几种外骨骼机器人技术详解共23页
机械手-人体下肢外骨骼康复机器人设计-说明书
机械手-人体下肢外骨骼康复机器人设计-说明书摘要康复机器人技术则是近年来迅速发展的一门新兴机器人技术,是机器人技术在医学领域的新应用;目前康复机器人已成为国际社会研究的热点之一。
本课题主要研究的下肢外骨骼康复机器人的设计。
本文介绍了下肢康复机器人国内外发展现状和应用情况,进行了下肢外骨骼康复机器人的总体方案设计、结构设计,和总体控制方案设计,并对重要零件进行校核。
本设计下肢外骨骼康复机器人共有5个自由度,其中每一条机械腿上有2个关节(2个自由度)模仿人体腿上的膝关节、髋关节和一个用于减重的减重系统(包括1个自由度)。
此系统能用于脑损伤、中风等病人的步态康复训练,帮助病人更好地进行康复训练,减轻他人的帮助,提高效果。
关键词:康复训练,机器人,下肢外骨骼ABSTRACTThe rehabilitation robot technology is a new robot technology developed rapidly recently, which is a new application in medical fields of robot technology. Currently the research on rehabilitation robot has been one of the focuses in the International Society. The rehabilitation robot technology is a synthesis of many subjects, which covers mechanics, electronics, control and rehabilitative medicine and so on; it has been a typical representation of the mechatronics research. The main researchof this paper is based on the attitude control gait rehabilitation training system design.In this paper, lower extremity rehabilitation and development of robot applications at home and abroad, lower extremity exoskeleton training robot's overall program design, structural design, design and overall control; gait training on the robot for three-dimensional modeling, and important parts to check. The robot gait training has a total of five degrees of freedom, each of which a mechanical leg joints have two 2 DOF to imitate human knee, hip and a weight relief for weight relief system including a degree of freedom. The system can be used for brain injury, stroke, and to help patients better rehabilitation training, and meets the needs of different groups of peopleKey words:rehabilitation training, robot, lower extremity exoskeletons目录1 绪论1.1 概述1.2 康复机器人的国内外研究现状1.3 本课题主要研究内容1.4 本章小结2 总体方案选择与论证2.1 步态分析2.2 方案的选择2.2.1 自由度的选择2.2.2 基本参数的选取2.2.3 驱动器的选择2.2.4关节结构的选择2.2.5连杆结构的选择2.2.6腰部结构设计2.2.7减重机构设计2.2.8整体结构设计2.3 本章小结3 机械结构的设计与计算3.1 人体参数3.2 各关节运动分析3.2.1 膝关节的运动分析3.2.2髋关节的运动分析3.3 关节力矩分析3.4 具体结构设计3.4.1 关节机构的选择3.4.2 连杆机构的选择3.4.3 腰部结构设计3.4.4减重机构3.4.5整体结构设计3.5 部分重要零件的设计与校核3.5.1轴承的选择及校核3.5.2连杆的计算及校核3.5.3双头螺柱的校核3.6 本章小结4 驱动部件的计算与选型4.1 滚珠丝杠螺母副的计算与选型 4.1.1髋关节滚珠丝杠副的计算与选型4.1.2膝关节滚珠丝杠副的计算与选型4.2 直流伺服电机的计算与选型 4.2.1髋关节直流伺服电机的计算与选型4.2.2膝关节直流伺服电机的计算与选型4.3 同步带的计算与选型4.3.1髋关节同步带的计算与选型4.3.2膝关节同步带的计算与选型4.4 本章小结5 控制系统的设计5.1 控制系统的方案选取5.2 控制系统的设计5.2.1电源配置设计5.2.2常用存储器及扩展电路设5.2.3数据存储器的设计5.2.4 D/A转换器接口电路设计5.2.5译码器的设计5.2.6上位机的连接设计5.3 控制流程的设计5.4 本章小结6 结论7 参考文献8 致谢1 绪论据报道,我国60岁以上的老年人已有1.43亿,占全国人口的11%,到2050年将达到4.37亿。
国内外外骨骼机器人发展现状
国内外外骨骼机器人发展现状如下:国内发展情况:技术水平:国内外的外骨骼机器人技术都还处于不断发展和完善阶段。
国内的一些企业和科研机构已经开始在技术上取得了一些突破,如感知控制技术、人机交互技术等。
这些技术的应用使得外骨骼机器人在人机融合、智能控制等方面得到了更好的发展。
政策支持:国内政府对外骨骼机器人的发展给予了越来越多的政策支持,鼓励企业加大研发投入,加强技术创新,推动外骨骼机器人在医疗、康复、工业等领域的应用。
应用领域:国内的外骨骼机器人主要应用在医疗康复领域,如帮助截瘫患者恢复行走能力、辅助老年人行走等。
此外,在军事领域和工业领域,也有一些外骨骼机器人的应用案例。
国外发展情况:技术水平:国外在外骨骼机器人技术方面的发展相对更为成熟,一些国际知名企业和研究机构在技术上处于领先地位。
例如,美国洛克希德·马丁公司的外骨骼机器人已经应用于军事领域,帮助士兵提高负重能力和行走速度。
应用领域:国外外骨骼机器人的应用领域也相对更广泛,除了医疗、军事领域外,还在工业、救援等领域得到广泛应用。
例如,在工业领域,外骨骼机器人被用于提高工人作业能力和降低劳动强度;在救援领域,外骨骼机器人被用于帮助救援人员搬运重物和拯救生命。
投资和研发:国外外骨骼机器人的研发和投资力度相对较大,许多知名企业都将外骨骼机器人作为重点发展领域之一,投入大量资金和人力资源进行研发。
同时,国外的一些风险投资机构也对外骨骼机器人领域的初创企业进行投资,支持其技术创新和市场推广。
总的来说,国内外外骨骼机器人的发展都还处于不断发展和完善阶段,但国内外的技术水平和应用领域略有不同。
国内外的政策支持、投资和研发都在不断加强,为外骨骼机器人的进一步发展提供了有力保障。
单兵外骨骼装备技术简介
单兵外骨骼装备技术简介作者:葛水平杨陈君陈耀凯来源:《中国新技术新产品》2016年第14期摘要:当前世界上很多国家,为了应对不断变化的军事变革,都在大力提升自己的单兵作战能力,而这就要依托于先进的武器装备,使得士兵的负重也大大增加,增大了作战难度。
而外骨骼装备的出现及应用将改变这种局面。
它不但可以增强士兵的负重能力,是一个非常不错的武器搭载平台,同时可以提升士兵的机动性和防御能力。
因此外骨骼技术作为一项前沿科技,势必在未来战场上起到很大的作用,具有十分广阔的应用前景。
关键词:单兵系统;外骨骼;应用前景中图分类号:TP311 文献标识码:A一、外骨骼技术介绍外骨骼(Exoskeleton)这一名词,来源于生物学昆虫和壳类动物的坚硬外壳,它是一种能够提供对生物柔软内部器官进行构型,建筑和保护的坚硬的外部结构。
人体外骨骼系统是一个穿戴在操作者身体外部的:“机器人”他能对穿戴者提供支撑保护的同时还可以为人体提供额外的动力和感知能力,可以大大地增加人体机能。
外骨骼技术是人体与机器的完美融合,穿戴者和外骨骼成为了一个闭环的协同系统。
机器通过多种传感器实时感知穿戴者的运动状态和运动意图,并进行实时分析,快速做出反应,以实现人机多自由度、多运动状态的运动辅助,并对穿戴者的行为运动进行放大,提升人体机能。
(一)单兵外骨骼技术的研究背景未来战争,越来越趋近小型化、特种化,所以单兵作战能力就显得越来越重要,战场上要求士兵拥有超强的作战能力及侦查能力,但是有时候受到地形、负重等因素的限制,人体机能的极限已经无法适应瞬息万变的战场情况。
在这种情况下,能够提高士兵身体机能的外骨骼装备就成为解决这个问题的最好方案。
(二)国内外研究现状目前,大多数国家对于外骨骼的研究都还属于初步阶段,比较先进的有美国和日本。
而我国对外骨骼领域的探索比较晚,但随着外骨骼机器人在社会上的需求量不断增大,我国也在这个领域投入了比较大的研究力量,也取得了一些成果。
外骨骼康复机器人研究现状及关键技术PPT学习教案
一、外骨骼机器人的研究现状
日本科技公司“赛百达因” 研制的HAL-5是一款半机器人, 它装有主动控制系统,肌肉通过 运动神经元获取来自大脑的神经 信号,进而移动肌与骨骼系统。 HAL(混合辅助肢体)可以探测到皮 肤表面非常微弱的信号。动力装 置根据接收的信号控制肌肉运动 。
机甲外骨骼机器人,高 约5.48m,由美国阿拉斯加 州工程师洛斯·欧文斯发明, 由内部的驾驶员操控行走。
Stelarc外骨骼是一款肌肉机器人, 外形与蜘蛛人类似,长有6条腿,直径 达到5米。它是一种混合人机,充气和 放气之后便可膨胀和收缩,与其他外骨 骼相比具有更高的灵活性。使用时,操 作人员需站在中间,控制机器朝着面部 方向移动。Stelarc外骨骼由流体肌肉 传动装置驱动,装有大量传感器。
第3页/共3 24页
全;(GB24436-2009)
(3)能在不同的环境使用,如:楼梯
目前外骨骼机器人主要以蓄
,草地等。
电池供电,移动范围受到蓄电池
的容量和效率的限制,如何提高蓄 电池单位体积的容量和外骨骼的 使用效率是关键问题。
未来可以寻求新能源技术, 包括:太阳能,生物能,解决能 源发展的技术瓶颈。
体积小,质量轻,并且 能够提供足够大的力矩或扭 矩,同时要具有良好的散热 性能。
外骨骼康复机器人研究现状及关键技术
会计学
1
一、外骨骼机器人的研究现状
定义
外骨骼机器人:是一种结合了人的智能、机械动力装置和机械能量的人 机结合的可穿戴设备。按结构可将外骨骼机器人分为上肢、下肢、全身 及各类关节机器人。
应用
第2页/共2 24页
一、外骨骼机器人的研究现状
