第五章 平稳时间序列模型的建立
第5章 平稳时间序列模型的建立
ˆ 在延迟若干阶之后衰减为小值波动时,什么情况 ˆk 或 当 kk 下该看作为相关系数截尾,什么情况下该看作为相关系数 在延迟若干阶之后正常衰减到零值附近作拖尾波动呢?
1. 自相关函数截尾的判定
若k序列在m步后截尾,即若k>m,应有k=0,此时k的估计 量渐近于正态分布。即:
m 1 ˆ k ~ N (0, (1 2 l2 )) N l 1
ˆ1 ˆ0 ˆ2 ˆ0ˆ2 ˆ12 ˆ1 ˆ2 2 2 2 ˆ0 ˆ1 ˆ0 ˆ12
3 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 2 2 0 1 1 2 0 2 ˆa 0 2 ˆ12 ˆ0
具体建模时,只需要在ARMA模型中加入一个截距 项,和回归模型是一样的。如果事先未对序列进行零均 值化,即使该截距项可能不显著,也不要把它从模型中 删去。因为这个不显著性可能和自回归系数的取值有关。
2. 序列减去样本均值得到零均值的序列。
样本均值只是总体均值的一个估计,可能存在误差,因此我们有 必要利用样本均值对总体均值是否为0进行检验-即零均值检验。(这 个也称为模型的预处理) 设平稳过程{Xt}的均值为,给定序列X1,…,XN, 要检验=0,就需 要构造检验统计量或求参数的置信区间。可以从考虑样本均值出发
1 0.0634 249
统计一下2阶之后落在-0.0634*2到0.0634*2之间的偏自相关函 数有几个?适合用AR(2)模型拟合吗?进一步适合用AR(1)模 型拟合吗?
第三节 参数估计
一、矩估计
原则:以样本数字特征作为总体相应数字特征的估计,以样本数字 特征的函数作为总体相应数字特征的相应函数的估计
1 ˆ 或P k N
平稳时间序列建模步骤
平稳时间序列建模步骤什么是时间序列建模时间序列建模是一种用于分析和预测时间序列数据的统计方法。
时间序列是按照时间顺序排列的一组连续观测值,例如每日销售额、每月气温、每年股票收益等。
通过建立时间序列模型,我们可以探索时间序列的内在规律和趋势,并做出相应的预测。
平稳时间序列建模是时间序列建模的一种常用方法,它假设时间序列的统计特性在时间上是不变的。
平稳时间序列具有恒定的均值、方差和自协方差,这使得我们可以应用各种经典的时间序列模型进行建模和预测。
以下是平稳时间序列建模的步骤:步骤一:数据收集和观察首先,我们需要收集要建模的时间序列数据。
可以从各种数据源获取时间序列数据,包括经济指标、物理测量、金融数据等等。
收集到数据后,我们需要对数据进行观察,检查数据的特点、趋势、异常值等,并做必要的数据清洗和准备工作。
步骤二:时间序列分解时间序列通常由趋势、季节性和随机因素组成。
为了更好地分析和建模时间序列,我们需要先对时间序列进行分解,将其拆分为这些组成部分。
常用的时间序列分解方法有加法模型和乘法模型。
加法模型假设时间序列是趋势、季节性和随机误差之和,而乘法模型假设时间序列是趋势、季节性和随机误差之积。
选择合适的分解模型可以根据时间序列的特点和趋势来确定。
步骤三:平稳性检验平稳性是时间序列建模的前提之一。
在进行建模之前,我们需要对时间序列的平稳性进行检验。
平稳性检验可以通过统计检验方法来进行,例如单位根检验、ADF检验等。
如果时间序列不平稳,我们需要进行差分处理,使其变成平稳序列。
步骤四:模型选择和拟合在确定时间序列的平稳性后,我们可以选择合适的时间序列模型进行拟合。
常见的时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)等。
模型选择可以通过观察自相关图(ACF)和偏自相关图(PACF)来辅助判断。
ACF图可以显示序列之间的相关性,PACF图可以显示去除其他变量的直接相关性。
《时间序列模型 》课件
目录
Contents
• 时间序列模型概述 • 时间序列模型的基础 • 时间序列模型的建立 • 时间序列模型的预测 • 时间序列模型的应用 • 时间序列模型的未来发展
01 时间序列模型概述
时间序列的定义
01 时间序列是指按照时间顺序排列的一系列观测值 。
02 时间序列数据可以是数值型、分类型或混合型。 03 时间序列数据可以用于描述和预测时间变化的现
详细描述
通过分析历史经济数据的时间序列特性,时间序列模型能够预 测未来经济走势,为政策制定者和企业决策者提供重要参考。
举例说明
例如,利用ARIMA模型分析国内生产总值(GDP)的时间 序列数据,可以预测未来一段时间的GDP增长趋势。
股票预测
01
总结词
时间序列模型在股票市场中具有实际应用价值。
02 03
SARIMA、VAR等。
识别模型阶数
02
确定模型的参数,如自回归阶数、差分阶数和移动平均阶数。
考虑季节性和趋势性
03
如果时间序列数据存在季节性和趋势性,需要在模型中加以考
虑。
参数估计
01
使用最小二乘法或最大似然法等统计方法估计模型 的参数。
02
考虑使用软件包或编程语言进行计算,如Python的 statsmodels库或R语言的forecast包。
象。
时间序列的特点
时序性
时间序列数据是按照时间顺序排列的,具有 时间上的连续性。
趋势性
时间序列数据通常具有一定的趋势,如递增 、递减或周期性变化。
季节性
一些时间序列数据呈现季节性变化,如年度 、季度或月度的变化规律。
不确定性
时间序列数据受到多种因素的影响,具有不 确定性,难以精确预测。
平稳时间序列的建模
一、实验(实训)概述:【目的及要求】处理数据,掌握平稳时间序列的ARMA模型的建模过程和方法,并根据具体的实验题目要求完成实验报告,并及时上传到彩云云库。
