。
K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。
自动原理实验报告总结
一、实验背景自动控制原理是自动化技术领域的基础课程,旨在使学生掌握自动控制的基本理论、分析方法及实验技能。
本次实验通过对典型环节的模拟研究,加深了对自动控制原理的理解和应用。
二、实验目的1. 理解自动控制系统的基本组成和原理;2. 掌握典型环节的数学模型和传递函数;3. 学会运用MATLAB软件进行控制系统仿真;4. 分析典型环节的时域响应和频率响应。
三、实验内容1. 典型环节的数学模型和传递函数;2. 典型环节的时域响应和频率响应;3. MATLAB软件在控制系统仿真中的应用。
四、实验步骤1. 设计典型环节的数学模型和传递函数;2. 利用MATLAB软件进行控制系统仿真;3. 分析仿真结果,验证理论分析的正确性;4. 对仿真结果进行总结和讨论。
五、实验结果与分析1. 一阶环节的时域响应和频率响应(1)时域响应:一阶环节的时域响应为指数函数,其上升时间、稳态误差等性能指标可通过传递函数进行计算。
(2)频率响应:一阶环节的频率响应为斜率为-20dB/dec的直线,相位滞后角为-90°。
2. 二阶环节的时域响应和频率响应(1)时域响应:二阶环节的时域响应为正弦函数,其上升时间、超调量、稳态误差等性能指标可通过传递函数进行计算。
(2)频率响应:二阶环节的频率响应为斜率为-40dB/dec的直线,相位滞后角为-90°。
3. MATLAB软件在控制系统仿真中的应用利用MATLAB软件进行控制系统仿真,可以方便地观察和分析系统的时域响应和频率响应。
通过改变系统参数,可以研究不同参数对系统性能的影响。
六、实验结论1. 通过本次实验,加深了对自动控制原理的理解,掌握了典型环节的数学模型和传递函数;2. 学会了利用MATLAB软件进行控制系统仿真,能够方便地观察和分析系统的性能;3. 了解了系统参数对系统性能的影响,为实际工程应用提供了理论依据。
七、实验体会1. 自动控制原理是自动化技术领域的基础课程,掌握自动控制原理对于从事自动化领域的研究和工程应用具有重要意义;2. 实验是学习自动控制原理的重要手段,通过实验可以加深对理论知识的理解,提高实践能力;3. MATLAB软件在控制系统仿真中具有强大的功能,能够方便地观察和分析系统的性能,为工程应用提供了有力支持。
典型环节的模拟研究自动控制实验报告
②待完整波形出来后,移动虚拟示波器横游标到1V(与输入相等)处,再移动另一根横游标到ΔV=Kp×输入电压处,得到与积分曲线的两个交点。
③再分别移动示波器两根纵游标到积分曲线的两个交点,量得积分环节模拟电路时间常数Ti。
5).观察比例微分环节的阶跃响应曲线
(2)构造模拟电路:按图接线
(3)运行、观察、记录:(注:CH1选‘×1’档。时间量程选‘×1’档)
打开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo),按下信号发生器(B1)阶跃信号按钮时(0→+4V阶跃),等待完整波形出来后,移动虚拟示波器横游标到4V(输入)×0.632处,,得到与惯性的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得惯性环节模拟电路时间常数T。A6输出端(Uo)的实际响应曲线Uo(t)。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒秒左右(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V(D1单元右显示)。
(2)构造模拟电路:按图接线
(3)运行、观察、记录:(注:CH1选‘×1’档。时间量程调选‘×1’档)
实 验 报 告
实验课程:自动控制理论
学生姓名:
学 号:
专业班级:
2013年 12 月 20日
南昌大学实验报告
学生姓名:学 号:专业班级:
实验类型:■ 验证□综合□设计□创新 实验日期:实验成绩:
典型环节的模拟研究
一、实验要求:
1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式
自动控制原理实验报告 (2)
实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。
利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验报告——合肥工业大学
实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的输入信号(Ui)。
(2)安置短路套、联线,构造模拟电路:(a)安置短路套(b)测孔联线(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT(Uo)。
注:CH1选‘X1’档,CH2置‘0’ 档。
