八年级数学竞赛讲座:第二讲 因式分解(二)

合集下载

人教版八年级数学培优和竞赛二合一-用提公因式法把多项式进行因式分解

人教版八年级数学培优和竞赛二合一-用提公因式法把多项式进行因式分解

人教版初二数学培优和竞赛二合一讲炼教程1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)(2)分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解:(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,,是在因式分解过程中常用的因式变换。

解:)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123分析:算式中每一项都含有,可以把它看成公因式提取出来,再算出结果。

解:原式)521456268123(13689873. 在多项式恒等变形中的应用例:不解方程组,求代数式的值。

分析:不要求解方程组,我们可以把和看成整体,它们的值分别是3和,观察代数式,发现每一项都含有,利用提公因式法把代数式恒等变形,化为含有和的式子,即可求出结果。

解:把和分别为3和带入上式,求得代数式的值是。

4. 在代数证明题中的应用例:证明:对于任意自然数n,一定是10的倍数。

分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。

对任意自然数n,和都是10的倍数。

一定是10的倍数5、中考点拨:例1。

贵州省贵阳市花溪二中八年级数学竞赛讲座 第二讲 分解方法的延拓 人教新课标版

贵州省贵阳市花溪二中八年级数学竞赛讲座 第二讲 分解方法的延拓 人教新课标版

第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法.把一个式子或一个式子的部分写成完全平方式或几个完全平方式的和的形式,这种方法叫配方法,配方法分解因式的关键是通过拆项或添项,将原多项式配上某些需要的项,以便得到完全平方式,然后在此基础上分解因式.对所给的数学问题,根据已知条件和要求,先设出问题的多项式表达形式(含待定的字母系数),然后利用已知条件,确定或消去所设待定系数,使问题获解的这种方法叫待定系数法,用待定系数法解题的一般步骤是:1.根据多项式次数关系,假设一个含待定系数的等式;2.利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;3.解方程组,求出待定系数,再代人所舌问题的结构中去,得到需求问题的解. 例题求解【例1】分解因式:344422-+--y y x x = .(2002年重庆市竞赛题)思路点拨 直接分组分解困难,由式子的特点易想到完全平方式,关键是将常数项拆成几个数的代数和,以便凑配.注:拆项即把代数式中的某顷拆成两项的和或差,添项即把代数式添上两个符号相反的项,通过拆添项,多项式增加了项数,从而可以用分组分解发分解.配方法与待定系数法是数学中重要的思想方法,不仅仅拘泥于分解因式,在后续的学习中如解高次方程、确定函数解析式、挖掘隐舍条件、讨论最值问题等方面有广泛的应用.【例2】如果823+++bx ax x 有两个因式x+1和x+2,则a+b =( ).A .7B .8C .15D .2l(2001年武汉市选拔赛试题)思路点拨 原多项式的第三个因式必是形如x+c 的一次两项式,故可考虑用待定系数法解.【例3】把下列各式分解因式:(1)1724+-x x ; (“祖冲之杯”邀请赛试题)(2)22412a ax x x -+++; (哈尔滨市竞赛题)(3)24222)1()1(2)1(y x y x y -++-+; (扬州市竞赛题)(4)1232234++++x x x x (河南省竞赛题)思路点拨 所给多项式,或有两项的平方和,或有两项的积的2倍,只需配上缺项,就能用配方法恰当分解.【例4】k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积? (天津市竞赛题)思路点拨 因k 为二次项系数,故不宜从二次项入手,而)2)(1(232++=++x x x x ,可得多项式必为)2)(1(++++ny x my x 的形式.【例5】 如果多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +、)(c x +的乘积(b 、c 为整数),则a 的值应为多少?(江苏省竞赛题)思路点拨 由待定系数法得到关于b 、c 、a 的方程组,通过消元、分解因式解不定方程,求出b 、c 、a 的值.学历训练1.(1)完成下列配方问题:[])()()()(212222++=+++=++x px x px x (江西省中考题)(2)分解因式:32422+++-b a b a 的结果是 .(郑州市竞赛题)2.若k x x x +-+3323有一个因式是x+1,则k = .3.若25)(222++-++y x a y xy x 是完全平方式,则a = .(2003年青岛市中考题)4.已知多项式6823222-+--+y x y xy x 可以i 分解为)2)(2(n y x m y x +-++的形式,那么1123-+n m 的值是 . ( “希望杯”邀请赛试题)5.已知052422=+-++b a b a ,则b a b a -+的值为( ) A .3 B . 31 C .3- D .31- 6.如果 a 、b 是整数,且12--x x 是123++bx ax 的因式.那么b 的值为( )A .-2B .-lC .0D .2(江苏省竞赛题)7.44+a d 分解因式的结果是( )A .)22)(22(22+--+a a a aB .)22)(22(22---+a a a aC .)22)(22(22--++a a a aD .)22)(22(22+-++a a a a(北京市竞赛题)8.把下列各式分解因式:(1)4416b a +; (2)4224y y x x ++;(3)2222)()1(x x x x ++++;(4)))((4)(2b a c b a c ----; (昆明市竞赛题)(5)893+-x x ; (“祖冲之杯”邀请赛试题)(6)65223--+x x x (重庆市竞赛题)9.已知522++x x 是b ax x ++24的一个因式,求b a +的值.(第15届“希望杯”邀请赛试题)10.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则a = . (第15届江苏省竞赛题)11.一个二次三项式的完全平方式是b ax x x x +++-23476,那么这个二次三项式是 .(重庆市竞赛题)12.已知014642222=+-+-++z y x z y x ,则2002)(z y x --= .(北京市竞赛题)13.已知n 为正整数,且19987444++n 是一个完全平方数,则n 的值为 .14.设m 、n 满足016102222=++++mn n m n m ,则),(n m =( )A .(2,2)或(-2,-2)B .(2,2)或(2,-2)C .(2,-2)或(-2,2)D .(-2,-2)或(-2,2)15.将145++x x 因式分解得( )A .)1)(1(32++++x x x xB .)1)(1(32+++-x x x xC .)1)(1(32+-+-x x x xD .)1)(1(32+-++x x x x16.若 a 、b 、c 、d 都是正数,则在以下命题中,错误的是( )A .若ca bc ab c b a ++=++222,则c b a ==B .若abc c b a 3222=++,则c b a ==C .若)(222224444d c b a d c b a +=+++,则d c b a ===D .若abcd d c b a 44444=+++,则d c b a ===17.把下列各式分解因式:(1)153143+-x x ; (2)444222222222c b a c b c a b a ---++;(3)15++x x ; (4)93523-++x x x ;(5)262234+---a a a a (2003年河南省竞赛题)18.已知关于x 、y 的二次式24435722-+-++y x my xy x 可分解为两个一次因式的乘积,求m 的值. (大原市竞赛题)19.证明恒等式:222444)(2)(b ab a b a b a ++=+++ (北京市竞赛题)20.一个自然数a 若恰好等于另一个自然数b 的平方,则称自然数a 为完全平方数.如64=82,64就是一个完全平方数,已知a =20012+20012× 20022十20022,求证:a 是一个完全平方数.(希望杯题)。

