外接球的表面积和体积高考试题精选(一)

合集下载

2023年高考数学考法专练——外接球与内切球

2023年高考数学考法专练——外接球与内切球

2023年高考数学考法专练——外接球与内切球考法一、 墙角模型例1、长方体1111ABCD A B C D -的8个顶点在同一球面上,且12,3,1AB AD AA ===,则球面面积为( )A .83π B .43π C .4π D .8π例2、已知正三棱锥S -ABC 的三条侧棱两两垂直,2,则此三棱锥的外接球的表面积为( )A .πB .3πC .6πD .9π例32的正四面体的外接球体积为___________.跟踪练习1、长方体1111ABCD A B C D -的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球O 的表面积为______.2、在三棱锥P ABC -中,已知PA ,PB ,PC 两两垂直,且1PA =,2PB =,3PC =,则三棱锥P ABC -的外接球的表面积为3、已知正四棱柱(底面为正方形且侧棱与底面垂直的棱柱)的底面边长为3,侧棱长为4,则其外接球的表面积为4、在四面体S ABC -中,SA ⊥平面ABC ,三内角B ,A ,C 成等差数列,2SA AC ==,1AB =,则该四面体的外接球的表面积为5、如图,在ABC 中,3AB AC ==1cos 3BAC ∠=-,D 是棱BC 的中点,以AD 为折痕把ACD △折叠,使点C 到达点C '的位置,则当三棱锥C ABD '-体积最大时,其外接球的表面积为6、在三棱锥P ABC -中,点A 在平面PBC 中的投影是PBC 的垂心,若ABC 是等腰直角三角形且1AB AC ==,3PC =,则三棱锥P ABC -的外接球表面积为7、已知三棱锥S ABC -的三条侧棱,,SA SB SC 两两互相垂直且13,5AC AB ==的表面积为14π,则BC =______________.8、三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.9、已知三棱锥A BCD -的所有顶点都在球O 的球面上,且AB ⊥平面BCD ,AB =4AC AD ==,CD =O 的表面积为___________.10、已知长方体1111ABCD A B C D -的体积为1AA =,则当长方体1111ABCD A B C D -的表面积最小时,该长方体外接球的体积为__________.考法二、汉堡模型例1、《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .12πB .20πC .24πD .32π例2、已知三棱锥A BCD -的所有顶点都在球O 的球面上,且AB ⊥平面BCD ,2AB =,CD =,AC AD ==O 的表面积为( )AB .2πC .3πD .6π例3、已知边长为3的正ABC 的顶点和点D 都在球O 的球面上.若6AD =,且AD ⊥平面ABC ,则球O 的表面积为( )A .B .48πC .24πD .12π跟踪练习1、已知各顶点都在同一球面上的正四棱柱的底面边长为a ,高为h ,球的体积为,则这个正四棱柱的侧面积的最大值为( )A .B .C .D .2、(多选)在四面体ABCD 中,AB AC ⊥,AC CD ⊥,直线AB ,CD 所成的角为60°,AB CD ==,4AC =,则四面体ABCD 的外接球表面积为( )A .π3B .52πC .80πD .208π3、已知四棱锥P ABCD -的五个顶点都在球О的球面上,PA ⊥平面ABCD ,底面ABCD 是高为12的等腰梯形,//AD BC ,1AD PA ==,2BC =,则球О的表面积为( )A .10πB .4πC .5πD .6π 4、在四棱锥P ABCD -中,已知PA ⊥底面,,ABCD AB BC AD CD ⊥⊥,且120,2BAD PA AB AD ∠=︒===,则该四棱锥外接球的体积为( )A .B .203πCD .5、设直三棱柱111ABC A B C -1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是______ .6、已知正三棱柱的高与底面边长均为2,则该正三棱柱内半径最大的球与其外接球的表面积之比为( )A .17B .7C .37D .77、已知三棱锥P ABC ﹣的四个顶点都在球O 的表面上,PA ⊥平面ABC ,AB BC ⊥且8PA =,6AC =,则球O 的表面积为( )A .10πB .25πC .50πD .100π8、三棱锥P ABC -中,PA ⊥平面ABC ,30ABC ∠=︒,APC ∆的面积为3,则三棱锥P ABC -的外接球体积的最小值为( )A B C . D .9、已知四棱锥P ABCD -的顶点都在球O 的球面上,PA ⊥底面ABCD ,1AB AD ==,2BC CD ==,若球O 的表面积为9π,则四棱锥P ABCD -的体积为( )A .4B .43C .D .3考点三 斗笠模型例1、在三棱锥P ABC -中,PA PB PC ===AB AC BC ===,则三棱锥P ABC -外接球的表面积是( )A .9πB .15π2C .4πD .25π4例2、某圆锥的侧面展开后,是一个圆心角为23π的扇形,则该圆锥的体积与它的外接球的体积之比为( ) A .243256 B .128243 C .128729 D .256729例3、设圆锥的顶点为A ,BC 为圆锥底面圆O 的直径,点P 为圆O 上的一点(异于B 、C ),若BC =三棱锥A PBC -的外接球表面积为64π,则圆锥的体积为___________.跟踪练习1、已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( )A .818πB .812πC .1218πD .1212π 2、已知一个圆锥的底面半径为2,高为3,其体积大小等于某球的表面积大小,则此球的体积是( )A .BC .4πD .43π 3、正三棱锥P -ABC 底面边长为2,M 为AB 的中点,且PM ⊥PC ,则三棱锥P -ABC 外接球的体积为( )A .323πB .6πCD .34、已知在高为2的正四棱锥P ABCD -中,2AB =,则正四棱锥P ABCD -外接球的体积为( )A .4πB .92πC .274πD .83π 5、已知一个圆锥的底面面积为3π,侧面展开图是半圆,则其外接球的表面积等于___________. 考点四、垂面模型例1、在三棱锥P ABC -中,PAC △是等边三角形,平面PAC ⊥平面,ABC AB AC ==60CAB ∠=,则三棱锥P ABC -的外接球体积为( )A .43πBC .323πD .3例2、如图所示,在三棱锥A BCD -中,平面ACD ⊥平面BCD ,ACD △是以CD 为斜边的等腰直角三角形,AB BC ⊥,24AC CB ==,则该三棱锥的外接球的表面积为( )A .32πB .40πC .40103D .6423例3、已知三棱锥P ABC -的每个顶点都在球O 的球面上,平面ABC ⊥平面PBC ,AC BC ⊥,6AC =,8AB =,214PC PB ==,则三棱锥P ABC -外接球的表面积为( )A .503πB .533πC .100πD .32π跟踪练习1、在三棱锥D ABC -中,平面ABC ⊥平面ABD ,AB AD ⊥,4AB AD ==,6ACB π∠=,若三棱锥D ABC -的四个顶点都在同一个球面上,则该球的表面积为___________.2、在四面体ABCD 中,BCD △是边长为2的等边三角形,ABD △是以BD 为斜边的等腰直角三角形,平面ABD ⊥平面A BC ,则四面体ABCD 的外接球的表面积为__________.3、在四面体ABCD 中,已知平面ABD ⊥平面ABC ,且4AB AD DB AC CB =====,其外接球表面积为 ( )A .403πB .803πC .16πD .20π4、在三棱锥P ABC -中,平面PAB ⊥平面,23,90ABC PA PB AB BAC ===∠=︒,4AC =,则三棱锥P ABC -的外接球的表面积为( )A .20πB .643πC .32πD .80π5、已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,若1AD DB BC CD ====,120ADB ∠=︒,则该三棱锥的外接球的表面积为( )A .7π3B .10π3C .20π3D .13π3考点五 矩形模型例1、若矩形ABCD 的面积是4,沿对角线AC 将矩形ABCD 折成一个大小是60°的二面角B -AC -D ,则四面体ABCD 的外接球的体积最小值为( )A .8πB .823C 6πD 1717例2、在三棱锥S ABC -中,2SAC SBC π∠=∠=,23ACB π∠=,1AC BC ==.若三棱锥S ABC -的体积为1,则该三棱锥外接球的表面积为( )A .13πB .373πC .49πD .52π例3、已知三棱锥,3,1,4,22A BCD AB AD BC BD -====A BCD -的体积最大时,则外接球的表面积为___________.跟踪练习1、四面体ABCD 中,90ABC BCD ∠=∠=︒,2AB BC CD ===,23AD =表面积为__________.2、在矩形ABCD 中23AB =2AD =,沿对角线BD 进行翻折,则三棱锥C ABD -外接球的表面积为( )A .4πB .6πC .12πD .16π3、将长、宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A BCD -,则四面体A BCD -的外接球的表面积为( )A .25πB .50πC .5πD .10π4、中国古代数学家刘徽所注释的《九章算术》中,称四个面均为直角三角形的四面体为“鳖臑”.如图所示的鳖臑ABCD 中,AB ⊥面BCD ,CD BC ⊥,若1CD =,5AC =且顶点,,,A B C D 均在球O 上,则球O 的表面积为______. 考法六 、 怀表模型例1、已知S ,A ,B ,C 四点都在某个球表面上,ABC 与SBC 都是边长为1的正三角形,二面角A BC S --的大小为23π,则该球的表面积为( ) A .43π B .73π C .3π D .133π 例2、如图,菱形ABCD 的边长为6,3BAD π∠=,将其沿着对角线BD 折叠至直二面角A BD C --,连接AC ,得到四面体ABCD ,则此四面体的外接球的表面积为例3、已知菱形ABCD 的边长为4,对角线4BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120︒,则三棱锥A BCD -的外接球的表面积为___________.跟踪练习1、已知边长为ABCD 中,60A ∠=,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A 、B 、C 、D 在同一个球面上,则该球的表面积为( ).A .20πB .28πC .32πD .36π2、在边长为3的菱形ABCD 中,BD =ABCD 沿其对角线AC 折成直二面角B AC D --,若,,,A B C D 四点均在某球面上,则该球的表面积为___________.考法七、 其他模型外接球例1、已知四棱锥P ABCD -中,ABD △是边长为2BC CD ==,60BPD ∠=,二面角P BD C --的余弦值为13-,当四棱锥的体积最大时,该四棱锥的外接球的体积为( )A .8πB .C .D .12π例2、已知三棱锥A BCD -中,===AB BD DA DC =,BC =A BD C --的大小为135︒,则三棱锥A BCD -外接球的表面积为( )A .64πB .52πC .40πD .32π例3、在四面体ABCD 中,2==AC BD ,AD BC ==AB CD ==___________.跟踪练习1、在三棱锥S ABC -中,90SBA SCA ∠=∠=︒,底面ABC 是等边三角形,三棱锥S ABC -则三棱锥S ABC -的外接球表面积的最小值是( )A .12πB .24πC .6πD .10π2、已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,3AB AC ==,120BAC ∠=︒,则球O 的表面积为( )A .48πB .16πC .64πD .36π3、已知四面体ABCD 中,60BAD ∠=︒,90BCD ∠=︒,2AB AD ==,H 是BD 的中点,CH BD ⊥,120AHC ∠=︒,则四面体的外接球的表面积为( )A .275πB .3215πC .94πD .529π4、在棱长为8的正方体1111ABCD A B C D -中,P 为棱1DD 上一点,且P 到11C D 的距离与到AC 的距离相等,则四面体P ACD -的外接球的表面积为( )A .128πB .132πC .133πD .164π5、球O 的两个相互垂直的截面圆1O 与2O 的公共弦AB 的长度为2,若1O AB △是直角三角形,2O AB △是等边三角形,则球O 的表面积为( )A .9πB .12πC .16πD .20π6、如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A .2πB .4πC .6πD .8π7、已知三棱锥P ABC -的四个顶点都在半径为R 的球面上,且3BAC π∠=,2BC =,若三棱锥P ABC-体积的最大值为32R ,则该球的表面积为( ) A .649π B .329π C .6427π D .169π 8、等边ABC 的边长为2,点D 为AC 的中点,将ABD △沿BD 折起到A BD ',使得23A DC π'∠=,若该三棱锥的所有顶点都在同一个球面上,则该球的表面积为______.考法八、 内切球例1、如图,在四棱锥P ABCD -中,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,5PA =2AB =,则四棱锥P ABCD -内切球的体积为( )A 3πB 43πC 113πD 1253π 例2、已知球O 是棱长为24的正四面体ABCD 的内切球,球1O 与球O 外切且与正四面体的三个侧面都相切,则球1O 的表面积为( )A .24πB .12πC .8πD .6π例3、已知直三棱柱111ABC A B C -的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( )A .25:1B . 1C .5:1D 1跟踪练习1、设球O 内切于正三棱柱111ABC A B C -,则球O 的体积与正三棱柱111ABC A B C -的体积的比值为________.2、已知球1O 是棱长为2的正方体1111ABCD A B C D -的内切球,球2O (在正方体1111ABCD A B C D -内部)与平面ABCD ,平面11ABB A 和平面11ADD A 都相切,并且与球1O 相切,则球1O 与球2O 的半径之比为___________.4、已知正三棱锥 P ABC -的底面边长为2,,PAB PBC 分别切于点,M N ,则MN 的长度为___________.5、《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P ABC -为鳖臑, PA ⊥平面ABC ,4PA BC ,3AB =,AB BC ⊥,若三棱锥P ABC -有一个内切球O ,则球O 的体积为( ) A .92π B .94π C .916π D .9π6、阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( )A .12B .13C .23D .347、已知在三梭锥A BCD -中,2AB CD ==,3AD AC BC BD ====,则该三棱锥内切球的体积为( )A B C D。

高考数学中的内切球和外接球问题(附习题)-精选.pdf

高考数学中的内切球和外接球问题(附习题)-精选.pdf
高考数学中的内切球和外接球问题
一、 有关外接球的问题
如果一个多面体的各个顶点都在同一个球面上, 那么称这个多面
体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接
球的问题, 是立体几何的一个重点, 也是高考考查的一个热点 . 考查
学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要
学习 .
五 .确定球心位置法
例 5 在矩形 ABCD 中, AB 4, BC 3,沿 AC 将矩形 ABCD 折成一
个直二面角 B AC D ,则四面体 ABCD 的外接球的体积为
125
A. 12
125
B. 9
125
C. 6
125
D. 3
D
A
O
C
图4 B
解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知
例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的
表面积为 24 ,则该球的体积为 ______________.4 3 . 2、求长方体的外接球的有关问题
例 3 一个长方体的各顶点均在同一球面上, 且一个顶点上的三条
棱长分别为 1,2,3 ,则此球的表面积为
.14 .
例 4、已知各顶点都在一个球面上的正四棱柱高为 4,
只是希望能有个人,在我说没事的时候,知道我不是真的没事;能有个人,在我强颜欢笑的时候,知道我不是真的开心。 ——张小娴
OA OB OC OD .∴点 O 到四面体的四个顶点 A、B、C、D 的距离相
等,即点 O 为四面体的外接球的球心,如图 2 所示 .∴外接球的半径
5 R OA
V 球 4 R3 125
2 .故
3
6 .选 C.

多面体外接球(高考版)

多面体外接球(高考版)

1A . πB .C .D . ⎝ ⎭ 6π ,选 A 。

6 ⎫32 ⎪ ⎛ π ⎪ = 43 34 , V = πR 3 = 6 3 2 + + = 4 4 4 2 1 S S S S S S 1 3 + 1 2 + 2 3 = 2S 2 2S 3 2S 1R = 1 2S 3 2S 2 2S 32 1 解 : ab = 2S , bc = 2S , ac = 2S ⇒ a 2 = S 1S3 , b 2 = S 1S 2 , c 2 = S 2 S 3α 2 + β 2 + γ 28(1)与(2)有重垂线,三视图都是三个直角三角形,(3)无重垂线,俯视图是一矩形,AC 为虚线,主视图 和左视图为直角三角形;⎧a 2 + b 2 = BC 2 = α 2⎝ ⎭ 2 ⎪ ⎫23 ⎛ 解:且分别以 a ,b ,c 为长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为 a ,b ,c 的长方体,并且 a 2+b 2=25,a 2+c 2=34,b 2+c 2=41设球半径为 R ,则有(2R )2=a 2+b 2+c 2=50,∴4R 2=50,∴球的表面积为 表面积为 S = 4πR 2 = 4π a ⎪ = 3πa 2 s=4R 2π=50π.故选:A . 多面体的外接球例 1:在球面上有四个点 P 、 A 、 B 、C .如果 PA 、 PB 、PC 两两互相垂直,且 PA = PB = PC = a ,求这个球的表面积是:.例 2:在三棱锥 A ﹣BCD 中,侧棱 AB 、AC 、AD 两两垂直,△ABC 、△ACD 、△ADB 的面积分别为 、 、 , 则三棱锥 A ﹣BCD 的外接球的体积为( )例 3:如图所示,已知球 O 的面上有四点 A 、B 、C 、D , DA ⊥ 面ABC ,AB ⊥ BC ,DA = AB = BC = 2 ,则球 O 的体积等于。

例 4:四面体 A ﹣BCD 中,,则四面体 A ﹣BCD 外接球的表面积为( )A .50πB .100πC .150πD .200π, 1.三棱锥 P ﹣ABC 中,PA ⊥平面 ,则该 三棱锥外接球的表面积为( ) A .5π C .20π D .4π 2.在三棱锥 PABC 中,则三棱锥 PABC 的外接球的表面积为()A .26πB .12πC .8πD .24π3.已知三棱锥 P ﹣ABC 的顶点都在球 O 的表面上,若 PA ,PB ,PC 两两互相垂直,且 PA=PB=PC=2,则球 O 的体积为( ) A . B . C .4π D .4π4.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥 P ﹣ABC 为鳖臑,PA ⊥ 平面 ABC ,PA=AB=2,AC=4,三棱锥 P ﹣ABC 的四个顶点都在球 O 的球面上,则球 O 的表面积为( ) A .8π B .12π C .20π D .24π5.已知三棱锥 P ﹣ABC 的各顶点都在同一球面上,且 PA ⊥平面 ABC ,若该棱锥的体积,AB=2,AC=1,∠BAC=60°,则此球的表面积等于( )A .5πB .20πC .8πD .16π 6.已知三棱锥 S ﹣ABC 的各顶点都在一个半径为 r 的球面上,且 ,则球的 表面积为( )A .12πB .8πC .4πD .3π 7.三棱锥 P ﹣ABC 的四个顶点都在球 O 的球面上,已知 PA ,PB ,PC 两两垂直,PA=1,PB +PC=4,当三棱锥的体积最大时,球 O 的体积为( ) A .36π B .9ππ π8.如图所示,平面四边形 ABCD 中, BD ⊥CD ,将其沿对角线 BD 折成四面体 ABCD ,使平面 ABD ⊥ 平面 BCD ,若四面体 ABCD 的顶点在同一个球面上,则该球的体积为( )A .πB .24πC .4 πD .12π9.三棱锥三条侧棱两两垂直,长度分别是 1、2,则其外接球的表面积是()A .8πB .16πD .32π10.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥 P ﹣ABC 为鳖臑,PA⊥平面 ABC ,PA=3,AB=4,AC=5,三棱锥 P ﹣ABC 的四个顶点都在球 O 的球面上,则球 O 的表面积为 ( )A .17πB .25πC .34πD .50π解:根据题意可得, P 、A 、B 、C 位于一个棱长为 a 的正方体上,故球为正方体的外接球, R =3 a ,故这个球的23 6 = abc - 1 abc ⨯4 = 1abc A -BCD另V ⎩⎪c 2 + a 2 = AB 2 = γ 2⎭ AC = BD ⎪ ,α 2 + β 2 + γ 2⇒ = R 22 22 2 2 2 ⎪ 2 ⎪ 图(4)中, AB = CD ⎬ ⇒ ⎨b + c = AC = β ⇒ a + b + c =AD = BC ⎫ (4)对角线相等的四面体(3)挖墙角体 (2) 鳖 臑 (1)墙角体 ,设长方体方体相邻的三条的棱长为 a 、b 、c ⇒ R =秒杀秘籍:长方体的切割体的外接球⎝ ⎭6π2 ⎪ ⎛ 6 ⎫3π ⎪ = 4 3 3 4 V = πR 3 = 6 ,2 解:易知 DA 、AB 、BC 位于一个正方体上,故球 O 半径为 R =3a = 2⎝ 2 ⎭⎛ h ⎫2r 2 + ⎪(2)躺着放的模型,底面是直角三角形或者矩形,侧面非直角三角形,底面一条棱垂直于侧面,R =; 可以求出,则 R = a sin A 三角形,将重垂线长度设为 h ,底面三角形外接圆半径设为 r , 2r = (1)立着放的模型一定有重垂线,且重垂线在底面的射影一定位于底面三个顶点中的一个,底面三角形非直角(2) 躺着放的模型(1)立着放的模型 ⇒秒杀秘籍:三棱柱的切割体的外接球1.A ;2.A ;3.C ;4.C ;5.B ;6.D ;7.C ;8.C ;9.A ;10.C ;例 5:如图,三棱锥的所有顶点都在一个球面上,在△ABC 中,∠ACB=60°,∠BCD=90°,AB ⊥CD ,CD=,则该球的体积为.解:此图可以理解为躺着的三棱柱,以△ABC 所在平面为底面,例 6:已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为( )A .8πB .16πC .32πD .64π该几何体外接球的表面积为( ) A .B .8πC .9π2.三棱锥的三视图如图所示,则该三棱锥外接球的体积为( )A .B .C .D . 3.四面体 ABCD 的四个顶点都在球 O 的表面上,AB △平面 BCD ,三角形 BCD 是边 长为 3 的等边三角形,若 AB=4,则球 O 的表面积为( ) A .36π B .28π C .16π D .4π第 1 题 第 2 题 第 4 题 第 5 题4.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角的等腰三角形,则该三棱锥外接球的表面积为( ) A .20π B .16π C .8π D .17π5.如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都 在同一球面上,则该球的表面积为( ) A .27π B .48π C .64π D .81π 6.已知 A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD △平面 ABC ,AD=2AB=6,则该球的体积为( ) A . B .48π C .24π D .16π 7.如图,在△ABC 中,△ABC=90°,点 D 为 AC 的中点,将△ABD 沿 BD 折起到△PBD 的位置,使PC=PD ,连接 PC ,得到三棱锥 P ﹣BCD ,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( ) A .π B .3π C .5π D .7π第 7 题第 8 题8.如图,在三棱锥 D ﹣ABC 中,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )A .B .4πC .2π1.D ;2.A ;3.B ;4.A ;5.C ;6.A ;7.D ;8.D ;解:此图可以理解为立着的三棱柱,底面为一等腰直角三角形, 33 =4 3π . 3 4 = 3 所以球的体积为 π ( )2⎝ 2 ⎭⎛ h ⎫ + ⎪2 R = r = 1依题意得 CD ⊥平面 ABC ,故 h = CD = 2 2 ,则球的半径为2 sin 60︒3则由正弦定理得截面圆的半径为 r = 1⎝ 2 ⎭⎛ h ⎫2r 2 + ⎪ 2 2 = 8π .( )= 2 所以球的体积为 4π 2⎝ 2 ⎭⎛ h ⎫ + ⎪ 2 R = r = 1 依题意得 h = 2 ,则球的半径为 2 sin 90︒ 2则由正弦定理得截面圆的半径为 r = 1面距离的最大值和最小值。