(4)运行、观察、记录:按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),用示波器观测A6输出端(Uo)的实际响应曲线Uo(t),且将结果记下。
改变比例参数(改变运算模拟单元A1的反馈电阻R1),重新观测结果,其实际阶跃响应曲线见表1-1-1。
当R1=200K的电路与相应曲线当R1=100K的电路与相应曲线2.观察惯性环节的阶跃响应曲线典型惯性环节模似电路如图1-1-2所示。
该环节在A1单元中分别选取反馈电容C =1uf、2uf来改变时间常数。
实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入(Ui)。
(2)安置短路套、联线,构造模拟电路:(a)安置短路套(b)测孔联线(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT (Uo)。
注:CH1选‘X1’档,CH2置‘0’ 档。
(4)运行、观察、记录:按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),用示波器观测A6输出端(Uo)的实际响应曲线Uo(t),且将结果记下。
改变时间常数(改变运算模拟单元A1的反馈反馈电容C),重新观测结果,其实际阶跃响应曲线见表1-1-1。
下图为实验电路以及示波器显示的波形C =1uf时的电路图与相应曲线示波器显示:当C =1uf时的电路图与相应曲线示波器显示:3.观察积分环节的阶跃响应曲线典型积分环节模似电路如图1-1-3所示。
该环节在A1单元中分别选取反馈电容C=1uf、2uf来改变时间常数。
实验步骤:(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性方波信号(OUT),代替信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入(Ui):a.将函数发生器(B5)中的插针‘S ST’用短路套短接。
自动控制原理 典型环节的模拟研究实验报告
肇庆学院电子信息与机电工程学院模拟电路课实验报告12电气(1) 班姓名李俊杰学号 201224122119 实验日期2014年4 月16 日实验合作者:李奕顺王圆圆老师评定实验题目:典型环节的模拟研究一、实验目的了解各典型环节的传递函数二、实验仪器三、实验原理与图四、实验内容及步骤⑴观测比例、积分、比例积分、比例微分和惯性环节的阶跃响曲线。
①准备:使运放处于工作状态。
将信号源单元(U1 SG)的ST端(插针)与+5V端(插针)用“短路块”短接,使模拟电路中的场效应管(3DJ6)夹断,这时运放处于工作状态。
②阶跃信号的产生:电路可采用图1-1所示电路,它由“单脉冲单元”(U12 SP)及“电位器单元”(U11 P)组成。
图1-1具体线路形成:在Ul2 SP单元中,将Hl与+5V插针用“短路块”短接,H2插针用排线接至Ul1 P单元的X插针;在Ul1P单元中,将Z插针和GND插针用“短路块”短接,最后由插座的Y端输出信号。
实验步骤:①按2中的各典型环节的模拟电路图将线接好(先按比例)。
(PID不接)②将模拟电路输入端(Ui)与阶跃信号的输出端Y相联接;模拟电路的翰出端(Uo)接至示波器。
③按下按钮(或松平按钮)H时,用示波器观测输出端的实际响应曲线U(t),且将结果记下。
改变比例参数,重新观测结果。
④同理得出积分、比例积分、比例微分和惯牲环节的实际响应曲线,它们的理想曲线和实际响应曲线见表1-1。
⑵观察PID环节的响应匙线。
五、实验分析1、比例环节(R1=10k,R0=?)分析:图1-12、积分环节(C=2uF,R0=?)分析:图1-23、比例积分(R1=68,C=?,R0=?)分析:(下面如果有2张,你选一张就行,另一种删掉)图1-34、惯性环节(R1=10K,C=1还是2uF?,R0=?)分析:图1-4(波峰到最低点输入为0,其他输入为阶跃信号)5、比例微分(R1=20K,R2=10K,R3=10K,C=1uF,R=50K,R0=?)分析:图1-56、比例积分微分(R1=68K,R2=10K,R3=10K,C2=2uF,R=50k,R0=?)分析:图1-6。
自动控制原理实验报告-西南交通大学课程与资源中心
西南交通大学自动控制原理课程实验报告册
《自动控制原理》课程实验报告(一)
《自动控制原理》课程实验报告(二)
《自动控制原理》课程实验报告(三)
《自动控制原理》课程实验报告(四)
三、思考题
1. 参数在一定范围内取值才能使闭环系统稳定的系统称为条件稳定系统。
对于这类系
统可以通过根轨迹法来确定使系统稳定的参数取值范围,也可以适当调整系统参数或增加校正网络以消除条件稳定性问题。
对于下图所示条件稳定系统:
试问能否通过增加开环零极点消除系统条件稳定性问题,即对于所有根轨迹增益,根轨迹全部位于s左半平面,闭环系统稳定。
《自动控制原理》课程实验报告(五)