【基本原理】给出实际问题的平稳时间序列,要求学生运用R统计软件,对该序列通过模型识别、参数估计、模型检验、模型优化等过程,建立符合实际的时间序列模型,并预测将来。
【实施环境】(使用的材料、设备、软件)R软件二、实验(实训)内容:【项目内容】平稳时间序列的建模【方案设计】共含一道题目:(1)判断该序列的平稳性与纯随机性。
(2)选择合适模型拟合该序列的发展。
(3)利用拟合模型,预测该地区未来5年的谷物产量。
(4)利用拟合模型,预测该序列下一时刻95%的置信区间。
【实验(实训)过程】(步骤、记录、数据、程序等)附后【结论】(结果、分析)附后实验报告平稳时间序列的建模(综合性实验)实验原理:给出实际问题的平稳时间序列,要求学生运用R统计软件,对该序列通过模型识别、参数估计、模型检验、模型优化等过程,建立符合实际的时间序列模型,并预测将来。
实验题目:某地区连续74年的谷物产量(单位:千吨)如下:0.970.451.611.261.371.431.321.230.840.891.181.33 1.210.980.910.611.230.971.100.740.800.810.800.600.590.630.870.360.810.910.770.960.930.950.650.980.700.861.320.880.680.781.250.791.190.690.920.860.860.850.900.540.321.401.140.690.910.680.570.940.350.390.450.990.840.620.850.730.660.760.630.320.170.46(1)判断该序列的平稳性与纯随机性。
(2)选择适合模型拟合该序列的发展。
(3)利用拟合模型,预测该地区未来5年的谷物产量。
平稳时间序列模型的建立概述
平稳时间序列模型的建立概述第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第二步是对预处理后的序列进行统计特性分析。
这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。
通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。
第三步是根据统计分析结果选择适合的时间序列模型。
常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。
选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。
第四步是模型参数的估计与诊断。
对于选定的时间序列模型,需要估计模型的参数。
这可以通过最大似然估计或最小二乘估计等方法进行。
估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。
常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。
第五步是模型预测与评估。
通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。
预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。
若模型的预测效果较好,则可应用该模型进行实际预测。
总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。
通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。
平稳时间序列模型的建立概述(续)第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
平稳时间序列模型
(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此
e第五章平稳时间序列预测
1 Xˆ t (l 1)
l 1
Xˆ t (l) 1 Xˆ t (l 1) 0
11
Xˆ t (l) 1 Xˆ t (l 1) 0
该差分方程的通解为
Xˆ t (l) b0t1l
由一步预测结果求出待定系数可得
Xˆ t (l)
(Xt
1 1
at )1l
预测函数的形式是由模型的自回归部分决定的,滑 动平均部分用于确定预测函数中的待定系数,使得预测 函数“适应”于观测数据。
?2?考虑以为原点向前期或步长为的预测?预测误差为?预测误差的均方值为?使上式达到最小的线性预测称为平稳线性最小均方误差预测也称为平稳线性最小方差预测?3?第一节条件期望预测?几条性质?4?第二节预测的三种形式?arma模型的三种表示形式?差分方程形式?传递形式?逆转形式?5?一由arma模型的传递形式进行预测?6?7?这说明条件期望预测与最小均方误差预测是一致的?8?二用arma模型的逆转形式进行预测?9?三用arma模型即差分方程形式进行预测?1ar1模型预测?10?2arma11模型预测?11?该差分方程的通解为?由一步预测结果求出待定系数可得?预测函数的形式是由模型的自回归部分决定的滑动平均部分用于确定预测函数中的待定系数使得预测函数适应于观测数据
X tl 1 X tl1 atl 1atl1
Xˆ t (1) E[(1 X t at1 1at ) X t , X t1, X t2 ...)] 1 X t 1at
at X t Xˆ t1 (1) X t 1 X t1 1at1
Xˆ t (l) E[(1 X tl1 atl 1atl1 ) X t , X t1 , X t2 ...)]
