数据特征的描述和分析统计学
统计学第4章数据特征的描述
极差计算简单,但容易受到极端值的影响,不能全面 反映数据的离散程度。
四分位差
定义
四分位差是第三四分位数与第 一四分位数之差,用于反映中
间50%数据的离散程度。
计算方法
四分位差 = 第三四分位数 第一四分位数
优缺点
四分位差能够避免极端值的影 响,更稳健地反映数据的离散
程度,但计算相对复杂。
方差与标准差
统计学第4章数据特征 的描述
https://
REPORTING
• 数据特征描述概述 • 集中趋势的度量 • 离散程度的度量 • 偏态与峰态的度量 • 数据特征描述在统计分析中的应用 • 数据特征描述的注意事项
目录
PART 01
数据特征描述概述
REPORTING
WENKU DESIGN
数据特征描述在推断性统计中的应用
参数估计 假设检验 方差分析 相关与回归分析
基于样本数据特征,对总体参数进行估计,如点估计和区间估 计。
通过比较样本数据与理论分布或两组样本数据之间的差异,对 总体分布或总体参数进行假设检验。
研究不同因素对总体变异的影响程度,通过比较不同组间的差 异,分析因素对总体变异的贡献。
定义
方差是每个数据与全体数据平均数之方根,用于衡量数据的波动大小。
计算方法
方差 = Σ(xi - x̄)² / n,标准差 = √方差
优缺点
方差和标准差能够全面反映数据的离散程度,且计算相对简单,但容易受到极端值的影响。同时,方差 和标准差都是基于均值的度量,对于非对称分布的数据可能不够准确。
适用范围
适用于数值型数据,且数据之间可能 存在极端异常值的情况。
特点
中位数不受极端值影响,对于存在极 端异常值的数据集,中位数能够更好 地反映数据的集中趋势。
统计学中的描述性统计分析方法
统计学中的描述性统计分析方法统计学是一门研究数据收集、整理、分析和解读的学科,它可以帮助我们更好地理解和解释数据。
描述性统计是统计学中的一个重要分支,旨在总结和揭示数据的基本特征。
在本文中,我们将介绍统计学中常用的描述性统计分析方法。
一、数据收集与整理描述性统计分析的第一步是数据收集,通过合适的调查问卷、实验或观察,我们可以获取所需的数据。
在数据收集完成后,我们需要对数据进行整理和准备,以便后续的分析。
二、测量指标在描述性统计中,我们常用各种测量指标来描绘数据的中心趋势、离散程度以及数据之间的关联性。
1. 中心趋势测量中心趋势测量用来反映数据集中的一个“典型值”。
(1)平均数(Mean):平均数是数据集中所有观测值的总和除以观测值的数量。
它可以用来衡量数据的总体情况。
(2)中位数(Median):中位数是将数据集按大小顺序排列后的中间值。
它可以忽略异常值的影响,更好地反映数据的中心位置。
(3)众数(Mode):众数是数据集中出现频率最高的值。
它在描述分类数据时特别有用。
2. 离散程度测量离散程度测量用来反映数据集的分散程度。
(1)标准差(Standard Deviation):标准差是数据集各个观测值与平均数之间的偏离度的平均值。
它反映了数据的总体分散程度。
(2)方差(Variance):方差是各个观测值与平均数之间偏离度的平方的平均值。
它是标准差的平方。
(3)极差(Range):极差是数据集中最大值与最小值之间的差值。
它可以用来衡量数据的全局范围。
三、数据可视化数据可视化是描述性统计分析中非常重要的一部分。
通过图表和图形的方式展示数据,可以使数据的特征更加直观地呈现出来。
1. 条形图(Bar Chart):条形图用于对比不同类别或组之间的数据差异。
2. 折线图(Line Chart):折线图可以展示变量随时间的变化趋势。
3. 饼图(Pie Chart):饼图适用于展示分类数据的比例关系。
4. 散点图(Scatterplot):散点图可以直观地显示两个变量之间的关系。
第3章统计学数据分布特征的描述
第3章统计学数据分布特征的描述统计学是一门研究收集、分析和解释数据的学科。
在统计学中,数据分布特征的描述是指通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。
数据的集中趋势描述了数据的平均水平或中心。
常用的统计量有平均值、中位数和众数。
平均值是将所有观测值相加然后除以观测值的总数,它能够反映数据的总体平均水平。
然而,当数据包含异常值时,平均值的计算结果可能会受到影响。
因此,中位数和众数在这种情况下被认为是更稳健的集中趋势度量。
中位数是将数据按大小排序,然后找出中间位置的观测值。
众数是数据中出现次数最多的观测值。