日本Tmsuk公司开发的T52 Enryu, 重量近5吨,身高达3米,可用于任何灾害 的救援工作中,能帮助工作人员清理路上 的碎片,能够举起重量近1吨的重物,机 械臂则可以完成所有类型的工作。
外骨骼机器人控制原理与设计
外骨骼机器人控制原理与设计嘿,朋友们!今天咱就来唠唠外骨骼机器人控制原理与设计这档子事儿。
你说这外骨骼机器人啊,就像是给人穿上了一套超级装备!它能帮咱干好多事儿呢,就像给咱加了一股神奇的力量。
咱先说说这控制原理哈。
你可以把它想象成是大脑指挥身体行动一样。
外骨骼机器人也有自己的一套“大脑”系统,能感知人的动作和意图,然后迅速做出反应,配合人一起行动。
这就好比你和一个特别默契的伙伴一起做事儿,你一个眼神,它就知道你要干啥。
那这“大脑”是咋工作的呢?这里面可就有好多门道啦!有各种传感器,就像人的眼睛、耳朵一样,能收集各种信息,然后通过复杂的电路和算法,转化成机器人能懂的语言。
这是不是很神奇?就好像它能听懂咱的心里话似的。
再说说这设计。
那可得精心雕琢啊!要考虑人的身体结构、活动范围,还得让机器人穿起来舒服,不能太笨重。
这就跟咱买衣服一样,得合身、得好看、还得穿着舒服。
要是设计得不好,那可就成了累赘啦!你想想,要是外骨骼机器人设计得不合理,要么这儿卡一下,要么那儿磨得慌,那还咋用啊?所以设计师们可得下大功夫,把每个细节都考虑到。
而且啊,这外骨骼机器人的应用那可广了去了。
在医疗领域,能帮助那些行动不便的人重新站起来,走起来,这多了不起啊!在工业领域,工人可以借助它干重活,减轻身体负担,这不是挺好的嘛!咱中国在这方面也发展得很不错呢!科研人员们不断努力,让我们的外骨骼机器人越来越先进。
这就像我们的高铁一样,从无到有,从落后到领先,多让人自豪啊!这不就是科技的魅力吗?它能让我们的生活变得更加美好,能帮我们做到以前想都不敢想的事情。
所以啊,大家可别小瞧了这外骨骼机器人,它的未来可不可限量呢!咱就等着看它给我们带来更多的惊喜吧!这可不是我在吹牛,不信你就等着瞧!。
机器人外骨骼技术的研究与应用前景
机器人外骨骼技术的研究与应用前景外骨骼(Exoskeleton)是一种运动辅助装置,由于其能够提高人类的体力和耐力,所以受到了广泛的关注和应用。
如果再将机器人技术与外骨骼技术相结合,就可以形成人体巨大能量的辅助外骨骼(Human Assistive Exoskeleton),即机器人外骨骼技术。
随着科学技术的进步和人们对健康生活的追求,机器人外骨骼技术正逐渐成为未来的研究与应用的热点领域。
一、机器人外骨骼技术研究现状机器人外骨骼技术的研究起源于20世纪60年代,当时主要用于军事领域。
1971年,美国的诺斯罗普公司(Northrop Grumman)研制出了全世界第一套外骨骼系统。
该系统主要用于军事方面,通过增强膝关节的力量以及帮助士兵携带沉重的负载,提高了士兵的作战能力。
近年来,机器人外骨骼技术的应用范围不断扩大,尤其是在医疗保健领域和康复治疗方面,机器人外骨骼技术显示出了巨大的潜力。
在这个领域,美国、日本和韩国等国家的科学家已经取得了一系列的研究成果。
二、机器人外骨骼技术的应用前景1. 康复领域应用机器人外骨骼技术在康复领域中的应用主要是指对肢体功能障碍患者的治疗和康复辅助。
依靠机器人外骨骼技术的力量,可以帮助康复患者进行辅助性运动,以达到肢体康复的目的。
另外,机器人外骨骼技术还可以通过陪伴康复患者做运动活动,提供心理支持,有利于患者恢复自信。
2. 重体力工作环境应用现代制造业中许多工人工作量非常大且非常危险。
机器人外骨骼技术能够替代人工完成重体力劳动,特别是在制造业和工业生产领域,通过使用机器人外骨骼技术可以大大地减少工人的伤害率和经济成本,同时也会提高劳动生产率和质量。
3. 老年人护理应用机器人外骨骼技术对于老年人来说,可以帮助他们完成一些日常活动。
例如,可以用手臂机器人来帮助老年人协助起床、穿衣、洗漱等,还可以用腿部机器人来帮助他们走路、上下楼梯等。
这样的应用将有助于解决日益加剧的老龄化问题,并且可以有效地减少护理成本。
几种外骨骼机器人技术详解
BLEEX外骨骼- 关键技术
依据传感器信息,基于最小化人机交互作用设计控制策略,控制BLEEX伴随人体运动,保证了人体运动的安全、自由。
BLEEX外骨骼- 关键技术
混合能量供给单元,液压驱动关节运动,电源供给传感、计算和控制系统; 电路采用高速同步环状网络拓扑结构,保证数据采集、处理的实时性。
构造材料:外骨骼必须用坚韧、轻质且有弹性的复合材料制成。
能量源:外骨骼的能量必须足以支持24小时以上,并且便携、噪声小。
控制:使用者在穿上该设备后能够正常活动。
驱动:设计者必须使机器能够顺畅移动,以便穿用者不会太笨拙。与发动机一样,促动器也必须安静而高效。
05
生物机械学:外骨骼的结构必须像人体一样带有可弯曲的关节。
HAL外骨骼机器人- 应用实例
HAL最新产品应用于福岛核电站的清理工作,外骨骼可以防止核辐射,极大提高工作效率
HAL外骨骼机器人- 市场分析
HAL康复设备已于2008年市场化,目前仅在日本向公共机构出租,租金每个月US$2000。产品于2013年获得了全球安全认证,将投入批量化生产,预计前期每年产量500~800套,前期仍以出租的方式投入市场,对其它国家出租价格每月US$1300~US$3900。由于有巨大的市场需求,市场效益十分可观。
22.5°
10°
无效
髋关节外展
7.9°
16°
53°
髋关节内收
6.4°
16°31°ຫໍສະໝຸດ 外侧完全旋转13.2°
35°
73°
内侧完全旋转
1.6°
35°
66°
BLEEX外骨骼- 关键技术
BLEEX外骨骼- 关键技术
BLEEX的关节与人下肢关节匹配,连杆长度可调
四足仿生机器人PPT课件
实验
行走步态,姿态很低为了保持较高的速度与稳定性。
Pace gait(单侧同步步态),姿态会发生偏移,向两边摆动。
60cm用时0.9s。
第13页/共30页
虽然目前机器人研究已经取得了很大的进步,比如机器人 运动过程中实现准确的控制,机器人能适应不同的地面状况作 运动。但是,要实现高速运动仍是步行机器人研究领域中的一 个难题,因为要实现这样的运动,机器人的机械结构、控制方 法设计毕然与传统的机器人不同,并且要考虑多种因素。
第4页/共30页
1.日本Tekken
Tekkn整个机体的重量是3.1kg,单个腿的重量0.5kg。 每条腿有3个主动关和一个被动关节,分别是一个pitch髋关 节、yaw髋关节和pitch膝关节,踝关节是被动关节,主要由 弹性装置和自锁装置构成。
第5页/共30页
2、Little Dog
2004 年 Boston Dynamics 发布了四足机器人LittleDog, 如图所示。LittleDog 有四条腿,每条腿有 3 个驱动器,具有 很大的工作空间。携带的 PC 控制器可以实现感知、电机控 制和通信功能。LittleDog 的传感器可以测量关节转角、电机 电流、躯体方位和地面接触信息。铿聚合物电池可以保证 LittleDog 有 30 分钟的运动,无线通信和数据传输支持遥控 操作和分析。
第3页/共30页
1.日本Tekken
2003 年日本电气通信大学的 木村浩等研制成功四足移动 机器人Tekken,如图所示。 该机器人安装了陀螺仪、倾 角计和触觉传感器。采用基 于中枢模式发生器(CPG)的控 制器和反射机制构成控制系 统,其中CPG 用于生成机体 和四条腿的节律运动,而反 射机制通过传感器信号的反 馈,来改变 CPG 的周期和相 位输出,Tekken 能适应中等 不规则地面环境。
一种下肢外骨骼机器人的控制方法发明专利
一种下肢外骨骼机器人的控制方法技术领域本发明涉及辅助机器人技术领域,具体涉及一种可穿戴助行下肢外骨骼的控制方法。
背景技术进入21世纪,中国人口老龄化逐渐加剧,据预测,到2050年,中国老龄人口将达到总人口的三分之一。
膝关节炎症则是老年人关节疾病中最主要的一种情况,据统计,60岁以上的老年人中10%的男性和13%的女性都患有关节炎的症状。
关节炎带来的膝关节疼痛严重影响患者的行走能力,给老年人的自由出行带来了很多困难。
为分担膝关节承受的重量并对行走过程进行助力,下肢外骨骼是一种很有应用前景的解决办法。
下肢外骨骼一般分为有动力和无动力两种形式,它与穿戴者进行协同动作,感知穿戴者运动意图,并为其特定关节提供辅助力矩,从而对穿戴者的运动能力进行增强。
动力外骨骼一般需要额外的能量源为其作动器提供能量输入,而无动力外骨骼往往采用能量回收的方式,将人体运动过程中的能量通过机构弹性或特制的储能元件进行储存,并按需求进行释放。
用于老年人等行动能力较弱者的下肢助行外骨骼一般采用蓄电池方案,如日本Cyberdine公司的HAL,以及Honda公司发布的名为体重支撑系统的外骨骼等。
受限于电池的能量密度和电机的能量转化效率,这类外骨骼一般需要配备比较大的关节驱动电机和笨重的蓄电池,整机重量往往会大于10kg。
进一步提高下肢外骨骼的实用性能,需要对动力模块进行优化,降低其能量消耗,通过轻量化设计方法提高整机效率。
目前已问世的下肢外骨骼受限于驱动器效率、机构重量以及成本等因素,往往无法兼顾助力效果与结构上的轻便,额外的负重会给使用者造成负担,难以适应老年人等行动能力较弱者的日常行动需求。
同时也迫切需要一种下肢外骨骼的控制方法,来考虑结合动力外骨骼和无动力外骨骼的特点,以能量回收和重复利用的装置对驱动电机进行辅助的峰值输出,可以减小进行膝关节助力对电机功率的要求,使电机输出曲线更加平滑,进而可以选择更小的驱动电机,从驱动器和电源角度减小外骨骼整机重量。
六自由度外骨骼式上肢康复机器人设计
六自由度外骨骼式上肢康复机器人设计一、概述随着现代医疗技术的不断进步,康复机器人已成为辅助患者恢复肢体功能的重要工具。
六自由度外骨骼式上肢康复机器人作为一种先进的康复设备,旨在通过模拟人体上肢运动,帮助患者实现精准、高效的康复训练。
本文将对六自由度外骨骼式上肢康复机器人的设计进行详细介绍,包括其结构组成、工作原理、控制策略以及临床应用等方面的内容。
六自由度外骨骼式上肢康复机器人是一种可穿戴式的康复设备,能够紧密贴合患者上肢,通过精确控制各关节的运动,实现上肢的全方位康复训练。
该机器人具有六个自由度,可模拟人体上肢的各种复杂运动,为患者提供个性化的康复训练方案。
机器人还配备了智能传感系统,能够实时监测患者的运动状态,为医生提供精准的康复数据,从而优化康复治疗方案。
在结构组成方面,六自由度外骨骼式上肢康复机器人主要包括机械臂、驱动系统、传感系统以及控制系统等部分。
机械臂采用轻质材料制成,具有良好的穿戴舒适性和运动灵活性;驱动系统采用高精度电机,可实现精确、快速的运动控制;传感系统包括多个角度传感器和力传感器,能够实时监测机械臂和患者上肢的运动状态和交互力;控制系统则负责整合传感数据,实现机器人的运动规划和控制。
六自由度外骨骼式上肢康复机器人作为一种先进的康复设备,具有广泛的应用前景和市场需求。
本文旨在通过对该机器人设计的详细介绍,为相关领域的研究人员和技术人员提供参考和借鉴,推动康复机器人技术的不断发展和创新。
1. 上肢康复机器人的研究背景与意义随着人口老龄化的加剧以及各类事故、疾病对人们身体健康的威胁日益显著,上肢功能障碍患者数量呈现出逐年上升的趋势。
这些障碍往往由中风、外伤、神经系统疾病等多种原因引起,严重影响了患者的日常生活和工作能力,给个人、家庭和社会带来了沉重的负担。