2
t 考虑以 为原点,向前期(或步长)为 l 的预测 Xˆ t (l)
平稳时间序列模型的建立
第三章 平稳时间序列模型的建立
第一节 时间序列的采集 直观分析和特征分析 第二节 时间序列的相关分析 第三节 平稳时间序列的零均值处理 第四节 平稳时间序列的模型识别 第五节 平稳时间序列模型参数的矩估计 第六节 平稳时间序列模型的定阶 第七节 平稳时间序列模型的检验 第八节 平稳时间序列模型的建模方法
检验后面s个回归因子对因变量的影响是否显著
H 0 :r s 1 r s 2 r 0
设样本容量为N;上述两个模型的残差平方和分别是Q0与
Q1;则检验统计量为 FQ1Q0 s Fs,Nr
Q0 Nr
F检验定阶法
FQ1Q0 s Q0 Nr
Fs,Nr
M1: y1X12X2 rXr M2: y1X12X2 X rs rs H0: rs1 rs2 r 0
Et0, vart2, Est0,st EXst0, st
非中心化ARMAp;q模型
X t 0 1 X t 1 2 X t 2 p X t p t 1 t 1 2 t 2 q t q
ARMA模型:自回归移动平均模型
中心化ARMAp;q模型
X t1X t 12X t 2pX tpt1t 12t 2qt q X t1 1 1 1 B B 2 2B B 2 2 q p B B q p t
数据图检验法
以时间为横轴;变 量Xt的取值为纵轴
平稳的特点
无明显的趋势性或 周期性
在一直线附近做小 幅波动
1990年12月19日2008年11月6日上 证A股指数日数据除去节假日;共 4386个数据
数据图检验法
1994年1995年香港环境数 据序列
a 表示因循环和呼吸问题 前往医院就诊的人数;
平稳时间序列建模
1.2时间序列的基本概念
• 3、时间序列分析
• 一个基本点:每个序列包含了产生该序列 的系统的历史行为的全部信息
• 提出问题:怎样才能根据这些时间序列较 精确的找出相应系统的内在统计特性和发 展规律性,尽可能多的提取我们所需要的 准确信息。
1.3时间序列分析的主要方法
• 确定性时序分析:发展水平分析、趋势变 动分析、周期波动分析、长期趋势分析加 周期波动分析等 • 随机时序分析:一元时序分析、多元时序 分析、可控时序分析、不可控时序分析、 马尔科夫分析、贝叶斯分析
1时间序列的基本概念
• 1、数据的分类:动态数据和静态数据。 • (1)动态数据:与数据的出现先后顺序有 关。 (2)两种数据的建模方法不同:多元统计 分析和时间序列分析
1.1时间序列的基本概念
• 2、时间序列的概念 • (1)统计意义:某个指标在不同时间上的 不同数值,按时间的先后顺序排列而成的 数据。 • (2)系统意义:系统在不同时点的响应
一元时序分析多元时序分析可控时序分析不可控时序分析马尔科夫分析贝叶斯分析假如某个观察值序列通过序列预处理可以判定为平稳非白噪声序列我们就可以利用模型对该序列建模平稳非白噪声序列计算acfpacfarma模型识别估计模型中未知参数的值模型检验模型优化预测序列将来的走势acfpacf
平稳时间序列建模
刘志强 2010.7.14
平稳序列建模
• 假如某个观察值序列通过序列预处理,可 以判定为平稳非白噪声序列,我们就可以 利用模型对该序列建模 • 基本的步骤如下图
•
平稳非白噪声序列 计算ACF,PACF
ARMA模型识别
估计模型中未知参数的值 模型检验 模型优化
预测序列将来的走势
第五章 平稳时间序列模型的建立
2. 样本偏自相关函数截尾性的判断方法
可以证明:若序列xt为AR(p)序列,则
k>p后,序列的样本偏自相关函数ˆkk 服
从渐近正态分布,即近似的有:
ˆkk
~
N (0, 1 ) n
此处n表示样本容量。于是可得:
P( ˆkk
1 ) 31.7% n
P( ˆkk
2 ) 4.5% n
在实际进行检验时,可对每个k>0,分
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个。
式中:
0 (1 1 2 p )
即有:
0
11 2 p
