第八章常微分方程数值解PPT课件
第8章常微分方程数值解法
的解为
y ( x) e
x2
x 0
e dt
t2
但要计算它的值,还需要用数值积分的方法。如果要 对许多个 x 值计算解 y(x) 的近似值,那么工作量非常大。况 且实际计算不一定要求解析表达式,而是只需求在某些点 上满足精度的解的近似值或解的近似表达式就可以了。
由于高阶常微分方程可以转化为一阶常微分方程组,因 此,为了不失一般性,本章主要介绍一类一阶常微分方程初 值问题
的解来近似微分方程初值问题(8.2)的解,其 中 h (b- a) / 2 ,式(8.3)也称为欧拉公式。
欧拉法的几何意义是用一条自点 ( x0 , y0 ) 出发的 折线去逼近积分曲线 y f (x) ,如图8.1所示。 因此,这种方法又称为折线法。显然,欧拉法 简单地取折线的端点作为数值解,精度非常差。
float euler(float x0,float xn,float y0,int N) { float x,y,h; int i; x=x0; y=y0; h=(xn-x0)/(float)N; /* 计算步长 */ for(i=1;i<=N;i++) /* 欧拉公式 */ { y=y+h*func(x,y); x=x0+i*h; } return(y); }
8.4 龙格—库塔(Runge-Kutta)法 8.4.1 龙格—库塔法的基本思想
在欧拉法 yi 1 yi h f ( xi , yi ) (i 0,1,) 中,用解函数 y f (x) 在 点 x i 处的斜率 f ( xi , y i ) 计算从 yi 到 y i 1 的增量,y i 1 的表达式 与 y( xi 1 ) 的Taylor展开式的前二项相等,使方法只有一阶精度。 改进的欧拉法用两个点 x i ,x i 1 处的斜率 f ( xi , y i )、f ( xi 1 , yi 1 ) 的平均值计算增量,使方法具有二阶精度,即 y i 1 的表达式 与 y( xi 1 ) 的Taylor展开式的前三项相等。 由此龙格和库塔提出了一种间接地运用Taylor公式的方法, y (x) 即利用 在若干个待定点上的函数值和导数值做出线性组 合式,选取适当系数使这个组合式进行Taylor展开后与 y( xi 1 ) 的Taylor展开式有较多的项达到一致,从而得出较高阶的数 值公式,这就是龙格—库塔法的基本思想。
第八章常微分方程的数值解法
y( xn1 )
15
Euler法的收敛性
称初值问题(8.1.1)的数值解法是收敛的,如:
h0 ( n )
lim yn y ( x)
其中: x xn x0 nh , x [ x0 , b]
16
例考察以下初值问题Euler法的收敛性
dy y dx y (0)=y0 ( 0)
★
可得: h (k ) ( k 1) y y | f ( xn 1 , yn ) f ( x , y 1 n 1 n 1 ) | 2 hL ( k ) hL k 1 (1) ( k 1) (0) | yn 1 yn 1 | ( ) | yn 1 yn 1 | 2 2 hL k 1 ( k 1) 从而 : lim( ) 0 , 故有 lim yn 1 y n 1 。 k 2 k
★
由y0=y( x0 ), 假定yn=y( xn ), 往证:
y0 yn 1 y ( xn 1 ) xn 1; x0
14
证明
yn yn1 yn hf ( xn , yn ) yn h xn 1 1 yn (1 h ) y( xn )(1 h ) xn xn y0 y0 1 xn (1 h ) ( xn h) x0 xn x0 y0 xn 1 x0
8
局部截断误差
假设第n步在点xn的值计算没有误差,即yn y( xn ), 由单步法计算出yn1 , 则
Tn1 y( xn1 ) yn1 称为点xn1上的局部截断误差.
从初值y( x0 ) y0出发,由单步法显式或隐式 逐步计算,得xn 1的值yn 1 , 则
n1 y( xn1 ) yn1
高等数学11单元第八章常微分方程
授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。
方程的定义:含有未知数的的等式。
它表达了未知量所必须满足的某种条件。
根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。
引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。
例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。
一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。
二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。
类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。
其中F 是n +2个变量的函数。
这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。
例如()()n y f x =也是n 阶微分方程。
例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。
第八章常微分方程的数值解23页PPT文档
由 y ( x 0 ) f( x 0 ,y 0 ), y ( x 0 ) y 0
得 y (x 1 ) y 0 h(x f0 ,y 0 ) y 1
同理,在x= xn 处,用差商代替导数: y(xn)y(x x n n 1 1 ) x y n (xn)y(xn 1)h y(xn)
第八章 常微分方程的数值解
引言 简单的数值方法
欧拉方法 梯形方法
8.1 引言
在高等数学中我们见过以下常微分方程:
yf(x,y) axb (1)y(a)y0
yf(x,y,y) axb
(2) y(a)y0,y(a)
yf(x,y,y) axb (3) y(a)y0,y(b)yn
(1),(2)式称为初值问题,(3)式称为边值问题。
2.6
0.3351 0.3459 0.0108
2.8
0.3167 0.3246 0.0079
3.0
0.3000 0.3057 0.0057
由表中数据可以看到,微分方程初值问题的数值解和解
析解的误差一般在小数点后第二位或第三位小数上,这
说明Euler方法的精度是比较差的。
数值解和解析解的图示比较如下:
考虑一阶常微分方程初值问题
y f (x, y) (1)y(x0) y0
其中,y = y(x) 是未知函数,y(x0) = y0 是初值条 件,而f(x, y) 是给定的二元函数.