寻求一种高效、安全的上肢康复治疗方法显得尤为重要。
在此背景下,上肢康复机器人的研究与应用应运而生,成为了医疗康复领域的重要发展方向。
主被动结合式全身外骨骼助力机器人
成本较高
目前全身外骨骼助力机器人的研 发和制造成本较高,限制了其广 泛应用和推广。
用户体验需要进一 步优化
虽然已经取得了一定的成果,但 还需要进一步优化用户体验,提 高用户的舒适度和满意度。
拓展应用领域
可以进一步拓展全身外骨骼助力 机器人在医疗、康复、助老助残 等领域的应用,提高其社会效益 和经济效益。
结果分析
通过对实验数据的分析,对比不同 设计参数、不同使用环境下的机器 人性能差异,找出优势与不足。
改进方向
根据实验结果的分析,提出针对性 的改进方向和建议,为后续的机器 人优化设计提供参考。
06
总结与展望
研究成果总结
高度集成
实现了全身外骨骼助力机器人的高度集成 ,提高了其便携性和可穿戴性。
适应性强
04
机器人软件设计
运动学建模与控制算法
运动学建模
通过建立准确的运动学模型,可以精确地描述机器人的位置、速度和加速度 等运动特性。
控制算法
采用先进的控制算法,如PID控制、模糊控制等,实现对机器人运动的精确控 制。
机器学习算法应用
特征提取
利用机器学习算法对机器人收集的数据进行特征提取,识别用户的意图和行为。
03
机器人硬件设计
机构设计
连杆机构
由刚性连杆组成,用于实现机 器人的运动模拟和助力。
关节设计
采用高精度舵机实现关节的精 确控制,同时保证机构的稳定
性。
轻量化设计
采用优化算法对机构进行轻量 化设计,减少机器人自重,提
高移动性能。
驱动器设计
电机驱动
采用无刷电机驱动,具有高效率、高转矩、高寿 命的特点。
意义
主被动结合式全身外骨骼助力机器人可以为老年人和残疾人 提供行走和负重的辅助,提高他们的自理能力和生活质量, 减轻社会负担。
几种外骨骼机器人技术详解
几种外骨骼机器人技术详解外骨骼机器人是一种以增强人类身体机能为目标的机器人,它采用物理学、生理学、力学和电子学等多种学科的知识和技术进行研发。
外骨骼机器人在医疗、军事、工业和娱乐等领域中都有广泛的应用。
本文将介绍外骨骼机器人的几种技术,包括机械式外骨骼、液压式外骨骼、气压式外骨骼和神经控制式外骨骼。
机械式外骨骼机械式外骨骼是一种由机械构造组成的外骨骼,通过人机接口传递外部控制信号来控制机械式外骨骼的运动。
机械式外骨骼主要由外骨骼结构、传递力矩机构和外骨骼控制器组成。
机械式外骨骼的优点是结构简单、制造成本低廉、维护保养容易。
但机械式外骨骼的缺点是结构笨重、运动自由度有限、对人体影响较大等。
液压式外骨骼液压式外骨骼是一种由液压机构构成的外骨骼,通过液压传动来实现加强人体动力功能的一种技术。
液压式外骨骼主要由外骨骼结构、液压动力机构和液压控制器组成。
液压式外骨骼的特点是力矩大、运动自由度高、对人体影响较小。
但液压式外骨骼的缺点是制造成本较高、液压泄漏等问题。
气压式外骨骼气压式外骨骼是一种由气动机构构成的外骨骼,通过气压传动来实现外骨骼的动力增强。
气压式外骨骼主要由外骨骼结构、气压动力机构和气压控制器组成。
气压式外骨骼的优点是运动自由度高、对人体影响小、动力输出快速精准。
但气压式外骨骼的缺点是普及程度较低、气压控制系统复杂、对气压动力的稳定性要求高。
神经控制式外骨骼神经控制式外骨骼是一种由神经学和计算机技术组成的外骨骼,通过神经控制来直接实现对外骨骼运动的控制。
神经控制式外骨骼主要由外骨骼结构、神经控制装置和计算机控制器组成。
神经控制式外骨骼的优点是操作方便、控制精准、运动自由度高、可根据体感反馈进行调整。
神经控制式外骨骼的缺点是技术成熟度较低、对神经控制的装置和计算机处理速度有一定的要求。
来说,以上几种外骨骼机器人技术各有优缺点,在不同领域中选择合适的外骨骼机器人技术可以提高生产效率,促进人类运动康复,将军事作战力量提升到新的高度,增加娱乐性等。
外骨骼机器人
This article was downloaded by: [Shanghai University]On: 02 November 2013, At: 23:45Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKAdvanced RoboticsPublication details, including instructions for authors and subscription information:/loi/tadr20Exoskeletal meal assistance system (EMAS II) forpatients with progressive muscular diseaseYasuhisa Hasegawa a, Saori Oura a & Junji T akahashi aa Graduate School of Systems and Information Engineering, University of T sukuba 1-1-1T ennodai, 305-8573, T sukuba, Japan.Published online: 09 Oct 2013.PLEASE SCROLL DOWN FOR ARTICLEAdvanced Robotics ,2013V ol.27,No.18,1385–1398,/10.1080/01691864.2013.841311FULL PAPERExoskeletal meal assistance system (EMAS II)for patients with progressive muscular diseaseYasuhisa Hasegawa ∗,Saori Oura and Junji TakahashiGraduate School of Systems and Information Engineering,University of Tsukuba 1-1-1Tennodai,Tsukuba 305-8573,Japan(Received 28March 2012;accepted 28June 2012)Patients with muscle weakness such as muscular dystrophy usually need someone’s assistance in their daily activities.In order to reduce the caregiver burden and to improve quality of life (QOL)of the patients,various robotic technologies have been developed.This paper presents an exoskeletal assistance system EMAS II for the patients,which assists the upper extremity for the purpose of daily activities such as eating,writing,or other desk works.The EMAS II assists four DOF;shoulder flexion-extension,shoulder abduction-adduction,shoulder medial-lateral rotation,and elbow flexion-extension.The EMAS II has three kinds of user interfaces which are operated by residual functions of the patients,because it is important for patients’health and initiative to use the residual functions.In order to control the four DOFs exoskeleton system using the interfaces with less DOF,the EMAS II simulates upper limb motion patterns of healthy people.The patterns are modeled by extracting correlations between the height of the wrist joint and that of the elbow joint.Therefore,users have only to control the position of their wrist joint to do tasks at a table.Through an experiment with a healthy subject,the feasibility of meal assistance by the EMAS II was confirmed.Furthermore,the system was applied to a spinal muscular atrophy patient in a clinical trial to check the usability.The experimental results indicated that the EMAS II could support the patient’s upper extremity to do tasks at a table.Keywords:assistive device;exoskeleton;upper limb;muscular dystrophy;muscular disease;eating;motion support1.IntroductionPatients with neuromuscular disease are limited in activities of daily living (ADL).For instance,patients with progres-sive muscular dystrophy (PMD)or with spinal muscular atrophy (SMA)have difficulty in walking,lifting their arms against gravity,and changing overall posture,because of muscle weakness of their trunk,extremity,particularly of their proximal parts.Thus,the patients require caregiver’s support appropriate to their symptoms in many aspects of everyday lives.As a result,the caregiver burden and sacri-fice of the patient’s independence have been a problem for a long time.In order to avoid the issue,robotic devices have been developed for life-supporting or rehabilitation.Assistive devices for upper limb disorders can be divided into robot arm type and exoskeleton type.Examples of the robot arm type are the MySpoon,[1]the Handy 1,[2]and the iARM (Assistive Robotic Manipulator).