在实际估计模型时,可将θ0看作一个常数估计, 若θ0显著不为0,则μ≠0,此时θ0 、 μ 有如上关系。 若θ0显著为0,则可认为μ=0,在最终模型中将此常数 项去掉即可。
– 原假设:序列非平稳
H0:1 1
– 备择假设:序列平稳
检验统计量
H0:1 1
– –
时 1 1 时 1 1
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
ˆ1 1 S(ˆ1)
DF统计量
1 1 时
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
1 1 时
ˆ1 S (ˆ1
对ACF和PACF的截尾性作一判断。
1. 样本自相关函数截尾性的判断方法
理 则论k>上q后证,明序:列若的序样列本xt自为相MA关(q函)序数列ˆ k,渐
近服从正态分布,即:
ˆ k
~
N (0, 1 (1 2 q
n
第五章平稳时间序列模型的性质
kk
k 1
1
1
k2 1
1
k 3 1 2 k2 1 k 3
k k 1 k2
k 1 k 2 k 3 1
1
上式即为偏自相关函数的一般公式
2021/1/21
第四章 时间序列模型的性质
20
B.AR(1)过程的偏自相关函数
由k 1k1, 及偏自相关函数的一般公式得
11 1
0 1 0 10
at为正态N (0,1)白噪声
2021/1/21
第四章 时间序列模型的性质
38
4
2
0
-2
-4 82 84 86 88 90 92 94 96 98 00
例1.模拟生成的AR(2)过程趋势图
2021/1/21
第四章 时间序列模型的性质
39
呈混合指数衰
滞后二阶以后截尾
例1.模拟生成的 AR(2)过程自相关图
1 1 2 1
2 11 2
显然此时AR(2)的ACF呈指数衰减
2021/1/21
第四章 时间序列模型的性质
31
(3)如果 12 42 0,即上述特征方程有一对共轭复根
解之得特征根为1,2 c id 1 i
(12 42 )
2
于是k b1r k cost b2r k cost 其中r为复根的模 2,为复角
-2
-4
-6 82 84 86 88 90 92 94 96 98 00
例1,模拟生成的AR(1)过程趋势图
2021/1/21
第四章 时间序列模型的性质
11
呈指数衰减
例1:模拟生成的 AR(1)过程自相关图:
(1 0.85B)xt t 或 xt 0.85xt1 t 其中1 0.85
平稳时间序列建模步骤
平稳时间序列建模步骤一、什么是平稳时间序列平稳时间序列是指在统计意义下具有不变性的时间序列。
具体来说,平稳时间序列的均值、方差和自相关函数都不随时间变化而发生显著的改变。
二、为什么要建立平稳时间序列模型建立平稳时间序列模型可以对数据进行预测和分析,从而更好地理解数据背后的规律和趋势。
此外,平稳时间序列模型还可以用于信号处理、金融分析等领域。
三、建立平稳时间序列模型的步骤1.观察数据并进行预处理首先需要观察数据并进行预处理,包括去除趋势、季节性和异常值等。
这有助于使数据更加平滑,并且减少噪声对模型的影响。
2.确定差分阶数如果原始数据不是平稳的,需要进行差分操作使其变成平稳的。
差分阶数可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。
3.选择合适的模型根据差分后得到的数据,可以选择适合该数据集的ARIMA模型。
ARIMA模型包括AR(p)、MA(q)和ARMA(p,q)三种类型。
4.估计模型参数使用最大似然估计(MLE)或最小二乘法(OLS)等方法来估计模型参数。
5.检验模型的拟合程度对于建立的模型,需要对其进行检验,包括残差的自相关性、正态性等。
如果存在问题,则需要调整模型或重新选择模型。
6.预测未来值使用建立好的模型进行未来值的预测,并对预测结果进行评估和修正。
四、总结建立平稳时间序列模型是一个复杂的过程,需要对数据进行观察和处理,选择合适的模型并估计参数,最后对模型进行检验和预测。
在实际应用中,需要根据具体情况灵活运用这些步骤,并结合领域知识和经验来优化建模过程。
第五章-时间序列的模型识别汇总
