新人教版七年级上《有理数》ppt课件

合集下载

有理数的概念ppt课件

有理数的概念ppt课件

3,543.60,27是正数.
情境引入
在巴黎奥运会,网球女子单打金牌赛中,中国选手郑钦文
2比0战胜克罗地亚选手维基奇,为中国网球夺得首枚奥运会女
单金牌。
这些数你熟悉吗?你
会对它们进行分类吗?
2是正数;
0既不是正数也不是负数.
情境引入
在巴黎奥运会举重男子61公斤级决赛中,中国队选手李发
彬最终总成绩310公斤(抓举143公斤,挺举167公斤)夺冠,卫
人教版数学七年级上册
第一章 有理数
1.2 有理数及其大小比较
1.2.1 有理数的概念
−5℃
25℃
情境引入
在巴黎奥运会跳水男子3米板决赛中,来自潮汕的中国选手
谢思埸以总分543.60分夺得金牌,成功卫冕,帮助中国跳水队
实现该项目的三连冠,这也是中国代表团的第27枚金牌.
这些数你熟悉吗?你
会对它们进行分类吗?
正数
0
(2)非负数包括________和_______;
负数
0
(3)非正数包括________和_______;
自然数
正整数
(4)非负整数包括________和_______,又称为________;
0
正分数
整数
(5)非负分数包括________和_______;
整数
负分数
(6)非正分数包括________和_______.
课堂小结
有 关 概 念
可以写成分数形式的数称为有理数.
正整数


有理数的分类





整数 0
负整数


正分数
分数

2024新人编版七年级数学上册《第一章1.2.3相反数》教学课件

2024新人编版七年级数学上册《第一章1.2.3相反数》教学课件
22
它们的相反数,说明各对数在数轴上的位置特点.
分析:在所求数的前面添上“–”号,即得原数的相反数→ 在数轴上表示出各数→观察各对数在数轴上的位置→结论.
探究新知
解:2的相反数是-2;
1 的相反数是 1
2
2

3 的相反数是
2
3 2
;
–2.5的相反数是2.5.把这些数及它们的相反数表示在数
轴上为
2和–2, 1 和 1, 3和 3 ,–2.5和2.5,各对数在数轴上分别位于 2 2 22
–5 –2 0 2
5
探究新知
归纳总结
1. 互为相反数的两个数分别位于原点的两侧;
2. 互为相反数的两个数到原点的距离相等.
3. 一般地,设a是一个正数,数轴上与原点的距 离是a的点有两个,它们分别在原点的左右,表 示a和–a,我们说这两点关于原点对称.
几何意义
探究新知
素养考点 2 相反数的意义
例2 分别写出2, 3 , 1 ,–2.5的相反数,并在数轴上标出各数及
楚国
探究新知
知识点 1 相反数
两位同学背靠背站好(分左右),规定向右为正,以 两位同学未走时的位置为原点,两人各自向前走3步,则:
右边同学所在位置,记作 +3 , 你还能说左出边具同备学这所些在位置 ,记作 –3 .
特征的成对的数吗?
对照数轴,说出–3与+3两数的相同点和不同点.
探究新知
探究一 相反数的概念 活动1:观察下列一组数+1和–1,+2.5和–2.5,+4
5.若a是负数,则–a是__正___数;若–a是负数,则 a是__正___数.
6.
x 2
的相反数是___2x__,–3x的相反数是__3_x__.

2024新人编版七年级数学上册《第二章2.2.1有理数的乘法第1课时》教学课件

2024新人编版七年级数学上册《第二章2.2.1有理数的乘法第1课时》教学课件
54 6
多个有理数相乘
时若存在带分数, 要先将其画成假分 数,然后再进行计 算.
巩固练习
计算:
(1)(−4)×5×(−0.25);
(2)
(
3 5
)
(
5) 6
(2).
解:(1)(−4)×5 ×(−0.25)
(2)
(
3 5
)
(
5 6
)(Βιβλιοθήκη )= [−(4×5)]×(−0.25)
[( 3 5)] (2)
探究新知
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知:
1.正数乘正数积为_正_数;负数乘负数积为_正_数; (同号得正)
2.负数乘正数积为_负_数;正数乘负数积为_负_数; (异号得负)
探究新知
相反数 是自己
探究新知
求一个数的倒数的方法:
1. 求一个不为0的整数的倒数,就是将该整数作分母,1作分子; 2. 求一个真分数的倒数,就是将这个真分数的分母和分子交换位置; 3. 求一个带分数的倒数,先将该数化成假分数,再将其分子和分母的
位置进行互换; 4. 求一个小数的倒数,先将该小数化为分数,再求其倒数 .
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后,甲、乙水库水位的总变化量各是多少?
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
探究新知
知识点 1 有理数的乘法法则 探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