数据的离散程度描述了数据的变异程度或分散程度。
常用的统计量有方差、标准差和四分位差。
方差是观测值与均值之间差异的平方的平均值,它反映了数据的总体离散程度。
标准差是方差的平方根,用于衡量数据的波动性。
四分位差是数据的上四分位数和下四分位数之差,它描述了数据的中间50%的变异程度。
数据的分布形态描述了数据的形状和对称性。
常用的分布形态有正态分布、偏态分布和峰态分布。
正态分布是最常见的分布形态,其特点是对称、钟形曲线。
偏态分布是指数据分布不对称的情况,主要分为正偏态和负偏态。
正偏态分布意味着数据的尾部偏向右侧,负偏态分布则意味着数据的尾部偏向左侧。
峰态分布用于描述数据的峰值的尖锐程度,主要分为正态分布、高峰态和低峰态。
除了统计量,还可以使用图表来对数据分布特征进行描述。
常用的图表包括直方图、箱线图和散点图。
直方图是通过将数据分组并在坐标轴上绘制各组的频率或相对频率来展示数据的分布形态。
箱线图通过绘制数据的分位数和异常值来展示数据的中位数、四分位数和离群观测值。
散点图用于展示两个变量之间的关系,特别适用于发现变量之间的相关性和异常值。
综上所述,统计学中的数据分布特征描述是通过一系列统计量和图表来描述数据的集中趋势、离散程度和分布形态等特征。
这些描述能够帮助我们更好地理解数据,并对数据进行分析和解释。
统计学原理第4章:数据特征的描述
第四章 数据特征的描述
某公司400名职工平均工资计算表 单位:元
按月工资 组中值 职工
分组
x
人数
f
x f
比重(%)
f
f
①
②
③ ④=②×③ ⑤=③÷ 400
1100以下 1000
60
60000
15
1100-1300 1200 100 120000
25
1300-1500 1400 140 196000
35
分组
职工 人数
f
x f
①
1100以下 1100-1300 1300-1500 1500-1700 1700以上
②
1000 1200 1400 1600 1800
③ ④=②×③
60
60000
100 120000
140 196000
60
96000
40
72000
人数为权数
x x f f
544000 400
算术平均数、调和平均数、中位数、众数、几何平均数
3. 各种平均数的Excel操作
24/77
1. 集中趋势的含义
第四章 数据特征的描述
集中趋势是一组数据向其中心值靠
拢的倾向和程度
测度集中趋势就是寻找数据一般水
平的代表值或中心值
中心值 即:平均水平
▲
25/77
2. 集中趋势的度量方法
第四章 数据特征的描述
第四章 数据特征的描述
《统计学原理》(第3版)
第四章 数据特征的描述
学习目标
第一节 总量与相对量的测度 第二节 集中趋势的测度 第三节 离散程度的测度
2/77
第一节 总量与相对量的测度
统计数据的描述(统计学)
可以添加误差线来表示数据的波动范 围。
适用于展示定类变量和定比变量的数 据,如示时间序列数 据的变化趋势,便于 观察数据随时间的变 化规律。
可以添加趋势线来预 测未来的发展趋势。
适用于展示定比变量 的数据,如某品牌在 不同年份的销售数据。
饼图
用以展示分类数据的占比关系, 便于比较不同类别之间的比例大
在统计学中,许多随机变量遵循正态分布,例如人类的身高、考试分数 等。
偏态分布
偏态分布是指数据分布不对称的情况, 即数据偏向某一方向。
偏态分布的原因可能是数据本身的特性 偏态分布的描述需要使用中位数、均值
或测量误差。
和众数等统计量来全面了解数据特征。
峰态分布
峰态分布是指数据分布的形状 较为尖锐或平坦的情况。
峰态分布的判断可以使用峰 度系数来衡量,该系数描述 了数据分布的陡峭程度。
在峰态分布中,数据值在均值 附近较为集中,远离均值的数 据较少,形成较为尖锐或平坦
的分布形状。
05
数据的异常值处理
识别异常值的方法
统计检验法
通过统计检验,如Z分数、IQR等方 法,识别出异常值。
经验判断法
根据业务经验和专业知识,判断某些 数据是否异常。
小。
适用于展示定类变量的数据,如 某公司各部门的销售额占比。
可以添加图例来解释各部分所代 表的含义。
散点图
用以展示两个变量之间的相关 关系,便于发现变量之间的关 联和趋势。
适用于展示定比变量的数据, 如广告投入与销售额之间的关 系。
可以添加回归线来表示变量之 间的线性关系。
03
统计数据的数值描述
THANKS
感谢观看
统计数据的描述(统 计学)
统计学第3章数据分布特征描述
xi fi i1
xf
f1 f2 ... fn
n
fi
f
x x f
i 1
f
举例