第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AIC 、BIC 、FPE 等。
《平稳时间序列》课件
通过分析股票市场的波动数据,平稳时间序列方法可以帮助预测未 来市场的波动情况,有助于投资者制定风险管理策略。
行业趋势
通过对不同行业股票数据的平稳时间序列分析,可以预测未来行业 的发展趋势,有助于投资者进行行业配置和投资决策。
06
时间序列分析软件介绍
EViews软件介绍
适用范围
EViews是专门用于时间序列分析的软件,广泛应用于经济学、金 融学等领域。
降水预测
通过对历史降水数据的分析,平稳时间序列方法可以帮助 预测未来降水情况,有助于农业生产和灾害防范。
极端天气事件
通过分析极端天气事件的历史数据,平稳时间序列模型可 以预测未来极端天气事件的频率和强度,有助于防范自然 灾害。
股票市场预测
股票价格
利用历史股票价格数据,平稳时间序列模型可以预测未来股票价 格的走势,有助于投资者制定投资策略和风险控制。
列。
Holt's线性指数平滑
02
结合了趋势和季节性因素,适用于具有线性趋势和季节性变化
的时间序列。
Holt-Winters指数平滑
03
适用于具有非线性趋势和季节性变化的时间序列,能更好地捕
捉数据的季节性变化。
季节性自回归积分滑动平均模型(SARIMA)预测
01
SARIMA模型
结合了季节性和非季节性因素,适用于具有季节性和非季节性变化的时
04
平稳时间序列的预测
线性预测
线性回归模型
通过建立自变量与因变量之间的线性关系,预测时间序列的未来 值。
线性趋势模型
适用于具有线性趋势的时间序列,通过拟合线性方程来预测未来 趋势。
简单移动平均模型
对时间序列进行移动平均处理,根据历史数据预测未来值。
【平稳】平稳时间序列模型的建立
【关键字】平稳第四章平稳时间序列模型的建立本章讨论平稳时间序列的建模问题,也就是从观测到的有限样本数据出发,通过模型的识别、模型的定阶、参数估计和诊断校验等步骤,建立起适合的序列模型。
学习重点为模型的识别和模型的检验。
第一节模型识别一、识别依据模型识别主要是依据SACF和SPACF的拖尾性与截尾性来完成。
常见的一些ARMA类型的SACF和SPACF的统计特征在下表中列出,可供建模时,进行对照选择。
表ARIMA过程与其自相关函数偏自相关函数特征二、拖尾性与截尾性的判定理论上,对于MA(q)过程,其自相关函数在q步之后全部为零,实际上并非如此,因为为样本数据的估计值。
同样地,偏自相关函数也存在类似的问题。
判定在m步之后截尾的做法是:实际判断时,以频率代概率。
判定在n步之后截尾的做法是:实际判断时,以频率代概率。
拖尾:即被负指数控制收敛于零。
三、实例【例4-1】现有磨轮资料250个,试判断该数据的零均值及平稳性。
1.时间序列趋势图2.零均值化后的图形3.ACF与PACF图形ACFPACF第二节模型定阶一、残差方差图法基本思想:以AR模型为例。
对于时间序列,如果其合理(真正的)阶数为p,当我们用一个小于p 的值为阶数去拟合它,所得到的剩余平方和必然偏大,将比真正模型的大。
原因在于它把模型中原本有的一些高阶项给省略了,而这些项的存在对减小残差的方差是有明显贡献的。
反之,如果我们用一个大于p 的值作为阶数去拟合它(过度拟合),虽然剩余平方和减少,但已不明显,这时可能还会增大。
因此,我们可以用一系列阶数逐渐递增的模型对进行拟合,每次都求出,作出阶数n和残差方差的图形,进行判断。
这种方法直观简单,但没有量的准则,具有主观性。
二、自相关函数(ACF)和偏自相关函数(PACF)定阶法它们不仅可以用来识别模型,而且还可以用来确定模型的阶。
三、F检验定阶法基本思想:首先用ARMA(n,m)对进行过度拟合,再令为零,用F检验判定阶数降低之后的模型ARMA(n-1,m-1)与ARMA(n,m)之间是否存在显著性差异。
第五章时间序列数据的平稳性检验
25
e
检验
t 验,但需要注意的是,此时的临界值不能再用
e
是否平稳可以采用前文提到的单位根检
(A)DF检验的临界值,而是要用恩格尔和格兰杰 (Engle and Granger)提供的临界值,故这种 协整检验又称为(扩展的)恩格尔格兰杰检验 (简记(A)EG检验)。