空间几何的外接球2023年高考数学一轮复习(基础版)(新高考地区专用)

空间几何的外接球2023年高考数学一轮复习(基础版)(新高考地区专用)

7.7 空间几何的外接球(基础版)思维导图考点呈现例题剖析考点一 汉堡模型【例1】(2022·全国·高三专题练习)已知三棱锥S ABC -中,SA ⊥平面ABC ,4SA =,3BC =60BAC ∠=,则三棱锥S ABC -外接球的表面积为______. 【答案】32π【解析】如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 则O 为圆柱12O O 的外接球球心,球O 的半径为222h R r ⎛⎫=+ ⎪⎝⎭可将三棱锥S ABC -置于圆柱12O O 内,使得圆2O 为ABC 的外接圆,如下图所示:由正弦定理可知圆2O 的直径为24sin 60BCr ==, 所以,三棱锥S ABC -外接球的半径22222SA R r ⎛⎫=+= ⎪⎝⎭因此,三棱锥S ABC -外接球的表面积为2432R ππ=.故答案为:32π. 【一隅三反】1(2023·全国·高三专题练习)已知在三棱锥P -ABC 中,P A =4,6BC =PB =PC =3,PA ⊥平面PBC ,则三棱锥P -ABC 的外接球的表面积是________. 【答案】43π【解析】在等腰PBC 中,易知6cos PBC ∠=3sin PBC ∠=,PBC 的外接圆的半径为13332sin 2r PBC =⨯∠P -ABC 的外接球的半径为2212743424R r PA ⎛⎫=++ ⎪⎝⎭所以其表面积为22434π4π43πR ==⎝⎭.故答案为:43π2.(2022·青海玉树·高三阶段练习(文))已知直三棱柱111ABC A B C -的各顶点都在同一球面上,若110,43,120AA BC BAC ==∠=︒,则此球的表面积为_________.【答案】164π 【解析】设111,A A C C B B 的外心分别为12,O O ,连接12O O ,可知外接球的球心O 为12O O 的中点,连接111,,,,,,OA OB OC O A O B O C在ABC ,由正弦定理可得ABC 的外接圆的半径1143284sin 3BC O A O A BAC ===⇒=∠ ,在直角三角形1O OA 中,外接球的半径2222114541R OO O A =++,所以外接球的表面积为24π164πR =故答案为:164π3.(2022·重庆八中模拟预测)在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑如图,三棱锥D ABC -为一个鳖臑,其中DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,AM DC ⊥,M 为垂足,则三棱锥M ABC -的外接球的表面积为________.【答案】8π【解析】取AC 的中点O ,连接MO 、BO ,则AB BC ⊥,2DA AB BC ===,所以22AC = 则2AO BO CO === 又AM DC ⊥,所以122MO AC ==所以点O 就是三棱锥M ABC -的外接球的球心,所以三棱锥M ABC -2所以三棱锥M ABC -的外接球的表面积为2428ππ⨯=,故答案为:8π.考点二 墙角模型【例2-1】(2022·全国·高三专题练习)已知正方体外接球的体积是323π,那么正方体的体对角线等于( ) A 23B .4C 42D 43. 【答案】B【解析】正方体外接球的直径即为正方体的体对角线,设外接球的半径为R ,则343233V R ππ==,解得2R =,所以正方体的体对角线等于24R =;故选:B【例2-2】(2022·全国·高三专题练习)已知四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是矩形,33AD AB PA ==,若四棱锥P -ABCD 外接球的表面积为11π,则四棱锥P -ABCD 的体积为( )A .3B .2C 2D .1【答案】D【解析】设四棱锥P -ABCD 外接球的半径为R ,则2411R ππ=,即2411R =. 由题意,易知224PC R =,得11PC = 设AB x =222911x x x ++,解得1x =, 所以四棱锥P -ABCD 的体积为113113⨯⨯⨯=.故选:D【一隅三反】1.(2022·河北保定·二模)在《九章算术》中,将四个面都是直角三角形的三棱锥称为鳖臑.已知在鳖臑P -ABC 中,AB ⊥BC ,P A ⊥平面ABC ,且24PA AB BC ===,则鳖臑P -ABC 外接球的体积是___________. 【答案】36π【解析】由题意可得三角形ABC 外接圆的半径224252AC r +=== 因为P A ⊥平面ABC ,所以鳖臑P -ABC 外接球的半径224532PA R r ⎛⎫=++ ⎪⎝⎭,故鳖臑P -ABC 外接球的体积是34π36π3R =.故答案为:36π2.(2022·黑龙江)长方体1111ABCD A B C D -的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球O 的表面积为______. 【答案】9π【解析】因为长方体的外接球O 的直径为长方体的体对角线,长方体的长、宽、高分别为2,2,1, 所以长方体的外接球O 4413++=, 故长方体的外接球O 的半径为32r =, 所以球O 的表面积为249ππ==S r .故答案为:9π3.(20222的正四面体的外接球体积为___________.3π2的正四面体可以嵌入到棱长为1的立方体中,所以正四面体的外接球与所嵌入的立方体的外接球相同.设立方体的外接球半径为R,则3R,所以立方体外接球的体积3344333322V Rππ⎛==⋅=⎝⎭.故正四面体的外接球体积为32.3考点三斗笠模型【例3】(2022·黑龙江)某圆锥的侧面展开后,是一个圆心角为23π的扇形,则该圆锥的体积与它的外接球的体积之比为()A.243256B.128243C.128729D.256729【答案】C【解析】设圆锥的母线长为l,则展开后扇形的弧长为23l π⋅,再设圆锥的底面圆半径为r,可得223r lππ=⋅,即3l r=,圆锥的高为2222922h l r r r r=-=-=,设圆锥外接球的半径为R ,则()222h R r R +=-,解得42R =圆锥的体积为211223V r r π=⨯, 圆锥外接球的体积3324342322V π=⨯=, ∴该圆锥的体积与它的外接球的体积之比为33221283729322r =.故选:C . 【一隅三反】1.(2022.济南)已知圆锥的顶点和底面圆周都在球O 的球面上,圆锥的母线长为3,侧面展开图的面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π【答案】A【解析】设底面半径为r ,圆锥母线为3l =,所以33rl r πππ==,所以1r =, 如图,ABC 是圆锥轴截面,外接圆O 是球的大圆,D 是圆锥底面的圆心, 设球半径为R ,则3AB =,1BD =,所以229122AD AB BD =--=,如图1,222BO BD OD =+,即()(2221122R AO AD R =+-=+-,解得928122832R AD ==<== 当为如图2时,即()()2221122R AD AO R=+-=+,解得92R =,所以球表面积为2292814488S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.故选:A .2.(2022·宁夏)已知一个圆锥的底面圆面积为3π,侧面展开图是半圆,则其外接球的表面积等于( ) A .12π B .16πC .36πD .48π【答案】B【解析】设圆锥的底面圆半径为r ,高为h ,母线长为l ,圆锥的外接球半径为R , 则23r ππ=,可得3r =由于圆锥的侧面展开图是半圆,则2l r ππ=,可得223l r ==,223h l r ∴=-=, 由圆锥的几何特征可知,圆锥的外接球心在圆锥的轴上, 所以,222h R r R -+=,解得2R =,因此,该圆锥的外接球的表面积为2416R ππ=. 故选:B.3.(2022·河南)一圆台的两底面半径分别为2,4,高为4,则该圆台外接球的表面积为( ) A .48π B .64π C .65π D .68π【答案】C【解析】设该圆台的外接球的球心为O ,半径为r ,224164r r --=224416r r -=-2654r =, 所以该圆台的外接球的表面积为2465r ππ=. 故选:C.4.(2022·浙江)已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π【答案】A【解析】设圆锥母线为l ,底面半径为r ,则2223133r l l ππππ⎧=⎪⎪⎨⎪⨯=⎪⎩,解得31l r =⎧⎨=⎩,如图,ABC 是圆锥轴截面,外接圆O 是球的大圆,设球半径为R ,1cos 3r ABC l ∠==,22sin 3ABC ∠=,922sin 4223l R ABC ===∠,28R =, 所以球表面积为229281448S R πππ==⨯=⎝⎭.故选:A .考点四 L 模型【例4】.(2022·全国·模拟预测)23P ABC -,满足平面PAB ⊥平面ABC ,且PA PB =,4AB =,2AC =,30ABC ∠=︒,则该三棱锥的外接球的表面积等于( )A .5πB .10πC .20πD .25π【答案】D【解析】因为4AB =,2AC =,30ABC ∠=︒,由余弦定理得23BC =222AC BC AB +=,所以⊥ABC 为直角三角形,且90ACB ∠=︒.设Rt⊥ABC 的外接圆半径为r ,点P 到平面ABC 的距离1PO h =,则24AB r ==,解得2r =. 由题意可得1112323332P ABC ABC V S h h -=⨯⨯=⨯⨯⨯=解得1h =. 设三棱锥P ABC -的外接球的半径为R ,则有()222h R r R -+=,解得52R =,则三棱锥P ABC -的外接球的表面积2425S R ππ==故选:D . 【一隅三反】1.(2022·广东佛山·三模)已知四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD ,且PAB △为等边三角形,则该四棱锥的外接球的表面积为( )A .283πB .1123πC .32πD .2563π 【答案】B【解析】如图所示,在四棱锥P ABCD -中,取侧面PAB △和底面正方形ABCD 的外接圆的圆心分别为12,O O ,分别过1O ,2O 作两个平面的垂线交于点O ,则由外接球的性质知,点O 即为该球的球心,取线段AB 的中点E ,连1O E ,2O E ,2O D ,OD ,则四边形12O EO O 为矩形,在等边PAB △中,可得3PE =123O E =,即223OO = 在正方形ABCD 中,因为4AB =,可得222O D =在直角2OO D 中,可得22222OD OO O D =+,即22222283R OO O D =+=,所以四棱锥P ABCD -外接球的表面积为211243S R ππ==. 故选:B.2.(2022·陕西)如图所示,在三棱锥A -BCD 中,平面ACD ⊥平面BCD ,⊥ACD 是以CD 为斜边的等腰直角三角形,AB BC ⊥,24AC CB ==,则该三棱锥的外接球的表面积为( )A .40πB .20πC .32πD .80π【答案】A 【解析】设CD 中点为M ,连接AM ,因为ACD △是以CD 为斜边的等腰直角三角形,24AC CB == 所以22AM DM CM ===AM CD ⊥,过点M 作MN CD ⊥,因为平面ACD ⊥平面BCD ,平面ACD 平面BCD CD =所以MN ⊥平面ACD ,AM ⊥平面BCD ,所以三棱锥的外接球的球心在MN 上,设外接球的半径为R ,则由AB BC ⊥得23AB =AM BM ⊥得2BM BC ==,又因为222BM BC CM +=,所以BCM 为等腰直角三角形,设球心为O ,CM 中点为P ,连接BP ,则2MP CP BP == 所以2222OM R CM OB PM BP -=-, ()()22222222R R --10=R所以三棱锥的外接球的表面积为2440S R ππ==.故选:A3.(2022·全国·高三专题练习(文))在边长为4的正方形ABCD 中,E ,F ,G 分别为AD ,BC ,AB 的中点,现将矩形CDEF 沿EF 折起,使平面CDEF 与平面ABFE 所成的二面角为直二面角,则四面体CEGF 的外接球的表面积为( )A .5πB .20πC .40πD .80π【答案】B【解析】取CE 的中点O ,连,OG OF ,如图:依题意可知EG FG ⊥,CF EF ⊥,因为平面CDEF 与平面ABFE 所成的二面角为直二面角,即平面CDEF ⊥平面ABFE , 所以CF ⊥平面ABFE ,所以CF BF ⊥,CF FG ⊥,CF EG ⊥,因为EG FG ⊥,且CF FG F =,所以EG ⊥平面CFG ,所以EG CG ⊥, 因为O 为CE 的中点,所以OC OE OF OG ===,所以O 为四面体CEGF 的外接球的球心,其半径为116452+ 所以其表面积为24π(5)20π⋅=.故选:B.。

几何体外接球表面积及体积的求法有答案

几何体外接球表面积及体积的求法有答案

几何体外接球表面积及体积的求法答案1.D【考点】由三视图求面积、体积.【专题】数形结合;转化法;空间位置关系与距离.【分析】根据三视图得出该几何体是圆柱,求出圆柱体的表面积和它外接球的表面积即可得出结论.【解答】解:根据三视图得,该几何体是底面半径为3,高为4的圆柱体,所以该圆柱体的表面积为S1=2π×32+2π×3×8=66π;根据球与圆柱的对称性,得它外接球的半径R满足(2R)2=62+82=100,所以外接球的表面积为S2=4πR2=100π;所以剩余几何体的表面积是S=S1+S2=66π+100π=166π.故选:D.【点评】本题考查了三视图的应用问题,也考查了利用三视图研究直观图的性质,球与圆柱的接切关系,球的表面积计算问题,是基础题目.2.D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.C【考点】球内接多面体;球的体积和表面积.【专题】空间位置关系与距离.【分析】先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理列方程,解出球的半径即可.【解答】解:如图,设正四棱锥底面的中心为E,过点A,B,C,D,S的球的球心为O,半径为R,则在直角三角形AEO中,AO=R,AE=BD=4,OE=SE﹣AO=8﹣R由AO2=AE2+OE2得R2=42+(8﹣R)2,解得R=5球半径R=5,故选C.【点评】本题主要考查球,球的内接体问题,考查计算能力和空间想象能力,属于中档题.4.D考点:球的体积和表面积.专题:计算题.分析:由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.解答:解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.5.C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.6.C【考点】球的体积和表面积.【专题】空间位置关系与距离.【分析】将四面体补成长方体,通过求解长方体的对角线就是球的直径,然后求解外接球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=29,x2+z2=34,y2+z2=37,则有(2R)2=x2+y2+z2=50(R为球的半径),得R2=,所以球的表面积为S=4πR2=50π.故选:C.【点评】本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.7.B【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.8.B【考点】球内接多面体.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是,外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.9.D【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.10.B【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=4π故选:B.【点评】本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.11.D12.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.12.A考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.13.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S 在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.【解答】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为: =.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.15.【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.16.16π【考点】球的体积和表面积.【专题】计算题;方程思想;数形结合法;立体几何.【分析】正四棱锥P﹣ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=3,OO1=3﹣R,在Rt△AO1O中,AO1=AC=,由勾股定理R2=3+(3﹣R)2得R=2,∴球的表面积S=16π故答案为:16π.【点评】本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.17.36π【考点】球的体积和表面积.【专题】计算题.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2 ,∴R=3,∴S=4πR2=4π•(3)2=36π,故答案为:36π.【点评】本题是中档题,考查三棱锥的外接球的表面积,考查空间想象能力;三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.18.;。

高考数学总复习培优练习:外接球(含答案)

高考数学总复习培优练习:外接球(含答案)