[3]These robots re-place the patients’arm in a variety of tasks such as eating and picking up distant objects with high positioning accuracy.They can be used by the advanced stage patients with limited residual functions.However,disuse of the sections with or without impairment is not desirable from the viewpoint of prevention of joint contracture,encouragement of the patients’initiative,and improvement of the quality of life (QOL).Therefore,the assistive device for those patients∗Corresponding author.Email:hase@iit.tsukuba.ac.jpshould be the one that assists the user’s upper limb,and that is the exoskeleton type.The Armon,[4]which is an example of the exoskeletal system,is a spring-balanced arm support system and a user can lift up his/her arm without being affected by the force of gravity.It has no actuators so that the patient with severe symptoms cannot carry out works such as reaching task even if he/she uses this device.On the other hand,there are exoskeleton type devices using actu-ators such as the ARMin,[5]the ABLE,[6]the BONES,[7]and the Muscle Suit.[8]Although they are developed for rehabilitation of disabled people or assistance for healthy people to do heavy work,each of the devices are too large to be applied in daily lives.When we develop assistive systems for people with progressive muscle weakness or paralysis,we should design a versatile support system which has adjustable support level and can improve the patients’physical condition and initiative.The EMAS I shown in Figure 1is an exoskeletal meal assistance system which our laboratory has developed for the patients with muscle weakness.There are two DOFs at the shoulder (flexion-extension and medial-lateral rotation),and one DOF at the elbow (flexion-extension).Each joint is light and small because of the wire driven system and is operated by a foot controller as shown in Figure 2.All the parts except a user interface are mounted on a chair.©2013Taylor &Francis and The Robotics Society of JapanD o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 20131386Y.Hasegawa etal.Figure 1.EMAS I.Through an experiment,where a healthy subject regarded as a muscular dystrophy patient ate a meal with the EMAS I,we confirmed the possibility of the meal assistance using the EMAS I.However,there were two problems:one was that the elbow joint hit table according to the height of the table,and the other was that the foot controller was not easy to use for the muscular dystrophy patient because he/she did not have enough capability of movement on his/her leg.In this paper,we propose the EMAS II which has four actuated joints (shoulder flexion-extension,shoulder medial-lateral rotation,shoulder adduction-abduction,and the elbow flexion-extension)and one unactuated joint for the shoulder girdle and upper body motions.While the EMAS I is mounted on a chair or a wheelchair,this EMAS II is mounted on a special stand so as to apply to all typesof wheelchairs.Therefore,a caregiver has only to put the EMAS II next to the wheelchair and put the care receiver’s arm into the orthosis.In addition,we propose three user interfaces,trackball type,joystick type,and BEP type in-terface so that the patient can choose more preferable one according to his/her physical condition or residual func-tions.Because the user interfaces have only three DOFs at most while the exoskeleton has four actuated joints,the controller of the EMAS II needs a condition of constraint to control each joint angle.The constraint condition is set find-ing corresponding between the height of the elbow position and that of the wrist position of healthy people.The purpose of this study is to develop an assistive system EMAS II for patients with muscle weakness in order to reduce the caregiver burden and to improve the initiative and QOL of the patients.In this study,the system applies to the patients with muscle weakness of proximal parts such as shoulder and elbow.2.EMAS II2.1.System architectureThe EMAS II consists of an exoskeleton part,a user interface,a motor unit,a control device,and a power supply as shown in Figure 3.The motor unit contains four gearhead motors,a motor driver circuit,and encoders.Every com-ponent except for the user interface is fixed on a special stand which is a remodeled walker in order to enable the patients to use the EMAS II remain seated on a wheelchair because the most common early symptom of the disease is lower-extremity muscle weakness and many of the