八年级数学竞赛讲座 因式分解的方法

八年级数学竞赛讲座 因式分解的方法

八年级数学竞赛讲座 因式分解的方法一、知识结构:1、因式分解的意义以及它与整式乘法的区别和联系;2、因式分解的方法:(1)提取公因式法:提的是系数的最大公约数和相同字母的最低次幂的积;(2)公式法:平方差公式;完全平方公式;立方和(差)公式;(3)十字相乘法:二次项系数为1和不为1两种;(4)分组分解法;(5)添折项、配方法、换元法、待定系数法等;3、因式分解的一般步骤及注意点:先看公因式;然后看项数;二项式:平方差及立方和(差);三项式:完全平方、十字相乘法;四项式及以上:分组分解法;注意每一个因式必须分解到不能再分解为止;二、典型例题:1、因式分解:(1)4121315242+-+---+-n n n n n n y x y x y x(2)24)25)(5(22----x x x x (3)8)43)(33(22-++-+x x x x(4)24)4)(3)(2)(1(-++++x x x x (5)2223)67)(65(x x x x x -++++2、因式分解:(1)))((4)(2b a c b a c ---- (2)3232)1(x x x x -+++(3)1)12()12(2223-+-++++a x a a x a x3、因式分解:(1)333)()()(cz ax cz by by ax ---+-(2)abc b a c c a b c b a 2)()()(222++++++(3)3333)(z y x z y x ---++(4)333)2()2()2(c b a b a c a c b -++-++-+(5)xyz z y x 68333---4、(1)把多项式8822622--+-+y x y xy x 因式分解;(2)多项式154723--+x bx ax 可被3x+1和2x -3整除,求a 、b 的值,并将该多项式因式分解;(3)证明具有如下性质的正整数a 有无穷多个:对于任意的正整数n ,a n +4都不是质数。

人教版八年级数学竞赛专题复习因式分解的常用方法(无答案)

人教版八年级数学竞赛专题复习因式分解的常用方法(无答案)

人教版八年级数学比赛专题复习因式分解的常用方法(无答案)因式分解的常用方法把一个多项式化成几个整式的积的形式,这类变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结以下:一、提公因式法.如多项式am bm cm m(a b c),此中m叫做这个多项式各项的公因式,m既能够是一个单项式,也能够是一个多项式.32【例1】分解因式x 2x x二、运用公式法.运用公式法,即用a2b2(ab)(ab),写出结果.a22ab b2(a2,b)a3b3(ab)(a2ab b2)【例2】分解因式a24ab4b22解:原式a2b三、分组分解法.(一)分组后能直接提公因式【例3】分解因式:aman bmbn剖析:从“整体”看,这个多项式的各项既没有公因式可提,也不可以运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,所以能够考虑将前两项分为一组,后两项分为一组先分解,而后再考虑两组之间的联系。

解:原式=(am an)(bm bn)=a(m n)b(m n)每组之间还有公因式!=(m n)(a b)1/14思虑:本题还能够如何分组?此种类分组的重点:分组后,每组内能够提公因式,且各组分解后,组与组之间又有公因式能够提。

【例4】分解因式:2ax10ay 5by bx解法一:第一、二项为一组解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=(2ax 10ay)(5bybx)原式=(2axbx)(10ay5by)=2a(x5y)b(x5y)=x(2a b)5y(2a b)=(x 5y)(2a b)=(2ab)(x5y)练习1:分解因式m25n mn5m解:原式m25mmn5n mm5 nm5mn m5(二)分组后能直接运用公式【例5】分解因式:x2y2ax ay剖析:若将第一、三项分为一组,第二、四项分为一组,固然能够提公因式,但提完后就能持续分解,所以只好此外分组。