人教版七年级上册 第1章 有理数 章末复习课件(共34张PPT)

人教版七年级上册 第1章 有理数 章末复习课件(共34张PPT)
原点、正方向和单位长度是数轴的三要素,三者缺一不可.
2.数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,
但数轴上的点不都表示有理数,还可以表示其他数,比如π.
3.利用数轴比较有理数的大小:在数轴上,右边的点所对应的数总比左边的点
所对应的数大.因此,正数总大于零,负数总小于零,正数大于负数.
负数的绝对值越小,这个数越大.其中正确的有(
B
A. 1个
D. 4个
B. 2个
C. 3个
)
知识梳理
知识点6:有理数的大小比较
1.两个负数,绝对值大的反而小.
2.正数大于零,零大于负数,正数大于负数.
3.利用数轴:在数轴上,右边的点所对应的数总比左边的点所对应的数大.
对点例题
[例10]有理数a,b在数轴上的位置如图所示,则下列结论一定正确的是
运动距离为1+4=5(cm),此时点 A 的运动时间为5÷1=5(秒);
当点 A 在点 C 的右侧时,点 A 对应的数是4+3=7,则
点 A 的运动距离为7+4=11(cm),此时点 A 的运动时间
为11÷1=11(秒).
综上所述,经过5秒或11秒使 AC =3 cm.
如+5=5,+(-5)=-5.
(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)
就是-3的相反数,因此,-(-3)=3.
对点例题
中小学教育资源及组卷应用平台
1
【例 5】在 2 ,2,4,-2 这四个数中,互为相反数的是(
1
A. 2 与 2
B.2 与-2
1
C.-2 与 2

D.-2 与 4中小学教育资源及组卷应用平台

.

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版
解:小狗一共行走了0米.
【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?

解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5


__
)
–7
–9
(

3
–5



__
–7
–9
(
)
(3)
8
–4


__
)
–6
–2
(

8
–4



__
–6
–2

人教版数学七级上册12《有理数》 课件(共25张PPT)

人教版数学七级上册12《有理数》 课件(共25张PPT)

丹丹在做第1题时,发现了新的分类方法,她认为:带“+”的数分为一类,带“-”的数分为一类,数的前面没有符号的作为一类.
在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.
在①女当子 夜柔空道中-繁星52密公4布斤.由时级,的前小冠贝军面贝争的在夺数战结星中论星,中,国,他小选所手学用冼到里东的妹数学仅属用的于分什数钟么,就可数为?以中国分柔为道队哪夺得几首类枚金?牌.
知道了哪些新知识?学会了做什么?
2.教师小结,并对 作说明. 3.以“我在生活中发现了有理数” 为题,写 一篇数学日记.
1
2
3
4
5
教学过程分析
教学设计说明
教学设计说明
1.贴近生活,让学生在体验中感悟学习. 2.创设情境,让学生在活动中探究学习.
3.开放课堂,让学生在互动中创新学习.
1
2
3
4
5
谢谢!

+10
1
2
3
4
5
活动1
110,
12.91, 12.96, 0,
-52
1.1,
122.5, 182.5,
+75, 305,
18,
-7.5,
+10.
110
-52
1. 1
0
+75
305
18
- +10
活动1
同桌探

122.5,
110, 182.5,
12.91, 12.96, 0,
-52
1.1,
+75, 305,
教学过程流程图
活动1
创设情境 导入新课
活动2
综合归纳 形成新知
活动3

人教版(2024)七年级上册1.2.1有理数的概念 课件(共17张PPT)

人教版(2024)七年级上册1.2.1有理数的概念  课件(共17张PPT)

获取新知
探究点1 整数的概念
正整数:如1,2,3,…; 0; 负整数:如-1,-2,-3,…. 正整数、0、负整数统称为整数.
整数可以写成 分数形式
获取新知
探究点2 分数的概念
正分数:
1
,2
,15