patients spend most of their time on a wheelchair (Figure 4).The exoskeleton part is small and light because of the wiredriveFigure 2.Foot controller of EMAS I.D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Advanced Robotics1387Figure 3.Sideview of the EMASII.Figure 4.The EMAS II with a trackball type interface.system.Moreover,there are several user interface devices so that the user can choose most preferable one according to his/her physical conditions.The user controls the right upper limb operating the user interface with the opposite hand.2.2.Mechanism of jointsWhen healthy people do tasks on a table,they use not only shoulder and elbow rotation motions but also shoulder girdle motions and upper body motions.Therefore,mech-anisms which are given no regard to such motions bring a sense of discomfort to a user and reduction of range of motion.There have been researches of shoulder mechanismTable 1.Arrangement of joint ID,motion,θdirection,power source.Joint ID Motion θdirection Power sourceJ 1flexion θ+1motor 1extensionθ−1gravity shoulderJ 2medial rotation θ+2motor 2lateral rotation θ−2spring J 3abduction θ+3motor 3adduction θ−3gravity elbowJ 4flexion θ+4motor 4extensionθ−4gravitywith assistance of shoulder girdle movements for exoskele-ton robot.[9]However,the mechanism is too large to apply for assistive devices for ADL.In this study,the assistive system has four actuated joints (shoulder flexion-extension,shoulder medial-lateral rotation,shoulder abduction-adduction,and elbow flexion-extension)and one unactuated joint for shoulder girdle and upper body movements.The four joints are driven via wires as shown in Figure 5.Here joint numbers,J 1...J 5,and the positive rotation arrow are assigned to each joint as shown in Figure 6.During the assistance with the EMAS II,shoulder flexion,medial rotation,abduction,and elbow flexion motions are driven by motor traction.The shoulder extension,adduction,and elbow extension are driven using gravity force,and the shoulder lateral rotation is driven by torsion spring because the gravity force does not affect that motion.Table 1summa-rizes the joint numbers,the motions,the rotation direction,and the power sources.The minimum angles,the maximum angles,the range of motions of all the joints and the range of motions for human ADL are summarized in Table 2.[10]The maximum torques of actuated joints of the system and the that of unimpaired arm are summarized in Table 3.The origin of angular vector [th 1,th 2,th 3,th 4,th 5]=[0,0,0,0,0]is the arm’s neutral position.The minimum angle of the J 4is set at 10degrees in order to avoid the singularity.The range of motions of the EMAS II is narrower than that for ADL,because the EMAS II takes into account the use only for activities which are done at a table.In addition,the maximum joint torques of the EMAS II are smaller than that of healthy upper limb.However,it has enough torque to support a man lifting 0.5[kg ]of bottle on his hand.The feasibility of assistance with limited range of motions and joint torques is discussed in chapter 3.The unactuated slider mechanism is shown in Figure 7to allow for upper body and shoulder girdle motions.The slide rail passively moves 200mm on a slider,while a slider generally slides on a slide rail.The weight of EMAS II with a user’s arm is directory loaded to the special stand through an attachment which is tilting within a range of 0to 50degree to the floor.Here,a coordinate system is defined as shown in Figure 8.Then,the working surface of wrist joint,D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 20131388Y.Hasegawa etal.Figure 5.Wirearrangement.Figure 6.Definition of positive direction of each joint.Table 2.Raneg of motion.The EMAS II The EMAS II The EMAS II Human for ADL Min.Angle Max.Angle Range of MotionRange of Motion[degree][degree][degree][degree]θ107070100θ208080110θ309090135θ410130110150where the height of the wrist joint is fixed at 200[mm]below the shoulder joint and the elbow joint is located above the level of wrist joint,is shown in Figure 9.Table 3.Maximum joint torques.The EMAS II [Nm]Unimpaired Arm [Nm]θ147.353.5θ222.953.9θ315.053.6θ438.581.02.3.Derivation of joint anglesWhen a user uses the EMAS II,he/she inputs three-dimensional wrist position through a user interface while the number of active joint is four.Therefore,at least one condition of constraint is required to control all joints.TheD o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Advanced Robotics1389Figure 7.Unactuated slider for trunk and shouldergirdle.Figure 8.Coordinate system of working space.The origin of this coordinate system corresponds approximately to the center of user’s right shoulderjoint.Figure 9.Range of motion of the EMAS II at a table.The origin is the center of the left shoulder.condition