表3-3 节能灯泡使用寿命数据
使用寿命 组中 数量 (小时) 值x f
xf
频率 f /Σf
xf/Σf
1000以下 900 2 1800 0.020 18
1000-1200 1100 8 8800 0.080 88
n(xi x) 0
i1
(3)各变量值与算术平均数的离差平方之总和最小。 (从全 部数据看,算术平均数最接近所有变量值)
n(xi x)2 min
i1
性质(3)证明:
(三)调和平均数(Harmonic mean)
➢ 调和平均数,也称倒数平均数。 ➢ 各变量值倒数(1/xi)的算术平均数的倒数。 ➢ 计算公式为:
➢由一组数据的总和(总体标志总量)除以 该组数据的项数(总体单位总量)得到; 算术平均数=总体标志总量/总体单位总量
➢是最常用的数值平均数;
➢根据掌握资料不同,其有多种计算公式。
1.简单算术平均数 ➢对未分组数据,采用简单算术平均数公式。即 把各项数据直接加总,然后除以总项数。 ➢计算公式:
N
xi x i1
例如,改变教师职称结构,而不改变各种职 称教师课时费标准,会改变平均课时费水平。
权数实质
➢权数的实质在于其结构,即结构比例形式(比重 权数)。
➢其更能清晰表明权数之权衡轻重的作用。
权数形式有2种:
➢ 绝对数形式
Mp
➢ 结构比例形式
k
N
xik wi
i 1
N
wi
i 1
k
N
i 1
统计学教案统计数据的描述与分析
统计学教案统计数据的描述与分析主题:统计学教案——统计数据的描述与分析引言:统计学是一门研究如何收集、分析和解释数据的学科。
在现代社会中,统计学在各个领域都起着重要作用,帮助我们了解和解释各种现象。
本教案将介绍统计学中数据的描述和分析方法,以及如何运用这些方法进行实际问题的解决。
一、数据的描述在统计学中,我们经常需要描述数据的特征,以便更好地理解和分析数据。
以下是几种常用的描述统计量:1. 平均数:平均数是数据的总和除以观测次数的结果。
它是最直观也是最常用的描述统计量。
2. 中位数:中位数是将数据按照大小顺序排列后,位于中间位置的数值。
3. 众数:众数是数据中出现次数最多的数值。
4. 极差:极差是数据最大值与最小值之间的差异。
5. 方差:方差表示数据的离散程度,是各个观测值与平均数之差的平方的平均值。
6. 标准差:标准差是方差的平方根,用于度量数据分布的广度。
二、数据的分析数据分析是统计学的核心内容,通过分析数据可以得出结论和推断。
以下是几种常用的数据分析方法:1. 频率分析:频率分析是按照某个变量的取值进行分类,然后统计每个分类的频数。
2. 相关分析:相关分析用于判断两个变量之间的关系和相关性。
常用的相关分析方法有皮尔逊相关系数和斯皮尔曼相关系数。
3. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响程度和方向。
4. 置信区间:置信区间是用来估计未知参数真值区间的统计量。
通过计算得出的置信区间可以帮助我们对未知参数进行推断。
小结:统计学作为一门重要的学科,提供了丰富的工具和方法来描述和分析数据。
数据的描述能够帮助我们理解数据的特征,数据的分析则能够帮助我们得出结论和推断。
通过学习统计学,我们可以更好地应用这些知识解决实际问题,提高数据分析的准确性和效率。
参考文献:1. 劳伦斯·S.沃尔斯(2013),《统计学导论》。
2. 陈忠进,王洪敏(2017),《应用统计学》。
注:本教案属于纯粹的学术内容,与任何政治、色情等不相关。
统计学案例数据分析—描述统计
统计学案例数据分析—描述统计描述统计是统计学中的一个重要分支,主要研究如何对数据进行整理、总结、描述和展示。
它通过汇总和描述数据来揭示数据的特征和规律,从而从整体上了解数据集的信息。
下面将给出一个描述统计学案例,用于展示描述统计在实际问题中的应用。
假设我们收集到公司过去一年来的销售数据,该公司主要销售电器产品。
数据集包括每个月的销售额、销售量、销售地区和销售渠道等信息。
我们想要通过描述统计方法对这个数据集进行分析,以了解销售状况和销售趋势。
首先,我们可以对销售额进行描述统计分析。
我们可以计算销售额的平均值、中位数、最大值和最小值等,来描述销售额的整体水平和分布情况。
比如,平均销售额可以反映公司的整体销售水平,最大值和最小值可以告诉我们销售的波动范围,中位数可以反映销售额的中部位置。
接下来,我们可以对销售量进行描述统计分析。
类似地,我们可以计算销售量的平均值、中位数、最大值和最小值,来描述销售量的整体水平和分布情况。
这可以帮助我们了解公司的销售产品的数量和规模。