高考数学总复习培优练习:外接球(含答案)1.正棱柱,长方体的外接球球心是其中心例1:已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .16π B .20πC .24πD .32π【答案】C【解析】162==h a V ,2=a ,24164442222=++=++=h a a R ,24πS =,故选C .2.补形法(补成长方体)c ab图1CP A Babc 图2PCBAabc 图3CBPAa bc PCO 2BA例2:若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 【答案】9π【解析】933342=++=R ,24π9πS R ==.3.依据垂直关系找球心例3:已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC △满足6BA BC =,π2ABC ∠=,若该三棱锥体积的最大值为3,则其外接球的体积为( ) A .8π B .16π C .16π3 D .32π3【答案】D【解析】因为ABC △是等腰直角三角形,所以外接球的半径是11232r =的半径是R ,球心O 到该底面的距离d ,如图,则1632ABC S =⨯=△,3BD =116336ABC V S h h ==⨯=△,最大体积对应的高为3SD h ==,故223R d =+,即()2233R R =-+,解之得2R =,所以外接球的体积是3432ππ33R =,故答案为D .一、单选题1.棱长分别为235的长方体的外接球的表面积为( ) A .4π B .12π C .24π D .48π【答案】B【解析】设长方体的外接球半径为R ,由题意可知:()22222235R =++,则:23R =,该长方体的外接球的表面积为24π4π312πS R ==⨯=.本题选择B 选项.2.设三棱柱的侧棱垂直于底面,所有棱的长都为23,顶点都在一个球面上,则该球的表面积为( ) A .12π B .28π C .44π D .60π【答案】B【解析】设底面三角形的外接圆半径为r ,由正弦定理可得:232r =2r =, 对点增分集训设外接球半径为R ,结合三棱柱的特征可知外接球半径()222327R =+=,外接球的表面积24π28πS R ==.本题选择B 选项.3.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC ,则三棱锥D ABC -的外接球的表面积为( ) A .32π B .27πC .18πD .9π【答案】C【解析】把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC , 则三棱锥D ABC -的外接球直径为32AC =,外接球的表面积为24π18πR =,故选C . 4.某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为( )A .2πaB .22πaC .23πaD .24πa【答案】C【解析】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为2a 的正三角形,一个是三条侧棱两两垂直,且侧棱长为a 的正三棱锥,另一个是棱长为2a 的正四面体,如图所示:该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以2223232R a a a a R a =++=⇒=,所以该几何体外接球面积22234π4π3π2S R a a ⎛⎫==⨯= ⎪ ⎪⎝⎭,故选C . 5.三棱锥A BCD -的所有顶点都在球O 的表面上,AB ⊥平面BCD ,2BC BD ==,243AB CD ==,则球O 的表面积为( )A .16πB .32πC .60πD .64π【答案】D【解析】因为2BC BD ==,23CD =,所以()22222231cos 2222CBD +-∠==-⨯⨯,2π3CBD ∴∠=, 因此三角形BCD 外接圆半径为122sin CDCBD=∠,设外接球半径为R ,则222=2+412162AB R ⎛⎫=+= ⎪⎝⎭,2=4π64πS R ∴=,故选D .6.如图1111ABCD A B C D -是边长为1的正方体,S ABCD -是高为1的正四棱锥,若点S ,1A ,1B ,1C ,1D 在同一个球面上,则该球的表面积为( )A .9π16B .25π16C .49π16D .81π16【答案】D【解析】如图所示,连结11A C ,11B D ,交点为M ,连结SM ,易知球心O 在直线SM 上,设球的半径R OS x ==,在1Rt OMB △中,由勾股定理有:22211OM B M B O +=,即:()222222x x ⎛⎫-+= ⎪ ⎪⎝⎭,解得:98x =,则该球的表面积229814π4ππ816S R ⎛⎫==⨯= ⎪⎝⎭.本题选择D 选项.7.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ∠=︒,则球O 的表面积为( )A .16π9B .16π3C .64π9D .64π3【答案】D【解析】由余弦定理得:44222cos12023BC =+-⨯⨯︒=, 设三角ABC 外接圆半径为r ,由正弦定理可得:232sin120r =︒,则2r =,又22144R R =+,解得:2163R =,则球的表面积2644ππ3S R ==.本题选择D 选项. 8.已知正四棱锥P ABCD -(底面四边形ABCD 是正方形,顶点在底面的射影是底面的中心)的各顶点都在同一球面上,10若该正四棱锥的体积为503,则此球的体积为( ) A .18π B .86C .36πD .323π【答案】C 【解析】如图,设正方形ABCD 的中点为E ,正四棱锥P ABCD -的外接球心为O , 底面正方形的边长为10,5EA ∴=, 正四棱锥的体积为503,()21501033P ABCD V PE -∴=⨯⨯=, 则5PE =,5OE R ∴=-,在AOE △中由勾股定理可得:()2255R R -+=,解得3R =,34π36π3V R ∴==球,故选C .9.如图,在ABC △中,6AB BC ==,90ABC ∠=︒,点D 为AC 的中点,将ABD △沿BD 折起到PBD △的位置,使PC PD =,连接PC ,得到三棱锥P BCD -.若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A .7πB .5πC .3πD .π【答案】A【解析】由题意得该三棱锥的面PCD 3BD ⊥平面PCD , 设三棱锥P BDC -外接球的球心为O ,PCD △外接圆的圆心为1O ,则1OO ⊥面PCD ,∴四边形1OO DB 为直角梯形,由3BD 11O D =,及OB OD =,得7OB =,∴外接球半径为7R =∴该球的表面积274π4π7π4S R ==⨯=.故选A . 10.四面体A BCD -中,60ABC ABD CBD ∠=∠=∠=︒,3AB =,2CB DB ==,则此四面体外接球的表面积为( ) A .19π2B .1938π24C .17πD .1717π6【答案】A 【解析】由题意,BCD △中,2CB DB ==,60CBD ∠=︒,可知BCD △是等边三角形,3BF = ∴BCD △的外接圆半径23r BE ==,3FE = ∵60ABC ABD ∠=∠=︒,可得7AD AC =可得6AF ∴AF FB ⊥,∴AF BCD ⊥, ∴四面体A BCD -高为6AF设外接球R ,O 为球心,OE m =,可得:222r m R +=……①,)2226πEF R +=……②由①②解得:19R =2194ππ2S R ==.故选A . 11.将边长为2的正ABC △沿着高AD 折起,使120BDC ∠=︒,若折起后A B C D 、、、四点都在球O 的表面上,则球O 的表面积为( )A .7π2B .7πC .13π2D .13π3【答案】B【解析】BCD △中,1BD =,1CD =,120BDC ∠=︒,底面三角形的底面外接圆圆心为M ,半径为r ,由余弦定理得到3BC =321r r =⇒=,见图示:AD 是球的弦,3DA =,将底面的圆心M 平行于AD 竖直向上提起,提起到AD 的高度的一半,即为球心的位置O ,∴32OM =,在直角三角形OMD 中,应用勾股定理得到OD ,OD 即为球的半径.∴球的半径37142OD =+=.该球的表面积为24π7πOD ⨯=;故选B . 12.在三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥的外接球的表面积为( ) A .4343π24B .4343π6C .43π2D .43π【答案】D【解析】分别取AB ,CD 的中点E ,F ,连接相应的线段CE ,ED ,EF ,由条件,4AB CD ==,5BC AC AD BD ====,可知,ABC △与ADB △,都是等腰三角形,AB ⊥平面ECD ,∴AB EF ⊥,同理CD EF ⊥,∴EF 是AB 与CD 的公垂线,球心G 在EF 上,推导出AGB CGD △≌△,可以证明G 为EF 中点, 2594DE =-=,3DF =,1697EF =-=,∴72GF =,球半径743942DG =+=,∴外接球的表面积为24π43πS DG =⨯=.故选D .二、填空题13.棱长均为6的直三棱柱的外接球的表面积是_________. 【答案】84π【解析】由正弦定理可知底面三角形的外接圆半径为1616232sin60232r =⨯=⨯=︒,则外接球的半径()2232391221R =+=+=,则外接球的表面积为24π4π2184πS R ==⨯=.14.已知棱长都相等正四棱锥的侧面积为163,则该正四棱锥内切球的表面积为________. 【答案】()32163π-【解析】设正四棱锥的棱长为a ,则2341634a ⎛⎫= ⎪ ⎪⎝⎭,解得4a =. 于是该正四棱锥内切球的大圆是如图PMN △的内切圆,其中4MN =,23PM PN ==22PE =.设内切圆的半径为r ,由PFO PEN ≅△△,得FO POEN PN =,即22223r r -=, 解得226231r ==+∴内切球的表面积为(224π4π6232163πS r ===-.15.已知三棱柱111ABC A B C -的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积32AB =,1AC =,60BAC ∠=︒,则此球的表面积等于______. 【答案】8π【解析】∵三棱柱111ABC A B C -32AB =,1AC =,60BAC ∠=︒,1121sin 6032AA ∴⨯⨯⨯︒⨯=,12AA ∴=,2222cos60412BC AB AC AB AC =+-⋅︒=+-,3BC ∴=,设ABC △外接圆的半径为R ,则2sin60BCR ︒=,1R ∴=, ∴外接球的半径为112+=,∴球的表面积等于()24π28π⨯=.故答案为8π.16.在三棱锥A BCD -中,AB AC =,DB DC =,4AB DB +=,AB BD ⊥,则三棱锥A BCD-外接球的体积的最小值为_____. 【答案】82π3【解析】如图所示,三棱锥A BCD -的外接圆即为长方体的外接圆,外接圆的直径为长方体的体对角线AD ,设AB AC x ==,那么4DB DC x ==-,AB BD ⊥,所以22AD AB DB +积的最小值即为AD 最小,()224AD x x =+-2x =时,AD 的最小值为22282π。

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。

(完整版)高考外接球内切球专题练习

(完整版)高考外接球内切球专题练习

高考外接球与内接球专题练习(1)正方体,长方体外接球1. 如图所示,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点的轨迹的面积为( )A. 4πB. 2πC. πD. 2π 2. 正方体的内切球与其外接球的体积之比为( ) A. 1:3 B. 1:3 C. 1:33 D. 1:93. 长方体ABCD ﹣A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=3,AA 1=1, 则该球的表面积为( )A. 4πB. 8πC. 16πD. 32π4. 底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为A. 323π B. 4π C. 2π D. 43π 5. 已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 _________ .6. 在三棱椎A ﹣BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的 面积分别为22,32,62,则该三棱椎外接球的表面积为( ) A. 2π B. 6π C. 46π D. 24π7. 设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC 、AD ⊥AC 、AB ⊥AD , 则S △ABC +S △ABD +S △ACD 的最大值为( )A. 4B. 8C. 12D. 168. 四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体的 外接球的表面积为( )A. 25πB. 45πC. 50πD. 100π9. 如图,在三棱锥S ﹣ABC 中,M 、N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若AB=22,则此正三棱锥外接球的体积是A. 12πB. 43πC. 433π D. 123π 10. 已知三棱锥P ABC -的顶点都在同一个球面上(球O ),且2,6PA PB PC ===, 当三棱锥P ABC -的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值为( )A. 316πB. 38πC. 116πD. 18π (2)直棱柱外接球11. 已知三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC , AA 1=12,则球O 的半径为A. 3172B. 210C. 132D. 310 12. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面 积为( )A. 2a πB. 273a πC. 2113a π D. 25a π 13. 直三棱柱ABC ﹣A 1B 1C 1的各顶点都在同一球面上,若AB=AC=AA 1=2,∠BAC=120°, 则此球的表面积等于_________ .14. 三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB=BC=1,则球O 的表面积为( )A. 32πB. 32π C. 3π D. 12π 15. 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 的体积等于 _________ .(3)正棱锥外接球16. 棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为___________17. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. 4327πB. 62π C. 68π D. 624π 18. 已知三棱锥P ABC -的所有顶点都在表面积为28916π的球面上,底面ABC 是边长为 3的等边三角形,则三棱锥P ABC -体积的最大值为__________19. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 为( )A. 814π B. 16π C. 9π D. 274π 20. 已知正三棱锥P ﹣ABC 的顶点均在球O 上,且P A=PB=PC=25,AB=BC=CA=23, 则球O 的表面积为( )A. 25πB. 1256πC. 52π D. 20π21. 在球O 的表面上有A 、B 、C 三个点,且3AOB BOC COA π∠=∠=∠=,△ABC 的外接圆半径为2,那么这个球的表面积为( ) A. 48π B. 36π C. 24π D. 12π 22. 半径为2的半球内有一内接正六棱锥P ﹣ABCDEF ,则此正六棱锥的侧面积是 ____.23. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A. 23πB. 3π C. 23π D. 223π 24. 正四棱锥P ﹣ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面 上,如果163P ABCD V -=,则求O 的表面积为( ) A. 4π B. 8π C. 12π D. 16π(4)棱锥外接球25. 已知A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB=6,213AC =, AD=8,则此球的体积是 _________ .26. 在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D , 则四面体ABCD 的外接球的体积为( )A. 12512πB. 1259πC. 1256πD. 1253π 27. 点A ,B ,C ,D 在同一个球的球面上,AB=BC=2,AC=22,若四面体ABCD 体积 的最大值为43,则该球的表面积为( ) A. 163π B. 8π C. 9π D. 12π 28. 四棱锥S ﹣ABCD 的底面ABCD 是正方形,侧面SAB 是以AB 为斜边的等腰直角三角 形,且侧面SAB ⊥底面ABCD ,若AB=23,则此四棱锥的外接球的表面积为( )A. 14πB. 18πC. 20πD. 24π29. 三棱锥S ﹣ABC 的四个顶点都在球面上,SA 是球的直径,AC ⊥AB ,BC=SB=SC=2, 则该球的表面积为( )A. 4πB. 6πC. 9πD. 12π30. 已知四棱锥V ﹣ABCD 的顶点都在同一球面上,底面ABCD 为矩形,AC∩BD=G ,VG ⊥平面ABCD ,AB=3,AD=3,VG=3,则该球的体积为( )A. 36πB. 9πC. 123πD. 43π(5)内接球31. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A. 1B. 2C. 3D. 432. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6,8AB BC ==,13AA =,则V 的最大值为A. 4πB. 92πC. 6πD. 323π 33. 已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A. 823π B. 833π C. 863π D. 1623π 34. 把一个皮球放入一个由8根长均为20的铁丝接成的四棱锥形骨架内,使皮球的表面 与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A. 103B. 10C. 102D. 3035. 棱长为23的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小 球,则这些球的最大半径为( )A. 2B. 22C. 24D. 2636. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A ﹣BEFD 与三棱锥A ﹣EFC的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定(6)球的截面问题37. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体 积为( )A. 6πB. 43πC. 46πD. 63π38. 已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A. 26B. 36C. 23D. 2239. 高为2的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半 径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. 102B. 232+C. 32D. 240. 已知三棱锥S ﹣ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A. πB. 2πC. 3πD. 4π41. 在半径为13的球面上有A ,B ,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 _________ ;(2)过A ,B 两点的大圆面与平面ABC 所成二面角为(锐角)的正切值为 ____.42. 设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到 该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.43. 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2, 则球面面积是( ) A. 169π B. 83π C. 4π D. 649π 44. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M . 若圆M 的面积为3π,则球O 的表面积等于 _________ .45. 三棱锥P ﹣ABC 的各顶点都在一半径为R 的球面上,球心O 在AB 上,且有P A=PB=PC , 底面△ABC 中∠ABC=60°,则球与三棱锥的体积之比是 _________ .46. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截 球O 所得截面的面积为π,则球O 的表面积为__________(7)旋转体的外接内切47. 半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面 积之差是 _________ .48. 将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度 是 _________ .1. D ;2. C ;3. B ;4. D ;5. 3; 6. B ; 7. B ; 8. C ; 9. B ;10. A ; 11. C ; 12. B ; 13. 20π; 14. C ; 15. 92π; 16. ;17. C ; 19. A ; 20. A ; 21. A ; 22. ; 23. A ; 24. D ; 25. 2563π; 26. C ; 27. C ; 28. D ; 29. B ; 30. D ; 31. B ; 32. B ; 33. A ; 34. B ; 35. C ; 36. C ; 37. B ; 38. A ; 39. A ; 40. D ;41. 12;3;42. A;43. D;44. 16π;45.3;46.92π47. 30π;48.(2R+;。