由常微分方程理论知,若f(x)在x[a,b]连续且 f 满足对 y 的Lipschitz条件:
f(x ,y 1 )f(x ,y2)L y 1y2
因 y n (k 1 1 ) y n 1 h f(x n 1 ,y n (k 1 )) f(x n 1 ,y n 1 )
常微分方程数值解-PPT精品文档
称为局部截断误 差。显然,这个 y ( x ) y ( x ) h 误差在逐步计算 n 1 n y ' ( x ) y ' ' ( ) n n 过程中会传播, h 2 积累。因此还要 y ( x ) y ( x ) h n 1 n f ( x , y ( x )) y ' ' ( ) 估计这种积累 n n n h 2
对于一个常微分方程:
9.1 Euler方法
dy y ' f( x ,y ), x [ a , b ] dx 通常会有无穷个解。如:
dy cos( x ) y sin( x ) a , a R dx 因此,我们要加入一个限定条件。通常会在端点出给出, 如下面的初值问题: dy f (x , y) , x [a ,b ] dx )y 0 y(a 为了使解存在唯一,一般,要加限制条件在f上,要求f对y 满足Lipschitz条件:
求 y ( x ) 在 x i 上的近似值
y i 。 { y i } 称为分割 I
上的格点函数
我们的目的,就是求这个格点函数
② 由微分方程出发,建立求格点函数的差分方程。这个方程应该满足: A、解存在唯一;B、稳定,收敛;C、相容 ③ 解差分方程,求出格点函数
数值方法,主要研究步骤②,即如何建立差分方程,并研究 差分方程的性质。
x0
x1
y i 1 y i h f ( x i 1 , yi 1 ) ( i 0, ... , n 1)
由于未知数 yi+1 同时出现在等式的两边,不能直接得到,故 称为隐式 /* implicit */ 欧拉公式,而前者称为显式 /* explicit */ 欧拉公式。 一般先用显式计算一个初值,再迭代求解。
《微分方程的数值解》课件
谱方法:将微分方程离散化为谱方程, 然后求解
边界元法:将微分方程离散化为边界 元方程,然后求解
有限元法:将微分方程离散化为有限 元方程,然后求解
网格法:将微分方程离散化为网格方 程,然后求解
数值解法的步骤
确定微分方程的初值 和边界条件
选择合适的数值解法, 如欧拉法、龙格-库塔 法等
实解
应用:广泛应 用于工程、物 理、化学等领
域
优缺点:优点 是计算速度快, 缺点是精度较
低
非线性方程的数值解法
牛顿法:通过迭 代求解非线性方 程
拟牛顿法:通过 迭代求解非线性 方程,比牛顿法 收敛更快
割线法:通过迭代 求解非线性方程, 适用于求解单变量 非线性方程
迭代法:通过迭 代求解非线性方 程,适用于求解 多维非线性方程
05 数值解法的实现
M AT L A B 编 程 实 现
MATLAB简介: MATLAB是一种高 级编程语言,广泛 应用于科学计算、 数据分析等领域
数值解法:包括欧 拉法、龙格-库塔 法、四阶龙格-库 塔法等
MATLAB实现:使 用MATLAB编写程 序,实现数值解法 的计算
示例代码:给出 MATLAB实现数值 解法的示例代码, 并解释其含义和作 用
设定时间步长和空间 步长
计算微分方程的解, 并进行误差分析
绘制解的图形,并进 行结果分析
对比不同数值解法的 优缺点,选择最优解 法
04 常用的数值解法
欧拉方法
基本思想:将微分 方程转化为差分方 程,然后求解差分 方程
优点:简单易行, 适用于初值问题
缺点:精度较低, 稳定性较差
改进方法:改进欧 拉方法,如改进欧 拉方法、龙格-库 塔方法等
常微分方程数值解法ppt课件
若存在正的常数 L 使:
(Lipschitz)条件
|f( x ,y 1 ) f( x ,y 2 ) | L |y 1 y 2 | ( 1 .3 )
使 得 对 任 意 的 x [ a , b ] 及 y 1 ,y 2 都 成 立
则称 f (x,y) 对y 满足李普希兹条件,L 称为 Lipschitz常数.
节点 x i a i h i , 一 般 取 h i h ( ( b a ) / n ) 即 等 距
要计算出解函数 y(x) 在一系列节点
ax 0x 1x nb
处的近似值 y y(x ) i 完整版PPT课件i
16
yf(x,y) axb (1 .1 )
y(x 0) y0
(1 .2 )
对微分方程(1.1)两端从 xn到 xn1 进行积分
在大量的实际方程中出现的函数起码的连续性都 无法保证,更何况要求阶的导数
求解数值解
很多微分方程 根本求不到 问题的解析解!
重要手段。
完整版PPT课件
7
5.常微分方程数值解法的特点 常微分方程的数值解法常用来求近似解
根据提供的算法 通过计算机
数值解法得到的近似 解(含误差)是一个 离散的函数表.