of constraint is derived from motion measurement of upper body.Although there have been similar researches for motion measurement and analysis of upper limb,[11,12]Figure 10.Arrangement of markers for the motion capture.none of them refer to arm support.We consider eating a meal to be one of the most important tasks to help the patients to lead more independent lives and to reduce the caregiver burden.Therefore,in this study,upper limb mo-tions while people eat a meal without dropping food are measured in order to develop the expression for the condition of constraint.2.3.1.Meal motion measurementThe meal motions were captured by the PhaseSpace IMPULSE system [13]of PhaseSpace Inc.Nine markers were attached to the EMAS II and a subject,and eight cameras tracked them (Figure 10).The capturing rate was 120frames per second.During the measurement,a subject who was wearing the EMAS II picked up foods from two plates on a table and ate them in five times each.The plates were put in a row in front of the subject and the height of the table was 690[mm].This measurement was done by three subjects (Subjects 1,2,and 3),one was a woman aged twenty-two and two were men aged twenty-two and thirty,respectively.All subjects were physically unimpaired and right dominant.2.3.2.Measurement resultsFigure 11shows one example of the result of the motion measurement,where the second subject scooped food (the gray area)and carried it to the mouth (the white area).From here,we focus on the motion for carrying the food to the mouth for getting the condition of constraint.One example of the scatter diagrams of the wrist posi-tion (x w ,y w ,z w )and the elbow position (x e ,y e ,z e ),and their approximated curves are shown in Figure 12.Then,it is found that all R-squared values of the approximated curves representing the relationship between z w and z e ofD o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 20131390Y.Hasegawa et al.all subjects are over 0.9.Here,Figure 13shows the scat-ter diagrams and approximated curves of the relationship between z w and z e of allsubjects.Figure 11.Example of result of the meal motion analysis.The mean curve of these approximated curves are shown in Figure 14,which is expressed byz e =−0.0008z w 2+0.5316z w +171.23.(1)Using this correlation model,the z e is fixed from the wrist position.y e and x e are also fixed as follows:y e =−Q ±Q 2−P RP,(2)P =x w 2+y w 2,(3)Q =z w z e y w −Ay w ,(4)R =(A −z w z e )2+x 2w (z 2e −L 21),(5)A =L 21+L 23−L 222,(6)L 3=x 2w +y 2w +z 2w,(7)x e =⎧⎨⎩L 23+L 21−L 22−2(y e y w +z e z w )2x w,if x =0L 21−y 2e −z 2e ,if x =0,(8)where L 1is length of user’s upper arm and L 2is that offorearm,respectively.In addition to the aboveexpressions,Figure 12.Example of relationships between the wrist position and the elbow position.D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Advanced Robotics1391 Figure13.The height of the wrist joint and the elbow joint.Downloadedby[ShanghaiUniversity]at23:452November2131392Y.Hasegawa etal.Figure 14.Approximation curves of relationship between theheight of the wrist joint and that of the elbow joint.Table 4.Error of elbow position.Subject Plate RMS of Error [mm]Subject 1Left 33.12Subject 1Right 19.66Subject 2Left 58.58Subject 2Right 27.79Subject 3Left 51.51Subject 3Right30.31Mean36.83considering the range of motion (Table 2),we obtain the elbow position.Finally,each joint angle θ1...θ4is given by,θ1=cos −1y w − 1+L 2L 1cos θ4 y e L 2cos θ2sin θ4,(9)θ2=sin−1x w − 1+L 2L 1cos θ4 x e L 2sin θ4,(10)θ3=sin −1 −x eL 1cos θ2,and (11)θ4=cos −1 −L 21+L 22−(x w 2+y w 2+z w 2)2L 1L 2.(12)The precision of the model is evaluated by comparing the measured elbow position of an elbow joint and the predicted position based on the model.RMS of errors of them are shown in Table 4.The results show that an mean error is 37[mm].In order to make up for the personal difference,the third term is adjusted according to the user’s shape or height of the table used.2.4.Control approach and user interfacesWhen we develop assistive devices,it is also necessary to develop easy-to-use user interfaces which take advantage ofpatients’residual functions.In this section,the user inter-faces and control approach of the EMAS II are mentioned.2.4.1.Control approachThe EMAS II has two control modes:manual control and semi-automatic control.A user can control three-dimensional coordinate of his/her wrist position through the user interface with the manual control.On the other hand,the semi-automatic control is developed in order to improve the utility and efficiency of the system operation.In this control mode,the user’s upper limb is automatically moved to pre-established position by pressing a switch.For example,if the user set his/her mouth position,she/he can bring food to his/her mouth