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;=(x-5y+3)(x-3y-1) =(x-1)(x-y+3) (3)3x2-11xy+6y2-xz-4yz-2z2.=(3x-2y+2z)(x-3y-z)2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;=(x-3)(x^2+4x+2) =(x+2)(x-2)(x^2+3x+1)(3)4x4+4x3-9x2-x+2.=(x-1)(2x+1)(2x-1)(x+2)3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.= (2x-3y+4)(x+3y+5) =(x^2+3)(x^2+5x-3)。

八年级数学下册 第四章 因式分解 2 提公因式法第2课时 公因式为多项式的因式分解课件(新版)北师

八年级数学下册 第四章 因式分解 2 提公因式法第2课时 公因式为多项式的因式分解课件(新版)北师

用提公因式法分解因式的步骤: 第一步:找出公因式; 第二步:提取公因式 ; 第三步: 将多项式化成两个因式乘积的形式.
做一做
请在下列各式等号右边的括号前填入“+” 或“-”,使等式成立: (1)2-a = _-__(a-2); (2)y-x=__-_(x-y); (3)b+a =__+_(a+b); (4)(b-a)2=__+_(a-b)2; (5)-m-n=_-__(m+n);(6)-s2+t2=_-__(s2-t2).
解:原式 = a(a-b)3 + 2a2(a-b)2 - 2ab(a-b)2 = a(a-b)2 [(a-b) + 2a - 2b] = a(a-b)2(3a-3b) = 3a(a-b)3
4.已知 x、y 都是正整数,且x(x-y) - y(y-x)=12,
求 x、y. 解:∵x(x-y) - y(y-x) =12 ∴(x-y)(x+y) =12
解:(1)a(x - 3) + 2b(x - 3) = (x - 3)(a + 2b);
(2)y(x + 1) + y2(x + 1)2 = y(x + 1) [1 + y(x + 1) ] = y(x + 1)(xy + y + 1).
例3 把下列各式因式分解: (1)a(x - y) + b(y - x); (2)6(m - n)2 - 12(n - m)2 .
解:a2b - ab2 + 4ab = ab(a-b+4). 将 a-b = 5,ab = 6代入计算, 则原式 = 6×(5+4)=54.

初中八年级数学竞赛培优讲义全套专题04 和差化积——因式分解的方法(2)答案[精品]

初中八年级数学竞赛培优讲义全套专题04 和差化积——因式分解的方法(2)答案[精品]

专题04 和差化积-------因式分解的方法(2)例1. A 提示 将原式重新整理成关于x 的二次三项式例2. (1) (23)()a b c a b c ++++ 提示 原式222(34)(352)a b c a c bc b =+++++(2) 2()(2)x y x z -- 提示 原式2232(2)(24)(2)x z y xz x y x x z =-+-+-例3. 原式223222(1)(22)(1)(1)(2(1)(1)(1)x a x x a x x x x a x x a x x =+++++--=+++++-22(1)(21)(1)(1)(1)x a ax x x x a x a =+++-=++++-例4. 12k = 提示 222(2)()x xy y x y x y +-=+- ∴可设原式(22)()x y x y n =++-+展开比较对应项系数得28,2210,2,n n k n +=⎧⎪-=⎨⎪=⎩解得=12.例5 原式=()2221x x -+. 例6 设2-(a +5)+5a -1=(+b )(+c )=2+(b +c )+bc .∴()5,5 1.b c a bc a +=-+⎧⎪⎨=-⎪⎩①② ①×5+2得bc +5(b +c )=-26,bc +5(b +c )+25=-1,(b +5)(c +5)=-1.∴51,51b c +=⎧⎨+=-⎩或51,5 1.b c +=-⎧⎨+=⎩ ∴4,6b c =-⎧⎨=-⎩或6,4.b c =-⎧⎨=-⎩故a =5. A 级1.(3a +2b -c )(3a -2b +c )2.(+3y )(+2y +1)3.(+y +1)(-y +3)4.-185.C6.D7.D8.D9.(1)(2a +b )(a -b +c );(2)(a +c -2b )2;(3)(-2)(2-+a );(4)(-2y +3)(2-3y -4);(5)(+1)(y +1)(-1)(y -1).10.提示:由题意得4,4 1.b c abc a+=--⎧⎨=-⎩①②①×4+②,得(b+4)(c+4)=-1,推得3,5bc=-⎧⎨=-⎩或5,3,bc=-⎧⎨=-⎩故a=4.11.∵2-3y-4y=(+y)(-4y),∴可设原式=(+y+m)(-4y+n),展开比较对应项系数得b=-6或9.B级1.=-52.-2 提示:原式=(2+3-)-2y(+2),令=-2.3.5提示:令原式=(-y+4)·A,取一组,y的值代入上式.4.-35.C 提示:=-1,=-2是方程3+a2+b+8=0的解.6.C 提示:原式=(-2y)2+(2+3)2+167.A 提示:原式=2(-2y)2+(-2)2+(y+3)2≥0,且这三个数不能同时为零,M>0.8.C9.=-3 提示:因2+3+2=(+1)(+2),故可令原式=(+my+1)·(十ny+2),展开比较对应项系数求出.10.提示:左边=(a2+b2)2-2a2b2+(a2+b2+2ab)2=(a2+b2)2-2a2b2+(a2+b2)2+4ab(a2+b2)+4a2b2=2(a2+b2)+4ab(a2+b2)+2a2b2=2(a2+b2+ab)2=右边.11.将原等式展开2+(a+b+c)+ab-l0c=2-10-11.∴10,1011.a b cab c++=-⎧⎨-=-⎩①②①×10+②得ab+10a+10b=-111.∴(a+10)(b+10)=-11.∴101,1011.ab+=⎧⎨+=-⎩或101,1011.ab+=-⎧⎨+=-⎩或1011,10 1.ab+=⎧⎨+=-⎩或1011,10 1.ab+=-⎧⎨+=⎩∴9,21ab=-⎧⎨=-⎩或11,1ab=-⎧⎨=⎩或1,11ab=⎧⎨=-⎩或21,9.ab=-⎧⎨=-⎩代入①得c=0或20.12.原式=(5+34y)-(53y+152y3)+(4y4+12y5)=4(+3y)-52y2(+3y)+4y4(+3y)=(+3y)(4-52y2+4y2)=(+3y)(2-4y2)=(+3y)(+y)(-y)(+2y)(-2y).当y=0时,原式=5≠33;当y≠0时,+3y,-y,-2y,+2y,+y互不相同,而33不可能分解为4个以上不同因数的积,所以,当取任意整数,y取不为0的任意整数,原式≠33.。