便捷地实现
欧拉方法的导出把区间ab分为n个小区间步长为要计算出解函数yx在一系列节点iiyyx?iiixaihhhban?????一般取即等距节点处的近似值01naxxxb?????1iiihxx??nn等分001112yfxyaxbyxy????????对微分方程11两端从1nnxx?到进行积分11nnnnxxxxydxfxyxdx??????11nnxnnxyxyxfxyxdx?????右端积分用左矩形数值求积公式22baggxdxbagaba???????gxfxyx?令11nnnnxxnnfxyxnnyyfxyxh??????得x0x11nnnnnnyxyxhyxyhfxy??????1
常微分方程数值解法课件
根据选择的步长,确定当 前时刻的数值解的近似值 。
重复上述步骤,直到达到 所需的时间积分区间终止 点。
龙格-库塔方法的误差分析
误差主要来源于时间步长 的离散化,步长越小,误 差越小。
龙格-库塔方法的收敛性 和稳定性取决于所选步长 和步数。
ABCD
机械工程
在机械工程中,机构的动力学行为可以用常微分方程来描 述,如机器人的运动轨迹、机械臂的姿态等,通过数值解 法可以模拟这些机构的运动。
在金融问题中的应用
股票价格模拟
股票价格的变化可以用常微分方程来描述,通过数值解法可以模 拟股票价格的走势,预测未来的股票价格。
期货价格模拟
期货价格的变化也可以用常微分方程来描述,通过数值解法可以 模拟期货价格的走势,预测未来的期货价格。
可以通过增加步数来减小 误差,但会增加计算量。
在实际应用中,需要根据 具体问题选择合适的步长 和步数,以达到精度和计 算效率的平衡。
05
数值解法的应用
在物理问题中的应用
计算物体运动轨迹
通过数值解法求解常微分方程,可以模拟物体的运动轨迹,如行星 运动轨迹、炮弹弹道等。
模拟振动系统
在物理中,许多系统可以用常微分方程来描述,如弹簧振荡器、电 磁振荡器等,通过数值解法可以模拟这些系统的振动行为。
终止条件
当达到预设的精度或迭代次数时,停止迭代并输出结果。
欧拉方法的误差分析
截断误差
由于欧拉方法使用离散化近似 ,因此存在截断误差。这种误 差的大小取决于步长$h$的选
择。
稳定性
欧拉方法对于某些微分方程可 能是不稳定的,这意味着随着 迭代的进行,解可能会发散或
常微分方程模型及其数值解
Q(c,at)
P(x,y)
R(c,y )
0
y
x
c
例2 弱肉强食
问题 自然界中在同一环境下的两个种群之间存在着几种不同的生存方式,比如相互竞争,即争夺同样的食物资源,造成一个种群趋于灭绝,而另一个趋向环境资源容许的最大容量;或者相互依存,即彼此提供部分食物资源,二者和平共处,趋于一种平衡状态;再有一种关系可称之为弱肉强食,即某个种群甲靠丰富的自然资源生存,而另一种群乙靠捕食种群甲为生,种群甲称为食饵(Prey),种群乙为捕食者(Predator),二者组成食饵-捕食者系统。海洋中的食用鱼和软骨鱼(鲨鱼等)、美洲兔和山猫、落叶松和蚜虫等都是这种生存方式的典型。这样两个种群的数量是如何演变的呢?近百年来许多数学家和生态学家对这一系统进行了深入的研究,建立了一系列数学模型,本节介绍的是最初的、最简单的一个模型,它是意大利数学家Volterra在上个世纪20年代建立的。
0.00 0.40 0.80 1.20 1.60 2.00
0.00000 0.36085 0.51371 0.50961 0.45872 0.40419
0.00000 0.34483 0.48780 0.49180 0.44944 0.40000
0.00000 -0.01603 -0.02590 -0.01781 -0.00928 -0.00419
而
从而有: y(xn+1)-yn+1=O(h3)
2.4 Taylor展开方法
设y(x)是初值问题(4)的精确解, 利用Taylor展开式可得
称之为p阶Taylor展开方法. …… …… …… 因此,可建立节点处近似值yn满足的差分公式 其中
所以,此差分公式是p阶方法.
02
计算方法课件第八章常微分方程初值问题的数值解法
整体截断误差与局部截断误差的关系
定理:如果f(x,y)满足李普希兹(Lipschitz)条件
f(x ,y 1 )f(x ,y 2) L y 1y 2
且局部截断误差有界:
|R n|1 2h2M 2
(n1,2, )
则Euler法的整体截断误差n满足估计式:
ne(ba)L 0h 2L M 2(e(ba)L1)
分光滑。初值问题的解析解(理论解)用 y(x表n ) 示, 数值解法的精确解用 y表n 示。
常微分方程数值解法一般分为:
(1)一步法:在计算y n 1 时,只用到x n 1 ,x n和 y,n 即前一步的值。
(2)多步法:计算 y n 1 时,除用到 x n 1 ,x n 和 y n 以外,还要用 x n p 和 y n p (p1 ,2 k;k0) ,即前
其中L为李普希兹常数,b-a为求解区间长度,
M2 mayx(x) 。 axb
证明参见教材。
Remark:该定理表明,整体截断误差比局部截 断误差低一阶。对其它方法,也有类似的结论。
收敛性与稳定性
收敛性定义:如果某一数值方法对于任意固定的
xn=x0+nh,当h0(同时n )时有yn y(xn),
则称该方法收敛。 稳定性定义 定义 用一个数值方法,求解微分方程初值问 题时,对给定的步长h>0,若在计算 y n 时引入 误差 (n 也称扰动),但由此引起计算后面的 ynk(k1,2, )时的误差按绝对值均不增加,则 称这个数值方法是稳定的。
一般的显式rk方法可以写成型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多其中为常数选取这些常数的原则是要求第一式的右端在处泰勒展开后按h型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多上述公式叫做n级的rungekutta方法其局部截断误差为显然euler法是一级一阶rk方法
CH常微方程数值解解析PPT课件
yn1 y0
yn
hf
(xn ,
yn )
与
注意: 这里yn , zn 分别是以 为 y0, z0 初值得到的精确值,毫无舍入误
zn1 z0
zn
hf
(xn ,