高考专题练习: 空间几何体的表面积与体积

高考专题练习: 空间几何体的表面积与体积

1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3常用结论1.正方体的外接球、内切球及与各条棱相切的球的半径(1)外接球:球心是正方体的中心;半径r=32a(a为正方体的棱长).(2)内切球:球心是正方体的中心;半径r=a2(a为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r=22a(a为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)外接球:球心是正四面体的中心;半径r=64a(a为正四面体的棱长).(2)内切球:球心是正四面体的中心;半径r=612a(a为正四面体的棱长).一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区| (1)考虑不周,忽视分类讨论; (2)锥体的底面及其对应高不清楚; (3)组合体的表面积没注意衔接部分.1.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π2.已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是________.解析:由∠ABC =π2,AB =2,BC =6,得AC =210.由∠SAB =π2,AB =2,SB =4,得SA =2 3.由SA 2+AC 2=SC 2,得SA ⊥AC ,又SA ⊥AB ,所以SA ⊥平面ABC .所以三棱锥S -ABC 的体积为13S △ABC ·SA =13×12×2×6×23=4 3.答案:4 33.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=12×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的表面积(师生共研)(1)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.(5+2)πB.(4+2)πC.(5+22)πD.(3+2)π(2)(2021·吉林梅河口五中模拟)阳马和鳖臑(biē nào)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵.再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥S-ABCD),余下三棱锥称为鳖臑(三棱锥S-ECD),若将某长方体沿上述切割方法得到一个阳马和一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则该阳马和鳖臑的表面积之和为()A.12+13+3 5 B.11+13+3 5 C.12+313+ 5 D.11+313+ 5【解析】(1)因为在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,所以将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB=1,高为BC=2的圆柱挖去一个底面半径为AB=1,高为BC-AD=1的圆锥,所以该几何体的表面积S=π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.(2)由三视图可知,在阳马中,AS=2,AD=3,CD=1,SD=13,SB=5,所以S阳马=S△SAD+S△SCD+S△SBC+S△SAB+S矩形ABCD=3×22+1×132+3×52+1×2 2+3=7+13+352.S鳖臑=S△SCD+S△CDE+S△SDE+S△SCE=132+1×22+2×32+3×52=4+13+352,所以所求表面积之和=11+13+35,故选B.【答案】(1)A(2)B空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为()A.992B.61C.62 D.73解析:选C.由三视图画出几何体的直观图如图所示,上、下底面分别为边长是1,4的正方形;图中朝里的两个侧面是上底为1,下底为4,高为4的梯形;图中朝外的两个侧面是上底为1,下底为4,高为5的梯形,其表面积为S=1×1+4×4+12×(1+4)×4×2+12×(1+4)×5×2=62.空间几何体的体积(多维探究)角度一求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是()A .8B .6C .4D .2(2)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1­AEF 的体积为2,则四棱柱ABCD -A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B .(2)设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1­AEF=VF ­A 1AE.又VF ­A 1AE=13S△A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD ­A 1B 1C 1D1,所以VABCD ­A 1B 1C 1D 1=6VA 1­AEF=6×2=12.所以四棱柱ABCD -A 1B 1C 1D 1的体积为12.故选A .【答案】 (1)B (2)A 角度二 求组合体的体积(1)(2020·高考浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3 D.6(2)(2021·贵阳市第一学期监测考试)某几何体的三视图如图所示,则该几何体的体积为(俯视图中弧线是14圆弧)()A.4-πB.π-2C.1-π2D.1-π4【解析】(1)由三视图可知,该几何体是三棱柱和三棱锥的组合体,结合图中数据可得该几何体的体积V=12×2×1×2+13×12×2×1×1=73(cm3),故选A.(2)由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后剩下的部分,直观图如图所示,该几何体的体积V=1×1×1-14×π×12×1=1-π4,故选D.【答案】(1)A (2)D(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A.4 B.5C.6 D.12解析:选B.如图所示,由三视图可还原得到几何体ABCDEF,过E,F分别作垂直于底面的截面EGH和FMN,可将原几何体切割成三棱柱EHG-FNM,四棱锥E­ADHG和四棱锥F-MBCN,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.2.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD-A1B1C1D1的体积为6×6×4=144(cm3),四边形EFGH为平行四边形,如图所示,连接GE,HF,易知四边形EFGH的面积为矩形BCC1B1面积的一半,即12),所以V四棱锥O-EFGH=13×3×122×6×4=12(cm=12(cm3),所以该模型的体积为144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.【解析】 (1)设球的半径为R ,上,下底面中心设为M ,N ,由题意,外接球球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA = 3.又易得AN =2,由勾股定理可知ON =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO ,即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π.【答案】 (1)33 (2)36π(1)求解多面体的外接球时,经常用到截面圆.如图所示,设球O的半径为R,截面圆O′的半径为r,M为截面圆上任意一点,球心O到截面圆O′的距离为d,则在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.(2)求解球的内接正方体、长方体等问题的关键是把握球的直径即是几何体的体对角线.(3)若球面上四点P,A,B,C的连线中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,则可构造长方体或正方体解决问题.角度二内切球(1)(2021·重庆七校联考)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为()A.18 B.12C.6 3 D.4 3(2)(2020·高考全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【解析】(1)如图,由题意知,球心在三棱锥的高PE上,设内切球的半径为R,则S球=4πR2=16π,所以R=2.所以OE=OF=2,OP=4.在Rt△OPF中,PF=OP2-OF2=2 3.因为△OPF∽△DPE,所以OFDE=PFPE,得DE=23,AD=3DE=63,AB=23AD=12.故选B.(2)易知半径最大的球即为该圆锥的内切球.圆锥PE及其内切球O如图所示,设内切球的半径为R,则sin∠BPE=ROP =BEPB=13,所以OP=3R,所以PE=4R=PB2-BE2=32-12=22,所以R=22,所以内切球的体积V=43πR3=23π,即该圆锥内半径最大的球的体积为2 3π.【答案】(1)B(2)2 3π(1)在求四面体内切球的半径时,应重视分割的思想方法,即将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.(2)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常作出它们的轴截面解题;球与多面体的组合,一般通过多面体的一条侧棱和球心,并结合“切点”或“接点”作出截面图,把空间问题化归为平面问题求解.1.已知正四棱锥P-ABCD内接于一个半径为R的球,则正四棱锥P-ABCD 体积的最大值是()A.16R381B.32R381C.64R381D.R3解析:选C.如图,记O为正四棱锥P­ABCD外接球的球心,O1为底面ABCD 的中心,则P,O,O1三点共线,连接PO1,OA,O1A.设OO 1=x ,则O 1A =R 2-x 2,AB =2·R 2-x 2,PO 1=R +x ,所以正四棱锥P -ABCD 的体积V =13AB 2·PO 1=13×2(R 2-x 2)(R +x )=23(-x 3-Rx 2+R 2x +R 3),求导得V ′=23(-3x 2-2Rx +R 2)=-23(x +R )·(3x -R ),当x =R3时,体积V 有最大值64R 381,故选C .2.设球O 内切于正三棱柱ABC -A 1B 1C 1,则球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为________.解析:设球O 的半径为R ,正三棱柱ABC -A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R .又正三棱柱ABC -A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点; (2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】 C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()A. 2 B.6 2C.112D.52【解析】 易知四面体A ′EFD 的三条侧棱A ′E ,A ′F ,A ′D 两两垂直,且A ′E =1,A ′F =1,A ′D =2,把四面体A ′EFD 补成从顶点A ′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A ′EFD 的外接球,球的半径为r =1212+12+22=62.故选B .【答案】 B方法三 由性质确定球心利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.正三棱锥A -BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________.【解析】 如图,M 为底面△BCD 的中心,易知AM ⊥MD ,DM =1,AM = 3.在Rt △DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝ ⎛⎭⎪⎫2332=163π.【答案】 163π[A 级 基础练]1.(2020·高考全国卷Ⅲ)如图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+4 2C .6+2 3D .4+2 3解析:选C .由三视图知该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝ ⎛⎭⎪⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.2.(2021·贵阳市适应性考试)某几何体的三视图如图所示,已知正视图和侧视图是全等的直角三角形,俯视图是圆心角为90°的扇形,则该几何体的体积是( )A .2πB .π2C .3π2D .3π解析:选D .依题意,题中的几何体是一个圆锥的14(其中该圆锥的底面半径为23,高为3),如图所示,因此该几何体的体积为14×⎣⎢⎡⎦⎥⎤13×π×(23)2×3=3π,选D .3.(2020·高考全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π解析:选A.如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=2r,解得AB=23,故OO1=23,所以R2=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.4.(2021·东北三校第一次联考)如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,则三棱锥A-BEF的体积为()A.13B.23C.1 D.4 3解析:选B.如图,分别取BC,ED,AD的中点G,P,Q,连接FG,FP,PQ,QG,因为ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,所以PD∥=FC,所以四边形FCDP为平行四边形,所以PF∥DC.又Q,G分别为DA,CB的中点,所以QG ∥DC ,且QG =DC ,所以QG ∥PF ,且QG =PF ,所以四边形QGFP 为平行四边形,所以PQ ∥FG .又P 为DE 的中点,所以PQ ∥EA ,所以FG ∥EA ,因为EA ⊂平面EAB ,FG ⊄平面EAB ,所以FG ∥平面EAB .连接EG ,AG ,则V 三棱锥A -BEF =V 三棱锥F -ABE =V 三棱锥G -ABE =V 三棱锥E -ABG =13·ED ·S △ABG=23,故选B .5.(2021·福建省质量检测)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .16π9 B .8π9 C .16π27D .8π27解析:选A .方法一:如图,OC =2,OA =3,由△AED ∽△AOC 可得EDOC =AEAO .设圆柱体的底面半径r =ED =2x (0<x <1),可得AE =3x ,则圆柱体的高h =OE =3-3x ,圆柱体的体积V =π(2x )2(3-3x )=12π(x 2-x 3),令V (x )=12π(x 2-x 3),则V ′(x )=12π(2x -3x 2),令V ′(x )=0,解得x =23或x =0(舍去),可得V (x )在⎝ ⎛⎭⎪⎫0,23上单调递增,在⎝ ⎛⎭⎪⎫23,1上单调递减,故当x =23时,V (x )取得最大值,V (x )max =16π9,即圆柱体的最大体积是16π9.方法二:同方法一,则圆柱体的体积V =12πx 2(1-x )=6π·x ·x (2-2x )≤6π·⎣⎢⎡⎦⎥⎤x +x +(2-2x )33=16π9,当且仅当x =2-2x ,即x =23时等号成立,故圆柱体的最大体积是16π9.6.已知圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是________.解析:由πr 2=S 得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS .答案:4πS7.(2020·高考浙江卷)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.解析:方法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2 =2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.方法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr = 2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:18.(2021·长沙市统一模拟考试)在四面体P ABC 中,△ABC 为等边三角形,且边长为6,P A =6,PB =8,PC =10,则四面体P ABC 的体积为________.解析:如图,延长CA 到D ,使得AD =6,连接DB ,PD .因为AD =AB =6,所以△ADB 为等腰三角形,又∠DAB =180°-∠CAB =120°,所以∠ABD =12(180°-120°)=30°,所以∠ABD +∠CBA =90°,即∠DBC =90°,故CB ⊥DB .因为PB =8,PC =10,BC =6,所以PC 2=PB 2+BC 2,所以CB ⊥PB .因为DB ∩PB =B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以V三棱锥C -PBD=13×CB ×S △PBD .因为DA =AC =AP =6,所以△PDC 为直角三角形,所以PD =CD 2-PC 2=144-100=211.又DB =3AD =63,PB =8,所以DB 2=PD 2+PB 2,故BP ⊥DP ,即△PBD 为直角三角形,所以S △PBD =12×8×211=811.因为A 为DC 的中点,所以V 四面体P ABC =12V 三棱锥P -CBD =12V 三棱锥C -PBD =12×13×6×811=811.答案:8119.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2, S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以从P点到Q点在侧面上的最短路径的长为a1+π2.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.因为BD∩BE=B,BD⊂平面BED,BE⊂平面BED,所以AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x 2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13×12·AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.[B级综合练]11.(2021·安徽省部分重点学校联考)已知三棱锥D-ABC的体积为2,△ABC 是边长为2的等边三角形,且三棱锥D-ABC的外接球的球心O恰好是CD的中点,则球O的表面积为()A.52π3B.24πC.56π3D.20π3解析:选A.设球O的半径为R,球心O到平面ABC的距离为d,因为O是CD的中点,所以点D到平面ABC的距离为2d,则V D­ABC=13S△ABC2d=13×34×22×2d=2,解得d= 3.过点O向平面ABC作垂线,垂足为O′,则O′为等边三角形ABC的外心,连接O′A,则O′A=2×32×23=233,R2=d2+O′A2=3+43=133,所以球O的表面积S=4πR2=52π3.12.(2021·南充市第一次适应性考试)如图,在正三棱锥A-BCD中,AB=BC,E为棱AD的中点.若△BCE的面积为2,则三棱锥A-BCD的体积为()A.23B.33C.233D.223解析:选D.因为AB=BC,所以正三棱锥A-BCD为正四面体,因为E为AD 的中点,所以AD ⊥BE ,AD ⊥CE ,又CE ∩BE =E ,所以AD ⊥平面BCE .设AD =a ,则BE =CE =32a ,所以等腰三角形BCE 的面积S △BCE =12×BC × BE 2-⎝ ⎛⎭⎪⎫BC 22=12×a ×⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=12×22a 2=2,所以a =2,所以V 三棱锥A -BCD =V 三棱锥A -BCE +V 三棱锥D -BCE =2V 三棱锥A -BCE =2×13S △BCE ×AE =2×13×2×a 2=223.13.如图所示是一个几何体的三视图,根据图中所给的数据,这个几何体的表面积为________,体积为________.解析:如图所示是还原后的几何体的直观图,分别取BC ,AD 的中点E ,F ,连接SE ,EF ,SF ,由图中数据有AB =BC =CD =DA =SE =EF =2,BE =EC =1,因为△SBC 是等腰三角形,所以SB =SC = 5. 因为△SBA 为直角三角形,所以SA =3. 又因为△SAD 是等腰三角形,所以SF ⊥AD . 所以SF =2 2.所以S 正方形ABCD =4,S △SBC =2,S △SAB =S △SCD =5,S △SAD =2 2. 所以S S ­ABCD =6+2(2+5). 所以V S ­ABCD =13·S 正方形ABCD ·SE =83. 答案:6+2(2+5) 8314.(2020·河北九校第二次联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F ,G 分别是DD 1,AB ,BC 的中点,过点E ,F ,G 的截面将正方体分割成两部分,则较大几何体的体积为________.解析:如图所示,延长GF ,DA 交于点M ,延长FG ,DC 交于点N ,连接EM ,EN 分别与A 1A ,C 1C 交于点P ,Q ,连接PF ,QG ,则五边形EPFGQ 即为过点E ,F ,G 的平面与正方体的截面图形.易得P A =QC =a6,连接EA ,EC ,截面下面部分可分割成三部分,分别是三棱锥E -P AF 、三棱锥E -CGQ 、五棱锥E -AFGCD ,则截面下面部分的体积V 1=V E ­P AF +V E ­CGQ +V E ­AFGCD =13×12×a 6×a2×a +13×12×a 6×a 2×a +13(a 2-12×a 2×a 2)×a 2=25144a 3,则较大几何体的体积V =a 3-25144a 3=119144a 3.答案:119144a 3[C级提升练]15.设A,B,C,D是同一个半径为4的球的球面上的四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为() A.12 3 B.18 3C.24 3 D.54 3解析:选B.如图,E是AC的中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D-ABC的体积取得最大值,且最大值V max=13S△ABC×(4+OM)=13×93×6=18 3.故选B.16.如图,正方体ABCD-A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论正确的有________.(填序号)①AE∥平面C1BD;②四面体ACEF的体积为定值;③三棱锥A-BEF的体积为定值;④四面体ACDF 的体积为定值.解析:对于①,如图1,AB 1∥DC 1,易证AB 1∥平面C 1BD ,同理AD 1∥平面C 1BD ,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,①正确;对于②,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝⎛⎭⎪⎫3222=364,点C 到平面AEF 的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A ­CEF =V C ­AEF =13×364×d =64d 为定值,所以②正确;对于③,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A ­BEF =13×32×d =12d 为定值,③正确;对于④,如图4,四面体ACDF 的体积为V A ­CDF =V F ­ACD =13×12×3×3×3=92为定值,④正确.答案:①②③④。