《自动控制原理》课程实验报告(六)
《自动控制原理》课程实验报告(七)
《自动控制原理》课程实验报告(八)
《自动控制原理》课程实验报告(九)。
自动控制原理-实验一
实验一 典型环节的模拟研究一.实验目的:1、了解并掌握ACLS-1控制理论实验箱模拟电路的使用方法,掌握典型环节模拟电路的构成方法,培养学生实验技能。
2、熟悉各种典型环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
二.实验要求:1、观测各种典型环节的阶跃响应曲线。
2、观测参数变化对典型环节阶跃响应的影响。
三.实验仪器:1、ACLS-1控制理论实验箱 一台2、超低频示波器 一台3、万用表 一块四.实验原理和电路:实验是利用运算放大器和其它元器件构成的网络来模拟各种典型环节,接线方法见附录一和ACLS-1控制理论实验箱原理图。
典型环节方块图及其模拟电路如下:1.比例(P)环节:i当输入为单位阶跃信号,即)(1)(t t U i =时,SS U i 1)(=。
则由式(1-1) 得到:SK S U o 1)(•=其传递函数为:TSS U S U i o 1)()(= (1-5)积分环节的模拟电路如图1-2B 所示。
积分环节接线图:把图1-1B(b)中的R1换为C 即可。
积分环节模拟电路的传递函数为:CSR S U S U i o 01)()(= (1-6)比较式(1-5)和(1-6)得: C R T 0= (1-7) 当输入为单位阶跃信号,即)(1)(t t U i =时,SS U i 1)(=。
则由式(1-5) 得到:2111)(TS S TS S U o =•=比例积分环节的模拟电路如图1-3B 所示。
比例-积分环节接线图:把图1-1B(b)中的R1换成R1和C 串联即可。
其传递函数为:CSR R R CS R CS R S U S U i o 0010111)()(+=+= (1-10)比较式(1-9)和(1-10)得:当输入为单位阶跃信号,即)(1)(t t U i =时,SS U i 1)(=。
则由式(1-9) 得到:STS K S U o 1)1()(•+=惯性环节的接线图:把图1-1B(b)中的R1换成R1和C 并联即可。
《自动控制原理》实验报告讲述
《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。
2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
1.2 实验设备PC机一台,TD-ACS实验系统一套。
1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1. 比例环节(P)(1) 方框图:如图1.1-1 所示。
图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。
理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。
图1.1-3(2) 传递函数:错误!未找到引用源。
(3) 阶跃响应:Uo(t) = 错误!未找到引用源。
(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。
图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。
3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。
图1.1-5(2) 传递函数:错误!未找到引用源。
(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。
控制系统典型环节的模拟实验
实验名称控制系统典型环节的模拟实验实验序号 1 实验时间2014-10-22学生姓名学号12140102专业自动化班级 2 年级12级指导教师贾群实验成绩一、实验目的:1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱THKKL-4系列3、THKKL仿真软件三、实验原理和内容:1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)。
表一:典型环节的方块图及传递函数2.测试各典型环节在单位阶跃信号作用下的输出响应。
3.改变各典型环节的相关参数,观测对输出响应的影响。
表二:典型环节的模拟电路图四、实验步骤:1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线比例、积分、比例积分、比例微分和惯性环节的实验步骤:2.观察PID 环节的响应曲线实验步骤:①将U1 单元的周期性方波信号(U1 单元的ST 端改为与S 端用短路块短接,S 11 波段开关置于“方波”档,“OUT”端的输出电压即为方波信号电压,信号周期由波段开关S 11 和电位器W 11 调节,信号幅值由电位器W 12 调节。