26
此外,也可以用协整回归的Durbin-Watson统计 检验(Cointegration regression Durbin-Watson test,简记CRDW)进行。CRDW检验构造的统计 量是:
5
平稳随机过程的性质: 均值 方差
2 2 v a r ( y ) E ( y ) (对所有t) t t
E( yt )
(对所有t)
协方差 (对所有t) E [ ( y ) ( y ) ] k t t k 其中 k 即滞后k的协方差[或自(身)协方差], yt是 和 y t k ,也就是相隔k期的两值之间的协方差。
2
第一节
一、随机过程
随机过程和平稳性原理
一般称依赖于参数时间t的随机变量集合{ y t }为随 机过程。
例如,假设样本观察值y1,y2…,yt是来自无穷随机
变量序列…y-2, y-1,y0 ,y1 ,y2 …的一部分,则这个
无穷随机序列称为随机过程。
3
随机过程中有一特殊情况叫白噪音,其定义 如下:如果随机过程服从的分布不随时间改 变,且
(5.4)
10
依次将式(5.4)…(5.3)、(5.2)代入相邻的上式,并 整理,可得:
T 2 T YY t u u . . . uu (5.5) t T t 1 t 2 t T t
平稳时间序列模型的建立
例题
• 例1
– 检验1964年——1999年中国纱年产量序列的 平稳性
• 例2
–检验1962年1月——1975年12月平均每头奶牛 月产奶量序列的平稳性
• 例3
–检验1949年——1998年北京市每年最高气温 序列的平稳性
AIC (M
)
n
ln
ˆ
2 a
2M
式中:ˆ
2 a
是残差方差
2 a
的极大似然估计值。
• Eviews输出的Akaike info criterion与上述形 式略有差别(参见Eviews help),其定义为:
AIC(M ) 2 ln(极大似然函数) 2M
n
n
其中:n是实际观察值的个数。
4.1.2 BIC准则
例1 时序图
例1 自相关图
例2 时序图
例2 自相关图
例3 时序图
例3 自相关图
二、纯随机性检验
(一)纯随机序列的定义
• 纯随机序列也称为白噪声序列,它 满足如下两条性质
(1)EXt , t T
2 ,t s
(2) (t, s)
, t, s T
0,t s
(二)纯随机性检验
4、最佳准则函数定阶法
• 最佳准则函数法,即确定出一个准则函数 ,该函数既要考虑某一模型拟合时对原始 数据的接近程度,同时又要考虑模型中所 含待定参数的个数。
• 建模时,使准则函数达到极小的是最佳模 型。
4.1 赤池的AIC准则和BIC准则
4.1.1 AIC 准则(Akaike iformationcriterion)
第八讲平稳时间序列模型的建立
15
若序列x 的自相关函数
t
k在k>q以后截尾,即k>q
时, k 0,而且它的偏自相关函数 kk拖尾,则可判 断此序列是MA(q)序列。
若序列xt的自相关函数、偏相关函数都呈拖尾形态, 则可断言此序列是ARMA序列。
若序列的自相关函数和偏自相关函数不但都不截尾, 而且至少有一个下降趋势势缓慢或呈周期性衰减, 则可认为它也不是拖尾的,此时序列是非平稳序列, 应先将其转化为平稳序列后再进行模型识别。
1 ˆ k ~ N (0, ) , T T 1 ˆ kk ~ N (0, ) , T T
P P 95.5% 2 2 ˆ kk 95.5% T T 2 2 ˆ k T T
28
模型定阶的经验方法:利用2倍标准差辅助判断
11
方法一 检验μ =E(xt)=μ=0
可将样本均值 是零均值过程。
x 和均值的标准差 S x 进行比
较,若样本均值落在 0 2S x的范围内,则可认为
12
三种模型的均值的方差:
AR(1) AR(2)
0 1 1 VarX 1 2 k N N 1 k 1 1
38
4. 优缺点: 优点:简单直观,易于理解;
缺点:有一定的主观性
39
三、 F检验定阶法
原理: 用F检验来检验两个回归模型是否有显著差异
Q1 Q0 Q0 ~ F(s, N r) s Nr