关于外接球的表面积与体积计算问题

关于外接球的表面积与体积计算问题

关于外接球的表⾯积与体积计算问题关于外接球的表⾯积与体积问题(⼆)⼀.选择题(共30⼩题)1.已知△EAB所在的平⾯与矩形ABCD所在的平⾯互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多⾯体E﹣ABCD的外接球的表⾯积为()A.4π B.9π C.12πD.16π2.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底⾯,各顶点都在同⼀球⾯上,若该棱柱的体积为,AB=2,则此球的体积等于()A.B.C.D.3.三棱锥A﹣BCD中,△ABC为等边三⾓形,AB=2,∠BDC=90°,⼆⾯⾓A﹣BC ﹣D的⼤⼩为150°,则三棱锥A﹣BCD的外接球的表⾯积为()A.7π B.12πC.16πD.28π4.已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平⾯BCFE⊥平⾯ABCD,若折得的⼏何体的体积最⼤,则该⼏何体外接球的体积为()A.28πB.C.32πD.5.已知三棱锥A﹣BCD中,,,且各顶点均在同⼀个球⾯上,则该球的体积为()A.B.4π C.2π D.6.如图,将边长为2的正△ABC沿着⾼AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表⾯上,则球O的表⾯积为()A.B.C.D.7.设SA为球的直径,B、C、D三点在球⾯上,且SA⊥⾯BCD,三⾓形BCD的⾯积为3,VS﹣BCD =3VA﹣BCD=3,则球的表⾯积为()A.16πB.64πC.πD.32π8.已知四⾯体A﹣BCD中,△ABC和△BCD都是边长为6的正三⾓形,则当四⾯体的体积最⼤时,其外接球的表⾯积是()A.60πB.30πC.20πD.15π9.在封闭直三棱柱ABC﹣A1B1C内有⼀个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最⼤值是()A.B.C.D.36π10.在正⽅体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四⾯体M﹣ABD的外接球的表⾯积为36π,则正⽅体棱长为()A.2 B.3 C.4 D.511.三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上⼀动点,若直线AM与平⾯PBC所成⾓的正切的最⼤值是,则三棱锥P﹣ABC的外接球的表⾯积是()A.2π B.4π C.8π D.16π12.如图某空间⼏何体的正视图和俯视图分别为边长为2的正⽅形和正三⾓形,则该空间⼏何体的外接球的表⾯积为()A.B.C.16πD.21π13.已知P,A,B,C是球O球⾯上的四点,△ABC是正三⾓形,三棱锥P﹣ABC 的体积为,且∠APO=∠BPO=∠CPO=30°,则球O的表⾯积为()A.4π B.πC.16πD.12π14.已知底⾯边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O上,则球的体积是()A.B.8π C.20πD.15.已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧⾯BCC11的⾯积为4,则直三棱柱ABC﹣A1B1C1外接球表⾯积的最⼩值为()A.4π B.8π C.16πD.32π16.如图1,ABCD是边长为2的正⽅形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四⾯体PAEF的四个顶点在同⼀个球⾯上,则该球的表⾯积是()A.B.6π C.D.12π17.将边长为的正⽅形ABCD沿对⾓线AC折成⼀个直⼆⾯⾓B﹣AC﹣D.则四⾯体ABCD的内切球的半径为()A.1 B.C.D.18.三棱锥P﹣ABC三条侧棱两两垂直,三个侧⾯⾯积分别为,则该三棱锥的外接球表⾯积为()A.4π B.6π C.8π D.10π19.在四⾯体S﹣ABC中,,⼆⾯⾓S﹣AC﹣B的余弦值为,则该四⾯体外接球的表⾯积是()A.B.C.24πD.6π20.如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同⼀球⾯上,则该球的体积为()A.B.4π C.2π D.21.⼀个直三棱柱的每条棱长都是4,且每个顶点都在球O的球⾯上,则球O的表⾯积为()A.84πB.96πC.112πD.144π22.三棱锥的棱长均为4,顶点在同⼀球⾯上,则该球的表⾯积为()A.36πB.72πC.144πD.288π23.已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,⼜知球O2与此正三棱柱的5个⾯都相切,求球O1与球O的表⾯积之⽐()A.5:1 B.2:1 C.4:1 D.:124.已知四⾯体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四⾯体的外接球的表⾯积为()A.43πB.17πC.34πD.25.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平⾯ABC,且直线PA与平⾯PBC所成⾓的正切值为,则三棱锥P﹣ABC的外接球的表⾯积为()A.4π B.8π C.16πD.32π26.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平⾯ABC,且直线PA与平⾯PBC所成⾓的正切值为,则三棱锥P﹣ABC的外接球的体积为()A.B.C.D.27.已知正四棱锥P﹣ABCD的底⾯边长为,体积为,则此棱锥的内切球与外接球的半径之⽐为()A.1:2 B.2:5 C.1:3 D.4:528.球O与锐⼆⾯⾓α﹣l﹣β的两半平⾯相切,两切点间的距离为,O点到交线l的距离为2,则球O的表⾯积为()A.B.4π C.12πD.36π29.四⾯体ABCD的四个顶点都在球O的表⾯上,AB⊥平⾯BCD,△BCD是边长为3的等边三⾓形.若AB=2,则球O的表⾯积为()A.8π B.12πC.16πD.32π30.已知在三棱锥P﹣ABC中,V=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平P﹣ABC⾯PAC⊥平⾯PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.关于外接球的表⾯积与体积问题(⼆)参考答案与试题解析⼀.选择题(共30⼩题)1.(2017?全国模拟)已知△EAB所在的平⾯与矩形ABCD所在的平⾯互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多⾯体E﹣ABCD的外接球的表⾯积为()A.4π B.9π C.12πD.16π【分析】设球⼼到平⾯ABCD的距离为d,利⽤△EAB所在的平⾯与矩形ABCD所在的平⾯互相垂直,EA=EB=3,∠AEB=60°,可得E到平⾯ABCD的距离为,从⽽R2=()2+d2=12+(﹣d)2,求出R2=4,即可求出多⾯体E﹣ABCD的外接球的表⾯积.【解答】解:设球⼼到平⾯ABCD的距离为d,则∵△EAB所在的平⾯与矩形ABCD所在的平⾯互相垂直,EA=EB=3,∠AEB=60°,∴E到平⾯ABCD的距离为,∴R2=()2+d2=12+(﹣d)2,∴d=,R2=4,∴多⾯体E﹣ABCD的外接球的表⾯积为4πR2=16π.故选D.【点评】本题考查多⾯体E﹣ABCD的外接球的表⾯积,考查学⽣的计算能⼒,正确求出多⾯体E﹣ABCD的外接球的半径是关键.2.(2017?⼤理州⼆模)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底⾯,各顶点都在同⼀球⾯上,若该棱柱的体积为,AB=2,则此球的体积等于()A.B.C.D.【分析】画出球的内接三棱柱ABC﹣A1B1C1,作出球的半径,然后可求球的表⾯积.【解答】解:设AA1=h,则∵棱柱的体积为,AB=2,∴h=1,∵AB=2,∴BC==,如图,连接上下底⾯外⼼,O为PQ的中点,OP⊥平⾯ABC,AP==则球的半径为OA,由题意OP=,∴OA==,所以球的体积为:πR3=π故选B.【点评】本题是基础题,解题思路是:先求底⾯外接圆的半径,转化为直⾓三⾓形,求出球的半径,这是三棱柱外接球的常⽤⽅法;本题考查空间想象能⼒,计算能⼒.3.(2017?福州⼀模)三棱锥A﹣BCD中,△ABC为等边三⾓形,AB=2,∠BDC=90°,⼆⾯⾓A﹣BC﹣D的⼤⼩为150°,则三棱锥A﹣BCD的外接球的表⾯积为()A.7π B.12πC.16πD.28π【分析】由题意画出图形,通过求解直⾓三⾓形可得三棱锥A﹣BCD的外接球的半径,代⼊球的表⾯积公式得答案.【解答】解:设球⼼为M,BC的中点为P,∵三⾓形BDC满⾜∠BDC=90°,∴P为三⾓形BDC的外⼼,设△ABC的外⼼为O,∵△ABC为等边三⾓形,∴MO⊥平⾯ABC,MP⊥平⾯BDC,∵⼆⾯⾓A﹣BC﹣D的⼤⼩为150°,∴∠OPM=60°,在等边三⾓形ABC中,由AB=2,得AP=3,∴OP=1,在Rt△MOP中,可得MO=,在Rt△MOA中,得MA=.∴三棱锥A﹣BCD的外接球的表⾯积为.故选:D.【点评】本题考查球的表⾯积与体积,考查空间想象能⼒和思维能⼒,属中档题.4.(2017?⾹坊区校级⼀模)已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平⾯BCFE⊥平⾯ABCD,若折得的⼏何体的体积最⼤,则该⼏何体外接球的体积为()A.28πB.C.32πD.【分析】三棱柱ABE﹣DCF的底⾯积最⼤时,其体积最⼤.设FC=x,DCF=6﹣x,===.令f(x)=36x2﹣12x3,f′(x)=72x ﹣36x2,令f(x)=0,可得x=2,s△DCF即当x=2时,最⼤,此时CF,CD,CB两两垂直,可以把此三棱柱补成长⽅体,外接球的s△DCF半径为长⽅体对⾓线长的⼀半,得球半径R即可.【解答】解:将矩形ABCD沿EF折起,使得平⾯ABCD⊥平⾯BCFE,可得直三棱柱ABE﹣DCF,(如图)三棱柱ABE﹣DCF的底⾯△DCF,△ABE是直⾓△,AB⊥BE,FC⊥CD三棱柱ABE﹣DCF的底⾯积最⼤时,其体积最⼤.设FC=x,DCF=6﹣x,s===.△DCF令f(x)=36x2﹣12x3,f′(x)=72x﹣36x2,令f(x)=0,可得x=2∴当x=2时,s最⼤△DCF此时CF,CD,CB两两垂直,可以把此三棱柱补成长⽅体,外接球的半径为长⽅体对⾓线长的⼀半球半径R=,∴⼏何体外接球的体积为,故选:D.【点评】本题考查了折叠问题,及三棱柱的外接球,属于中档题.5.(2017?贵州模拟)已知三棱锥A﹣BCD中,,,且各顶点均在同⼀个球⾯上,则该球的体积为()A.B.4π C.2π D.【分析】由三棱锥的对边相等可得三棱锥A﹣BCD为某⼀长⽅体的对⾓线组成的三棱锥,求出长⽅体的棱长即可得出外接球的半径,从⽽计算出外接球的体积.【解答】解:补体为底⾯边长为1,⾼为的长⽅体,外接球的球⼼为长⽅体体对⾓线中点,所以球的半径r=1,球的体积,故选D.【点评】本题考查了棱锥与外接球的位置关系,棱锥的体积计算,转化思想,属于中档题.6.(2017?临川区校级模拟)如图,将边长为2的正△ABC沿着⾼AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表⾯上,则球O的表⾯积为()A.B.C.D.【分析】通过底⾯三⾓形BCD求出底⾯圆的半径DM,判断球⼼到底⾯圆的距离OD,求出球O的半径,即可求解球O的表⾯积.【解答】解:△BCD中,BD=1,CD=1,∠BDC=60°,底⾯三⾓形的底⾯圆半径为:DM=CM=,AD是球的弦,DA=,∴OM=,∴球的半径OD==.该球的表⾯积为:4π×OD2=π;故选:B.【点评】本题考查球的表⾯积的求法,球的内接体,考查空间想象能⼒以及计算能⼒.7.(2017?贵阳⼀模)设SA为球的直径,B、C、D三点在球⾯上,且SA⊥⾯BCD,三⾓形BCD的⾯积为3,VS﹣BCD =3VA﹣BCD=3,则球的表⾯积为()A.16πB.64πC.πD.32π【分析】利⽤SA⊥⾯BCD,三⾓形BCD的⾯积为3,VS﹣BCD =3VA﹣BCD=3,求出球的直径,即可得出结论.【解答】解:设三棱锥A﹣BCD的⾼为h,则三棱锥S﹣BCD的⾼为3h,球的直径为2R,∵三⾓形BCD的⾯积为3,VA﹣BCD=1,∴=1,∴h=1,∴R=2,∴球的表⾯积为4π?22=16π,故选A.【点评】本题考查球的表⾯积,考查三棱锥体积的计算,考查学⽣的计算能⼒,属于中档题.8.(2017?南岗区⼀模)已知四⾯体A﹣BCD中,△ABC和△BCD都是边长为6的正三⾓形,则当四⾯体的体积最⼤时,其外接球的表⾯积是()A.60πB.30πC.20πD.15π【分析】当四⾯体的体积最⼤时,平⾯ABC⊥平⾯BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,求出EF,判断三棱锥的外接球球⼼O在线段EF上,连接OA,OC,求出半径,然后求解三棱锥的外接球的表⾯积.【解答】解:当四⾯体的体积最⼤时,平⾯ABC⊥平⾯BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,由题意知AF⊥DF,AF=CF=3,∴EF=AD=,易知三棱锥的外接球球⼼O在线段EF上,连接OA,OC,有R2=AE2+OE2,R2=DF2+OF2,∴R2=()2+OE2,R2=32+(﹣OE)2,∴R=,∴三棱锥的外接球的表⾯积为4πR2=60π.故选A.【点评】本⼩题主要考查球的内接⼏何体的相关计算问题,对考⽣的空间想象能⼒与运算求解能⼒以及数形结合思想都提出很⾼要求,本题是⼀道综合题.9.(2017?呼和浩特⼆模)在封闭直三棱柱ABC﹣A1B1C1内有⼀个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最⼤值是()A.B.C.D.36π【分析】要使球的体积V最⼤,必须使球的半径R最⼤.因为△ABC内切圆的半径为2,所以由题意易知球与直三棱柱的上、下底⾯都相切时,球的半径取得最⼤值,求出三棱柱ABC﹣A1B1C1内切球半径即可【解答】解:要使球的体积V最⼤,必须使球的半径R最⼤.Rt△ABC中,AB⊥BC,AB=15,BC=8,∴AC=12,△ABC内切圆的半径为r=3,所以由题意易知球与直三棱柱的上、下底⾯都相切时,球的半径取得最⼤值为.此时球的体积为πR3=,故选:B.【点评】本题考查了棱柱的内切球的体积,解题关键在于确定球何时半径最⼤,属于基础题.10.(2017?⼤东区⼀模)在正⽅体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四⾯体M﹣ABD的外接球的表⾯积为36π,则正⽅体棱长为()A.2 B.3 C.4 D.5【分析】设BD的中点O′,则球⼼O在MO′上,利⽤四⾯体M﹣ABD的外接球表⾯积为36π,求出球的半径,利⽤勾股定理建⽴⽅程,求出正⽅体棱长.【解答】解:设BD的中点O′,则球⼼O在MO′上,∵四⾯体M﹣ABD的外接球表⾯积为36π,∴4πR2=36π,∴R=3,设正⽅体棱长为2a,则O′A=a,由勾股定理可得32=()2+(2a﹣3)2,∴a=2,∴正⽅体棱长为2a=4.故选C.【点评】本题考查正⽅体棱长,考查四⾯体M﹣ABD的外接球表⾯积,确定球⼼的位置是关键.11.(2017?绵阳模拟)三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M 是线段BC上⼀动点,若直线AM与平⾯PBC所成⾓的正切的最⼤值是,则三棱锥P﹣ABC的外接球的表⾯积是()A.2π B.4π C.8π D.16π【分析】PA、PB、PC互相垂直,PA=PB=1,M是线段BC上⼀动点,当PM最短时,即PM⊥BC时直线AM与平⾯PBC所成⾓的正切的最⼤,最⼤值是,求出PC=,三棱锥P﹣ABC扩充为长⽅体,则长⽅体的对⾓线长为三棱锥P﹣ABC的外接球的直径,即可得出结论.【解答】解:M是线段BC上⼀动点,连接PM,∵PA、PB、PC互相垂直,∴∠AMP 就是直线AM与平⾯PBC所成⾓,当PM最短时,即PM⊥BC时直线AM与平⾯PBC所成⾓的正切的最⼤.此时,PM=,在Rt△PBC中,PB?PC=BC?PM?PC=?PC=.三棱锥P﹣ABC扩充为长⽅体,则长⽅体的对⾓线长为,∴三棱锥P﹣ABC的外接球的半径为R=1,∴三棱锥P﹣ABC的外接球的表⾯积为4πR2=4π.故选:B.【点评】题考查三棱锥P﹣ABC的外接球的体积,考查线⾯垂直,线⾯⾓,考查学⽣分析解决问题的能⼒,属于中档题12.(2017?湖北模拟)如图某空间⼏何体的正视图和俯视图分别为边长为2的正⽅形和正三⾓形,则该空间⼏何体的外接球的表⾯积为()A.B.C.16πD.21π【分析】由⼏何体的三视图知该⼏何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正主形,△SBC是边长为2 的等边三⾓形,AB⊥平⾯SBC,由此能求出该空间⼏何体的外接球的表⾯积.【解答】解:如图,由⼏何体的三视图知该⼏何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正⽅形,△SBC是边长为2 的等边三⾓形,AB⊥平⾯SBC,取BC中点F,AD中点E,连结SF,EF,取EF中点M,则MF=1,SF=,设该⼏何体外接球的球⼼为O,则OM⊥⾯ABCD,设OM=x,过O作OH⊥SF,交SF于H,则SH=,OH=MF=1,∴OD2=OS2=R2,即()2+x2=12+()2,解得x=,∴R==,∴该空间⼏何体的外接球的表⾯积S==.故选:B.【点评】本题考查空间⼏何体的外接球的表⾯积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运⽤.13.(2017?楚雄州⼀模)已知P,A,B,C是球O球⾯上的四点,△ABC是正三⾓形,三棱锥P﹣ABC的体积为,且∠APO=∠BPO=∠CPO=30°,则球O的表⾯积为()A.4π B.πC.16πD.12π【分析】设△ABC的中⼼为S,球O的半径为R,△ABC的边长为2a,由已知条件推导出a=R,再由三棱锥P﹣ABC的体积为,求出R=2,由此能求出球O的表⾯积.【解答】解:如图,P,A,B,C是球O球⾯上四点,△ABC是正三⾓形,设△ABC的中⼼为S,球O的半径为R,△ABC的边长为2a,∵∠APO=∠BPO=∠CPO=30°,OB=OP=R,∴OS=,BS=R,∴=R,解得a=R,2a=R,∵三棱锥P﹣ABC的体积为,∴×××R×Rsin60°×R=,解得R=2,∴球O的表⾯积S=4πR2=16π.故选:C.【点评】本题考查球的表⾯积的求法,是中档题,解题时确定球O的半径是关键.14.(2017?临翔区校级⼀模)已知底⾯边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O上,则球的体积是()A.B.8π C.20πD.【分析】正三棱锥的顶点正好是球⼼,底⾯为⼀个⼩圆,求出⼩圆半径、三棱锥的⾼,可得球的半径,即可求出球的体积.【解答】解:正三棱锥的顶点正好是球⼼,底⾯为⼀个⼩圆,因正△ABC的边长为,所以⼩圆半径r=2,⼜因,所以三棱锥的⾼h=1,设球半径为R,则,,故选A.【点评】本题考查球的体积,考查学⽣的计算能⼒,求出球的半径是关键.15.(2017?灵丘县校级三模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧⾯BCC1B1的⾯积为4,则直三棱柱ABC﹣A1B1C1外接球表⾯积的最⼩值为()A.4π B.8π C.16πD.32π【分析】设BC=2x,BB1=2y,则4xy=2,利⽤直三棱柱ABC﹣A1B1C1中,∠BAC=90°,可得直三棱柱ABC﹣A1B外接球的半径为≥=,即可求出三棱柱ABC﹣A 1B1C1外接球表⾯积的最⼩值.【解答】解:设BC=2x,BB1=2y,则4xy=4,∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,∴直三棱柱ABC﹣A1B1C1外接球的半径为≥=,∴直三棱柱ABC﹣A1B1C1外接球表⾯积的最⼩值为4π×2=8π.故选:B.【点评】本题考查三棱柱ABC﹣A1B确定外接球表⾯积的最⼩值,考查基本不等式的运⽤,确定直三棱柱ABC﹣A1B1C1外接球的半径的最⼩值是关键.16.(2017?⼴安模拟)如图1,ABCD是边长为2的正⽅形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四⾯体PAEF的四个顶点在同⼀个球⾯上,则该球的表⾯积是()A.B.6π C.D.12π【分析】由已知得PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF为棱构造⼀个长⽅体,则四⾯体PAEF的四个顶点在这个长⽅体的外接球上,由此能求出该球的表⾯积.【解答】解:∵ABCD是边长为2的正⽅形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,∴PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF为棱构造⼀个长⽅体,则四⾯体PAEF的四个顶点在这个长⽅体的外接球上,∴这个球的半径为R==,∴该球的表⾯积是S=4πR2=4π×=6π.故选:B.【点评】本题考查球的表⾯积的求法,是中档题,解题时要认真审题,注意球、四⾯体的性质及构造法的合理应⽤.17.(2017?郴州⼆模)将边长为的正⽅形ABCD沿对⾓线AC折成⼀个直⼆⾯⾓B﹣AC﹣D.则四⾯体ABCD的内切球的半径为()A.1 B.C.D.【分析】先求出VD﹣ABC ,再求出四⾯体ABCD的表⾯积S=S△ADC+S△ABC+S△ABD+S△BCD,由取AC中点O,连结DO,BO,则DO=BO==1,且DO⊥平⾯ABC,∴VD﹣ABC==,BD==,AB=BC=AD=DC=,∴=,=1,∴四⾯体ABCD的表⾯积S=S△ADC +S△ABC+S△ABD+S△BCD=2+,∴四⾯体ABCD的内切球的半径r===2﹣.故选:D.【点评】本题考查四⾯体的内切球半径的求法,是中档题,解题时要认真审题,注意四⾯体内切球半径与其体积和表⾯积的关系式的合理应⽤.18.(2017春?简阳市期末)三棱锥P﹣ABC三条侧棱两两垂直,三个侧⾯⾯积分别为,则该三棱锥的外接球表⾯积为()A.4π B.6π C.8π D.10π【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长⽅体的外接球,求出长⽅体的对⾓线的长,就是球的直径,然后求球的表⾯积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长⽅体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,解得,a=,b=1,c=.则长⽅体的对⾓线的长为=.所以球的直径是,半径长R=,则球的表⾯积S=4πR2=6π故选B.【点评】本题考查球的表⾯积,⼏何体的外接球,考查空间想象能⼒,计算能⼒,是基础题.将三棱锥扩展为长⽅体是本题的关键.【分析】取AC中点D,连接SD,BD,由题意可得∠SDB为⼆⾯⾓S﹣AC﹣B,取等边△SAC的中⼼E,找出O点为四⾯体的外接球球⼼.【解答】解:取AC中点D,连接SD,BD,因为AB=BC=,所以BD⊥AC,因为SA=SC=2,所以SD⊥AC,AC⊥平⾯SDB.所以∠SDB为⼆⾯⾓S﹣AC﹣B.在△ABC中,AB⊥BC,AB=BC=,所以AC=2.取等边△SAC的中⼼E,作EO⊥平⾯SAC,过D作DO⊥平⾯ABC,O为外接球球⼼,所以ED=,⼆⾯⾓S﹣AC﹣B的余弦值是﹣,所以cos∠EDO=,OD=,所以BO==OA=OS=OC所以O点为四⾯体的外接球球⼼,其半径为,表⾯积为6π.故选:D.【点评】解决此类问题的关键是熟悉⼏何体的结构特征,利⽤已知条件求出线段长度,进⽽确定圆⼼的位置即可求出圆的半径.20.(2017春?陆川县校级期中)如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同⼀球⾯上,则该球的体积为()A.B.4π C.2π D.【分析】利⽤已知条件说明三棱锥是长⽅体的⼀个⾓,扩展⼏何体为长⽅体,求出外接球的半径,然后求解球的体积.【解答】解:在三棱锥D﹣ABC中,,可得AC⊥BC,AC⊥CD,CD⊥CB,则C﹣ABD三棱锥看作是长⽅体的⼀个⾓,三棱锥的外接球计算长⽅体的外接球,外接球的半径为:=1.外接球的体积为:=.故选:D.【点评】本题考查三棱锥的外接球的体积的求法,考查空间想象能⼒以及最后思想计算能⼒.21.(2017春?⼭西⽉考)⼀个直三棱柱的每条棱长都是4,且每个顶点都在球O 的球⾯上,则球O的表⾯积为()A.84πB.96πC.112πD.144π【分析】设此直三棱柱两底⾯的中⼼分别为O1,O2,则球O的球⼼O为线段O1O的中点,设球O的半径为R,利⽤勾股定理求出R2,由此能求出球O的表⾯积.【解答】解:∵⼀个直三棱柱的每条棱长都是4,且每个顶点都在球O的球⾯上,∴设此直三棱柱两底⾯的中⼼分别为O1,O2,则球O的球⼼O为线段O1O2的中点,设球O的半径为R,则R2=()2+()2=28,∴球O的表⾯积S=4πR2=112π.故选:C.【点评】本题球的表⾯积的求法,考查推理论证能⼒、运算求解能⼒、空间思维能⼒,考查转化化归思想、数形结合思想、⽅程思想、整体思想,是中档题.22.(2017春?顺庆区校级⽉考)三棱锥的棱长均为4,顶点在同⼀球⾯上,则该球的表⾯积为()A.36πB.72πC.144πD.288π【分析】正四⾯体补成正⽅体,通过正⽅体的对⾓线与球的半径关系,求解即可.【解答】解:如图,将正四⾯体补形成⼀个正⽅体,正四⾯体的外接球与正⽅体的外接球相同.∵三棱锥的棱长均为4,∴正⽅体的棱长是4,⼜∵球的直径是正⽅体的对⾓线,设球半径是R,∴2R=12,∴R=6,球的表⾯积为4π×62=144π.故选:C.【点评】巧妙构造正⽅体,利⽤正⽅体的外接球的直径为正⽅体的对⾓线,从⽽将问题巧妙转化.若已知正四⾯体V﹣ABC的棱长为a,求外接球的半径,可以构造出⼀个球的内接正⽅体,再应⽤对⾓线长等于球的直径可求得.23.(2017春?东湖区校级⽉考)已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,⼜知球O2与此正三棱柱的5个⾯都相切,求球O12的表⾯积之⽐()A.5:1 B.2:1 C.4:1 D.:1【分析】由题意得两球⼼是重合的,设球O1的半径为R,球O2的半径为r,则正三棱柱的⾼为2r,AB=2r,正三棱柱的底⾯中⼼的连线的中点就是外接球O 1的球⼼,则(2r)2+r2=R2,即5r2=R2【解答】解:设球O2的为r,球O1的半径为R∵三棱柱ABC﹣A1B1C1的侧棱与底⾯垂直,三棱柱的六个顶点都在球O1的球⾯上,∴三棱柱的⾼(侧棱长)为2r.正三棱柱ABC﹣A1B1C1的底⾯与球O1的⼤圆截⾯如图(1)所⽰:可得AB=2r,BO1=2r正三棱柱的底⾯中⼼的连线的中点就是外接球O的球⼼,∴(2r)2+r2=R2,∴5r2=R2,∴球O1与球O2的表⾯积之⽐为5:1.故选:A【点评】本题考查了球与三棱柱的组合体,根据⼏何体的性质,找到球⼼,求出半径是解题关键,属于中档题.24.(2017春?奉新县⽉考)已知四⾯体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四⾯体的外接球的表⾯积为()A.43πB.17πC.34πD.【分析】由题意可采⽤割补法,考虑到四⾯体ABCD的四个⾯为全等的三⾓形,所以可在其每个⾯补上⼀个以3,4,3为三边的三⾓形作为底⾯,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从⽽可得到⼀个长、宽、⾼分别为x,y,z的长⽅体,由此能求出球的半径,进⽽求出球的表⾯积.【解答】解:由题意可采⽤割补法,考虑到四⾯体ABCD的四个⾯为全等的三⾓形,所以可在其每个⾯补上⼀个以3,4,3为三边的三⾓形作为底⾯,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从⽽可得到⼀个长、宽、⾼分别为x,y,z的长⽅体,并且x2+y2=9,x2+z2=16,y2+z2=9,设球半径为R,则有(2R)2=x2+y2+z2=17,∴4R2=17,∴球的表⾯积为S=4πR2=17π.故选B.【点评】本题考查球的表⾯积的求法,是中档题,解题时要认真审题,注意构造法的合理运⽤.25.(2017春?⾼平市校级⽉考)若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平⾯ABC,且直线PA与平⾯PBC所成⾓的正切值为,则三棱锥P﹣ABC的外接球的表⾯积为()。