然后,我们可以对销售地区进行描述统计分析。
我们可以计算每个地区的销售额和销售量的总和,来了解各个地区的销售情况。
这可以帮助我们判断哪些地区是公司的主要销售市场,以及哪些地区的销售情况较差,可能需要加大市场开发力度。
最后,我们可以对销售渠道进行描述统计分析。
我们可以计算每个渠道的销售额和销售量的比例,来了解各个渠道的销售贡献程度。
这可以帮助我们判断哪些渠道是公司的主要销售渠道,以及哪些渠道可能需要调整或者优化。
除了上述的描述统计指标,我们还可以使用图表来展示数据的分布和趋势。
比如,我们可以使用直方图、饼图、折线图等来直观地呈现销售额和销售量的分布情况,以及不同地区和渠道的销售情况。
通过以上的描述统计分析,我们可以得到关于销售状况和销售趋势的详细信息。
这些信息可以帮助公司做出相应的决策和战略调整,以进一步提升销售业绩。
总之,描述统计是统计学中的一个重要工具,可以帮助我们对数据进行整理、总结、描述和展示。
统计学中的数据分析方法
统计学中的数据分析方法数据分析是统计学的重要组成部分,通过对数据的收集、整理和解释,可以得出有关数据特征、关联性和趋势等信息。
在统计学中,有多种数据分析方法,本文将介绍其中一些常见的方法。
一、描述性统计分析描述性统计分析是对数据进行整理和总结的方法。
它通过计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差),来揭示数据的基本特征。
此外,描述性统计分析还包括制作频数分布表、绘制直方图和绘制箱线图等方法,以便更好地展示数据的分布情况和异常值。
二、推断统计分析推断统计分析是通过样本数据来推断整个总体数据的方法。
在这种分析方法中,我们利用样本统计量(如样本均值和样本比例)来估计总体参数,并通过假设检验和置信区间来对总体参数进行推断。
假设检验可以判断总体参数的差异是否显著,而置信区间则给出了总体参数的一个估计范围。
三、相关性分析相关性分析用于探索两个或多个变量之间的关系。
通过计算相关系数(如皮尔逊相关系数和斯皮尔曼相关系数),可以评估变量之间的线性相关程度。
相关性分析不仅可以帮助我们了解变量之间的关联性,还可以用于预测和建立模型。
四、回归分析回归分析是一种用于研究变量之间关系的方法。
它通过建立回归方程来描述自变量对因变量的影响程度,并进行参数估计和模型评估。
回归分析可以分为线性回归、多项式回归和逻辑回归等,根据数据类型和分析目的选择合适的回归方法。
五、方差分析方差分析(ANOVA)是用于比较两个或多个样本均值是否存在显著差异的方法。
方差分析将总体数据的变异性分解为组内变异和组间变异,并利用F检验来检验组间差异是否显著。
方差分析广泛应用于实验设计和质量控制等领域。
六、聚类分析聚类分析是一种将相似样本归类到同一类别的方法。
它通过计算样本之间的距离或相似性,将样本分成不同的群组。
聚类分析可以帮助我们发现数据的内在结构和规律,对于市场细分和用户分类等问题具有重要意义。
七、时间序列分析时间序列分析是对时间相关数据进行分析和预测的方法。
统计学中的数据表示和分析
统计学中的数据表示和分析数据表示和分析在统计学中扮演着重要的角色。
统计学是指通过收集、整理、分析和解释数据来描述和推断现象、探索规律、做出决策的科学方法。
数据的表示和分析是统计学中的基础,能够为我们提供关于现象或问题的全面信息,并帮助我们进行更深入的推断和决策。
本文将介绍统计学中数据表示和分析的基本概念和方法。
一、数据表示在统计学中,数据的表示是指将采集到的原始数据以合适的形式展示出来,以便我们更好地理解和分析数据。
常见的数据表示方法有表格、图标和统计指标等。
下面将分别进行介绍。
1. 表格表格是最常见和直观的数据表示形式之一。
通过将数据按行和列组织起来,可以清晰地呈现各个数据项之间的关系。
表格中,通常将变量放在列上,将观测值放在行上,每个单元格中填入相应的数据。
表格不仅可以展示原始数据,还可以计算各种统计指标,比如频数、百分比等。
2. 图标图标是利用图形表达数据的一种方式。
图标可以使数据更直观、形象,并且更容易被人们理解和记忆。
常见的图标有柱状图、折线图、饼图等。
柱状图可以用于比较各组数据的大小关系,折线图可以展示数据的趋势和变化,饼图可以表示不同部分在整体中的比例关系。
3. 统计指标统计指标是对数据进行整理和概括的量化指标。
常见的统计指标有均值、中位数、方差、标准差等。
这些指标能够帮助我们了解数据的集中趋势、离散程度和分布形态。
通过统计指标,我们可以对数据进行汇总和描述,更好地理解和分析数据。