单尾检验,拒绝域在右尾 当计算得到的F值大于临界值时,拒绝原假设, 认为两模型有显著差异。
40
AR(p)模型定阶的F准则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k k
就可认为
ˆ k 时是截尾的。 在k>q
2. 样本偏自相关函数截尾性的判断方法 可以证明:若序列xt为AR(p)序列,则 k>p后,序列的样本偏自相关函数ˆkk 服 从渐近正态分布,即近似的有:
此处n表示样本容量。于是可得:
1 ˆ P( kk ) 31.7% n 2 ˆ P( kk ) 4.5% n
1 ˆ kk ~ N (0, ) n
在实际进行检验时,可对每个k>0,分 别检验 ˆk 1,k 1 ,ˆk 2,k 2 ,,ˆk m,k m (通常 ˆ 1 n 取 m n或m )中满足 n 的个数 10 所占的百分比是否超过31.7%,或满足 ˆ 2 n 的个数是否超过4.5%。 若k=1,2,…p-1都超过了,而k=p时未超过,
xt 1xt 1 2 xt 2 p xt p t 1 t 1 q t q
式中:xt是零均值平稳序列; at为白噪声序列。 待估计参数p+q+1个,分别是:
(1 2 p ) (1 2 q )
同时分析差分序列的相关图,以判断差分序列的平稳性, 直至得到一个平稳序列。 对于经济时间序列,差分次数通常只取0、1或2。
(二)关于非零均值的平稳序列
非零均值的平稳序列有两种处理方法: 设xt为一非零均值的平稳序列,且有E(xt)=μ
方法一:用样本均值 x 作为序列均值μ的估计,建 模前先对序列作如下处理: 令 wt xt x 然后对零均值平稳序列wt建模。
相关图粗略的判断序列是否平稳。
如果一个随机过程是平稳的,其特征方程
φ(B)=0的根都应在单位圆外。 如果φ(B)=0的根接近单位圆,自相关函数将衰 减的很慢。所以在分析相关图时,如果发现其 衰减很慢,近似呈线性衰减,即可以认为该序 列是非平稳的。
差分运算
如果时间序列是非平稳的,这时应该对其进行差分运算,
问题: 1.是平稳序列吗? 2.是白噪声序列(纯随机序列吗) 2. 进行模型识别,拟合什么模型合适呢?
第二节 ARMA模型参数估计
一、引言 二、矩估计 三、极大似然估计 四、最小二乘估计
一、引言
当识别出试探性模型以后,下一步就是估计模型中的参数。 我们讨论一般ARMA(p,q)模型的参数估计,
1. 样本自相关函数截尾性的判断方法 理论上证明:若序列xt为MA(q)序列, 则k>q后,序列的样本自相关函数 ˆk 渐 近服从正态分布,即:
q 1 ˆ k ~ N (0, (1 2 ˆ l2 )) n l 1
或近似的有:
1 ˆ k ~ N (0, ) n
故由正态分布理论可知:
ˆk P( ˆk P( 1 n 2 n ) 68.3% ) 95.45%
此处n是样本容量。 1
ˆk
k
对于k>q,若 的个数不超过总个数的31.7%, n 2 ˆ 或 的个数不超过总个数的4.5%,就可 n ˆ在 认为 k>q时是截尾的。 k
在实际进行检验时,可对每个k>0,分 ˆ k 1 , ˆ k 2 ,, ˆ k m (通常 别检验 1 n ˆ 取 m n或m )中满足 的个数 n 10 所占的百分比是否超过31.7%,或满足 2 ˆ n 的个数是否超过4.5%。 若k=1,2,…q-1都超过了,而k=q时未超过,
方法二: 在模型识别阶段对序列均值是否为 零不予考虑,而在参数估计阶段,将序列均 值作为一个参数加以估计。 以一般的ARMA(p,q)为例说明如下:
设平稳序列xt的均值为 , 其适应性模型为ARMA( p, q),即 : ( xt ) 1 ( xt 1 ) p ( xt p ) t 1 t 1 2 t 2 q t q
1 1 0 2 1 p p 1 2 1 1 2 0 p p 2 p 1 p 1 2 p 2 p 0
ˆk 用 代替 k ,并解上述方程组,就可得:
GDP指数的对数差分序列。
问题: 1.是平稳序列吗? 2.是白噪声序列(纯随机序列吗) 2.如果平稳,进行模型识别,拟合什么模型合适呢?