,0.1,5.3,0.3,…;
23 7
负分数: 5 , 2 , 1 , 0.5,150.5, …. 237
课堂练习
1.下列各数中,正整数是( A )
A.3 B.2.1 C.0
D.-2
2.在数0,2,-3,-1.2中,属于负整数的是( C ) A.0 B.2 C.-3 D.-1.2
3.在-1,0,1,2这四个数中,既不是正数也不是负数的是( B ) A.-1 B.0 C.1 D.2
4.把下列各数填在相应的大括号里,填写正确的是( B )
问题1:这里出现了什么数?
正数:+4;+11;+1; 0 负数:-10;-9.
问题2:在小学我们还学习过哪些数?举例说明.
分数:1 ,5,1 3,…… 23 4

小数:0.1,5.32,0.3 ,……
奇数:1,3,5,…… 偶数:2,4,6,…… 自然数:0,1,2,…… 质数:2,3,5,…… 合数:4,6,8,…… ……
负整数 正分数
负分数
自然数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
拓展反思
1.我们学过的数都是有理数吗?举例说明. 我们学过的数不一定是有理数,如π .
2.无限小数都是有理数吗? 无限循环小数都是有理数,无限不循环小数不是有理数. 3.在有理数中,最特殊的有理数是哪个? 0.

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.







(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:

(1)
; 解:原式=-9;


(2)


56 7
原式=48=6;

(3)
; 原式=-30=-2;

45
3

(4) ;
.
原式=-30.
总结归纳

一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3

分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0

新人教版七年级上《有理数》ppt课件

新人教版七年级上《有理数》ppt课件

能约分成整数的数_____( 不能 填 “能”或“不能”)算做分数; 2,两个整数的比(如 (如0.2,-3.14等)、无限循环小数 ,1.4 7 等)都是分数;但无限不循环小 (如0.3 数(如 等)不是分数;
2 1 , 等)、有限小数 3 2

3,无限不循环小数不是有理数;(无理数)
4,整数中除了正整数和负整数,还有_____. 0 有理数还有其他的分类方法吗?
有理数还可以分为:
有理数

正有理数 ______
______ 0
负有理数 ______

正整数 ______
正分数 ______
负整数 ______
正数和正有理 数有什么区别 呢? 注意:正数和 正有理数是不 同的,例如: 就是正数,但 不是正有理数;
进步往往从归纳反思开始!
乘风破浪会有时, 直挂云帆济沧海! 谢谢大家,再见!
3,整数和分数合称有理数;
有理数可以分为:
有理数

整数 ______
分数 ______

正整数 ______
______ 0 负整数 ______ 我们怎么 区分整数和 分数呢? 有没有有 理数以外的 数呢?如果 有,请举一例.
正分数 ______
负分数 ______
有理数分类的几点注意:
15 9 1,如 3 ,200%,6 3
例2,下列说法正确的是 ( D) A.非负有理数就是正有理数 B. 0仅表示没有,是有理数 C.正整数和负整数统称为整数 D.整数和分数统称为有理数
例3,最小的正整数是______ 1 ,最大的负整数 是_____, -1,-2,-3 , -1 所有大于-4的负整数有_________ 不大于3的非负整数有____________ 。 0,1,2,3

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文
*
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个

2024秋季新教材人教版七年级上册数学1.2 有理数1.2.3相反数课件

2024秋季新教材人教版七年级上册数学1.2 有理数1.2.3相反数课件

课堂导入
-3
-
1 2
0
1 2
3
-4 -3 -2 -1 0 1 2 3 4
2. 观察所画的数轴及表示的点回答下列问题: (1)3与-3分别在原点的__右__侧___和__左__侧___,它们到原点的距离为
___3____; (2)数轴上与原点距离是3的点有_两__个,这些点表示的数是_3_和__-_3_; 与原点距离是12的点是_12_和__-_12__;它们的_符__号___不同.
第一章 有理数
1.2 有理数
1.2.3 相反数 七上数学 RJ
学习目标
1.借助数轴理解相反数的意义,体会数形结合的思想方 法,会求一个数的相反数;
2.会对含多重符号的有理数进行化简.
课堂导入
1. 画数轴,并在数轴上表示出以下各点:
3,12,0,-
1 2
,-3
-3
-
1 2
0
1 2
3
-4 -3 -2 -1 0 1 2 3 4
5. 具有相反意义的量的两个数互为相反数. ( )
6. -8是相反数.
()
相反数成对出现(0除外)
新知探究 知识点2 多重符号的化简 ➢ 说一说:下列各数表示的意义. 1. -(-7.5)表示___-_7_.5_的__相__反__数__________; 2. -(+100)表示__+_1_0_0_的__相__反__数_________; 3. -(+0)表示____0_的__相__反__数___________ .
-10 100 -13
随堂练习 3. 如果a=-a,那么表示数a的点在数轴上的什么位置?
解:如果a=-a,说明a与它的相反数相等, 那么a=0,表示a的点在数轴的原点处.