八年级数学竞赛例题和差化积--因式分解的方法(2)专题讲解

八年级数学竞赛例题和差化积--因式分解的方法(2)专题讲解

八年级数学竞赛例题和差化积--因式分解的方法(2)专题讲解专题04和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l】因式分解后的结果是().A.B.C.D.(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1);(“希望杯”邀请赛试题)(2).(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式.(“希望杯”邀请赛试题)解题思路:因的最高次数低于的最高次数,故将原式整理成字母的二次三项式.【例4】为何值时,多项式有一个因式是(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是,因此二次三项式的一般形式为,求出即可.【例6】如果多项式能分解成两个一次因式,的乘积(为整数),则的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于的方程组,通过消元、分解因式解不定方程,求出的值.能力训练A级1.分解因式:=___________________________.(“希望杯”邀请赛试题)2.分解因式:=_______________________(河南省竞赛试题)3.分解因式:=____________________________.(重庆市竞赛试题)4.多项式的最小值为____________________.(江苏省竞赛试题)5.把多项式分解因式的结果是()A.B.C.D.6.已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数是().A.3个B.4个C.5个D.6个7.若被除后余3,则的值为().A.2B.4C.9D.10(“CASIO杯”选拔赛试题)8.若,,则的值是().A.B.C.D.0(大连市“育英杯”竞赛试题)9.分解因式:(1);(吉林省竞赛试题)(2);(昆明市竞赛试题)(3);(天津市竞赛试题)(4);(四川省联赛试题)(5)(天津市竞赛试题)10.如果能够分割成两个多项式和的乘积(为整数),那么应为多少?(兰州市竞赛试题)11.已知代数式能分解为关于的一次式乘积,求的值.(浙江省竞赛试题)B级1.若有一个因式是,则=_______________.(“希望杯”邀请赛试题)2.设可分解为一次与二次因式的乘积,则=_____________.(“五羊杯”竞赛试题)3.已知是的一个因式,则=________________________.(“祖冲之杯”邀请赛试题)4.多项式的一个因式是,则的值为__________.(北京市竞赛试题)5.若有两个因式和,则=().A.8B.7C.15D.21E.22(美国犹他州竞赛试题)6.多项式的最小值为().A.4B.5C.16D.25(“五羊杯”竞赛试题)7.若(为实数),则M的值一定是().A.正数B.负数C.零D.整数(“CASIO杯”全国初中数学竞赛试题)8.设满足,则=()A.(2,2)或(-2,-2)B.(2,2)或(2,-2)C.(2,-2)或(-2,2)D.(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.为何值时,多项式能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:.(北京市竞赛试题)11.已知整数,使等式对任意的均成立,求的值.(山东省竞赛试题)12.证明:对任何整数,下列的值都不会等于33.(莫斯科市奥林匹克试题)。

初中数学竞赛1.5 因式分解的应用(含答案)

初中数学竞赛1.5 因式分解的应用(含答案)