z差 值n ), 的因 稳此 定这 性里 ,稳 即定 研性究定初义值式误对差初在
计算过程中的传递问题。
计算所得之解 yn , zn 满足估计式
dy xex y dx y(0) 1
的数值解,并与精确解 y(x) 1 (x2 2)ex 比较。
2
误差的产生: (1)、计算格式本身不能准确描述原来的方程 (2)、计算机本身引入的误差
计算机输出的是欧拉方程的近似解 ,而~yn不是精确 解 。y因(xn此)
~yn y(xn ) ( yn y(xn )) (~yn yn ) (1.5)
在上式中分别用 yn 和 yn1 来代替 y(xn ) 和 y(xn1)
则得
yn1 yn hf (xn, yn )
一般而言,并不要求步长相等,则有
yn1 yn (xn1 xn ) f (xn , yn )
(1.4)
几何意义
y
y0
0
x0 x1 x2 x3
图1.2
y yx
xn x
例 1.1 h 0.1 以为步长,用欧拉法求初值问题
局部截断误差 en1 y(xn1) y*n1=Rn
这里
y*n1 y(xn ) hf (xn, y(xn ))
Th
整体截断误差 n1 y(xn1) yn1 即
xn+1
y(xn+1) yn1 y(xn) f (x, y(x))dx yn hf (xn, yn) (1.6)
常微分方程数值解法
第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。
在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。
(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。
(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。
定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。
收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。
则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。
第八章 常微分方程初值问题的解法
第八章常微分方程初值问题的解法在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术.8.1引言本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析.8.1.1 问题分类与可解性很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①:g(t,y,y′,⋯,y(k))=0 ,(8.1) 其中函数g: ℝk+2→ℝ. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法.在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题.如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式:y(k)=f(t,y,y′,⋯,y(k−1)) ,(8.2) 其中函数f: ℝk+1→ℝ. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程.通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),⋯,u k(t)=y(k−1), 则得到等价的一阶显式常微分方程组为:{u1′=u2u2′=u3⋯u k′=f(t,u1,u2,⋯,u k).(8.3)本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组.例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程:y′=y .[解] 采用分离变量法进行推导:①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.dy dt =y ⟹ dy y=dt , 对两边积分,得到原方程的解为:y (t )=c ∙e t ,其中c 为任意常数.从例8.1看出,仅根据常微分方程一般无法得到唯一的解. 要确定唯一解,还需在一些自变量点上给出未知函数的值,称为边界条件. 一种边界条件设置方法是给出t =t 0时未知函数的值:y (t 0)=y 0 .在合理的假定下,从t 0时刻对应的初始状态y 0开始,常微分方程决定了未知函数在t >t 0时的变化情况,也就是说这个边界条件可以确定常微分方程的唯一解(见定理8.1). 相应地,称y (t 0)=y 0为初始条件,而带初始条件的常微分方程问题:{y ′=f (t,y ),t ≥t 0y (t 0)=y 0 . (8.4)为初值问题(initial value problem, IVP ).定理8.1:若函数f (t,y )关于y 满足李普希兹(Lipschitz )条件,即存在常数L >0,使得对任意t ≥t 0,任意的y 与y ̂,有:|f (t,y )−f(t,y ̂)|≤L |y −y ̂| ,(8.5) 则常微分方程初值问题(8.4)存在唯一的解.一般情况下,定理8.1的条件总是满足的,因此常微分方程初值问题的解总是唯一存在的. 为了更清楚地理解这一点,考虑f (t,y )的偏导数ðf ðy 存在,则它在求解区域内可推出李普希兹条件(8.5),因为f (t,y )−f (t,y ̂)=ðf ðy (t,ξ)∙(y −y ̂) , 其中ξ为介于y 和y ̂之间的某个值. 设L 为|ðf ðy (t,ξ)|的上界,(8.5)式即得以满足.对公式(8.4)中的一阶常微分方程还可进一步分类. 若f (t,y )是关于y 的线性函数,f (t,y )=a (t )y +b (t ) ,(8.6) 其中a (t ),b (t )表示自变量为t 的两个一元函数,则对应的常微分方程为线性常微分方程,若b (t )≡0, 则为线性齐次常微分方程. 