二、数据分析数据分析是指对采集到的数据进行解释和推断的过程。
通过运用统计学的方法和技术,我们可以根据数据的特点和目的,对数据进行有效的分析,从而得出有关现象或问题的结论。
1. 描述统计描述统计是对数据进行整理和概括的过程。
通过计算和运用各种统计指标,比如均值、中位数、频数等,描述统计可以帮助我们了解数据的集中趋势、离散程度和分布形态。
通过描述统计,我们可以对数据进行汇总和描述,从而得出数据的基本特征。
2. 探索性数据分析探索性数据分析是对数据进行探索和发现的过程。
统计学第2章 数据分布特征的描述(2)
N ②对于分组数据(组距式变量数列要先计算出各组组中
值来作为各组的变量值 X )
σ
2
σ2
X X
2
X X F
2
F
(2)总体标准差(σ)
①对于未分组资料:
σ
X X
N
2
②对于分组数据: σ
X X F F
2
2、样本方差( S
1、单项式变量数列
标志值 x x1 x2 x3
. . . .
次数 f f1 f2 f3
. . . .
标志总量 xf x1f1 x2f2 x3f3
. . . .
比重 f/ ∑f f1/ ∑f f2/ ∑f f3/ ∑f
. . . .
xn 合 计
fn
∑f
xn fn
∑xf
fn/ ∑f 1
f xf x x f f
3 n 1 Q3是第 位置上的数值; Q4是最大值。 4
注意:
1、如果数据个数不能被4除尽时,还是按这个规则来确定分位 数的位置;2、有时可能出现分位数在两个数之间的情况,这时
如果分位数刚好在这两个数的正中间时,分位数就是这两个数相 加除以2。但有时不是刚好在这两个数的正中间时,要用其中比较 小的数加上按比例分摊的这两个数之间的距离。
见第33页的例题
三、方差和标准差
(一)概念
各变量值与其算术平均数离差平方的算术平均数叫方差; 方差的方根就是标准差。 注意:由于标准差与变量值的单位相同,其实际意义要比方 差清楚,因此在对社会经济现象进行分析时,更多使用标准差。
(二)计算
1、总体方差(σ2)和总体标准差(σ)
(1)总体方差(σ2)
统计学中的数据分析
统计学中的数据分析统计学是一门研究收集、处理、分析和解释数据的学科。
在当今信息时代,数据分析已经成为各行各业中不可或缺的技能。
本文将介绍统计学中的数据分析方法以及其在实际问题中的应用。
一、数据收集和整理在开始数据分析之前,首先需要收集和整理相关数据。
数据可以通过各种途径获得,比如调查问卷、实验、观察等。
在收集数据时,需要注意数据的准确性和完整性,以及保护个人隐私和数据安全。
二、描述统计描述统计是对数据的基本特征进行总结和描述的方法。
其中常用的指标包括平均数、中位数、众数、标准差等。
通过描述统计,我们可以了解数据的分布情况、集中趋势和离散程度。
三、推论统计推论统计是在已知样本数据的基础上,对总体特征进行推断的方法。
其中包括参数估计和假设检验。
参数估计通过样本数据推断出总体参数的取值范围和置信区间。
假设检验用于验证研究假设是否成立。
推论统计使我们能够对整个总体进行推断,而不仅仅局限于样本。
四、相关分析相关分析用于研究两个或多个变量之间的关系。
常见的相关分析方法包括相关系数和回归分析。
相关系数衡量变量之间的线性关系程度,可以帮助我们判断变量之间的相关性。
回归分析则进一步研究变量之间的因果关系,并进行预测和解释。
五、多元统计分析多元统计分析用于研究多个变量之间的关系,常用的方法包括主成分分析、因子分析和聚类分析。
主成分分析可以将多个相关变量通过线性组合转化为少数几个无关变量,以降低数据维度。
因子分析则用于探索多个变量背后的潜在因素。
聚类分析可以将样本按照相似性进行分类。
六、时间序列分析时间序列分析是研究时间上的随机变动和规律的方法。
通过对时间序列数据的分析,可以了解数据的趋势、季节性和周期性等特征,以及进行未来的预测。
常用的时间序列分析方法包括移动平均、指数平滑和ARIMA模型等。
七、实际应用数据分析在各个领域都具有广泛的应用。
在经济学中,数据分析可以用于预测经济走势、评估政策效果等。
在医学领域,数据分析可以帮助研究疾病发病机理、制定治疗方案等。
管理统计学 第2版 第三章 数据特征的描述与分析
某工厂有五条相同的流水线,生产同一产品且生产速度相同,各流水线的合 格率分别为 95%、92%、90%、85%、80%,那么该工厂产品的平均合格率 是多少?如果某流水生产线有前后衔接的五道工序,各工序产品的合格率分 别为95%、92%、90%、85%、80%,那么产品的平均合格率又是多少?