1.5 因式分解的应用◆赛点归纳因式分解在初中数学竞赛中,用途很广泛,具体来说用得较多的有如下几个方面:(1)利用因式分解简化计算;(2)利用因式分解求较复杂的代数式的值;(3)利用因式分解确定多项式中的某些相关的待定系数;(4)利用因式分解解决某些数的整除问题;(5)利用因式分解解某些特殊的方程或方程组等问题.◆解题指导例1化简:222 2000199819971997 19982000199820014+--⨯-.【思路探究】本题直接计算比较复杂,由于分子和分母都有平方与差的关系,由此可联想到运用因式分解方法简化计算.例2 (2001,“五羊杯”,初二)若(x-1)(y+1)=3,xy(x-y)=4,则x7-y7=_______.【思路探究】由(x-1)(y+1)=3,知xy+(x-y)=4,经观察可知,两个条件等式都含有xy和x-y的关系式.若设xy=u,x-y=v,则u+v=4,uv=4,于是有u(4-u)=4,经过变形知它符合完全平方公式,即(u-2)2=0,故可知u=2,v=2,即xy=2,x-y=2.至此,将x7-y7分解成和xy和x-y相关的因式就不难求值.【思维误区】有位同学这样解答例2,你认为对吗?解:∵(x-1)(y+1)=3,∴xy+(x-y)=4.设xy=u,x-y=v,则u+v=4.①uv=4.②由①、②,得u2-4u+4=0.∴(u-2)2=0.∴u=2.∴v=2.∴x2+y2=(x-y)2+2xy=22+2×2=8,x3-y3=(x-y)(x2+xy+y2)=2(8+2)=20,x4+y4=(x2+y2)2-2x2y2=82-2×22=56.∴x7-y7=(x4+y4)(x3-y3)=56×20=1120.例3 (2004,“TRULY○R信利杯”)已知实数a、b、x、y满足a+b=x+y=•2,•ax+by=5,则(a2+b2)xy+ab(x2+y2)的值为________.【思路探究】求待求式的值,由条件等式可知,需将待求式进行合理变形,使它含有因式ax+by.这里用多项式分解因式的方法是可以达到的.例4 (2001,北京市竞赛)证明恒等式:a4+b4+(a+b)4=2(a2+ab+b2)2.【思路探究】若能证明a4+b4+(a+b)4-2(a2+ab+b2)2的值为零,则可说明左右相等.•由观察可知,这个“差式”具有平方差公式的特征.因此,可先设法利用平方差公式分解因式,然后证明其中某个因式为零.例5 (2002,太原市竞赛)已知a、b、c为△ABC的三条边,且满足a2+ab-ac-bc=0,b2+bc-ba-ca=0,则△ABC是().A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形【思路探究】要判断这个三角形的形状,由条件等式要么证明三边的平方关系,要么证明三边有两边或三边相等关系.这由条件等式分解因式就可判断.例6 (2000,“五羊杯”,初二)设自然数N是完全平方数,N至少是3位数,它的末2位数字不是00,且去掉此2•位数字后,•剩下的数还是完全平方数.•则N•的最大值是_______.【思路探究】由N是完全平方数和去掉它的末两位数仍是完全平方数,可知这个数是一个特殊数.若设N=x2,去掉的末两位数为y,去后所得的整数M=m2,•则可得它们之间的关系式x2=100m2+y,故y=x2-100m2.利用平方差公式可得两个关于x的一次式.再根据题设不难探求N 的最大值.【拓展题】已知多项式x 3+bx 2+cx+d 的系数都是整数,bd+cd 是奇数,求证这个多项式不能分解为两个整系数多项式的积.◆探索研讨因式分解是初中数学的常用解题方法,加之解法比较多,因此,对于它在不同的方面的应用应选择不同的思维方式,有时要整体分解因式,有时要部分分解因式.请结合本节的例题,总结自己的发现.◆能力训练1.已知四个代数式:①m+n ;②m -n ;③2m+n ;④2m -n ,当用2m 2n 乘以上述四个式中的两个的积时,便得到多项式4m 4n -2m 3n 2-2m 2n 3,那么这两个式子的编号是( ).A .①与②B .①与③C .②与③D .③与④2.(2005,全国竞赛)已知A=48×(22211134441004+++---).则与A 最接近的正整数是( ).A .18B .20C .24D .253.*若3x 3-x=1,则9x 4+12x 3-3x 2-7x+2002的值等于( ).A .2002B .2004C .2005D .20064.已知三个整数a 、b 、c 的和为奇数,那么,a 2+b 2-c 2+2ab ( ).A .一定是非零偶数B .等于零C .一定是奇数D .可能是奇数,也可能是偶数5.关于x 、y 的方程x 2y=180的正整数解有( ).A .1组B .2组C .3组D .4组6.方程2x 2-3xy -2y 2=98的正整数解有( ).A .3组B .2组C .1组D .0组7.(2001,全国竞赛)若x 2+xy+y=14,y 2+xy+x=28,则x+y 的值为______.8.*设m 2+m -1=0,则m 3+2m 2+2005=________.9.若x 3+3x 2-3x+k 有一个因式是x+1,则k=______.10.(2000,“五羊杯”,初二)若x-y=1,x3-y3=4,则x13-y13=______.11.(2003,四川省竞赛)对一切大于2的正整数n,•数n5-5n3+4n的最大公约数是________.12.设x3+3x2-2xy-kx-4y可分解为一次与二次因式之积,则k=________.13.*若a=20052+20062+20052·20062,求证:a是一个完全平方数.14.某校在向“希望工程”捐款活动中,甲班的m个男生和11•个女生的捐款总数与乙班的9个男生和n个女生的捐款总数相等,都是(mn+9m+11n+145)元,•已知每人的捐款数相同,且都是整数,求每人的捐款数.15.已知A=a+2b+3c+4d=3,B=a-2b+4c+5d=2,试求a+10b+c+2d的值.16.(2000,武汉市竞赛)如果一个自然数的立方的末三位数字为999,则称这样的自然数为“千禧数”,试求最小的“千禧数”.答案:解题指导例1 设1998=x,则原式=2222(54)(32)(1)(4)(1)(2) (2)(34)(1)(2)(1)(4)x x x x x x x xx x x x x x x x++-+++--=--+-+--+=1.例2 1136.[提示:设xy=u,x-y=v,则u+v=4,uv=4,从而可得(u-2)2=0,即u=2.∴v=2.于是x2+y2=(x-y)2+2xy=22+2×2=8,x3-y3=(x-y)(x2+xy+y2)=2(8+2)=20,x4+y4=(x2+y2)2-2x2y2=82-2×22=56.∴x7-y7=(x4+y4)(x3-y3)+x3y3(x-y)=56·20+23·2=1136.]例3 -5.[提示:由a+b=x+y=2,得(a+b)(x+y)=ax+by+ay+bx=4.①∵ax+by=5,将它代入①式,得ay+bx=-1.∴(a2+b2)xy+ab(x2+y2)=(a2xy+aby2)+(b2xy+abx2)=ay(ax+by)+bx(by+ax)=(ax+by)(ay+bx)=5×(-1)=-5.]例4 ∵a4+b4+(a+b)4-2(a2+ab+b2)=(a2+b2)2-2a2b2+(a2+2ab+b2)2-2(a2+ab+b2)2=[(a2+b2)2-(a2+ab+b2)2]+[(a2+2ab+b2)2]-(a2+ab+b2)2]-2a2b2=(2a2+2b2+ab)(-ab)+(2a2+3ab+2b2)·ab-2a2b2=ab(-2a2-2b2-ab+2a2+3ab+2b2-2ab)=0,∴a4+b4+(a+b)4=2(a2+ab+b2)2.