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和

新人教部编版七年级数学上册《第1章有理数1.2有理数【全套】》精品PPT优质课件

新人教部编版七年级数学上册《第1章有理数1.2有理数【全套】》精品PPT优质课件

25 20 15 10 5 0 -5 -10 -15 -20 -25
5℃
25 20 15 10 5 0 -5 -10 -15 -20 -25
-10℃
25 20 15 10 5 0 -5 -10 -15 -20 -25
0℃
知识与能力
理解数轴的三要素,会画数轴.
过程与方法
1.能将已知有理数在数轴上表示出来; 2.能说出数轴上的已知点所表示的有理数; 3.理解有理数都可以用数轴上的点表示.
3.下列说法错误的是
(C )
A.负整数和负分数统称为负有理数
B.正整数,0,负整数统称为整数
C.正有理数与负有理数组成全体有理数
D.3.14是小数,也是分数
正有理数、0与负有理数组成全体有理数
42―.7把2,,下―1列5,.各8―,数02.填0010入,2,相π76. 应,集―合1,的9括0%号,内3.:14,0, 2 13, (1)整数集合:{27,2 002,―1,0,―2,1,… } ; (2)分数集合:{ ―5.8,6 ,90%,3.14, 2,1 ―0.01, …}; (((453)))负正非有 有 负理 理 整数 数 数集 集 集合 合 合:::{{{―275,7.8,2 0―021,,6,2 139,0%…―,}23.,3.1―4,0.10,1…,…};} ;
情感态度与价值观
1.渗透数形结合的数学思想; 2.知道数学来源于实践; 3.培养对数学的学习兴趣.
重点
正确理解数轴的概念,掌握有理数在数轴上的表 示方法.
难点
建立有理数与数轴上的点的对应关系.
你知道怎样制 作一个弹簧秤吗?
弹簧秤制作过程:
1.标记不挂物体时弹簧的 位置是0;
2.标记挂确定质量(如: 100g);