x x1 x2 xn 95% 92% 90% 85% 80% 88.40%
X F2 2
X N FN
9 (105.3%)3 (104.5%)2 (102.1%)4
103.90%
投资者平均股票的平均收益率为103.90%-1=3.90%
3.1 集中趋势的测度与应用
中位数
中位数是位置平均数,若将变量值按大小顺序排 列,处于中点位置的变量值即为中位数。
中位数不受极端数值的影响,在由个别极端数值 存在的数列种,中位数的代表性比算术平均数的 代表性强。
为:
X
K
Xi
Fi
K
593 .10(元)
i 1Leabharlann Fii 1算术平均数
3.1 集中趋势的测度与应用
算术平均数的性质 (1)各变量值与其均值的离差之和等于零,即:
未分组资料: 分组资料:
N
(X i - X ) 0
i 1
N
(X i - X )Fi 0
i 1
(2)各变量值与其均值的离差平方和最小,即:
中位数的计算一般分两步,首先确定中位数位置, 然后找出中位数位置对应的变量值。
3.1 集中趋势的测度与应用
中位数
未分组资料计算中位数 (1)中位数的位次= N 1 2
式中,N为变量值的项数。
(2)若用Me表示中位数则有:
Me
第三章统计数据分布特征的描述
第三章统计数据分布特征的描述统计数据分布特征的描述是统计学中非常重要的一个概念,它用于对数据进行系统化的描述和分析。
统计数据分布特征的描述包括位置参数、散布参数和形状参数。
位置参数描述了数据集中心位置的特征。
最常用的位置参数是均值和中位数。
均值是指所有数据值的总和除以数据个数,它能够反映数据集的平均水平。
中位数是将数据值按大小排序后的中间值,它能够反映数据集的中心位置。
均值对异常值比较敏感,中位数能够较好地排除异常值的干扰。
散布参数描述了数据集的离散程度。
最常用的散布参数是方差和标准差。
方差是指每个数据值与均值之差的平方和的平均值,它能够反映数据集的离散程度。
标准差是方差的平方根,它与数据的单位相一致,常用于衡量数据的波动性。
方差和标准差越大,表示数据的离散程度越大。
形状参数描述了数据集的分布形状。
常用的形状参数包括偏度和峰度。
偏度是指数据分布的不对称程度,大于0表示右偏,小于0表示左偏,等于0表示对称。
偏度能够反映数据集的分布形态。
峰度是指数据分布的尖锐程度,大于0表示尖锐,小于0表示平坦,等于0表示与正态分布相似。
峰度能够反映数据集的尖峰或扁平程度。
除了这些常见的参数之外,还有其他一些描述统计数据分布特征的方法,如四分位数和箱线图。
四分位数是将数据分为四等分的值,它包括上四分位数、下四分位数和中位数。
上四分位数是四分之三分位数,下四分位数是四分之一分位数。
箱线图是以箱子和线段的形式展示数据分布特征,箱子的上边界和下边界分别代表上四分位数和下四分位数,箱子的中线代表中位数,箱子的长度代表数据的离散程度。
统计数据分布特征的描述对于研究数据的特征、提取有效信息以及进行统计推断都非常重要。
了解数据的位置、散布和形状特征能够帮助研究者更好地理解数据集的性质和规律。
在实际应用中,统计数据分布特征的描述还可以帮助决策者进行决策,例如对于质量控制的判断和产品的质量评估等。
综上所述,统计数据分布特征的描述是对数据集进行系统化描述和分析的重要工具。
统计学第三章 数据分布特征的描述.ppt
600 —700 700 以上 合计
职工人数(人)
f
f/∑f
50 16.7
70 23.3
120 40.0
60 20.0
300 100.0
要求:根据资料计算全部职工的平均工资。
统计学课程建设小组
三峡大学
经济与管理学院
例3权数的选择
当分组的标志为相对数或平均数时,经常会遇到 选择哪一个条件为权数的问题。如下例:
女性为63319万人) (三)比较相对指标
甲总体某指标值 比较相对指标=—————————×100%
乙总体同类指标值
统计学课程建设小组
三峡大学
经济与管理学院
(四)强度相对指标
某一总量指标数值
强度相对指标=—————————————
另一有联系而性质不同的总量指标数值
如:2005年一季度城镇居民人均可支配收入为 2938元
___ x1 x2 ... xn x
Xn
n
(2)加权算术平均数
它适合于计算分组数列的平均数。
其计算公式为:
___
X
x1 f1 x2 f2 ... xn fn f1 f2 ... fn
xf
f
xf f
统计学课程建设小组
三峡大学
统计学第三章 数据分布特征的 描述
三峡大学
经济与管理学院
第一节 总量指标 一、总量指标的概念、作用
(一)概念 又称绝对数。它是表明一定时间、地点和