案例3.美国科罗拉多州某一加油站连续57 天的OVERSHORTS序列 (overshorts.wf1),试对该序列进行识别。
OVERSHORTS
150 100 50 0 -50 -100 -150 5 10 15 20 25 30 35 40 45 50 55
案例2. 1978-2008中国GDP指数序列(1978=100)(案例文件
gdpindex.wf1),试对该序列进行识别。
GDP
2,000
1,600
1,200
800
400
0 1980 1985 1990 1995 2000 2005
DLNGDP
.16 .14 .12 .10 .08 .06 .04 .02 1980 1985 1990 1995 2000 2005
(二) AR(p)模型参数的矩估计
设序列xt经过模型识别,确定为AR(p) 模型。 xt 1xt 1 2 xt 2 p xt p t
由第五章有如下结论:
k 1 k 1 2 k 2 p k p
于是可得如下的Yule-Walk方程:
将上式展开得:
xt 1xt 1 p xt p 0 t 1 t 1 2 t 2 q t q
此时,所要估计的未知参数有p+q+1个。
式中:
0 即有 : 1 1 2 p
0 (1 1 2 p )
1.计算序列的样本自相关系数(SACF)和样本偏自相关系数(SPACF) 2.模型识别:根据SACF和SPACF的性质,提出一个适当类型的 ARMA(p,q)模型进行拟合。 3.模型参数估计 4.模型的有效性检验 5.模型的优选 6.模型的应用:如预测。
具体如下:
平稳时间序列建模步骤
模型识别基本原则
ˆk
拖尾 q阶截尾
ˆ
选择模型
AR(P) MA(q)
kk
P阶截尾 拖尾
拖尾
拖尾
ARMA(p,q)
模型定阶的困难
因为由于样本的随机性,样本的相关系数不会呈现出理论截 ˆ k 或 ˆ 仍会呈现出小值振荡的 尾的完美情况,本应截尾的 kk 情况 由于平稳时间序列通常都具有短期相关性,随着延迟阶 ˆ 都会衰减至零值附近作小值波动 ˆ k与 数k , kk 下该看作为相关系数截尾,什么情况下该看作为相关系数在 延迟若干阶之后正常衰减到零值附近作拖尾波动呢?
2 a E ( t2 )
如果xt是非零均值平稳序列,则估计模型为:
q ( B) xt t p ( B)
则:待估计参数p+q+2个,
我们将讨论几种常用的参数估计方法。
一、模型参数的矩方法估计
该方法是把样本矩(如样本均值 xt ,样本方 ˆ k)代替相应的理论值, 差 ˆ0 ,样本ACF 并求解最后的模型参数。
问题: 1.是平稳序列吗? 2.是白噪声序列(纯随机序列)吗 2. 进行模型识别,拟合什么模型合适呢?
案例4.等时间间隔,连续读取70个某次化学反应的过程数据, 构成一时间序列(yield.wf1),试对该序列进行识别。
YIELD
80 70 60 50 40 30 20 10 20 30 40 50 60 70
序列的非平稳包括均值非平稳和方差非 平稳。
方差非平稳序列平稳化的方法:对数变换、
平方根变换等。
在对经济时间序列分析之前往往要先对数据取 对数,目的是消除数据中可能存在的异方差。 然后再分析其相关图。
均值非平稳序列平稳化的方法:差分变换。
均值非平稳的序列,可以通过相关图粗略的判 断。
kk kk
就可认为
ˆ 时是截尾的。 在k>p kk
3.关于ARMA序列阶数的确定
ARMA序列的阶数,直接通过自相关图较 难确定,较常用的方法有Pandit-Wu方法 (后将介绍)或延伸自相关函数(EACF)法。
建立ARMA模型,时间序列的自相关图(ACF) 和偏自相关图(PACF)可为识别模型参数p、q 提供信息。 但用样本得到的只是估计的自相关图(SACF) 和偏自相关图(SPACF),通常比真实的ACF和 PACF的方差要大,并表现为更高的自相关。 在实际中,相关图、偏相关图的特征不会像理论 上ACF、PACF那样“规范”,所以应该善于从 SACF、SPACF中识别出模型的真实参数p,q。 注意:另外,估计的模型形式不是唯一的,所以 在模型识别阶段应多选择几种模型形式,以供进 一步选择。
ˆ 在延迟若干阶之后衰减为小值波动时,什么情况 ˆ k 或 ?当 kk
样本相关系数的近似分布
Barlett
1 ˆ k ~ N (0, ) , n n
Quenouille
1 ˆ kk ~ N (0, ) , n n
模型定阶经验方法
95%的置信区间
模型定阶的经验方法
第五章 平稳时间序 列模型的建立
第五章 平稳时间序列模型的建立
第一节 第二节 第三节 第四节 第五节
平稳时间序列建模步骤 ARMA模型的识别 ARMA模型的参数估计 模型的诊断检验 模型的优化