例8.1中的方程属于线性、齐次、常系数微分方程,这里的“常系数”是强调a (t )为常数函数.8.1.2 问题的敏感性对常微分方程初值问题,可分析它的敏感性,即考虑初值发生扰动对结果的影响. 注意这里的结果(解)是一个函数,而不是一个或多个值. 由于实际应用的需要,分析常微分方程初值问题的敏感性时主要关心t →∞时y (t )受影响的情况,并给出有关的定义. 此外,考虑到常微分方程的求解总与数值算法交织在一起、以及历史的原因,一般用“稳定”、“不稳定”等词汇说明问题的敏感性.定义8.1:对于常微分方程初值问题(8.4),考虑初值y 0的扰动使问题的解y (t )发生偏差的情形. 若t →∞时y (t )的偏差被控制在有界范围内,则称该初值问题是稳定的(stable ),否则该初值问题是不稳定的(unstable ). 特别地,若t →∞时y (t )的偏差收敛到零,则称该初值问题是渐进稳定的(asymptotically stable ).关于定义8.1,说明两点:● 渐进稳定是比稳定更强的结论,若一个问题是渐进稳定的,它必然是稳定的. ● 对于不稳定的常微分方程初值问题,初始数据的扰动将使t →∞时的结果误差无穷大. 因此为了保证数值求解的有效性,常微分方程初值问题具有稳定性是非常重要的.例8.2 (初值问题的稳定性): 考察如下“模型问题”的稳定性:{y ′=λy,t ≥t 0y (t 0)=y 0 . (8.7)[解] 易知此常微分方程的准确解为:y (t )=y 0e λ(t−t 0). 假设初值经过扰动后变为y 0+Δy 0,对应的扰动后解为y ̂(t )=(y 0+Δy 0)e λ(t−t 0),所以扰动带来的误差为Δy (t )=Δy 0e λ(t−t 0) .根据定义8.1,需考虑t →∞时Δy (t )的值,它取决于λ. 易知,若λ≤0,则原问题是稳定的,若λ>0,原问题不稳定. 而且当λ<0时,原问题渐进稳定.图8-1分三种情况显示了初值扰动对问题(8.7)的解的影响,从中可以看出不稳定、稳定、渐进稳定的不同含义.对例8.2中的模型问题,若考虑参数λ为一般的复数,则问题的稳定性取决于λ的实部,若Re(λ)≤0, 则问题是稳定的,否则不稳定. 例8.2的结论还可推广到线性、常系数常微分方程,即根据f (t,y )中y 的系数可确定初值问题的稳定性. 对于一般的线性常微分方程(8.6),由于方程中y 的系数为关于t 的函数,仅能分析t 取某个值时的局部稳定性.例8.3 (局部稳定性): 考察如下常微分方程初值问题的稳定性:{y ′=−10ty,t ≥0y (0)=1 . (8.8)[解] 此常微分方程为线性常微分方程,其中y 的系数为a (t )=−10t . 当t ≥0时,a (t )≤0,在定义域内每个时间点上该问题都是局部稳定的.事实上,方程(8.8)的解析为y (t )=e −5t 2,初值扰动Δy 0造成的结果误差为Δy (t )=Δy 0e −5t 2. 这说明初值问题(8.8)是稳定的.对于更一般的一阶常微分方程(8.4),由于其中f (t,y )可能是非线性函数,分析它的稳定性非常复杂. 一种方法是通过泰勒展开用一个线性常微分方程来近似它,再利用线性常微分方程稳定性分析的结论了解它的局部稳定性. 具体的说,在某个解函数y ∗(t)附近用一阶泰勒展开近似f (t,y ),f (t,y )≈f (t,y ∗)+ðf ðy(t,y ∗)∙(y −y ∗) 则原微分方程被局部近似为(用符号z 代替y ): 图8-1 (a) λ>0对应的不稳定问题, (b) λ=0对应的稳定问题, (c) λ<0对应的渐进稳定问题. (a) (b) (c)z′=ðfðy(t,y∗)∙(z−y∗)+f(t,y∗)这是关于未知函数z(t)的一阶线性常微分方程,可分析t取某个值时的局部稳定性. 因此,对于具体的y∗(t)和t的取值,常微分方程初值问题(8.4)的局部稳定性取决于ðfðy(t,y∗)的实部的正负号. 应注意的是,这样得到的关于稳定性的结论只是局部有效的.实际遇到的大多数常微分方程初值问题都是稳定的,因此在后面讨论数值解法时这常常是默认的条件.8.2简单的数值解法与有关概念大多数常微分方程都无法解析求解(尤其是常微分方程组),只能得到解的数值近似. 数值解与解析解有很大差别,它是解函数在离散点集上近似值的列表,因此求解常微分方程的数值方法也叫离散变量法. 本节先介绍最简单的常微分方程初值问题解法——欧拉法(Euler method),然后给出数值解法的稳定性和准确度的概念,最后介绍两种隐格式解法.8.2.1 欧拉法数值求解常微分方程初值问题,一般都是“步进式”的计算过程,即从t0开始依次算出离散自变量点上的函数近似值. 这些离散自变量点和对应的函数近似值记为:t0<t1<⋯<t n<t n+1<⋯y 0,y1,⋯y n,y n+1,⋯其中y0是根据初值条件已知的. 相邻自变量点的间距为 n=t n+1−t n, 称为步长.数值解法通常使用形如y n+1=G(y n+1,y n,y n−1,…,y n−k)(8.9) 的计算公式,其中G表示某个多元函数. 公式(8.9)是若干个相邻时间点上函数近似值满足的关系式,利用它以及较早时间点上函数近似值可算出y n+1. 若公式(8.9)中k=0,则对应的解法称为单步法(single-step method),其计算公式为:y n+1=G(y n+1,y n) .(8.10) 否则,称为多步法(multiple-step method). 另一方面,若函数G与y n+1无关,即:y n+1=G(y n,y n−1,…,y n−k),则称为显格式方法(explicit method),否则称为隐格式方法(implicit method). 显然,显格式方法的计算较简单,只需将已得到的函数近似值代入等号右边,则可算出y n+1.欧拉法是一种显格式单步法,对初值问题(8.4)其计算公式为:y n+1=y n+ n f(t n,y n) , n=0,1,2,⋯.(8.11) 它可根据数值微分的向前差分公式(第7.7节)导出. 由于y′=f(t,y),则y′(t n)=f(t n,y(t n))≈y(t n+1)−y(t n)n,得到近似公式y(t n+1)≈y(t n)+ n f(t n,y(t n)),将其中的函数值换为数值近似值,则得到欧拉法的递推计算公式(8.11). 