条件下某种社会经济现象总体规模或水平的统 计指标。 (二)作用
1.是反映总体基本状况,社会经济活动绝对 效果的统计指标;
第三章统计数据分布特征的描述
第三章统计数据分布特征的描述统计数据分布特征的描述是统计学中的重要概念之一、它是通过对数据进行整理、组织和分析来了解数据的分布情况,帮助我们更好地理解数据的特点和趋势。
一、数据分布特征的描述方法在统计学中,数据分布特征主要通过以下两种方法进行描述:1.图形描述法:通过绘制图表来展示数据的分布情况。
常见的图形描述方法有直方图、条形图、饼图、箱线图等。
直方图是一种用于展示数据分布的图形。
它将其中一范围内的数据分成若干个等宽的区间,并统计每个区间中数据的频数或频率,然后绘制柱状图来表示。
箱线图是一种用于展示数据分布和异常值的图形。
它将数据划分为四个部分:最大值、上四分位数、中位数、下四分位数和最小值,并通过画出盒子和须来表示数据的分布情况。
2.数值描述法:通过使用统计指标和参数来描述数据的分布情况。
常见的数值描述方法有均值、中位数、众数、标准差、方差等。
均值是指将所有数据相加后再除以数据的总个数的得到的值,代表了数据的平均水平。
中位数是指将数据按大小排序后,处于中间位置的值,代表了数据的中心位置。
众数是指数据集中出现次数最多的值,代表了数据的集中趋势。
标准差是指数据在均值附近的波动程度,代表了数据的离散程度。
方差是指数据与均值之间的平均差的平方的平均值,代表了数据的离散程度。
二、数据分布特征的描述步骤要进行数据分布特征的描述,一般需要进行以下步骤:1.数据的整理和搜集:搜集所需的数据,并将其整理成适合进行分析的形式。
2.确定描述方法:根据数据的特点和目标,选择适当的图形描述法或数值描述法。
3.进行描述分析:根据所选的描述方法,对数据进行分析和计算,得出相应的描述结果。
4.解释和应用:根据描述结果,解释数据的分布特征,并根据需要进行相应的应用。
三、数据分布特征的描述应用数据分布特征的描述在实际应用中有很多用途,以下是几个常见的应用:1.判断数据是否符合其中一种分布:通过对数据的分布特征进行描述,可以判断数据是否符合正态分布或其他特定的分布形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 各变量值与中位数的离差绝对值之和最小,即
n
xi M e min
4 - 12
i 1
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
中位数
(位置和数值的确定)
位置确定 中位数位置 n 1 2
数值确定
4 - 13
Me
x
n1 2
1 2
x
n 2
x
位 置: 1 2 3 4 5 6 7 8 9 10
位置 n 1 10 1 5.5
2
2
中位数 960 1080 1020 2
4 - 16
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
四分位数
(quartile)
1. 排序后处于25%和75%位置上的值
25% 25% 25% 25%
统计学
STATISTICS (第四版)
顺序数据:中位数和分位数
4 - 11
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
中位数
(median)
1. 排序后处于中间位置上的值
50%
Me
2. 不受极端值的影响
50%
3. 主要用于顺序数据,也可用数值型数据,但不能 用于分类数据
1. 一组数据向其中心值靠拢的倾向和程度
2. 测度集中趋势就是寻找数据水平的代表值或中心值
3. 不同类型的数据用不同的集中趋势测度值
4. 低层次数据的测度值适用于高层次的测量数据,但高 层次数据的测度值并不适用于低层次的测量数据
4 -5
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
12 3 4 5 6 7 8 9
位置 n 1 9 1 5 22
中位数 1080
4 - 15
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
数值型数据的中位数
(10个数据的算例)
【例】:10个家庭的人均月收入数据
排 序: 660 750 780 850 960 1080 1250 1500 1630 2000
统计学
STATISTICS (第四版)
第 4 章 数据的概括性度量
4 -1
作者:中国人民大学统计学院
贾俊平