高三数学 立体几何的难点突破 1球的体积、表面积 试题

高三数学 立体几何的难点突破 1球的体积、表面积 试题

球的体积、外表积1.1 球的体积【例1】两个半径为1的铁球,熔化成一个大球,这个大球的半径为( )A .2 B. 2 C.32 D.1234【解析】设大球半径为r ,那么43πr 3=2×4π3,∴r =32,应选C.【评注】球的体积公式为:V=43πr 3,设半径列方程求半径即可.【变式1】利用正方体的对角线长等于其外接球的直径求正方体的棱长〔2021〕一个正方体的所有顶点在一个球面上. 假设球的体积为92π, 那么正方体的棱长为 .1.3【解析】设球半径为R , 球的体积为34932=R ππ,∴R=32,又由球的直径与其内接正方体对角线的相等知正方体的对角线长为3,那么棱长为3.【变式2】一个正方体削去一个角所得到的几何体的三视图如下图(图中三个四边形都是边长为2的正方形),那么该几何体外接球的体积为________.2.43π【解析】依题意可知,新的几何体的外接球也就是原正方体的外接球,所求外接球的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.【变式3】利用球截面圆圆心与球心连线与截面垂直的性质求球的半径用与球心间隔 为1的平面去截球,所得的截面面积为π,那么球的体积为( ) A.8π3 B.82π3 C .82π D.32π33.B 【解析】 S 圆=πr 2=1,而截面圆圆心与球心的间隔 d =1,∴球的半径为R =r 2+d 2= 2.∴V =43πR 3=82π3,应选B. 1.2 球的外表积【例2】如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,那么该器皿的外表积是 .【解析】该器皿的外表积可分为两局部:去掉一个圆的正方体的外表积1s 和半球的外表积2s , 21622124s ππ=⨯⨯-⨯=- 2214122s ππ=⨯⨯= , 故1224s s s π=+=+. 【评注】由三视图求外表积与体积,关键是正确分析原图形的几何特征.【变式1】〔2021·高考文科〕某几何体的三视图如下图, 那么其外表积为 .1.3π【解析】综合三视图可知几何体是一个半径r=1的半个球体,其外表积= πππ342122=+⋅r r . 1.3 正方体的外接球、内切球和棱切球【例3】 有三个球和一个正方体,第一个球与正方体各个面内切,第二个球与正方体各条棱相切,第三个球过正方体各顶点,那么三个球面积之比为 .【解析】设正方体棱长为a,那么有内切球半径12a R =;棱切球其直径为正方体各面上的对角线长,那么有222R a =; 外接球直径为正方体的对角线长,∴有332R a =, 所以面积之比为()()2221:2:31:2:3=.【评注】 正方体的内切球:截面图为正方形EFHG 的内切圆,如下图.设正方体的棱长为a ,那么内切球半径|OJ |=r =a 2;正方体的棱切球:|GO |=R =22a ;正方体的外接球:那么|A 1O |=R ′=32a .用构造法易知:棱长为a 的正四面体的外接球半径为64a . 【变式1】构建正方体求解三棱锥有关问题假设正三棱锥P —ABC 的三条侧棱两两垂直,那么该正三棱锥的内切球与外接球的半径之比为 .1.()3:13-.【解析】设正三棱锥侧棱长为a ,纳入正方体中易知外接球半径为,23a 体积63a V =,内切球球心将正三棱锥分成四个高为内切球半径的三棱锥,那么()3221332,6324a a V r a ⎡⎤==⨯+∴⎢⎥⎣⎦33,6r a -=31:3R r -∴=. 【变式2】构建正方体利用等积法求点到面的间隔正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.假设PA ,PB ,PC 两两互相垂直,那么球心到截面ABC 的间隔 为________.2.33【解析】由条件可知,以PA ,PB ,PC 为棱可以补充成球的内接正方体,故而PA 2+PB 2+PC 2=()2R 2,由PA =PB =PC, 得到PA =PB =PC =2, V P -ABC =V A -PBC ⇒13h ·S △ABC =13PA ·S △PBC, 得到h =233,故而球心到截面ABC 的间隔 为R -h =33.【变式3】构建正方体求解正四面体的外接球的体积三棱锥BCD A -的所有棱长都为2,那么该三棱锥外接球的体积是________. 3.32π 【解析】如图构造正方体FBEC ANDM -,那么∵三棱锥BCD A -的所有棱长都为2,∴该正方体的棱长为1,∴三棱锥BCD A -的外接球半径:R=23.故所求3433()322V ππ==球. 【变式4】通过等价转化求解正方体的内切球的截面圆面积如图,球O 是棱长为1的正方体ABCD ­A 1B 1C 1D 1的内切球,那么平面ACD 1截球O 的截面面积为( )A.π6B.π3C.66πD.33π 4.A 【解析】:根据正方体的几何特征知,平面ACD 1是边长为2的正三角形,且球与以点D 为公一共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,由图得△ACD 1内切圆的半径是22×tan30°=66,故所求的截面圆的面积是π×⎝ ⎛⎭⎪⎫662=π6.【例4】 (2021) 直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.假设AB =3,AC =4,AB ⊥AC ,AA 1=12,那么球O 的半径为 .【解析】∵AB ⊥AC ,且AA 1⊥底面ABC ,将直三棱柱补成内接于球的长方体,那么长方体的对角线l = 32+42+122=2R ,R =132.【评注】利用底面为直角三角形的直三棱柱补成长方体求外接球半径,长方体的模型可以使抽象问题详细化.【变式1】利用三棱两两垂直的四面体补成长方体求解在四面体ABCD 中,AB ,AC ,AD 两两垂直,AB=3,AD=2,AC=5,那么该四面体外接球的外表积为 . 1.π12 【解析】由球的对称性及,,AB AC AD 两两垂直可以补形为长方体ABD C DC A B ''''-,长方体的对称中心即为球心, ∴222235423R AB AC AD =++=++=,∴ ()24312S ππ== .【变式2】如图,在三棱锥O ABC -中,三条棱,,OA OB OC 两两垂直,且OA OB OC >>,分别经过三条棱,,OA OB OC 作一个截面平分三棱锥的体积,截面面积依次为123,,S S S ,那么123,,S S S 的大小关系为________________.2.123S S S <<【解析】 由题意OC OB OA ,,两两垂直,可将其放置在以O 为一顶点的长方体中,设三边OC OB OA ,,分别为c b a >>,从而易得22121c b a S +=,22221c a b S +=,22321b a c S +=,∴()()()222222222222221414141b a c c b a b c a b a S S -=+-+=-,又b a >,∴02221>-S S ,即21S S >.同理,用平方后作差法可得32S S >.∴123S S S <<.【变式3】利用特殊的四棱锥补成长方体求解 点P A B C D ,,,,是球O 外表上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为2326PA =,那么△OAB 的面积为3.33【解析】∵点P A B C D ,,,,是球O 外表上的点,PA ⊥平面ABCD , ∴点A B CO C O A B D EFP A B C D ,,,,为球O 内接长方体的顶点,球心O 为长方体对角线的中点.∴△OAB 的面积是该长方体对角面面积的14. ∵23,26AB PA ==,∴6PB =,∴1=236=334OAB S ∆⨯⨯. 【变式4】利用半球的内接正方体补成球的长方体求解半球内有一个内接正方体,那么这个半球的体积与正方体的体积之比为( )A.5π∶6 B .6π∶2 C.π∶2 D .5π∶124.B 【解析】 将半球补成整个球,同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体恰好是球的内接长方体,那么这个长方体的体对角线就是它的外接球的直径.设正方体的棱长为a ,球的半径为R ,那么(2R )2=a 2+a 2+(2a )2,即R =62a . ∴V 半球=12×43πR 3=23π⎝ ⎛⎭⎪⎫62a 3=62πa 3,V 正方体=a 3. ∴V 半球∶V 正方体=62πa 3∶a 3=6π∶2. 【变式5】利用半球的内接三棱柱运用截面圆性质求解(2021·统考)如图,直三棱柱ABC ­A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,那么侧面ABB 1A 1的面积为( )A .2B .1 C. 2 D.225.C.【解析】由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt△OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1,即x =2,那么AB =AC =1,∴11A ABB S 矩形=2×1= 2.【例5】 正四面体的内切球、与棱相切的球、外接球的三类球的半径比为 .【解析】设正四面体的棱长为1,外接球和内切球半径依次为,R r ,由正四面体三个球心重合及其特征, 6R r =+,其体积为1633V =,另一面1343V r =⨯,那么内切球和外接球的半径比1:3,6 而与棱相切的球直径为对棱的间隔2,那么内切球、与各棱都相切的球、外接球的半径之比为 61263)::()33444=. 【变式1】利用正四面补成正方体求解体积正四面体ABCD 的外接球的体积为34π,那么正四面体ABCD 的体积是_____. 1. 83.【解析】由于外接球的体积为34434333r r πππ∴=∴=,故其内接正方体的棱长为2,故正方体体积为8,正四面体的体积为1833V =正方体.【变式2】利用正四面体的高与外接球半径的关系求球的外表积正四面体的四个顶点都在同一个球面上,且正四面体的高为4,那么这个球的外表积是________.2.36π【解析】正四面体的外接球半径R 为其高的34,且正四面体的高为4,那么R =3 ,S =4πR 2=36π.【变式2】利用正四面体补成正方体求解的球心角半径为1的球面上的四点D C B A ,,,是正四面体的顶点,那么A 与B 两点与球心连线的夹角余弦值为 .2.13-.【解析】设正四面体棱长a 2,将其纳入正方体中,其正方体棱长a ,所求角为对角面内两条对角线的夹角为APB ∠,AP=BP=a AB a 2,23=,由余弦定理314322432cos 222-=⨯-⨯=∠a a a APB .【变式3】利用正四面体补成正方体求异面直线所成的角如图,正四面体A-BCD 中,E 、F 分别是AD 、BC 的中点,那么EF 与CD 所成的角等于 〔 〕A .45° B.90° C .60° D.30°3.A 【解析】如图,将正四面体补形为正方体,答案就脱口而出,应该选A.【变式4】利用长方体的性质确定折叠四面体的外接球球心(2021·四校联考)将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A ­BCD ,那么四面体A ­BCD 的外接球的体积为________.4. 【解析】 设AC 与BD 相交于O ,折起来后仍然有OA =OB =OC =OD ,∴外接球的半径r =32+422=52,从而体积V =4π3×⎝ ⎛⎭⎪⎫523=125π6. 【变式5】(2021·一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,那么该圆锥的体积与球O 的体积的比值为________.5. 932【解析】 设等边三角形的边长为2a ,那么V 圆锥=13·πa 2·3a =33πa 3; 又R 2=a 2+(3a -R )2,所以R =233a ,故 V 球=4π3·⎝ ⎛⎭⎪⎫233a 3=323π27a 3,那么其体积比F E DC B A FED C BAD CB A O O 为932. 【变式6】利用正六棱柱的对称性求外接球的体积一个六棱柱的底面是正六边形,其侧棱垂直底面。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.四面体ABCD的四个顶点都在球O的表面上,平面BCD,是边长为3的等边三角形.若,则球O的表面积为()A.B.C.D.【答案】C【解析】取的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,,,四面体ABCD外接球的表面积为:,故选C.【考点】球的体积和表面积.2.已知ABC的三个顶点在以O为球心的球面上,且,BC=1,AC=3,三棱锥O- ABC的体积为,则球O的表面积为__________。

【答案】【解析】设球的半径为R,ABC的外接圆半径为r,球心O到截面ABC的距离为,由得,=,=,解得AB=,所以==,所以===,解得=,由正弦定理知,2r===3,所以r=,由球的截面性质知,=2,所以球O的表面积为=.【考点】球的截面性质,球的表面积公式,棱锥的体积公式,正弦定理,余弦定理,运算求解能力3.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.4.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的体积为 .【答案】【解析】由题意得:,所以圆锥的体积为【考点】圆锥的体积及展开图5.若长方体三个面的面积分别为,,,则此长方体的外接球的表面积是________.【答案】6π【解析】设长方体的过同一顶点的三条棱长分别为a、b、c,则解得长方体外接球半径为R==,外接球的表面积为S=4π=6π6.如图所示,正方体ABCD A1B1C1D1的棱长为2,动点E,F在棱A1B1上,点Q是棱CD的中点,动点P在棱AD上.若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【答案】C【解析】三棱锥P EFQ 的体积可以看作是以△PEF 为底面,而△PEF 的底EF=1,高A 1P=,与x 有关,三棱锥P EFQ 的高为点Q 到平面PEF 的距离.∵CD ∥EF,∴CD ∥平面PEF.∴点Q 到平面PEF 的距离等于点D 到平面PEF 的距离,与y 无关,故选C.7. 已知一个圆柱内接于球O 中,其底面直径和母线都是2,则球O 的体积是 . 【答案】π【解析】设球的半径为R,则2R==2,∴R=, ∴V=πR 3=π.8. 如图,AA 1,BB 1为圆柱OO 1的母线,BC 是底面圆O 的直径,D ,E 分别是AA 1,CB 1的中点,DE ⊥面CBB 1.(1)证明:DE ∥面ABC ; (2)求四棱锥C-ABB 1A 1与圆柱OO 1的体积比. 【答案】(1)见解析 (2)【解析】解:(1)证明:连接EO ,OA. ∵E ,O 分别为B 1C ,BC 的中点, ∴EO ∥BB 1.又DA ∥BB 1,且DA =BB 1=EO ,∴四边形AOED 是平行四边形,即DE ∥OA.又DE ⊄平面ABC ,AO ⊂平面ABC , ∴DE ∥平面ABC.(2)由题意知DE ⊥平面CBB 1,且由(1)知DE ∥AO , ∴AO ⊥平面CBB 1, ∴AO ⊥BC , ∴AC =AB.∵BC 是底面圆O 的直径, 得CA ⊥AB ,且AA 1⊥CA ,∴CA ⊥平面AA 1B 1B ,即CA 为四棱锥C-ABB 1A 1的高.设圆柱高为h ,底面半径为r , 则V OO 1=πr 2h ,V C-ABB 1A1=h(r)·(r)=hr 2.∴V C-ABB 1A1∶V OO 1=.9. 若长方体的顶点都在半径为3的球面上,则该长方体表面积的最大值为 . 【答案】【解析】设长方体的边长为,那么长方体的表面积为:,又由于:,而,所以该长方体表面积的最大值为.【考点】长方体的表面积;基本不等式的变形.10.已知Rt△ABC,其三边分别为a,b,c(a>b>c).分别以三角形的边a,b,c所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为S1,S2,S3和V1,V2,V3.则它们的大小关系为()A.S1>S2>S3,V1>V2>V3B.S1<S2<S3,V1<V2<V3C.S1>S2>S3,V1=V2=V3D.S1<S2<S3,V1=V2=V3【答案】B【解析】S1=π (b+c),V1=πa,S2=πac+πc2,V2=πbc2,S3=πab+πb2,V3=πb2c.由于a>b>c,可得S1<S2<S3,V1<V2<V3.11.在三棱锥中,,,,二面角的余弦值是,若都在同一球面上,则该球的表面积是 .【答案】【解析】取中点,连接,∵,∴,∵,∴,平面.∴为二面角.在中,,,∴.取等边的中心,作平面,过作平面,为外接球球心,∴,二面角的余弦值是,所以,,∴,∴点为四面体的外接球球心,其半径为,表面积为.【考点】三棱锥的外接球.12.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.(1)求证:DE∥平面PFB;(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.【答案】(1)见解析(2)【解析】(1)因为E,F分别为正方形ABCD的两边BC,AD的中点,所以BE綉FD,即BEDF 为平行四边形,∴ED∥FB,∵FB⊂平面PFB,且ED⊄平面PFB,∴DE∥平面PFB.(2)以D为原点,直线DA,DC,DP分别为x,y,z轴建立空间直角坐标系.如图,设PD=a,可得如下点的坐标P(0,0,a),F(1,0,0),B(2,2,0).则有=(1,0,-a),=(1,2,0).因为PD⊥底面ABCD,所以平面ABCD的一个法向量为m=(0,0,1).设平面PFB的法向量为n=(x,y,z),则可得即.,令x=1, 得z=,y=-,所以n=.由已知二面角P-BF-C的余弦值为,所以得cos〈m,n〉==,∴a=2,∴V=×2×2×2=P-ABCD13.如图,四棱锥中,底面是菱形,,,是的中点,点在侧棱上.(1)求证:⊥平面;(2)若是的中点,求证://平面;(3)若,试求的值.【答案】(1)详见解析(2)详见解析(3)【解析】(1)由线面垂直判定定理,要证线面垂直,需证垂直平面内两条相交直线,由,是的中点,易得垂直于,再由底面是菱形,得三角形为正三角形,所以垂直于,(2)由线面平行判定定理,要证线面平行,需证平行于平面内一条直线,根据是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.试题解析:(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以 AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE. 4分(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA. 7分因为PA平面BDQ,OQ平面BDQ.所以PA//平面BDQ. 9分(3)设四棱锥P-BCDE,Q-ABCD的高分别为,,所以VP-BCDE =SBCDE,VQ-ABCD=SABCD. 10分因为VP-BCDE =2VQ-ABCD,且底面积SBCDE=SABCD. 12分所以,因为,所以. 14分【考点】线面垂直判定定理, 线面平行判定定理,锥的体积.14.如图1,一个密闭圆柱体容器的底部镶嵌了同底的圆锥实心装饰块,容器内盛有升水.平放在地面,则水面正好过圆锥的顶点,若将容器倒置如图2,水面也恰过点.以下命题正确的是( ).A.圆锥的高等于圆柱高的;B.圆锥的高等于圆柱高的;C.将容器一条母线贴地,水面也恰过点;D.将容器任意摆放,当水面静止时都过点.【答案】C【解析】本题考查体积公式与空间想象能力,设圆锥的高为,圆柱的高为,则利用倒置前后水的体积不变这个性质知,化简得,均错,现在水的容积正好是圆柱内部空间的一半,因此把圆柱的母线贴地,则水面过点,但过点的平面不可能总是平分圆柱内部除去圆锥的那部分,故错误.【考点】体积公式.15.如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(I)求三棱锥E—PAD的体积;(II)试问当点E在BC的何处时,有EF//平面PAC;(1lI)证明:无论点E在边BC的何处,都有PE AF.【答案】见解析【解析】(Ⅰ)注意到PA平面ABCD,得知的长即为三棱锥的高,而三棱锥的体积等于的体积,计算即得.(Ⅱ)当点为的中点时,与平面平行.利用三角形中位线定理,得到,进一步得出∥平面.(Ⅲ)证明:根据等腰三角形得出,根据平面,平面,得到,又因为且,⊂平面,得到平面,又平面,.再根据,平面,及平面,根据,作出结论.试题解析:(Ⅰ)由已知PA平面ABCD,所以的长即为三棱锥的高,三棱锥的体积等于的体积= = .(Ⅱ)当点为的中点时,与平面平行.∵在中,分别为的中点,连结,又平面,而平面,∴∥平面.(Ⅲ)证明:因为,所以等腰三角形中,∵平面,平面,∴又因为且,⊂平面,∴平面,又平面,∴.又∵,∴平面.PB,BE⊂平面PBE,∵平面,∴,即无论点E在边的何处,都有.【考点】几何体的体积,垂直关系,平行关系.16.已知D、E是边长为3的正三角形的BC边上的两点,且,现将、分别绕AD和AE折起,使AB和AC重合(其中B、C重合).则三棱锥的内切球的表面积是()A. B. C. D.【答案】B【解析】如下图所示,,,,.设内切球的半径为r,则,所以内切球的表面积为:.【考点】空间几何体的体积及表面积.17.如图,平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的体积为( )A.B.C.D.【答案】A【解析】由题意平面四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:,所以球的体积为:,选A.【考点】1.球内接多面体;2.球的体积和表面积18.在正三棱锥中,、分别是、的中点,且,若侧棱,则正三棱锥外接球的表面积是()A.B.C.D.【答案】C【解析】∵三棱锥是正棱锥,∴SB⊥AC(对棱互相垂直)∴,又∵而,∴平面,即平面,∴,将此三棱锥补成正方体,则它们有相同的外接球,∴,故选C.【考点】垂直关系,几何体的体积19.在三棱锥S−ABC中,,二面角S−AC−B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是.【答案】【解析】如图,取AC的中点D,由已知易证二面角S−AC−B的平面角是∠SDB,,故由余弦定理可得,由勾股定理的逆定理可得,补体得正方体,∴三棱锥S−ABC的外接球的半径为,∴该球的表面积是.【考点】立体几何的二面角,球的表面积20.已知三棱锥的顶点都在球的球面上,且平面,则三棱锥的体积等于____.【答案】12【解析】由平面可得,又所以是平面,可以发现线段的中点为球心,取的中点,则,于是.【考点】立体几何中线线垂直、线面垂直的证明,以及椎体体积的求解等知识,考查学生的分析、知识迁移能力21.棱长为的正方体的个顶点都在球的表面上,分别是棱、的中点,则过两点的直线被球截得的线段长为____________【答案】【解析】设过两点的直线与球球交于均为等腰直角三角形,,点到的距离为棱长一半【考点】正方体与外接球点评:求解本题首先要把握住正方体的外接球的球心为正方体的中心,球心与弦中点的连线垂直于弦,从而解直角三角形求出弦长22.点在同一个球的球面,,,若四面体体积的最大值为,则这个球的表面积为()A.B.C.D.【答案】C【解析】∵,∴是直角三角形,∴的外接圆的圆心是边AC的中点O,如图所示,若使四面体ABCD体积的最大值只需使1点D到平面ABC的距离最大,又平面ABC,所以点D是直线与球的交点设球的半径为R,则由体积公式有:在中,,解得:,故选C。

关于球的历年高考真题空间几何体的外接球与内切球精品总结-- 学生版精品资料

关于球的历年高考真题空间几何体的外接球与内切球精品总结-- 学生版精品资料

搞定空间几何体的外接球与内切球一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、与台体相关的,此略.五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 在四面体S ABC-中,ABCSA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D(5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)(6)题图(3)题-1(引理)AC图2-1第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .(3)正四面体的各条棱长都为2,则该正面体外接球的体积为(3)解答题(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 (4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 .(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( )A .π B.3πC. 4πD.43π(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A.6 B.6 C.3 D.2类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD .以上都不对第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和俯视图侧视图正视图解答图△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .(2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为(2)题-2(2)题-1→A(3)题(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --的平面角的大小为ο120,则此四面体的外接球的体积为类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7(4)题图例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高; 第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为(3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为习题:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.92. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等B图8-1A图8-2于 .332π3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .。

外接球问题练习题(带答案)

外接球问题练习题(带答案)

1、若正四面体ABCD的棱长为1,则它的外接球体积为()A.π B.π C.π D.π2、一个几何体的三视图如图所示,则这个几何体外接球的表面积为( )A. B. C. D.3、已知正方体的一个面在半径为的半球底面上,、、、四个顶点都在此半球面上,则正方体的体积为()A. B. C. D.4、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为A. B.C. D.5、一个几何体的顶点都在球面上,这个几何体的三视图如图所示,该球的表面积是()A.19π B.38π C.48π D.6、已知三棱锥的三视图如图所示,则它的外接球表面积为()A.16π B.4π C.8π D.2π7、如图为某几何体的三视图,则该几何体的外接球的表面积为()A.31π B.32π C.34π D.36π8、在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为()A.6π B.8π C.12π D.16π9、已知A,B是球O的球面上两点,C为该球面上的动点,若三棱锥O-ABC体积的最大值为,则球O的表面积为()A. B. C. D.10、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.11、已知三棱锥的各顶点都在一个半径为的球面上,球心在上,⊥底面,,则球的体积与三棱锥体积之比是()A. B. C. D.12、正三棱锥的三视图如图所示,则其外接球的体积为14、已知几何体的底面是边长为的正的方形,且该几何体体积的最大值为,则该几何体外接球的表面积为__________.15、所有棱长均为2的正四棱锥的外接球的表面积等于.17、已知某正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为.19、已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为.21、在球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,则这个球的表面积是.22、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则= .1、A 解:正四面体的棱长为1,底面三角形的高:,棱锥的高为:=,设外接球半径为x,x2=(﹣x)2+()2,解得x=;所以棱长为1的正四面体的外接球的体积为=.2、C3、A4、C5、B【解:根据几何体的三视图,得;该几何体是长宽高分别为5、2、3的长方体,则该长方体外接球的直径为2R=l,∴(2R)2=l2=52+22+32=38;∴该球的表面积是S=4πR2=38π.6、B 解:根据三视图可知几何体是一个三棱锥,如图:底面是一个直角三角形,AC⊥BC,D是AB的中点,PD⊥平面ABC,且AC=、BC=1,PD=1,∴AB==2,AD=BD=CD=1,∴几何体的外接球的球心是D,则球的半径r=1,即几何体的外接球表面积S=4πr2=4π,故选:B.7、C 解:由几何体的三视图得到几何体是底面是边长为3的正方形,高为4是四棱锥,所以其外接球的直径为,所以其表面积为34π;故选C.8、B 解:取底面中心O,BC中点E,连结SO,SE,OE,则OE==1,OA=OB=OC=OD=,SO⊥平面ABCD,∴SO⊥OE,∵AD∥BC,∴∠SCB为异面直线AD,SC所成的角,即∠SCB=60°,∵SB=SC,∴△SBC是等边三角形,∵BC=AB=2,∴SE=,∴SO==.∴OA=OB=OC=OD=OS,即O为四棱锥S﹣ABCD的外接球球心.∴外接球的表面积S=4π×()2=8π.9、B 10、A 11、D 12、A 14、8因为该几何体体积的最大值为,所以点O到平面ABCD的距离h=,根据球的性质可得R2=()2+()2,所以R=,因此该几何体外接球的表面积S=4R2=815、8π.解:作出棱长均为2的正四棱锥O﹣ABCD,如图所示,∵四边形ABCD为正方形,△OAD,△OAB,△OBC,△OCD都为等边三角形,∴AD=DC=CB=AB=OA=OD=OB=OC=2,∴AE=EC=DE=BE=OE=,∴正四棱锥的外接球的半径r=,则正四棱锥的外接球的表面积S=4π•r2=8π,故答案为:8π17、设球的半径为R,则(4-R)2+()2=R2,所以R=,所以S球=4πR2=π.19、144π如图所示,当点C位于垂直于平面AOB的直径的端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时==×R2×R=R3=36,故R=6,则球O的表面积为S=4πR2=144π.21、3πa2作出球O如图所示,设过A,B,C三点的球的截面圆的半径为r,圆心为O',球心到该圆面的距离为d,在三棱锥P-ABC中,因为PA,PB,PC两两垂直,PA=PB=PC=a,所以AB=AC=BC=a,且点P在△ABC内的射影是△ABC的中心O',由正弦定理得 =2r,所以r=a.又根据球的截面圆性质,有OO'⊥平面ABC.而PO'⊥平面ABC,所以P,O,O'三点共线,球的半径R=.又PO'===a,所以OO'=R-a=d=,所以=R2-,解得R=a,所以S球=4πR2=3πa2.22、 2。