你还能给出别的证法吗?不妨试一试.例5 C [提示:由a2+ab-ac-bc=0,得a(a+b)-c(a+b)=0,∴(a+b)(a-c)=0,∴a=c,a=-b (舍去).由b2+bc-ba-ca=0,得b(b+c)-a(b+c)=0,∴(b+c)(b-a)=0,∴b=a,b=-c(舍去).∴a=b=c,∴△ABC是等边三角形.]例6 1681.[提示:设N=x2,x为自然数,N的末2位数字组成整数y,去掉此2•位数字后得到整数M,M=m2,m为自然数,则1≤y≤99.∴x2=100m2+y.∴y=x2-100m2=(x+10m)(x-10m).令x+10m=a,x-10m=b,则b≥1,m≥1.x=10m+b≥11,a=x+10m≥21.若m≥4,则x=10m+b≥41,a=x+10m≥81,唯有b=1,m=4,x=41,a=81,y=81,M=16,N=1681.显然当m≤3时,x≤40,故N=1681为所求的最大值.]【拓展题】假设x3+bx2+cx+d=(x+p)(x2+qx+r),其中p、q、r均为整数.令x=0,得pr=d,由bd+cd=(b+c)d为奇数知,b+c与d•均为奇数,从而p、r也都是奇数,再取x=1.由假设有1+(b+c)+d=(1+p)·(1+q+r).左边是3个奇数之和,必为奇数;右边的因式(1+p)为偶数,从而(1+p)(1+q+r)必为偶数,显然奇数不等于偶数,所以假设不成立,故原式不能分解成两个整系数多项式的积.能力训练1.C [提示:对多项式做因式分解:原式=2m2n(2m2-mn-n2)=2m2n(2m+n)(m-n).]2.D [提示:对于正整数n(n≥3),有21111(),442211111148[(1)()]429856102111111112(1)2349910010110211112512().9910010110211114112()12,99100101102992n n n A =---+=⨯+++-+++=+++----=-++++++<⨯<则 ∴与A 最接近的正整数为25.]3.D [提示:由3x 3-x=1,得3x 3=x+1,∴3x 4=x (3x 3)=x (x+1)=x 2+x .∴原式=3·3x 4+4·3x 3-3x 2-7x+2002=3(x 2+x )+4(x+1)-3x 2-7x+2002=3x 2+3x+4x+4-3x 2-7x+2002=4+2002=2006.]4.C [提示:a 2+b 2-c 2+2ab=(a+b )2-c 2=(a+b+c )(a+b -c ).∵a+b+c 为奇数,∴a 、b 、c 三数中可能有一个奇数、两个偶数,或者三个都是奇数. 当a 、b 、c 中有一个奇数、两个偶数时,则a+b -c 为奇数;当a 、b 、c 中三个都是奇数时,也有a+b -c 为奇数.∴(a+b+c )(a+b -c )是奇数.]5.D [提示:∵180=1×22×32×5,又x 2y=180.∴x 2y=1×22×32×5,且x 、y 为正整数/∴12,3,6,1804520 5.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩或或或 故共有四组正整数解.]6.C [提示:∵(x -2y )(2x+y )=98,x 、y 是正整数,∴x>2y ,且2x+y>x -2y .∴方程可能的解只有以下情形:21,22,27,298;249;214.x y x y x y x y x y x y -=-=-=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩ 其中只有第二种情形有解x=20,y=9.]7.6或-7. [提示:把两个已知等式相加,得(x+y )2+(x+y )=42,即(x+y )2+(x+y )-42=0.∴(x+y -6)(x+y+y )=0.∴x+y=6或x+y=-7.]8.2006. [提示:原式=m 3+m 2-m+m 2+m -1+2006=m (m 2+m -1)+(m 2+m -1)+2006=(m 2+m -1)(m+1)+2006.∵m 2+m -1=0,∴原式=2006.]9.-5. [提示:∵x 3+3x 2-3x+k 有一个因式是x+1,∴x 3+3x 2-3x+k=x 3+x 2+2x 2+2x -5x -5+5+k=x 2(x+1)+2x (x+1)-5(x+1)+(k+5)=(x+1)(x 2+2x -5)+(k+5).∴当k+5=0,即k=-5时,原多项式有一个因式是x+1.]10.521. [提示:由x 3-y 3=(x -y )(x 2+xy+y 2)=4和x -y=1,可得x 2+xy+y 2=4; 由(x -y )2=x 2-2xy+y 2=1,可得xy=1.又x 6+y 6=(x 3-y 3)2+2x 3y 3)=42+2×13=18,x 4+y 4=(x 2+y 2)2-2x 2y 2=(1+2×1)2-2×12=7,x 7-y 7=(x 4+y 4)(x 3-y 3)+x 3y 3(x -y )=7×4+1×1=29.从而x 13-y 13=(x 7-y 7)(x 6+y 6)-x 6y 6(x -y )=29×18-16×1=522-1=521.] 11.120. [提示:n 5-5n 3+4n=(n -2)(n -1)n (n+1)(n+2).对于大于2的任何正整数n,数n5-5n3+4n都含有公约数1×2×3×4×5=120.故这些数的最大公约数是120.]12.-2.[提示:x3+3x2-2xy-kx-4y=(x3+3x2-kx)-(2xy+4y)=x(x2+3x-k)-2y(x+2).欲使此式可分解,则x2+3x-k应含因式x+2.将x=-2代入得(-2)+3(-2)-k=0,即-2-k=0,故k=-2.]13.∵a=20052+20062+20052·20062=(2005·2006)2+20052-1+20062+1=(2005·2006)2+(2005+1)(2005-1)+20062+1=(2005·2006)2+2006·2004+20062+1=(2005·2006)2+2006(2004+2006)+1=(2005·2006)2+2×2005·2006+1=(2005·2006+1)2.∴a是一个完全平方数.14.mn+9m+11n+145=(m+11)(n+9)+46,由已知m+11│(mn+9m+11n+145),(n+9)│(mn+9m+11n+145),m+11=n+9,得(m+11)│46,(n+9)│46.∵46=46×1=23×2,∴m+11=n+9=46,或m+11=n+9=23.由此可得,每人捐款数为47元或25元.15.设a+10b+c+2d=mA+mB=(m+n)a+(2m-2n)b+(3m+4n)c+(4m+5n)d.则m+n=1,2m-2n=10,3m+4n=1,4m+5n=2.解得m=3,n=-2.故a+10b+c+2d=3A-2B=3×3-2×2=5.16.设“千禧数”为x,则x3=1000k+999(k为自然数).∴x3+1=1000(k+1),即(x+1)(x2-x+1)=1000(k+1).∵x2-x+1=x(x-1)+1为奇数,可设x+1=8m(m为自然数),∴m(x2-x+1)=125(k+1).下面证明5(x2-x+1).若5│x,显然5(x2-x+1),若5トx,设x=5n+p(1≤p≤4).当p=1时,x2-x+1=5n1+1;当p=2时,x2-x+1=5n2+3;当p=3时,x2-x+1=5n3+2;当p=4时,x2-x+1=5n4+3.综上所述5 ト(x2-x+1).∴x+1=1000t,为使x最小,应取t=1,∴x=999.经验证得999是“千禧数”.故最小的“千禧数”是999.。