smoothly and finish the meal in a shorter time.The control flows of each mode are shown in Figures 15and 16.2.4.2.Trackball type interfaceWe propose three kinds of user interfaces.When user uses the trackball interface shown in Figure 17,the controller measures the pulses of the trackball interface at every 5.0[ms ]and determines the wrist position.During low-speed rotation,the controller determines thetarget wrist position,W re f (x ref w ,y re f w ,z refw )in the coordi-nate system shown in Figure 8,as shown below:x ref w =x w +C 1x rot ,(13)y ref w =y w +C 1y rot ,and(14)z ref w =z w +C 2z rot ,(15)where W (x w ,y w ,z w )is the current wrist position,R (x rot ,y rot ,z rot )is the amount of change of the rotation of the trackball,and C 1,C 2are the arbitrary constants.On the other hand,during high-speed rotation,the controller continues only to measure the pulses until the rotation speed becomes lower than a threshold.Meanwhile,the arm is controlled to be held in the same position.Then,the con-troller determines the target wrist position and straight-linetrajectory.Let R t (x t rot ,y t rot)denote the number of total rotations of the ball,a denote the arrival time and C 3,C 4denote an arbitrary constant.Then,the target position and arrival time is calculated as below:x p =x w +C 3x n x trot ,(16)y p =y w +C 3y n y t rot ,and (17)t =C 4|n |.(18)Finally,change of velocity v (v x ,v y )with time is deter-mined by the expression shown below:|˙v |=−4bt2 x −t 22+b ,(19)b =3l2t,and(20)D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Advanced Robotics1393Figure 15.Control flow of the manualcontrol.Figure 16.Control flow of the semi-automaticcontrol.Figure 17.Trackball type interface.l =(x p −x w )2+(y p −y w )2.(21)In this way,switching the action at low-speed and high-speed rotation,the user can move the arm over a long distance at once or move the arm delicately depending on the situation.Moreover,pressing the switch at the corner of the trackball interface,the control mode is shifted to the semi-automatic mode,and the wrist position is moved to the pre-established position without any operation.When the EMAS II is finished moving the arm,the control mode is shifted to the manual mode again.2.4.3.Joystick type interfaceFigure 18shows the joystick type interface which has twojoysticks.Figure 18.Joystick type interface.The controller measures the voltages V (x V ,y V ,z V )from each joystick which denote the tilt of the joysticks.Then,the target wrist position is determined as below:W re f =W +C 5V ,(22)where C 5is the arbitrary constant.If the voltage which denotes the right-and-left tilt of the right joystick exceeds a threshold,the control mode is shifted to the semi-automatic mode.Operations of the trackball type interface and the joystick type interface in x and y directions similarly corresponds to a wrist motion in x and y,respectively,so that a user could control positions of the wrist joint intuitively through less training iterations.D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Figure 19.BEP type interface2.4.4.BEP based interfaceThe Bio-Electric-Potential (BEP)based interface is devel-oped.BEP signals are often used as an instinctive user interface for assistive devices.There have previously been researches about motion discrimination of upper limb and control of assistive arm by BEP.[14]However,in case where a patient with muscle weakness operates assistive devices using only BEP signals,the control of three-dimensional position of the arm is of great difficulty because it requires a model to decode arm motion from BEP signals of multiple muscles.In many cases,BEP signals of the patient are too weak to use for a user interface.However,in some cases,BEPwith large signal-to-noise ratio may be measured from part of the muscles.In this research,we propose a BEP based interface intended for the patient whose del-toid and biceps can give off BEP signals with relatively large S/N ratio.A user is supposed to have capability to control the anteroposterior position of the wrist joint with this BEP based interface.When he/she controls the three-dimensional position by using BEP signals,the trackball type or joystick type interface is used as a supplementary interface.The sheet shown in Figure 19is consisting of matrix of six active electrodes.Again of the active electrode is 10,000.One of the sheets is attached to the skin surface above deltoid,and the other is above biceps.Although strength of the BEP signals vary depending on the position of the electrodes,positioning of the sensor sheet does not require high accuracy because of the grid-like arranged multiple electrodes.For the control of EMAS II,the controller mea-sures the BEP signals and integrates the signals (IBEP).Let ch (ch =1...12)denote the channel number of electrode and T (=300[ms ])denote an integration time,and then the IBEP is defined byI B E P ch (t )=tt −T|B E P ch (τ)|d τ.