人教A版必修第一章1.3.2《球的体积和表面积》精选题高频考点(含答案)-2

人教A版必修第一章1.3.2《球的体积和表面积》精选题高频考点(含答案)-2

人教A版必修第一章1.3.2《球的体积和表面积》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.B.C.D【答案】D2.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A.12πB.323πC.8πD.4π【答案】A3.张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A BCD-的每个顶点都在球O的球面上,AB⊥底面BCD,BC CD⊥,且AB CD==2BC=,利用张衡的结论可得球O的表面积为()A.30 B.C.33 D.【答案】B4.四棱锥P-ABCD的五个顶点都在同一球面上,平面PAB⊥平面ABCD,PA PB⊥,PA PB==ABCD为正方形,则该球的表面积为()A.32πB.16πC.8πD.64π【答案】A5.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3B.1:C.1:9D.1:27【答案】A6.如图所示,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差为()A .24πB .28πC .32πD .36π【答案】C7. 如果三个球的半径之比是1︰2︰3,那么最大球的表面积是其余两个球的表面积之和的 ( ) A .59倍 B .95倍 C .2倍 D .3倍【答案】B8.已知三棱锥A BCD -的四个顶点在以AB 为直径的球面上,,?BC CD CE BD ⊥⊥于E ,1CE =,若三棱锥A BCD -的体积的最大值为43,则该球的表面积为( )A .12πB .14πC .16πD .18π【答案】C9.如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点,1V 为小球相交部分(图中阴影部分)的体积,2V 为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是A .12V V =B .22V V =C .12V V >D .12V V <【答案】D10.已知点,,,A B C D 均在球O 上,3AB BC AC ===,若三棱锥D ABC -体,则球O 的体积为A .323πB .16πC .32πD .163π【答案】A11.已知实心铁球的半径为R ,将铁球熔成一个底面半径为R 、高为h 的圆柱,则h R=( ) A .32B .43C .54D .2【答案】B12.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )A .:6B :2C .:2πD .5:12π【答案】B13.在正方体1111ABCD A B C D -中,E 为棱11A B 上一点,且2AB =,若二面角11B BC E --为45︒,则四面体11BB C E 的外接球的表面积为( )A .172π B .12π C .9πD .10π【答案】D14.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P ABC -中,PA ⊥平面ABC ,4PA =,2AB BC ==,鳌臑P ABC -的四个顶点都在同一个球上,则该球的表面积是( ) A .16π B .20π C .24π D .64π【答案】C15.已知正三棱柱111ABC A B C -的顶点都在球O 的球面上,2AB =,14AA =,则球O 的表面积为( ) A .323πB .32πC .64πD .643π【答案】D16.四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为积为( )A.9πB.3πC.D.12π【答案】D17.某一简单几何体的三视图如图所示,该几何体的外接球的表面积是()A.13πB.16πC.25πD.27π【答案】C18.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为、,则: =().A.1:1 B.2:1 C.3:2 D.4:1【答案】C19.已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323πB.4πC.2πD.43π【答案】D20.已知三棱锥P ABC-的侧棱长相等,底面正三角形ABC,PA⊥平面PBC时,三棱锥P ABC-外接球的表面积为()A.B.2C.πD.3π【答案】D二、填空题21.若一个球的半径与它的内接圆锥的底面半径之比为5,3且内接圆锥的轴截面为锐角三角形,则该球的体积与它的内接圆锥的体积之比等于________. 【答案】5008122.在三棱锥PABC 中,4PA BC ==,5PB AC ==,PC AB ==锥PABC 的外接球的表面积为________. 【答案】26π23.已知三棱锥P -ABC 的三条侧棱两两互相垂直,且AB BC ,AC =2,则此三棱锥外接球的表面积为______. 【答案】8π24.四面体ABCD 中, 2,BC CD BD AB AD AC ======体ABCD 外接球的表面积为__________. 【答案】12π25.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为 (结果保留π).【答案】26.若三棱锥S ABC -的所有的顶点都在球O 的球面上,且SA ⊥平面ABC ,2SA AB ==,4AC =,3BAC π∠=,则球O 的表面积为__________.【答案】20π27.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,侧面PAB ⊥底面ABCD ,且4PA PB ==,则该四棱锥P ABCD -的外接球的表面积为______.【答案】31615π28.正方体ABCD A B C D ''''-的棱长为2,动点P 在对角线BD '上,过点P 作垂直于BD '的平面α,记平面α截正方体得到的截面多边形(含三角形)的周长为()y f x =,设(0BP x x =∈,. (1)下列说法中,正确的编号为__________.①截面多边形可能为四边形;②3f ⎛= ⎝⎭③函数()f x 的图象关于x .(2)当x =P ABC -的外接球的表面积为__________. 【答案】②③ 9π29.在三棱锥P ABC -中,60ABC ∠=︒,90PBA PCA ∠=∠=︒,点P 到底面ABC,若三棱锥P ABC -的外接球表面积为6π,则AC 的长为__________.30.侧棱长为2,则该三棱锥的外接球的表面积_____. 【答案】163π. 31.如图所示,六氟化硫()6SF 的分子是一个正八面体结构,其中6个氟原子()F 恰好在正八面体的顶点上,而硫原子()S 恰好是正八面体的中心.若把该分子放入一个球内,则这个球的体积与六氟化硫分子体积之比的最小值为________.【答案】π.32.已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的表面积相等,则它们的体积之比: V V =圆柱球 .(用数值作答)【答案】3433.设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45o 角的平面截球O 的表面得到圆C .若圆C 的面积等于74π,则球O 的表面积等于 . 【答案】8π34.在三棱锥A BCD -中,2BC CD ==,BC CD ⊥,AB AD AC ===三棱锥A BCD -的外接球的体积为______. 【答案】92π 35.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为_______. 【答案】8π.36.若正四棱锥P ABCD -的底面边长及高均为a ,则此四棱锥内切球的表面积为______.2a 37.四棱锥P ABCD -的每个顶点都在球O 的球面上,PA 与矩形ABCD 所在平面垂直,3,AB AD ==,球O 的表面积为13π,则线段PA 的长为_____________. 【答案】138.已知边长为3的正△ABC 的三个顶点都在球O 的表面上,且OA 与平面ABC 所成的角为30°,则球O 的表面积为________. 【答案】16π39.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为92π,则阳马P ABCD -的外接球的表面积等于______.【答案】12π40.在直四棱柱1111ABCD A B C D -中,底面是边长为4的菱形,60ABC ∠=o ,AC BD O =I , 11AC AO ⊥,则三棱锥1A ABD -的外接球的表面积为________. 【答案】72π三、解答题41.一个几何体的三视图如图所示,其中正视图是正三角形,求该几何体的外接球的表面积。

2020年高考数学一轮复习专题9.3空间几何体外接球和内切球练习(含解析)

2020年高考数学一轮复习专题9.3空间几何体外接球和内切球练习(含解析)

9.3 空间几何外接球和内切球一.公式1.球的表面积:S =4πR 22.球的体积:V =43πR 3二.概念1.2.考向一 长(正)方体外接球【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【答案】29π【解析】因为长方体的顶点都在球上,所以长方体为球的内接长方体,其体对角线l ==为球的直径,所以球的表面积为24292l S ππ⎛⎫== ⎪⎝⎭,故填29π.【举一反三】1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.【答案】48π【解析】由几何体的三视图可得该几何体是直三棱柱ABC A B C '-'',如图所示:其中,三角形ABC 是腰长为4的直角三角形,侧面ACC A ''是边长为4的正方形,则该几何体的外接球的半径为2=∴该几何体的外接球的表面积为(2448ππ⨯=.故答案为48π.考向二 棱柱的外接球【例2】直三棱柱AAA −A ′A ′A ′的所有棱长均为2√3,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28π D .36π【答案】C【解析】由直三棱柱的底面边长为2√3,得底面所在平面截其外接球所成的圆O 的半径r =2, 又由直三棱柱的侧棱长为2√3,则球心到圆O 的球心距d =√3,根据球心距,截面圆半径,球半径构成直角三角形,满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7,∴外接球的表面积S =4πR 2=28π.故选:C .【举一反三】1. 设直三棱柱ABC-A 1B 1C 1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA 1,∠BAC=120°,则此直三棱柱的高是________.【答案】【解析】设三角形BAC 边长为a ,则三角形BAC外接圆半径为122sin 3a π⋅=,因为2244010R R ππ=∴=所以22210,2a R a a ⎛⎫=+== ⎪⎝⎭即直三棱柱的高是.2.直三棱柱AAA −A 1A 1A 1中,已知AA ⊥AA ,AA =3,AA =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 【答案】50π【解析】AAA −A 1A 1A 1是直三棱柱,∴A 1A ⊥AA ,又三棱柱的所有顶点都在同一球面上,A 1A 是球的直径,∴A =A 1A2;∵AA ⊥AA ,∴AA =√32+42=5 ,∴A 1A 2=52+52=50 ;故该球的表面积为A =4AA 2=4A (A 1A 2)2=AA 1A 2=50A考向三 棱锥的外接球类型一:正棱锥型【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上,体积为2,则此球的体积为 ( )A.1243π B. 62581π C. 50081π D. 2569π【答案】C【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O1O D ∴'=正四棱锥的体积为22123P ABCDV PO -⨯⨯'∴==,解得3PO '=3OO PO PO R ∴-'=='-在 Rt OO D '中,由勾股定理可得: 222OO O D OD '+='即()22231R R -+=,解得53R =2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球故选C【举一反三】1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( ) A. 4π B. 6π C. 8π D. 16π 【答案】C【解析】设点P 在底面ABCD 的投影点为O ',则12,2AO AC PA PO ==''=⊥平面ABCD,故PO =='而底面ABCD 所在截面圆的半径AO '=故该截面圆即为过球心的圆,则球的半径,故外接球的表面积为248,S R ππ==故选C.2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( )A .4πB .323πC .16πD .36π【答案】C【解析】如图,设OM x =,OB OD r ==,3AB =,BM ∴=DB =3DM ∴=,在Rt OMB ∆中,22(3)3x x -=+,得:1x =,2r ∴=,16O S π∴=球,故选:C .类型二:侧棱垂直底面型【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C=-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D.203π【答案】A【解析】设该三棱锥外接球的半径为R .在三角形ABC 中, ()cos 2cos c B a b C =-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边). ∴cos cos 2cos c B b C a C +=∴根据正弦定理可得sin cos sin cos 2sin cos C B B C A C +=,即()sin 2sin cos B C A C +=.∵sin 0A ≠∴1cos 2C =∵()0,C π∈∴3C π= ∴由正弦定理,332sin3r π=,得三角形ABC 的外接圆的半径为3r =.∵PA ⊥面ABC∴()()()22222PA r R +=∴210R =∴该三棱锥外接球的表面积为2440S R ππ==故选A.【举一反三】1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.214π3 B. 127π3 C. 115π3 D. 124π3【答案】D【解析】根据几何体的三视图可知,该几何体为三棱锥A −AAA 其中AA =AA =2,AA =4且AA ⊥底面AAA ,∠AAA =120° 根据余弦定理可知:AA 2−AA 2+AA 2−2AA ∙AA ∙AAA 120°=42+22−2×4×2×(−12)=28可知AA =2√7根据正弦定理可知∆AAA 外接圆直径2A =AAAAA ∠AAA=2√7AAA 120°=4√7√3∴A =2√213,如图,设三棱锥外接球的半径为A ,球心为A ,过球心A 向AA 作垂线,则垂足A 为AA 的中点AA =1,在AA ∆AAA 中,A 2=AA 2=(2√213)2+1=313∴外接球的表面积A =4AA 3=4A ×313=124A3故选A2.已知三棱锥S ABC -中, SA ⊥平面ABC ,且30ACB ∠=︒, 21AC AB SA ===.则该三棱锥的外接球的体积为( )B. 13π 【答案】D【解析】∵30ACB ∠=︒, 2AC AB ==ABC 是以AC 为斜边的直角三角形其外接圆半径2ACr ==,则三棱锥外接球即为以ABC C 为底面,以SA 为高的三棱柱的外接球∴三棱锥外接球的半径R 满足R ==故三棱锥外接球的体积34.3V R π== 故选D. 类型三:侧面垂直与底面型【例3】已知四棱锥A −AAAA 的三视图如图所示,则四棱锥A −AAAA 外接球的表面积是( )A. 20AB. 101A5C. 25AD. 22A【答案】B【解析】由三视图得,几何体是一个四棱锥A-BCDE,底面ABCD是矩形,侧面ABE⊥底面BCDE.如图所示,矩形ABCD的中心为M,球心为O,F为BE中点,OG⊥AF.设OM=x,由题得AA=√5,在直角△OME中,A2+5=A2(1),又MF=OG=1,AF=√32−22=√5,AA=√A2−1,AA=A,∴√A2−1+A=√5(2),解(1)(2)得A2=10120,∴A=4AA2=1015A.故选B.【举一反三】1.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A. 81AB. 33AC. 56AD. 41A 【答案】D【解析】由三视图可得,该几何体是一个如图所示的四棱锥A −AAAA ,其中AAAA 是边长为4的正方形,平面AAA ⊥平面AAAA .设A 为AA 的中点,A 为正方形AAAA 的中心,A 为四棱锥外接球的球心,A 1为AAAA 外接圆的圆心,则球心A 为过点A 且与平面AAAA 垂直的直线与过A 1且与平面AAA 垂直的直线的交点. 由于AAAA 为钝角三角形,故A 1在AAAA 的外部,从而球心A 与点P 在平面AAAA 的两侧. 由题意得AA =1,AA =A 1A ,AA 1=AA , 设球半径为A ,则A 2=AA 2+AA 2=AA 2+A 1A 2, 即AA 2+(2√2)2=22+(1+AA )2,解得AA =32, ∴A 2=(32)2+(2√2)2=414, ∴A 球表=4AA 2=41A .选D .2.已知如图所示的三棱锥D ABC -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3AB =,AC =BC CD BD ===O 的表面积为( )A .4πB .12πC .16πD .36π【答案】C【解析】3AB =,AC =BC =222AB AC BC ∴+=,AC AB ∴⊥,ABC ∴∆ ABC ∆和DBC ∆所在平面相互垂直,∴球心在BC 边的高上,设球心到平面ABC 的距离为h ,则2223()2h R h +==, 1h ∴=,2R =,∴球O 的表面积为2416R ππ=.故选:C .3.三棱锥P ABC -的底面是等腰三角形,120C ∠=︒,侧面是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为( ) A .12π B .20πC .32πD .100π【答案】B【解析】 如图, 在等腰三角形ABC 中, 由120C ∠=︒,得30ABC ∠=︒, 又2AC =,设G 为三角形ABC 外接圆的圆心, 则22sin sin 30AC CG ABC ==∠︒,2CG ∴=.再设CG 交AB 于D ,可得1CD =,AB =1DG =. 在等边三角形PAB 中, 设其外心为H , 则223BH PH PD ===. 过G 作平面ABC 的垂线, 过H 作平面PAB 的垂线, 两垂线相交于O ,则O 为该三棱锥的外接球的球心, 则半径R OB ===∴该三棱锥的外接球的表面积为2420ππ⨯=.故选:B .类型四:棱长即为直径【例3-4】已知底面边长为√2,各侧面均为直角三角形的正三棱锥A −AAA 的四个顶点都在同一球面上,则此球的表面积为( )A. 3AB. 2AC. 43A D. 4A 【答案】A【解析】由题意得正三棱锥侧棱长为1,将三棱锥补成一个正方体(棱长为1),则正方体外接球为正三棱锥外接球,所以球的直径为√1+1+1=√3,故其表面积为A =4×A ×(√32)2=3A .选A .【举一反三】1.已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 是球O 的直径.若平面PCA ⊥平面PCB ,PA AC =,PB BC =,三棱锥P ABC -的体积为a ,则球O 的体积为( )A .2a πB .4a πC .23a πD .43a π【答案】B【解析】如下图所示,设球O 的半径为R ,由于PC 是球O 的直径,则PAC ∠和PBC ∠都是直角,由于PA AC =,PB BC =,所以,PAC ∆和PBC ∆是两个公共斜边PC 的等腰直角三角形,且PBC ∆的面积为212PBC S PC OB R ∆==, PA AC =,O 为PC 的中点,则OA PC ⊥,平面PAC ⊥平面PBC ,平面PAC ⋂平面PBC PC =,OA ⊂平面PAC ,所以,OA ⊥平面PBC , 所以,三棱锥P ABC -的体积为23111333PBC OA S R R R a ∆⨯⨯=⨯==,因此,球O 的体积为33414433R R a πππ=⨯=,故选:B .考向四 墙角型【例4】某几何体的三视图如图所示,则该几何体的外接球的体积是( )A B .2 C .3π D .【答案】B【解析】根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径2r ==则:343V π=⋅⋅=⎝⎭.故选:B .【举一反三】1.已知四面体AAAA 的四个面都为直角三角形,且AA ⊥平面AAA ,AA =AA =AA =2,若该四面体的四个顶点都在球A 的表面上,则球A 的表面积为( ) A .3AB .2√3AC .4√3AD .12A【答案】D【解析】∵AA =AA =2且AAAA 为直角三角形 ∴AA ⊥AA 又AA ⊥平面AAA ,AA ⊂平面AAA ∴AA ⊥AA ∴AA ⊥平面AAA 由此可将四面体AAAA 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球A正方体外接球半径为体对角线的一半,即A =12⋅√22+22+22=√3 ∴球A 的表面积:A =4AA 2=12A 本题正确选项:A2.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是( )A .24πB .20πC .16πD .12π【答案】D【解析】该几何体是把正方体1AC 截去两个四面体111AA B D 与111CC B D , 其外接球即为正方体1AC 的外接球,由1AC ==∴外接球的半径R =∴该几何体外接球的表面积是2412ππ⨯=.故选:D .3.在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,则三棱锥P ABC -的外接球的表面积为( ) A .12π B .6πC .4πD .3π【答案】A 【解析】在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,∴以PA 、PB 、PC 为棱构造棱长为1的正方体,则这个正方体的外接球就是三棱锥P ABC -的外接球,∴三棱锥P ABC -的外接球的半径2r ==∴三棱锥P ABC -的外接球的表面积为:2412S r ππ==.故选:A .考向五 内切球【例5】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【答案】πππ)625(8)26(4422-=-==R S 球,33)26(3434-==ππR V 球.∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==ππR V 球. 【举一反三】1.球内切于圆柱, 则此圆柱的全面积与球表面积之比是( ) A .1:1 B .2:1C .3:2D .4:3【答案】C【解析】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,222226S R R R R πππ∴=⨯+⨯=圆柱,24S R π=球.∴此圆柱的全面积与球表面积之比是:226342S R S R ππ==圆柱球.故选:C .2.若三棱锥A BCD -中,6AB CD ==,其余各棱长均为 5 ,则三棱锥内切球的表面积为 .【答案】6316π【解析】由题意可知三棱锥的四个面全等, 且每一个面的面积均为164122⨯⨯=. 设三棱锥的内切球的半径为r ,则三棱锥的体积14163ABC V S r r ∆==, 取CD 的中点O ,连接AO ,BO ,则CD ⊥平面AOB ,4AO BO ∴==,162AOB S ∆=⨯=12233A BCD C AOB V V --∴==⨯⨯=,16r ∴=,解得r =. ∴内切球的表面积为263416S r ππ==. 故答案为:6316π.3.一个几何体的三视图如图所示, 三视图都为腰长为 2 的等腰直角三角形, 则该几何体的外接球半径与内切球半径之比为( )A BC D 【答案】A【解析】 由题意可知几何体是三棱锥, 是正方体的一部分, 如图: 正方体的棱长为 2 ,内切球的半径为r ,可得:21111222(322)3232r ⨯⨯⨯⨯=⨯⨯⨯⨯,解得r ==故选:A .考向六 最值问题【例6】已知球O 的内接长方体ABCD A B C D -''''中,2AB =,若四棱锥O ABCD -的体积为2,则当球O 的表面积最小时,球的半径为( )A.B .2 CD .1【答案】B【解析】由题意,球O 的内接长方体ABCD A B C D -''''中,球心O 在T 对角线交点上, 可得:四棱锥O ABCD -的高为1(2h h 是长方体的高), 长方体的边长2AB =,设BC a =,高为h , 可得:112223a h ⨯⨯⨯⨯=,即6ah =,6h a∴=那么:23614222R ==+=,(当且仅当a =故选:B . 【举一反三】1.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .1.已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( )A .4B .2C D .2【答案】D【解析】正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为:03,2sin 60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ===+=解得1,2OM MN h ===故棱柱的体积为:133222V Sh ==⨯⨯⨯= 故答案为:D. 2.已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A .3B C .D .16π【答案】A【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC ==∴四边形ADCE 为平行四边形AE DC ∴=,又12DC BC =12DE BC ∴=AE DE BE EC ∴===E ∴为四边形ABCD 的外接圆圆心设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD 作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE == 设AF x =,OP OA R ==则()22444x x +-=+,解得:2x =R ∴==∴球O 的体积:3433V R π==本题正确选项:A3.已知三棱锥S ABC -的各顶点都在一个球面上,球心O 在AB 上,SO ⊥底面ABC ,球的体积与三棱锥体积之比是4π,AC = ( )A .πB .2πC .3πD .4π【答案】D 【解析】由于OA OB OC OS ===,且SO ⊥平面ABC ,所以π2ACB ∠=,设球的半径为R ,根据题目所给体积比有34π114π332R R =⋅⋅,解得1R =,故球的表面积为4π.4.某三棱锥的三视图如图所示,则此三棱锥的外接球表面积是( )A .163π B .283πC .11πD .323π【答案】B【解析】根据几何体得三视图转换为几何体为:该几何体为:下底面为边长为2的等边三角形,有一长为2的侧棱垂直于下底面的三棱锥体,故:下底面的中心到底面顶点的长为:3,所以:外接球的半径为:R =故:外接球的表面积为:27284433S R πππ==⋅=.故选:B . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是( )A B C .193πD .223π【答案】A的四棱锥,且侧面PAB 垂直底面ABCD ,如图所示:还原长方体的长是2,宽为1设四棱锥的外接球的球心为O ,则过O 作OM 垂直平面PAB ,M 为三角形PAB 的外心,作ON 垂直平面ABCD ,则N 为矩形ABCD 的对角线交点,11,233OM ON ===所以外接球的半径222221912R ON AN R =+=+=∴=所以外接球的体积343V R π== 故选A 6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为( )A .√6AB .6AC .9AD .24A【答案】B【解析】如图所示,该几何体为四棱锥A −AAAA .底面AAAA 为矩形,其中AA ⊥底面AAAA .AA =1,AA =2,AA =1.则该阳马的外接球的直径为AA =√1+1+4=√6.∴该阳马的外接球的表面积为:4A ×(√62)2=6A .故选:A .7.如图,边长为2的正方形AAAA 中,点A、A 分别是AA、AA 的中点,将AAAA ,AAAA ,AAAA分别沿AA ,AA ,AA 折起,使得A 、A 、A 三点重合于点A ′,若四面体A ′AAA 的四个顶点在同一个球面上,则该球的表面积为( )A .5AB .6AC .8AD .11A【答案】B【解析】由题意可知△A′AA 是等腰直角三角形,且A′A ⊥平面A′AA . 三棱锥的底面A′AA 扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球, 正四棱柱的对角线的长度就是外接球的直径,直径为:√1+1+4=√6. ∴球的半径为√62,∴球的表面积为4A ·(√62)2=6A .故选:A .8.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球A 的球面上,则球A 的表面积是:( )A .8AB .12√3AC .12AD .48A【答案】C【解析】由三视图还原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2. 把该三棱柱补形为正方体,则正方体对角线长为√22+22+22.∴该三棱柱外接球的半径为:√3.则球O 的表面积是:4A ×(√3)2=12π.故选:C .9.已知三棱锥A −AAA 的底面AAAA 的顶点都在球A 的表面上,且AA =6,AA =2√3,AA =4√3,且三棱锥A −AAA 的体积为4√3,则球A 的体积为( ) A .32A3B .64A3C .128A3D .256A3【答案】D【解析】由O 为球心,OA =OB =OC =R ,可得O 在底面ABC 的射影为△ABC 的外心,AB =6,AA =2√3,AA =4√3,可得△ABC 为AC 斜边的直角三角形,O 在底面ABC 的射影为斜边AC 的中点M ,可得13•OM •12AB •BC =16OM •12√3=4√3,解得OM =2, R 2=OM 2+AM 2=4+12=16,即R =4,球O 的体积为43πR 3=43π•64=2563π.故选:D .10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.现有一如图所示的堑堵,AC BC ⊥,若12A A AB ==,则堑堵111ABC A B C -的外接球的体积为( )AB .8πCD .43π 【答案】C【解析】由题意,在直三棱柱111ABC A B C -中,因为AC BC ⊥,所以ABC ∆为直角三角形,且该三角形的外接圆的直径22r AB ==, 又由12AA =,所以直三棱柱111ABC A B C -的外接球的直径2R ==所以R =,所以外接球的体积为334433V R ππ==⨯=C. 11.在三棱锥P ABC -中.2PA PB PC ===.1AB AC ==,BC =则该三棱锥的外接球的表面积为( )A .8πB .163π C .43π D【答案】B【解析】因为1,AB AC BC ===,由余弦定理可求得23BAC π∠=, 再由正弦定理可求得ABC ∆的外接圆的半径122sin3BCr π==, 因为2PA PB PC ===,所以P 在底面上的射影为ABC ∆的外心D,且PD =,设其外接球的半径为R,则有2221)R R =+,解得R =24164433S R πππ==⨯=,故选B.12.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B【解析】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2,所以SC =设SC 中点为O,则在直角三角形SAC 中,在直角三角形SBC 中,OB=12SC =所以,所以点O所以四面体外接球的表面积为4=12ππ.故选:B13.已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A .2B C .2π D .3π【答案】D【解析】根据题意, AC 为截面圆的直径, AC =设球心到平面ABC 的距离为d ,球的半径为R 。