八年级数学专题讲解含练习(奥数)

八年级数学专题讲解含练习(奥数)

八年级数学(奥数)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)。

初二级竞赛专题因式分解_2

初二级竞赛专题因式分解_2

于x的二次三项式
常数项可分解为-(3y-4)(3y+5),用待定系数法,
可设2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)]
[nx+(3y+5)] 比较左、右两边的x2和x项的系数,得m=2, n=1 ∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y
二、因式分解的一般方法及考虑顺序
1、基本方法:提公因式法、公式法、十字相乘法、分组分解法;
2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、
待定系数法。
3、考虑顺序:(1)提公因式法;(2)十字相乘法;(3)公式
法;(4)分组分解法;(5)其它常用方法与技巧(简单概括
为:提十公分)。
三、例题
+5)
四、填空题
1、两个小朋友的年龄分别为a和b,已知a2+ab=99,则a= ,
b= 。 2、计算:(x+6)2(x-6)2= 3、若x+y=4,x2+y2=10,则(x-y)2= 4、分解因式:a2-b2+4a+2b+3=
。 。

5、分解因式:4x3-31x+15=

6、分解因式:x4+1987x2+1986x+1987=
x4+4
11、
12、x4-23x2y2+y4
13、x3+4x2-9
14、x3-41x+30
15、x3+5x2-18
16、x3+3x2y+3xy2+2y3
17、x3-3x2+3x+7
18、x3-9ax2+27a2x-26a3 +6
19、x3+6x2+11x
20、a3+b3+3(a2+b2)+3(a+b)+2
21、3x3-7x+10 -21
22、x3-11x2+31x

八年级数学因式分解2(中学课件201908)

八年级数学因式分解2(中学课件201908)
因式分解—— 提公因式法
比一比,看谁算得快
• (1)已知:x=5,a-b=3,求 ax2-bx2的值。
• (2)已知:a=101,b=99,求a2b2的值.
• 你能说说算得快的原因吗?; 棋牌游戏 https:/// 棋牌游戏 ;
皆自山出 晋以一八赐魏绛 七年十一月癸亥 今居内於东 荧惑犯进肾 车服各顺方色 殷荐之上帝 一曰 我徂我征 日去极稍远 占曰 堕地 休又专任张布 衡阳 祸福无形 八月 《咸熙舞》者 视之不明 魏地 成都风雹杀人 昊 占曰 初八年 於是杨彪 是时庾亮苟违众谋 笙镛以间 庶羞不逾牲 或用己 太常孔汪议 百姓获乂 帝恶之 可依礼更处 占曰 至公之美 此后国仍有大丧 不访德行 以备胡贼 设礼外之观 占并同上 六月辛巳 岁星犯井钺 是追计辛未岁十月 以路鼓致鬼享 以帝喾配 孔甲曰 《春秋》星孛於东方 以始祖帝舜配 群下窃相谓曰 咸和八年七月 彗星见卷舌 於义为黩 五马立歭躇 是年夏 因蚀 唯十有二间 庶民惟星 时阉官用事 神策庙算 羌贼攻洛阳 《书》云 积德垂仁 策曰 又格於文祖 此之谓也 一用夏正 七月 四庙在上 太白三星聚於毕昴 而愆堕稽停 非若殷 思念公子徒以忧 太白皆入羽林 有得者能卒 闰月乙亥 大酋奉甘醪 高祖尽诛桓氏 先代之典 一曰 为魏高祖 武帝词 尚书令谢石意同忱议 太白犯轩辕大星 有声如雷 遂更营建 九月 五年 从辰巳上东南行 其月 后年 不许 敕吏正狱 光武无废於二京也 初齐王冏定京都 今曹操阻兵安忍 君执圭瓒稞尸 李雄称制於蜀 通天薄云 日去极稍近 犯心明堂星 三嗣主终吴世不郊祀 而王室频乱 鲜卑侵略河 大臣为 乱 并告太庙 何以尚今 朕遭家多难 大臣有反者 人主忧 入子万姓 文帝崩 在斗 月在东壁 十二月辛丑 知命复何忧 臣闻德盛而化隆者 武皇帝庙乐未称 八月 辟四空 各帅众戍卫 太安二年 占曰 子亮代立 以金铎通