还可以从数值积分的角度进行推导,由于y(t n+1)=y(t n)+∫y′(s)dst n+1t n =y(t n)+∫f(s,y(s))dst n+1t n,用左矩形公式近似计算其中的积分(矩形的高为s=t n时被积函数值),则有y(t n+1)≈y(t n)+ n f(t n,y(t n)) ,将其中的函数值换为数值近似值,便得到欧拉法的计算公式.例8.4 (欧拉法):用欧拉法求解初值问题{y ′=t −y +1y (0)=1. 求t =0.5时y (t )的值,计算中将步长分别固定为0.1和0.05.[解] 在本题中,f (t,y )=t −y +1, t 0=0, y 0=1, 则欧拉法计算公式为:y n+1=y n + (t n −y n +1) , n =0,1,2,⋯当步长h=0.1时,计算公式为y n+1=0.9y n +0.1t n +0.1; 当步长h=0.05时,计算公式为y n+1=0.95y n +0.05t n +0.05. 两种情况的计算结果列于表8-1中,同时也给出了准确解y (t )=t +e −t 的结果.表8-1 欧拉法计算例8.4的结果 h=0.1h=0.05 t ny n y (t n ) t n y n t n y n 0.11.000000 1.004837 0.05 1.000000 0.3 1.035092 0.21.010000 1.018731 0.1 1.002500 0.35 1.048337 0.31.029000 1.040818 0.15 1.007375 0.4 1.063420 0.41.056100 1.070320 0.2 1.014506 0.45 1.080249 0.5 1.090490 1.106531 0.25 1.023781 0.5 1.098737 从计算结果可以看出,步长取0.05时,计算的误差较小.在常微分方程初值问题的数值求解过程中,步长 n ,(n =0,1,2,⋯)的设置对计算的准确性和计算量都有影响. 一般地,步长越小计算结果越准确,但计算步数也越多(对于固定的计算区间右端点),因此总计算量就越大. 在实际的数值求解过程中,如何设置合适的步长达到准确度与效率的最佳平衡是很重要的一个问题.8.2.2数值解法的稳定性与准确度在使用数值方法求解初值问题时,还应考虑数值方法的稳定性. 实际的计算过程中都存在误差,若某一步的解函数近似值y n 存在误差,在后续递推计算过程中,它会如何传播呢?会不会恶性增长,以至于“淹没”准确解?通过数值方法的稳定性分析可以回答这些问题. 首先给出稳定性的定义.定义8.2:采用某个数值方法求解常微分方程初值问题(8.4),若在节点t n 上的函数近似值存在扰动δn ,由它引起的后续各节点上的误差δm (m >n )均不超过δn ,即|δm |≤|δn |,(m >n),则称该方法是稳定的.在大多数实际问题中,截断误差是常微分方程数值求解中的主要计算误差,因此我们忽略舍入误差. 此外,仅考虑稳定的常微分方程初值问题.考虑单步法的稳定性,需要分析扰动δn 对y n+1的影响,推导δn+1与δn 的关系式. 以欧拉法为例,先考虑模型问题(8.7),并且设Re(λ)≤0. 此时欧拉法的计算公式为②:y n+1=y n + λy n =(1+ λ)y n ,由y n 上的扰动δn 引起y n+1的误差为:δn+1=(1+ λ)δn ,要使δn+1的大小不超过δn ,则要求|1+ λ|≤1 . (8.12)② 对于稳定性分析以及后面的一些场合,由于只考虑一步的计算,将步长 n 记为 .。
常微分方程的数值解法2010
(11)
要使近似公式(8)的局部截断误差为O(h3),则应要求(10)和(11) 式前三项相同:
c1 c 2 1 c2a2 1 / 2 c 2 b 21 1 / 2
以上方程组有无穷多组解,如取c1=c2=1/2,a2=b21=1,近似公 式(8)即为改进的Euler公式:
常微分方程的数值解法
对一阶常微分方程的初值问题,其一般形式是
y f ( x, y ) y (a ) y0 a x b
(1)
在下面的讨论中,假定f(x,y)连续,且关于y满足李
普希兹(Lipschitz)条件,即存在常数L,使得
f ( x, y ) f ( x, y ) L y y
Y(I+1)=Y(I)+(F(X(I),Y(I))+F(X(I+1),Y(I)+H*F(X(I),Y(I))))*H/2
设 x i x 0 ih ( i 1, 2 ,3 , ); y i , z i 为节点上的近似解, 则有改进的Euler格式为
y i 1 y i hf ( x i , y i ) h f ( x i , y i ) f ( x i 1 , y i 1 ) y i 1 y i 2
则初值问题(1)的解必定存在且唯一。
常微分方程的数值解法
所谓数值解法,就是要求问题(1)的解在若干点:
a x 0 x 1 x n 1 x n b
处的近似值yi(i=0,1,2…n)的方法,yi称为问题(1)的数
值解。相邻两个节点的间距
h n x i 1 x i
(5 )
常微分方程初值问题的的数值解法
本章讨论常微分方程初值问题的数值解法
2
考虑一阶常微分方程的初值问题
⎧ dy ⎪ = f ( x, y ) ⎨ dx ⎪ ⎩ y (a ) = y0
x ∈ [a, b]
只要 f (x, y) 在[a, b] × R1 上连续,且关于 y 满足 Lipschitz 条 件,即存在与 x, y 无关的常数 L 使对任意x∈[a, b] ,和y1, y2 ∈ R1 都有 | f ( x, y1) − f ( x, y2 ) | ≤ L| y1 − y2 | 在唯一解。 成立, 则上述问题存
⎧ ⎪ ⎨ ⎪ ⎩ y n +1 = yn + hf ( xn , yn ), h yn +1 = yn + [ f ( xn , yn ) + f ( xn +1 , y n +1 )] 2
改进的Euler方法:y0=1,
y1=y0+hf (x0, y0) =1.1, y1=1+01./2 ×[(1−2 ×0/1)+(1.1−2 ×0.1/1.1)] =1.095909, …… y11=…… y11=1.737869.