高考数学中的内切球和外接球问题 (1)

高考数学中的内切球和外接球问题 (1)

高考数学中的内切球和外接球问题一、 有关外接球的问题 一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2222c b a R ++=练习:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为 3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外接球的表面积和体积高考试题精选(一)一.选择题(共30小题)1.一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O上,球O的表面积为()A.16πB.3π C.D.12π2.如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为()A.B.C.D.3π3.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8π D.4π4.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.5.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544πB.16πC.πD.64π6.点A、B、C、D在同一个球的球面上,AB=BC=AC=,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8π C.D.7.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8π B.12πC.16πD.32π8.已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是()A.πB.2π C.πD.3π9.已知在三棱锥P﹣ABC中,V=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平P﹣ABC面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.10.已知三棱锥的三视图如图所示,则它的外接球的表面积为()A.4π B.8π C.12πD.16π11.一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是()A.πB.3π C.4π D.6π12.已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()A.πB.3π C.D.2π13.球面上有三点A、B、C组成这个球的一个截面的接三角形三个顶点,其中AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则球的表面积为()A.1200πB.1400πC.1600πD.1800π14.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π15.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4π B.12πC.16πD.32π16.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于()A.4π B.πC.12πD.20π17.四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为()A.8π B.C.D.18.已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π19.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4π B.8π C.12πD.16π20.已知正四面体的棱长,则其外接球的表面积为()A.8π B.12πC.πD.3π21.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为()A.B.C.D.322.已知SC是球O的直径,A,B是该球面上的两点,△ABC是边长为的正三角形,若三棱锥S﹣ABC的体积为,则球O的表面积为()A.16πB.18πC.20πD.24π23.已知三棱锥P﹣ABC,在底面△ABC中,∠A=60°,BC=,PA⊥面ABC,PA=2,则此三棱锥的外接球的表面积为()A.πB.4π C.πD.16π24.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直线OA与截面ABC所成的角为30°,则球O的表面积为()A.4π B.16πC.πD.π25.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的表面积为()A.21πB.24πC.28πD.36π26.在三棱锥P﹣ABC中,PA=2,PC=2,AB=,BC=3,∠ABC=,则三棱锥P﹣ABC 外接球的表面积为()A.4π B.πC.πD.16π27.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为,则球O的表面积为()A.36πB.64πC.144πD.256π28.已知三棱锥A﹣BCD的四个顶点A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=,BC=2,CD=,则球O的表面积为()A.12πB.7π C.9π D.8π29.用一个与球心距离为1的平面去截球,所得截面的面积为π,则球的表面积为()A.4π B.8π C.12πD.16π30.在三棱锥A﹣BCD中,AB=,其余各棱长都为2,则该三棱锥外接球的表面积为()A.3π B.πC.6π D.π外接球的表面积和体积高考试题精选(一)参考答案与试题解析一.选择题(共30小题)1.(2017•达州模拟)一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O上,球O的表面积为()A.16πB.3π C.D.12π【解答】解:由三视图可知:该几何体是一个三棱锥,如图所示,AB=AC=AD=2,且AB,AC,AD两两垂直.把此三棱锥补成正方体,则这个空间几何体的外接球的直径为此正方体的对角线2,因此这个空间几何体的外接球的表面积S=4π•3=12π.故选:D.2.(2017•达州模拟)如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为()A.B.C.D.3π【解答】解:∵该几何体的三视图是直角边长为1的三个等腰直角三角形,∴该几何体为从底面直角顶点出发的三条棱两两垂直的三棱锥,可将其补成一个边长为1的正方体,则该几何体的外接球就是补成的正方体的外接球,∵补成的正方体的对角线长l==为其外接球的直径d,∴外接球的表面积S=πd2=3π,即该几何体的外接球的表面积为3π,故选:D.3.(2016•新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8π D.4π【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.4.(2016•三模)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,=4πR2,∴R2=r2,∴S球截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.5.(2016•模拟)已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544πB.16πC.πD.64π【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,∠ABC=120°,AC=,=×1×1×sin120°=,∴S△ABC∵三棱锥O﹣ABC的体积为,△ABC的外接圆的圆心为G,∴OG⊥⊙G,外接圆的半径为:GA==1,∴S•OG=,即×OG=,△ABCOG=,球的半径为:=4.球的表面积:4π42=64π.故选:D6.(2016•校级一模)点A、B、C、D在同一个球的球面上,AB=BC=AC=,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8π C.D.【解答】解:根据题意知,△ABC是一个等边三角形,其面积为,外接圆的半径为1.不变,高最小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积S△ABC大时体积最大,×DQ=,所以,DQ与面ABC垂直时体积最大,最大值为S△ABC∴DQ=4,设球心为O,半径为R,则在直角△AQO中,OA2=AQ2+OQ2,即R2=12+(4﹣R)2,∴R=则这个球的表面积为:S=4π()2=故选C.7.(2016•模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8π B.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,R===2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.8.(2016•三模)已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是()A.πB.2π C.πD.3π【解答】解:设正△ABC的中心为O1,连结O1A∵O1是正△ABC的中心,A、B、C三点都在球面上,∴O1O⊥平面ABC,∵球的半径R=2,球心O到平面ABC的距离为1,得O1O=1,∴Rt△O1OA中,O1A=.又∵E为AB的中点,△ABC是等边三角形,∴AE=AO1cos30°=.∵过E作球O的截面,当截面与OE垂直时,截面圆的半径最小,∴当截面与OE垂直时,截面圆的面积有最小值.此时截面圆的半径r=,可得截面面积为S=πr2=.故选C.9.(2016•模拟)已知在三棱锥P﹣ABC中,VP﹣ABC=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.【解答】解:由题意,设PC=2x,则∵PA⊥AC,∠APC=,∴△APC为等腰直角三角形,∴PC边上的高为x,∵平面PAC⊥平面PBC,∴A到平面PBC的距离为x,∵∠BPC=,PA⊥AC,PB⊥BC,∴PB=x,BC=x,∴S△PBC==,∴VP﹣ABC =VA﹣PBC==,∴x=2,∵PA⊥AC,PB⊥BC,∴PC的中点为球心,球的半径为2,∴三棱锥P﹣ABC外接球的体积为=.故选:D.10.(2016•二模)已知三棱锥的三视图如图所示,则它的外接球的表面积为()A.4π B.8π C.12πD.16π【解答】解:由已知中三棱锥的高为1底面为一个直角三角形,由于底面斜边上的中线长为1,则底面的外接圆半径为1,顶点在底面上的投影落在底面外接圆的圆心上,由于顶点到底面的距离,与底面外接圆的半径相等,所以底面直角三角形斜边中点就是外接球的球心;则三棱锥的外接球半径R为1,则三棱锥的外接球表面积S=4πR2=4π故选:A11.(2016•校级模拟)一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是()A.πB.3π C.4π D.6π【解答】解:由三视图可知:该四面体是正方体的一个接正四面体.∴此四面体的外接球的直径为正方体的对角线长为.∴此四面体的外接球的表面积为表面积为=3π.故选:B.12.(2016•一模)已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()A.πB.3π C.D.2π【解答】解:由题意,AC为截面圆的直径,AC=,设球心到平面ABC的距离为d,球的半径为R,∵PA=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(﹣d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B.13.(2016•市校级模拟)球面上有三点A、B、C组成这个球的一个截面的接三角形三个顶点,其中AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则球的表面积为()A.1200πB.1400πC.1600πD.1800π【解答】解:∵AB2+BC2=182+242=302=AC2,∴△ABC为直角三角形,且其外接圆的半径为=15,即截面圆的半径r=15,又球心到截面的距离为d=R,∴R2﹣=152,∴R=10,∴球的表面积S=4πR2=4π×=1200π.故选:A.14.(2016•校级模拟)已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC==2,由正弦定理可得平面ABC截球所得圆的半径(即△ABC的外接圆半径),r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=,∴R2=故球O的表面积S=4πR2=π,故选:D.15.(2016•模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4π B.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,∴R=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.16.(2016•二模)已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于()A.4π B.πC.12πD.20π【解答】解:设球心为O,如图.由PA=PD=AB=2,∠APD=90°,可求得AD=2,在矩形ABCD中,可求得对角线BD==2,由于点P、A、B、C、D都在同一球面上,∴球的半径R=BD=则此球的表面积等于=4πR2=12π.故选:C.17.(2016•宁城县一模)四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为()A.8π B.C.D.【解答】解:如图,∵BC=CD=1,∠BCD=60°∴底面△BCD为等边三角形取CD中点为E,连接BE,∴△BCD的外心G在BE上,设为G,取BC中点F,连接GF,在Rt△BCE中,由CE=,∠CBE=30°,得BF==,又在Rt△BFG中,得BG=,过G作AB的平行线与AB的中垂线HO交于O,则O为四面体ABCD的外接球的球心,即R=OB,∵AB⊥平面BCD,∴OG⊥BG,在Rt△BGO中,求得OB=,∴球O的表面积为.故选:D.18.(2016•一模)已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π【解答】解:令△PAD所在圆的圆心为O1,△PAD为正三角形,AD=2,则圆O1的半径r=,因为平面PAD⊥底面ABCD,AB=4,所以OO1=AB=2,所以球O的半径R==,所以球O的表面积=4πR2=.故选:B.19.(2016•三模)正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4π B.8π C.12πD.16π【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,根据图形的对称性,可得外接球的球心在线段OO′中点O1,∵OA=AB=1,OO1=AA′=1∴O1A=因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.20.(2016•模拟)已知正四面体的棱长,则其外接球的表面积为()A.8π B.12πC.πD.3π【解答】解:将正四面体补成一个正方体,则正方体的棱长为1,正方体的对角线长为,∵正四面体的外接球的直径为正方体的对角线长,∴正四面体的外接球的半径为∴外接球的表面积的值为4πr2=4=3π.故选:D.21.(2016•三模)一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为()A.B.C.D.3【解答】解:正三棱柱的两个底面的中心的连线的中点就是球的球心,球心与顶点的连线长就是半径,所以,r==.故选:A.22.(2016•一模)已知SC是球O的直径,A,B是该球面上的两点,△ABC是边长为的正三角形,若三棱锥S﹣ABC的体积为,则球O的表面积为()A.16πB.18πC.20πD.24π【解答】解:根据题意作出图形.设球心为O,球的半径r.过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==1,∴OO1=,∴高SD=2OO1=2,∵△ABC是边长为的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC=××2=,∴r=.则球O的表面积为20π故选:C.23.(2016•冀州市校级模拟)已知三棱锥P﹣ABC,在底面△ABC中,∠A=60°,BC=,PA⊥面ABC,PA=2,则此三棱锥的外接球的表面积为()A.πB.4π C.πD.16π【解答】解:根据题意得出图形如下;O为球心,N为底面△ABC截面圆的圆心,ON⊥面ABC∵,在底面△ABC中,∠A=60°,BC=,∴根据正弦定理得出:=2r,即r=1,∵PA⊥面ABC,∴PA∥ON,∵PA=2,AN=1,ON=d,∴OA=OP=R,∴根据等腰三角形得出:PAO中PA=2d=2,d=∵R2=12+()=4,∴三棱锥的外接球的表面积为4πR2=16π故选:D24.(2016•校级二模)已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直线OA与截面ABC所成的角为30°,则球O的表面积为()A.4π B.16πC.πD.π【解答】解:∵A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,∴BC为△ABC外接圆的直径,又∵直线OA与平面ABC成30°角则球的半径R==故球的表面积S=4×π×()2=π故选:D.25.(2016•白山四模)一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的表面积为()A.21πB.24πC.28πD.36π【解答】解:正三棱柱的两个底面的中心的连线的中点就是球的球心,球心与顶点的连线长就是半径,所以,r==,球的表面积为:4πr2=4π()2=21π故选:A.26.(2016•模拟)在三棱锥P﹣ABC中,PA=2,PC=2,AB=,BC=3,∠ABC=,则三棱锥P﹣ABC外接球的表面积为()A.4π B.πC.πD.16π【解答】解:由题意,AC==4,∵PA=2,PC=2,∴PA2+PC2=AC2,∴PA⊥PC.取AC的中点,则OA=OB=OC=OP,即O为三棱锥P﹣ABC外接球的球心,半径为2,∴三棱锥P﹣ABC外接球的表面积为4πR2=16π.故选:D.27.(2016•校级二模)已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为,则球O的表面积为()A.36πB.64πC.144πD.256π【解答】解:如图所示,当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC =VC﹣AOB==18,故R=6,则球O的表面积为4πR2=144π,故选:C.28.(2016•三模)已知三棱锥A﹣BCD的四个顶点A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=,BC=2,CD=,则球O的表面积为()A.12πB.7π C.9π D.8π【解答】解:由题意,AC⊥平面BCD,BC⊂平面BCD,∴AC⊥BC,∵BC⊥CD,AC∩CD=C,∴BC⊥平面ACD,∴三棱锥S﹣ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,∴4R2=AC2+BC2+CD2=12,∴R=∴球O的表面积为4πR2=12π,故选:A.29.(2016•永州二模)用一个与球心距离为1的平面去截球,所得截面的面积为π,则球的表面积为()A.4π B.8π C.12πD.16π【解答】解:由已知中与球心距离为1的平面截球所得的圆面面积为π,故该圆的半径为1,故球的半径为,故该球的表面积S=4πR2=8π故选:B.30.(2016•模拟)在三棱锥A﹣BCD中,AB=,其余各棱长都为2,则该三棱锥外接球的表面积为()A.3π B.πC.6π D.π【解答】解:取 A B,CD的中点分别为 E,O,连接 EO,AO,BO,由题意知AO=BO=.又,所以 AO⊥BO,EO=,易知三棱锥外接球的球心G在线段EO上,有R2=AE2+GE2,R2=CO2+GO2,∴R2=()2+GE2,R2=12+(﹣GE)2,求得,所以其表面积为.故选:D.。

相关文档
最新文档