傅里叶变换 讲解最通俗易懂的一片
经典傅里叶变换讲解ppt课件
![经典傅里叶变换讲解ppt课件](https://img.taocdn.com/s3/m/65a0785c011ca300a6c390c3.png)
)dt
t2 t1
t2 t1
f (t) sin(n1t)dt
6
或
f
(t )
a0 2
(an
n 1
cos n1t
bn
sin n1t)
傅里叶级数的 三角展开式
2
an t2 t1
t2 t1
f (t )cos(n1t )dt
同上式
另一种形式
f
(t )
a0 2
cn
n 1
cos(n1t
n )
t
T 4
,
Fn
T
Sa( n
T
)
1 4
Sa( n
4
)
第一个过零点为n =4 。 Fn 在 2π/ 有 4值1(谱线)
T
f (t)
1
2
o
2
谱线间隔 2π T
1 Fn
4
2
O
T
t
第一个过零点:
Sa(
2
)
0
π 2
2π
23
情况2:
T 8
,
Fn
T
Sa( n
T
)
1 8
Sa( n
8
)
第一个过零点n=8
2
)
21
(2)双边频谱:
1
Fn T
/2
e jn1 tdt
1
e jn1 t
/2
2
sin
n1 2
b
b2 4ac
/ 2
T jn1 / 2 T n1
2a
T
sin
n1 2
n1
2
T
Sa( n1
2
傅里叶变换最通俗的理解
![傅里叶变换最通俗的理解](https://img.taocdn.com/s3/m/f21de5dc988fcc22bcd126fff705cc1755275f24.png)
傅里叶变换最通俗的理解傅里叶变换是一种数学工具,它可以将一个周期性信号分解成多个不同频率的正弦波,并且可以将非周期性信号转换成一个连续的频谱图。
在信号处理、图像处理、音频处理等领域中,傅里叶变换被广泛应用。
本文将从以下几个方面来解释傅里叶变换的原理和应用。
一、什么是傅里叶级数在介绍傅里叶变换之前,我们需要先了解傅里叶级数。
傅里叶级数是一种将周期性函数表示为无穷多个正弦和余弦函数之和的方法。
具体地说,给定一个周期为T的函数f(t),可以表示为以下形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中ω=2π/T,a0、an和bn是常数系数。
这个式子意味着,任何一个周期函数都可以被分解成由不同频率的正弦波组成的和。
这就是傅里叶级数的基本思想。
二、什么是离散时间傅里叶变换离散时间傅里叶变换(Discrete Fourier Transform, DFT)是一种将离散时间序列(例如数字信号)转换为频域表示的方法。
它可以将一个长度为N的离散时间序列x(n)转换成一个长度为N的复数序列X(k),其中k=0,1,...,N-1。
具体地说,DFT可以用以下公式表示:X(k) = Σ(x(n)*exp(-j2πnk/N))其中j是虚数单位,n和k分别是时间和频率的索引。
这个式子意味着,任何一个离散信号都可以被分解成由不同频率的正弦波组成的和。
DFT将原始信号转换成了一组复数表示,其中每个复数表示了对应频率上正弦波和余弦波的振幅和相位。
三、什么是傅里叶变换傅里叶变换(Fourier Transform, FT)是一种将连续时间信号转换为频域表示的方法。
它可以将一个连续时间函数f(t)转换成一个连续频谱函数F(ω),其中ω是角频率。
具体地说,FT可以用以下公式表示:F(ω) = ∫f(t)*exp(-jωt)dt这个式子意味着,任何一个连续信号都可以被分解成由不同角频率的正弦波组成的积分。
傅里叶变换通俗理解
![傅里叶变换通俗理解](https://img.taocdn.com/s3/m/f5e6f42891c69ec3d5bbfd0a79563c1ec5dad7d9.png)