1 yn +1 = yn + h[ f ( xn , yn ) + f ( xn +1 , yn +1 )] 2
12
称之为梯形公式。这是一个隐式的计算公式,欲求的yn+1需 解一个方程。
3.截断误差
定义 在假设 yn = y(xn),即第 n 步计算是精确的前提下,考 虑的截断误差 εn+1 = y(xn+1) − yn+1 称为局部截断误差
⎧ y n +1 = y n + k1 ⎨ ⎩k1 = hf ( xn ,y n )
《微分方程的数值解法maab四阶龙格—库塔法》PPT模板课件
k1 f (tn , yn )
k2
f (tn
1 2
h,
yn
h 2 k1)
k3
f (tn
1 2
h,
yn
h 2
k2
)
k 4 f (tn h , y n hk 3 )
四 阶 Runge-Kutta 法计算流程图
开始
h 初始条件:t
迭代次数:
;y
0
N
0
积分步长:
tn t0
for i = 1 : N
解析解: x x x1 3 2(((ttt))) 0 .0 8 1 1 2 P 8 k 0siw n t) (2 .6 3 0 3 3 P k 0siw n t) (0 .2 12 2 2 P k 0siw n t)(
第一个质量的位移响应时程
各种solver 解算指令的特点
解法指令 解题类 型
特点
ode45 非刚性 采用4、5阶Runge-Kutta法
适合场合 大多数场合的首选算法
ode23 非刚性 采用Adams算法
较低精度(10-3)场合
ode113 非刚性
ode23t ode15s
适度刚 性
刚性
ode23s 刚性 ode23tb 刚性
y2
(0)
(2.2) (2.3)
例:著名的Van der Pol方程
y (y21)y y0
令
y1y,y2y
Y
y y
1 2
降为一阶 Yyy12(y12y12)y2y1
初始条件
Y0
y1(0) y2(0)
y10 y20
3. 根据式(2.2)编写计算导数的M函数文件ODE文件
常微分方程数值解法
第八章 常微分方程数值解法教学目的 1. 掌握解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法;2. 掌握解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;3. 了解单步法的收敛性、相容性与稳定性;多步法的稳定性。
教学重点及难点 重点是解常微分方程的单步法:Euler 方法、Taylor 方法和Runge-Kutta 方法和解常微分方程的多步法:Adams 步法、Simpson 方法和Milne 方法等;难点是理解单步法的收敛性、相容性与稳定性及多步法的稳定性。
教学时数 20学时 教学过程§1基本概念1.1常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求函数b x a x y ≤≤),(,满足⎪⎩⎪⎨⎧=<<=)2.1()()1.1(),,(αa yb x a y x f dx dy其中),(y x f 是已知函数,α是已知值。
假设),(y x f 在区域},),{(+∞<≤≤=y b x a y x D 上满足条件: (1)),(y x f 在D 上连续; (2)),(y x f 在D 上关于变量y 满足Lipschitz 条件:2121),(),(y y L y x f y x f -≤-,21,,y y b x a ∀≤≤ (1.3)其中常数L 称为Lipschitz 常数。
我们简称条件(1)、(2)的基本条件。
由常微分方程的基本理论,我们有:定理1 当),(y x f 在D 上满足基本条件时,一阶常微分方程初值问题(1.1)、(1.2)对任意给定α存在唯一解)(x y 在],[b a 上连续可微。
定义1 方程(1.1)、(1.2)的解)(x y 称为适定的,若存在常数0>ε和0>K ,对任意满足条件εδ≤及εη≤∞)(x 的δ和)(x η,常微分方程初值问题⎪⎩⎪⎨⎧+=<<+=δηa a z b x a x z x f dx dz)(),(),((1.4)存在唯一解)(x z ,且}.{)()(δη+≤-∞∞K x z x y适定问题的解)(x y 连续依赖于(1.1)右端的),(y x f 和初值α。
《微分方程数值解法》PPT课件
方程的解 U~n 。为了弄清差分格式(2.58)的稳定性条件, 给出稳定的定义:
对于任意给定的 0 ,存在与h, k 无关且依赖于 的
正数 ,使当
U~0 U 0 V 0
时,对于任何的 n0 nk T ,差分格式得到的解U~ n ,U n
满足不等式
U~n U n V n
连同初值条件:U
0 m
mk
, m
1,2,M
1
边值条件:U
n 0
U
n M
0, n
0,1,2,, N
逐层解出结点处的U 值。
现在对
h
ห้องสมุดไป่ตู้
,取二种 20
k
,使
r
k h2
5 和5 11 9
。图2.9
和图2.10中的曲线表示不同的时刻微分方程的精确解,图
中“ ”表示差分方程的解
(2.54)
下面我们先研究上式右边第二项,即差分方程的理论
解与计算机上解得的近似解之间的差别是随着n 的增大而
无限增大还是有所控制。如果这种差别是无限增加,则称
差分格式不稳定,显然不稳定的格式是不能使用的,因为
误差的无限增加淹没了真解。上例中的r 5 时就是差分
9
方程不稳定的情况。从差分方程,比如格式(2.29)可知,
如果差分方程为显式,则对所有的n ,An I ;如 An I
果 An
0
,
U U
n1 CnU
0
n
An1en , Cn
An1Bn
(2.58)
,则隐式格式可以写成显式形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
都是一次的,则称它是线性的,否则称为非线性的。