以信号幅值小、信号周期较长比较适宜)。
②参照表二中的PID 模拟电路图,按相关参数要求将PID 电路连接好。
③将①中产生的周期性方波信号加到PID 环节的输入端(U i ),用示波器观测PID 输出端(Uo),改变电路参数,重新观察并记录。
五、实验记录结果:比例环节R0=250K R1=250K积分环节R0=250K C=1uF六、实验讨论和总结:。
自控典型环节实验报告
一、实验目的1. 熟悉自动控制原理中典型环节的电路模拟与软件仿真方法。
2. 掌握典型环节(比例、积分、微分、惯性等)的阶跃响应特性及其动态特性。
3. 分析参数变化对典型环节阶跃响应的影响,为控制系统设计提供理论依据。
二、实验原理自动控制系统中,各种典型环节按照一定的关系组合而成,实现对被控对象的调节与控制。
本实验通过电路模拟与软件仿真,研究典型环节的阶跃响应特性及其动态特性。
三、实验仪器与设备1. XMN-2自动控制原理模拟实验箱2. 计算机3. CAE-PCI软件4. 万用表四、实验内容及步骤1. 比例环节(1)搭建比例环节模拟电路,测量输入、输出电压,记录数据。
(2)利用CAE-PCI软件对比例环节进行仿真,设置不同的比例系数,观察阶跃响应曲线。
(3)分析参数变化对比例环节阶跃响应的影响。
2. 积分环节(1)搭建积分环节模拟电路,测量输入、输出电压,记录数据。
(2)利用CAE-PCI软件对积分环节进行仿真,设置不同的积分时间常数,观察阶跃响应曲线。
(3)分析参数变化对积分环节阶跃响应的影响。
3. 微分环节(1)搭建微分环节模拟电路,测量输入、输出电压,记录数据。
(2)利用CAE-PCI软件对微分环节进行仿真,设置不同的微分时间常数,观察阶跃响应曲线。
(3)分析参数变化对微分环节阶跃响应的影响。
4. 惯性环节(1)搭建惯性环节模拟电路,测量输入、输出电压,记录数据。
(2)利用CAE-PCI软件对惯性环节进行仿真,设置不同的时间常数,观察阶跃响应曲线。
(3)分析参数变化对惯性环节阶跃响应的影响。
五、实验结果与分析1. 比例环节(1)实验结果:随着比例系数的增大,比例环节的阶跃响应速度加快,但超调量增大。
(2)分析:比例环节的阶跃响应速度与比例系数成正比,超调量与比例系数成反比。
2. 积分环节(1)实验结果:随着积分时间常数的增大,积分环节的阶跃响应速度变慢,但超调量减小。
(2)分析:积分环节的阶跃响应速度与积分时间常数成反比,超调量与积分时间常数成反比。
自动控制原理实验报告样本一
广东技术师范学院实验报告学院:专业:班级:成绩:姓名:学号:实验日期:实验一控制系统典型环节的模拟实验一、实验目的二、实验原理1、对表1-1所示各典型环节的传递函数设计相应的模拟电路(参见表1-2)表1-1:典型环节的方块图及传递函数表1-2:典型环节的模拟电路图2、测试各典型环节在单位阶跃信号作用下的输出响应。
3、改变各典型环节的相关参数,观测对输出响应的影响。
三、实验设备1、TKKL-4型控制理论实验箱 1台2、双踪示波器 1台3、数字万用表 1块四、实验内容及步骤1、观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。
(1)准备:使运放处于工作状态。
将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(3DJ6)夹断,这时运放处于工作状态。
(2)阶跃信号的产生:电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。
具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。
以后实验若再用阶跃信号时,方法同上,不再赘述。
实验步骤:(1)按表1-2中的各典型环节的模拟电路图将线接好。
(2)将模拟电路输入端(Ui)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。
(3)按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记入表1-3。
改变比例参数,重新观测结果。
(4)同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,且将结果记入表1-3。
2、观察PID环节的响应曲线。
实验步骤:(1)将U1单元的周期性方波信号(U1 单元的ST端改为与S端用短路块短接,S11波段开关置于“方波”档,“OUT”端的输出电压即为方波信号电压,信号周期由波段开关S 11和电位器W11调节,信号幅值由电位器W12调节。
典型环节的模拟研究 自动控制原理实验报告