(ch =1...12).(23)Table 5.Relationship between motion and magnitude of IBEP.I B E P b sum <T H bI B E P b sum >T H bI B E P d sum <T H dStopBack I B E P d sum >T H dForwardBackFigure 20.Knobs for threshold adjustment.Next,the sum of all channels of deltoid,I B E P d sum,and that of all channels of biceps,I B E P b sum,are calculated.They are compared with threshold T H d and T H b ,respectably.Finally,the arm motion is determined according to the mag-nitude relation of each value and the threshold as shown in Table 5.The thresholds are adjustable according to the strength of the BEP signals of each user using two knobs (Figure 20).The thresholds and the sum of current bioelec-tric potential are displayed on a monitor shown in Figure 21.The direction of the motion is selected by the above approach,however,the moving velocity is constant withthe value of I B E P d sum and I B E P b sum.3.Experiments3.1.Position accuracy3.1.1.Experimental settingsIn order to evaluate the position accuracy of EMAS II,the wrist position is measured using the motion capture system.During this experiment,two bottles filled up with one liter of water were loaded to the EMAS II in order to mimic weight of user’s arm (Figure 22).The EMAS II repeated reciprocation of the wrist part between table and mouth for 10times.As the index,the position error of the wrist joint is considered.Let (x enc ,y enc ,z enc )denote the wrist position calculated from the motor encoders,(x cap ,y cap ,z cap )de-note the wrist position calculated using data from the motion capture system,then the E enc and E cap were defined as follows:D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Figure 21.Display for BEP:From ch.1to ch.6:IBEPs of deltoid.From ch.7to ch.12:IBEPs of biceps.Heavy line of D is sum of IBEPs of deltoid.Thin line of D is the thresholds,T H d .Heavy line of B is sum of IBEPs of biceps.Thin line of B is the thresholds,T H b.Figure 22.The EMAS II with bottles.Two bottles work as weights of user’s upper limb.E enc = (x ref −x enc )2+(y ref −y enc )2+(z ref −z enc )2,(24)E cap =(x ref −x cap )2+(y ref −y cap )2+(z ref −z cap )2.(25)3.1.2.Measurement of position accuracyFigure 23shows the three kinds of wrist joint trajectories,reference wrist position,the actual wrist positioncalculatedFigure 23.Wrist joint position.from the encoders of the motors,and the actual wrist po-sition measured by the motion capture system.The wrist position data from the motion capture system were offset so that their mean values correspond to each other because the coordinate origins of the EMAS II and the motion cap-ture system were different.Rapid change of the reference position can be found at intervals,but that comes from the change of the control mode and is not a problem.Figure 24shows that the wrist joint positioning error E cap was 39.0[mm]at most,the mean of E cap was 17.6[mm],and standard deviation of E cap was 11.0[mm].Meanwhile,the error E enc was 39.6[mm]at most,the mean of E enc wasD o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013Figure 24.Position error of the wrist joint.Table 6.Foods for the experiment.Curry 130[g]Rice 200[g]Potato salad120[g]Yoghurt70[g]Water200[ml]16.6[mm],and standard deviation of E enc was 13.0[mm].The sources of errors were steady-state error of the PD control and the effect of friction and expansion of the cables.However,it will be little problem to eat a meal because the user can adjust the position by manual control mode.3.2.Meal assistance experiment with healthy person 3.2.1.Experimental settingsA healthy subject regarded as a muscular dystrophy patient ate a meal with the EMAS II.List of foods for an experiment was shown in Table 6.Figure 25.Each action of eating.D o w n l o a d e d b y [S h a n g h a i U n i v e r s i t y ] a t 23:45 02 N o v e m b e r 2013。
人体外骨骼 辅助搬运介绍
人体外骨骼辅助搬运介绍1. 引言1.1 人体外骨骼辅助搬运介绍人体外骨骼辅助搬运是一种新型的辅助搬运技术,通过外部的机械装置来增强人体的力量和稳定性,帮助人们更轻松地完成搬运工作。
这种技术可以有效减轻人体的负担,提高工作效率,减少劳动强度,降低搬运过程中的风险和损伤。
外骨骼装置通常由电机、传感器、控制系统和机械结构组成,可以根据不同的需求进行定制和调整。
通过感知人体的动作和力量,外骨骼装置可以实时调节力量和角度,帮助人们更加轻松地操控重物,从而减少搬运过程中的疲劳和伤害。
人体外骨骼辅助搬运技术在工业生产、医疗护理、军事作战和日常生活中都有广泛的应用前景。
随着科技的不断进步和人们对健康、安全和效率的日益重视,人体外骨骼辅助搬运技术将会得到更广泛的推广和应用。
2. 正文2.1 什么是人体外骨骼辅助搬运人体外骨骼辅助搬运是一种先进的技术,通过外部装置帮助人类完成搬运和运输工作。
这种装置可以附着在人体的关节和肌肉上,提供额外的力量和支撑,从而减轻个体的负担和提高工作效率。
人体外骨骼辅助搬运的设计通常采用轻量级材料,结构复杂但灵活,能够实现人体运动的自然延伸。
除了提供额外的力量和支持外,一些外骨骼还配备了传感器和控制系统,可以准确捕捉用户的动作并实时调整力量输出。
这种技术的应用范围非常广泛,既可以用于医疗领域,帮助残疾人士恢复运动能力,也可以用于工业生产,提高工人的搬运效率和减少职业伤害的风险。
人体外骨骼辅助搬运还在军事领域得到了广泛应用,提升了士兵的战斗力和生存能力。
人体外骨骼辅助搬运是一种具有巨大潜力和发展前景的技术,它将为人类带来更便利、高效和安全的工作和生活方式。
2.2 人体外骨骼辅助搬运的原理人体外骨骼辅助搬运的原理主要是通过智能机器人技术和生物力学原理实现。
外骨骼系统采用传感器来感知用户的动作意图,然后通过电机和液压系统来提供力量和支撑。
外骨骼设备还可以根据用户的动作需求自动调节力量和角度,使得搬运操作更加方便和高效。