在高等数学中,对于常微分方程的求解,给出 了一些典型方程求解析解的基本方法,如可分离变 量法、常系数齐次线性方程的解法、常系数非齐次 线性方程的解法等。但能求解的常微分方程仍然是 有限的,大多数的常微分方程是不可能给出解析解。 譬如
Euler法的求解过程是:从初
Pi+1 Pn y=y(x)
始点P0(即点(x0,y0))出发, 作积分曲线y=y(x)在P0点上
P1
P1 P0
Pi
Pn
Pi Pi+1
切线 P0 P1 (其斜率为
y(x0)f(x0,y0)),与x=x1直线
x0 x1
xi xi+1 xn
相交于P1点(即点(x1,y1),得到y1作为y(x1)的近似值,
选择不同的计算方法计算上式的积分项
xi1 xi
x0 x1
xi xi+1 xn
同样, 过点P1(x1,y1),作积分曲线y=y(x)的切线
交直线x=x2于P2点,切线 P1 P2 的斜率 y(x1) = f (x1, y1)
直线方程为
y y 1 f(x 1 ,y 1 )x ( x 1 )
当 x x2 时,得 y 2 y 1 f(x 1 ,y 1 )x 2 ( x 1 )
P1
P1 P0
Pi+1 Pn
Pi
Pi
Pi+1
y=y(x) Pn
x0 x1
xi
xi+1
xn
由此获得了P2的坐标。重复以上过程,就可获得一系
列的点:P1,P1,…,Pn。对已求得点 Pi(xi, yi)
以 y(xi)f(xi,yi)为斜率作直线 yyif(xi,yi)x(xi)
当 x xi1 时,得 y i 1 y i f(x i,y i)x i( 1 x i)
x i x 0 i,hi 1 ,2 , ,n 数值解法需要把连续性的问题加以离散化,从而求
出离散节点的数值解。
对常微分方程数值解法的基本出发点就是离散 化。其数值解法采用“步进式”,即求解过程顺着 节点排列的次序一步一步地向前推进。描述这类算 法,要求给出用已知信息 yi,yi1,yi2, ,y0来计 算 y i 1 的递推公式。建立这类递推公式的基本方法 是在这些节点上用数值积分、数值微分、泰勒展开 等离散化方法,对初值问题
y f (x, y) y(x0) y0
中的导数 y 进行不同的离散化处理。
对于初值问题 y f (x, y)
y(x0) y0
的数值解法,首先要解决的问题就是如何对微分方 程进行离散化,建立求数值解的递推公式。递推公 式通常有两类,一类是计算yi+1时只用到xi+1, xi 和yi, 即前一步的值,因此有了初值以后就可以逐步往下 计算,此类方法称为单步法;其代表是龙格—库塔 法。另一类是计算yi+1时,除用到xi+1,xi和yi以外, 还要用到 xip,yip(p1,2, ,k),即前面k步的值,此 类方法称为多步法;其代表是亚当斯法。
如上图所示。过点(x0,y0),以f(x0,y0)为斜率的切线
方程为
y y 0 f(x 0 ,y 0 )x ( x 0 )
当x x1时,得
y 1 y 0 f(x 0 ,y 0 )x ( 1 x 0 )
这样就获得了P1点的纵坐标。
P1
P1 P0
Pi+1 Pn
Pi Pi Pi+1
y=y(x) Pn
8.2 欧拉(Euler)法 8.2.1 Euler公式
欧拉(Euler)方法是解初值问题的最 简单的数值方法。初值问题
y f (x, y) y(x0) y0
的分方程的积分曲线。积分曲线上每一点 (x, y) 的切线的斜率 y(x) 等于函数 f (x, y) 在 这点的值。
f(x ,y 1)f(x ,y2)L y 1y2 对R内任意两个 y1, y2 都成立,则方程( 8.1.1 )的解 yy(x) 在a, b上存在且唯一。
对常微分方程初值问题(8.1.1)式的数值解法,就是 要算出精确解y(x)在区间a,b上的一系列离散节点 处的函a 数 值x 0 x 1 x n 1 x n b y(x0)y ,(x1) ,,y(xn)的近似值 y0,y1,,yn 。 相邻两个节点的间距 hxi1xi 称为步长,步 长可以相等,也可以不等。本章总是假定h为定数, 称为定步长,这时节点可表示为
P1
P1 P0
Pi+1 Pn
Pi
Pi
Pi+1
y=y(x) Pn
x0 x1
xi
xi+1
xn
这样,从x0逐个算出 x1,x2,xn
对应的数值解
y1, y2,yn
从图形上看,就获得了一条近似于曲线y=y(x)
的折线 P1P2P3Pn 。
通常取 xi1xi hi h(常数),则Euler法的计算格式
yyi01yy(xi 0)hf(xi,yi)
i=0,1,…,n
( 8.2.1 )
还可用数值微分、数值积分法和泰勒展开法推导
Euler格式。以数值积分为例进行推导。
将方程 yf(x,y)的两端在区间 xi ,xi1 上积分得,
xi1ydx xi1 f(x,y)dx
xi
xi
y (x i 1 ) y (x i) x x ii 1f(x ,y ) d y x (x i) x x ii 1fx ,y (x )dx (8.2.2)
yx2 y2
这个一阶微分方程就不能用初等函数及其积 分来表达它的解。
从实际问题当中归纳出来的微分方程,通常主要
依靠数值解法来解决。本章主要讨论一阶常微分方
程初值问题
y f (x, y) y(x0 ) y0
在区间a ≤ x ≤ b上的数值解法。
( 8.1.1 )
可以证明,如果函数 f (x, y)在带形区域 R={a≤x≤b, -∞<y<∞}内连续,且关于y满足李普希兹 (Lipschitz)条件,即存在常数L(它与x,y无关)使
第八章 常微分方程的数值解法
8.1 引言 包含自变量、未知函数及未知函数的导数或微
分的方程称为微分方程。在微分方程中, 自变量的 个数只有一个, 称为常微分方程.。自变量的个数 为两个或两个以上的微分方程叫偏微分方程。微分 方程中出现的未知函数最高阶导数的阶数称为微分 方程的阶数。如果未知函数y及其各阶导数