典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套(b)测孔联线模块号跨接座号1 A5 S4,S122 B5 ‘S-ST’(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V阶跃),观测A5B输出端(Uo)的实际响应曲线。
示波器的截图详见虚拟示波器的使用。
实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。
自动控制原理实验报告材料03897
实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许围可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许围可认为满足理论条if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=件。
3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。
利用matlab 仿真得到理论波形如下:T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套(b)测孔联线模块号跨接座号1 A5 S4,S122 B5 ‘S-ST’(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V阶跃),观测A5B输出端(Uo)的实际响应曲线。
示波器的截图详见虚拟示波器的使用。
实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。
R0 R1 输入Ui比例系数K计算值测量值200K 100K 4V 0.5 0.5273 200K 4V 1 1.025550K 100K 2V 2 2.0115 200K 1V 4 4.023R0=200K R1=100K Ui=4V 1 信号输入(Ui)B5(OUT)→A5(H1)2 示波器联接×1档A5(OUTB)→B3(CH1)3 B5(OUT)→B3(CH2)R0=200K R1=200K Ui=4V R0=50K R1=100K Ui=2V R0=50K R1=200K Ui=1V2).观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-2所示。
图3-1-2 典型惯性环节模拟电路传递函数:C R T R R K TSKU U G i O 1011(S)(S)(S)==+== 单位阶跃响应:)1()(0Tt eK t U --=实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元右显示)。
(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。
(a (b )测孔联线模块号 跨接座号 1 A5 S4,S6,S10 2B5‘S-ST ’(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,1 信号输入(Ui ) B5(OUT )→A5(H1)2 示波器联接×1档A5(OUTB )→B3(CH1) 3B5(OUT )→B3(CH2)按下信号发生器(B1)阶跃信号按钮时(0→+4V阶跃),观测A5B输出端(Uo)响应曲线,等待完整波形出来后,移动虚拟示波器横游标到输出稳态值×0.632处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T。
实验报告要求:按下表改变图3-1-2所示的被测系统时间常数及比例系数,观测结果,填入实验报告。
R0 R1 C 输入Ui比例系数K 惯性常数T 计算值测量值计算值测量值200K 200K 1u4V1 1.0225 0.2 0.190 2u 1 1.0225 0.4 0.41050K 100K1u2V 2 2.0115 0.1 0.100 200K 1V 4 4.0230 0.2 0.200R0=200K R1=200K C=1u Ui=4V R0=200K R1=200K C=2u Ui=4VR0=50K R1=100K C=1u Ui=1VR0=50K R1=200K C=1u Ui=1V3).观察积分环节的阶跃响应曲线典型积分环节模拟电路如图3-1-3所示。
图3-1-3 典型积分环节模拟电路传递函数:C R T TSU U G i i O 01(S)(S)(S)=== 单位阶跃响应:t Ti1)(t U 0=实验步骤:注:‘S ST ’用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT ),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