2024新人编版七年级数学上册《第二章2.1.1有理数的加法第2课时》教学课件

2024新人编版七年级数学上册《第二章2.1.1有理数的加法第2课时》教学课件
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
巩固练习
某一出租车一天下午以文化中心为出发地在东西方向营运, 向东走为正,向西走为负,行车里程(单位:km)依先后次 序记录如下:
+9, –3, –5, +4, –8, +6, –3, –6, –4, +10. (1)将最后一名乘客送到目的地时出租车离出发地多远?在 出发地的什么方向上? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
1. 使 用 交 换 律 交 换 加 数时,一定要连同它 的符号一起移动; 2. 加 法 交 换 律 适 应 于 两个及两个以上数的 相加; 3. 计 算 有 理 数 加 法 时 ,如果遇到一个加数 前有负号且不是该式 的的第一个加数时, 应加上括号.
巩固练习
11 (2) 4.1+(+ 2)+(– 4 )+(–10.1)+7
例1 计算:16 +(–25)+ 24 +(–35)
解: 16 +(–25)+ 24 +(–35)
=16 + 24 +[(–25)+ (–35)] =40 +(–60)= –20
把正数与负数分别相 加,从而据是什么?
这样做既运用了加法 交换律,又运用了加 法结合律.
探究新知
归纳总结
1. 一般地,总是先把正数或负数分别结合在一起相加. 2. 有相反数的可先把相反数相加,能凑整的可先凑整. 3. 有分母相同的,可先把分母相同的数结合相加. 4. 有小数相加时,把整数部分、纯小数部分分别结合相加.
探究新知
归纳总结
5. 含有带分数的加法运算方法如下, 化简:将带分数化简成整数和分数两个部分; 相加:先将整数部分和分数部分分别相加,并保留原带 分数的符号,再把两部分的结果相加.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)1,0,1,0,1,0,1,0, _1__,_0__,_-_1_,__0_;
(4)2,4,6,8,10,12, __14___,_-_1_6__;
这节课我们学到了什么?
小结: 1,什么是有理数? 2,有理数的分类: (1)按整数与分数划分; (2)按正有理数,0,负有理数划分; 3,如何区分整数和分数? 4,如何理解非正数和非负数? 5,整数和分数,正数和负数之间有什么 关系? 6,学会观察一列数字之间的规律;
2(,如两0个.2,整-数3的.1比4等()如、32无, 限12 等循)环、小有数限小数 (如0.3,1.47等)都是分数;但无限不循环小
数(如 等)不是分数;
3,无限不循环小数不是有理数;(无理数)
4,整数中除了正整数和负整数,还有__0___.
有理数还有其他的分类方法吗?
例1:把下列各数填在相应的集合中:
有理数可以分为: __整_数___
有理数
_正_整__数__ ___0___ _负_整__数__
_正_分__数__
_分__数___
_负__分_数__
我们怎么 区分整数和 分数呢?
有没有有 理数以外的 数呢?如果 有,请举一例.
有理数分类的几点注意: 1“,能如”13或5 ,2“00%不,能6 93”能)算约做分分成数整;数的数_不__能__(填
例7 下图中的两个圆分别表示正数集合和分数集 合,请你在每个圆中及它们重叠的部分各填入3 个数;
正数集合 分数集合
例8 观察下列各组数,请找出它们的规律,并在
横线上填上相应的数字;
(1) 2,0,2,4, __6___,__8___;
(2)1,
1 2
,
2 3
,
3 4
,
4 5
___65__,__76___;
§1.2.1 有理数
2020/6/29
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的
量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差; 温故知新:
1,(2005年 吉林)如果自行车车条的长度比标准 长度长2mm,记作+2mm,那么比标准长度短 1.5mm,应记为_-_1_.5_m__m__。
3, 1 ,0,4, ,2.12,0.65,300%,0.6, 22
2
正数集合:{ 负数集合:{
1 ,4, ,2.12,300%,
2 3,0.65,0.6...
22 7
...
7
}; };
分数集合:{ 1 ,2.12,0.65,0.6, 22 ...
};
整数集合:{
2 3,0,4,300%...
我们学过的数有什么?
正整数:如1,2,3,…; 零:0;
负整数:如-1,-2,-3,…; 正分数:如 1 , 2 , 15 ,0.1,5.32,...;
23 7
负分数:如 0.5, 5 , 2 , 1 ,150.25,...;
237
1,正整数、0和负整数合称整数; 2,正分数、负分数合称分数; 3,整数和分数合称有理数;
B. 0仅表示没有,是有理数
C.正整数和负整数统称为整数
D.整数和分数统称为有理数
例3,最小的正整数是___1___,最大的负整数
是__-_1__,所有大于-4的负整数有__-_1_,-_2_,-_3__, 不大于3的非负整数有____0_,_1_,2_,_3___。
例4,下列说法正确的是( C)
①1是最小的正有理数; ②-1是最大的负有理数;
2,粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮食重量如 下:52千克,49千克,49.8千克,如果超重部分用正数表示,请 用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数;
3,国际乒联在正式比赛中采用打球,对大球的直径有严格的 标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数 记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个乒乓球用于比赛呢?为什么?
进步往往从归纳反思开始!
乘风破浪会有时, 直挂云帆济沧海!
谢谢大家,再见!
7
};
非负数集合:{ 1 ,0,4, ,2.12,300%, 22 ...
};
有理数集合:{
2
3,
1
,0,4,2.12,0.65,3007%,0.6,
22
..}. ;
2
7
注意:1,像300%这种可以先化简成整数的数是
整数不是分数;
2,非负整数集合包括正整数和0,也称为 自然数集合.
例2,下列说法正确的是 ( D) A.非负有理数就是正有理数
③0是最小的非负有理数;④0是最大的非正有理数;
A.①②
B.②③
C.③④
D.①④
例5,将下列各数分别填入相应的集合中;
12, 2 4 ,1 3
1 ,3.14,2 1
2
3
正整数集合
负分数集合
12, 2 4 ,1,10% 3
1 ,3.14,2 1 ,
2
3
2,0
正有理数集合
非正数集合
例6 (1)既是分数又是负数的数是_负__分__数__; (2)既是非负数又是整数的数是非__负__整__数_; (3)非负整数又称为__自__然__数__; (4)非负数包括___正__数___和___0____; (5)非正数包括___负__数___和___0____;
相关文档
最新文档