人教版数学八级培优和竞赛教程2、运用公式法进行因式分解.docx

人教版数学八级培优和竞赛教程2、运用公式法进行因式分解.docx

2、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

主要有:平方差公式 a 2 b 2(a b)(a b)完全平方公式a22ab b2(a b)2立方和、立方差公式 a 3b3(a b)( a2ab b2 )补充:欧拉公式:a3 b 3c33abc( a b c)(a 2b2c2ab bc ca)1(a b c)[( a b) 2(b c) 2(c a) 2 ]2特别地:( 1)当a b c0 时,有 a 3b3c33abc( 2)当c0 时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。

但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。

因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

下面我们就来学习用公式法进行因式分解【分类解析】1. 把a22a b22b 分解因式的结果是()A.(a b)(a 2)(b2)B.( a b)(a b2)C. (a b)(a b)2D. ( a22b)(b 22a)分析: a 22a b 22b a 22a1b22b1(a1)2(b 1) 2。

再利用平方差公式进行分解,最后得到( a b)(a b2) ,故选择B。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。

同时要注意分解一定要彻底。

2.在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式 2x3x 2m 有一个因式是 2 x 1,求 m的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出 m的值。

解:根据已知条件,设 2 x3x2m (2 x1)( x 2ax b)则 2 x3x 2m 2 x3(2a 1) x2(a 2b) x b 2a11(1)由此可得a2b0(2)m b(3)由( 1)得a1把 a1代入( 2),得b 1 2把 b 1代入( 3),得m1 223.在几何题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲因式分解(二)
1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式
(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解
所以
原式=[x+(2y-3)][2x+(-11y+1)]
=(x+2y-3)(2x-11y+1).
上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:
它表示的是下面三个关系式:
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3.
这就是所谓的双十字相乘法.
用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:
(1)x2-3xy-10y2+x+9y-2;
(2)x2-y2+5x+3y+4;
(3)xy+y2+x-y-2;
(4)6x2-7xy-3y2-xz+7yz-2z2.
解 (1)
原式=(x-5y+2)(x+2y-1).
(2)
原式=(x+y+1)(x-y+4).
(3)原式中缺x2项,可把这一项的系数看成0来分解.
原式=(y+1)(x+y-2).
(4)
原式=(2x-3y+z)(3x+y-2z).
说明 (4)中有三个字母,解法仍与前面的类似.
2.求根法
我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
定理2
的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.
我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.
例2 分解因式:x3-4x2+6x-4.
分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4
的约数:±1,±2,±4,只有
f(2)=23-4×22+6×2-4=0,
即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.
解法1 用分组分解法,使每组都有因式(x-2).
原式=(x3-2x2)-(2x2-4x)+(2x-4)
=x2(x-2)-2x(x-2)+2(x-2)
=(x-2)(x2-2x+2).
解法2 用多项式除法,将原式除以(x-2),
所以
原式=(x-2)(x2-2x+2).
说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.
分析因为9的约数有±1,±3,±9;-2的约数有±1,
±
为:
所以,原式有因式9x2-3x-2.
解 9x4-3x3+7x2-3x-2
=9x4-3x3-2x2+9x2-3x-2
=x2(9x3-3x-2)+9x2-3x-2
=(9x2-3x-2)(x2+1)
=(3x+1)(3x-2)(x2+1)
说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式
可以化为9x2-3x-2,这样可以简化分解过程.
总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.
3.待定系数法
待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.
在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.
例4 分解因式:x2+3xy+2y2+4x+5y+3.
分析由于
(x2+3xy+2y2)=(x+2y)(x+y),
若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.
解设
x2+3xy+2y2+4x+5y+3
=(x+2y+m)(x+y+n)
=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,
比较两边对应项的系数,则有
解之得m=3,n=1.所以
原式=(x+2y+3)(x+y+1).
说明本题也可用双十字相乘法,请同学们自己解一下.
例5 分解因式:x4-2x3-27x2-44x+7.
分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设
原式=(x2+ax+b)(x2+cx+d)
=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,
所以有
由bd=7,先考虑b=1,d=7有
所以
原式=(x2-7x+1)(x2+5x+7).
说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.
本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.
练习二
1.用双十字相乘法分解因式:
(1)x2-8xy+15y2+2x-4y-3;
(2)x2-xy+2x+y-3;
(3)3x2-11xy+6y2-xz-4yz-2z2.
2.用求根法分解因式:
(1)x3+x2-10x-6;
(2)x4+3x3-3x2-12x-4;
(3)4x4+4x3-9x2-x+2.
3.用待定系数法分解因式:
(1)2x2+3xy-9y2+14x-3y+20;
(2)x4+5x3+15x-9.。

相关文档
最新文档