(注:为了使在积分电容上积分的电荷充分放掉,锁零时间应足够大,即矩形波的零输出宽度时间足够长! “量程选择”开关置于下档时,其零输出宽度恒保持为2秒!)③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V (D1单元右显示)。
(2)构造模拟电路:按图3-1-3安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线1 信号输入(Ui ) B5(OUT )→A5(H1) 2示波器联接A5(OUTB )→B3(CH1)(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,观测A5B输出端(Uo)响应曲线,等待完整波形出来后,点击停止,移动虚拟示波器横游标到0V处,再移动另一根横游标到ΔV=1V(与输入相等)处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得积分环节模拟电路时间常数Ti。
实验报告要求:按下表改变图3-1-3所示的被测系统时间常数,观测结果,填入实验报告。
R0 C 输入Ui积分常数Ti 计算值测量值200K1u1V 0.2 0.2102u 0.4 0.420100K 1u 0.1 0.110 2u 0.2 0.220R0=200K C=1u Ui=1V R0=200K C=2u Ui=1V 3 ×1档B5(OUT)→B3(CH2)模块号跨接座号1 A5 S4,S102 B5 ‘S-ST’R0=100K C=1u Ui=1V R0=100K C=2u Ui=1V4).观察比例积分环节的阶跃响应曲线典型比例积分环节模拟电路如图3-1-4所示.。
图3-1-4 典型比例积分环节模拟电路传递函数:C R T R R K TiS K U U G i i O 101)11((S)(S)(S)==+== 单位阶跃响应:)(t T 11K )t (U O +=实验步骤:注:‘S ST ’用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT ),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui );该信号为零输出时将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
(注:为了使在积分电容上积分的电荷充分放掉,锁零时间应足够大,即矩形波的零输出宽度时间足够长! “量程选择”开关置于下档时,其零输出宽度恒保持为2秒!)③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压 = 1V (D1单元右显示)。
(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线模块号 跨接座号 1A5S4,S8(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,观测A5B 输出端(Uo )响应曲线,等待完整波形出来后,点击停止。
移动虚拟示波器横游标到输入电压×比例系数K 处,再移动另一根横游标到(输入电压×比例系数K +输入电压)处,得到与积分曲线的两个交点。
再分别移动示波器两根纵游标到积分曲线的两个交点,量得积分环节模拟电路时间常数Ti 。
实验报告要求:按下表改变图3-1-4所示的被测系统时间常数及比例系数,观测结果,填入实验报告。
R0 R1C 输入Ui比例系数K 积分常数Ti 计算值 测量值计算值 测量值 200K200K1u 1V 1 1 0.2 0.210 2u 1 1 0.4 0.420 100K1u 2 2 0.2 0.210 2u220.40.410R0=200K R1=200K C=1u Ui=1V2 B5 ‘S-ST ’1 信号输入(Ui ) B5(OUT )→A5(H1)2 示波器联接×1档A5(OUTB )→B3(CH1) 3B5(OUT )→B3(CH2)R0=200K R1=200K C=2u Ui=1V R0=100K R1=200K C=1u Ui=1V R0=100K R1=200K C=2u Ui=1V5).观察比例微分环节的阶跃响应曲线典型比例微分环节模拟电路如图3-1-5所示。
图3-1-5 典型比例微分环节模拟电路实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
(连续的正输出宽度足够大的阶跃信号)① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒左右(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压 = 0.5V (D1单元右显示)。
(2)构造模拟电路:按图3-1-5安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:虚拟示波器的时间量程选‘/4’档。