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
第 4 章 数据的概括性度量
4.1 集中趋势的度量 4.2 离散程度的度量 4.3 偏态与峰态的度量
4 -2
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
学习目标
1. 集中趋势各测度值的计算方法 2. 集中趋势各测度值的特点及应用场合 3. 离散程度各测度值的计算方法 4. 离散程度各测度值的特点及应用场合 5. 偏态与峰态的测度方法 6. 用Excel计算描述统计量并进行分析
4 -3
作者:贾俊平,中国人民大学统计学院
分类数据的众数
(例题分析)
不同品牌饮料的频数分布
饮料品牌
频数 比例 百分比 (%)
果汁 矿泉水 绿茶 其他 碳酸饮料
6 0.12 12 10 0.20 20 11 0.22 22 8 0.16 16 15 0.30 30
合计
50
1
100
4 -9
解:这里的变量为“饮 料品牌”,这是个分类 变量,不同类型的饮料 就是变量值
非常不满意
24
8
不满意
108
36
一般
93
31
满意
45
15
非常满意
30
10
合计
300
100.0
解:这里的数据为顺 序数据。变量为“回 答类别”
甲城市中对住房 表示不满意的户数最 多 , 为 108 户 , 因 此 众数为“不满意”这 一类别,即
Mo=不满意
4 - 10
作者:贾俊平,中国人民大学统计学院
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
众数
(不惟一性)
无众数 原始数据:
10 5 9 12 6 8
一个众数 原始数据:
659855
多于一个众数 原始数据: 25 28 28 36 42 42
4 -8
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
(300+1)/2=150.5 从累计频数看,
中位数在“一般”这 一组别中
中位数为
Me=一般
合计
300
4 - 14
—
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
数值型数据的中位数
(9个数据的算例)
【例】
原始数据: 排 序:
位 置:
9个家庭的人均月收入数据
1500 750 780 1080 850 960 2000 1250 1630 750 780 850 960 1080 1250 1500 1630 2. 不受极端值的影响
3. 计算公式
4 - 17
QL位置
n 4
QU位置
3n 4
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
顺序数据的四分位数
n 2
1
n为奇数 n为偶数
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
顺序数据的中位数
(例题分析)
甲城市家庭对住房状况评价的频数分布
回答类别
甲城市 户数 (户) 累计频数
非常不满意
24
24
不满意
108
132
一般
93
225
满意
45
270
非常满意
30
300
解:中位数的位置为
分类数据:众数
4 -6
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
众数
(mode)
1. 一组数据中出现次数最多的变量值 2. 适合于数据量较多时使用 3. 不受极端值的影响 4. 一组数据可能没有众数或有几个众数
5. 主要用于分类数据,也可用于顺序数据和 数值型数据
4 -7
所调查的50人中,购 买碳酸饮料的人数最多 ,为15人,占总被调查 人数的30%,因此众数 为“可口可乐”这一品 牌,即
Mo=碳酸饮料
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
顺序数据的众数
(例题分析)
甲城市家庭对住房状况评价的频数分布
回答类别
甲城市 户数 (户) 百分比 (%)
统计学
STATISTICS (第四版)
4.1 集中趋势的度量
4.1.1 分类数据:众数 4.1.2 顺序数据:中位数和分位数 4.1.3 数值型数据:平均数 4.1.4 众数、中位数和平均数的比较
4 -4
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第四版)
集中趋势
(central tendency)