傅里叶变换通俗理解傅里叶变换(简称Fouriertransform)是一种数学变换,它是把一个时间序列的信号变换成一种频率特征的表示,它已成为信号处理的重要技术手段,是现代信号处理和信道分析的基础。
立叶变换广泛用于声学、信号处理、智能控制等领域。
是一种研究时间域信号的频率域特性的工具,它可以把一个时间序列的信号(或者其它序列)变换成一组由频率和幅度组成的复数信号,从而在频率域上去描述时域信号的幅度与频率的分布特点。
在传统的数学上,傅里叶变换的定义是把一个函数在时间域上的函数值转换为它在频率域上的复变函数值。
谓频率域,是指当我们把时域上的函数用角频率ω表示时,这个函数就变成了频率域上的函数。
是一种从时空域到频率域的变换,是基于函数在时域上的函数值变换到在频率域上的函数值。
也就是把函数在时间域上的函数值转换为它在频率域上的复变函数值。
傅里叶变换是一种基于函数在时域上的函数值变换到在频率域上的函数值的过程,它可以将信号从时域变换到频域,这样就可以使用频域的分析来处理信号,而不需要考虑时域的变化情况。
傅里叶变换的基本思想是,任何一个信号都可以看作一系列正弦波的和。
但是实际上,傅里叶变换有多种形式,比如离散傅立叶变换、快速傅立叶变换等,这些变换都可以把时域上的信号转换到频域上。
一般情况下,傅里叶变换可以用来分析信号的频率组成,分解出低频成分和高频成分,从而判断信号的特性。
还可以用来过滤不需要的信号,为信号处理提供有效的方法。
例如,傅里叶变换可以把时域信号中的低频成分过滤掉,然后再进行高频信号的处理,从而可以获得较好的结果。
傅里叶变换也可以用来估计不可测量的频率参数,例如相位和幅度,从而可以用来推断信号的结构特性。
样还可以用来估计时间滞后性及其影响,这在多媒体信号处理中尤为重要。
因此我们可以看出,傅里叶变换在信号处理上拥有很强的功能,不但可以把信号从时域转换成频域,还能用来获取信号的特征分析,精确估计信号的参数等。
《傅里叶变换经典》PPT课件
![《傅里叶变换经典》PPT课件](https://img.taocdn.com/s3/m/7a46904d854769eae009581b6bd97f192279bf86.png)
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理
奈奎斯特采样定律和傅里叶变换通俗易懂
![奈奎斯特采样定律和傅里叶变换通俗易懂](https://img.taocdn.com/s3/m/b2b2b19385254b35eefdc8d376eeaeaad1f316ae.png)
奈奎斯特采样定律和傅里叶变换是数字信号处理中非常重要的概念,对于理解信号处理、通信等领域具有深远的影响。
本文将以从简到繁的方式来解释这两个概念,以便读者更深入地理解。
一、奈奎斯特采样定律奈奎斯特采样定律是数字信号处理中的基本原理之一,它指出:对于一个带限信号,如果要使原始信号通过采样得到的离散信号完全保留原始信息,就需要进行足够高的采样频率。
也就是说,采样频率至少要是信号带宽的两倍。
这个原理在通信领域和信号处理领域都有广泛的应用。
举个例子,当我们用手机拍摄视频时,摄像头会以一定的频率对图像进行采样,而奈奎斯特采样定律保证了我们观看视频时不会出现明显的失真和模糊。
在实际应用中,奈奎斯特采样定律的重要性不言而喻。
举个例子,如果我们需要对一个模拟音频信号进行数字化处理,那么就需要按照一定的采样频率进行采样,以充分保留音频信号的信息。
如果采样频率不满足奈奎斯特采样定律,就会导致采样失真,从而影响信号的质量。
二、傅里叶变换而傅里叶变换则是另一个重要概念,它能够将一个复杂的信号分解成简单的正弦和余弦函数。
通过傅里叶变换,我们可以更清晰地理解信号的频谱特性,从而在频域上对信号进行分析和处理。
傅里叶变换的重要性在于,它为我们提供了一种全新的分析信号的工具。
通过将信号从时域转换到频域,我们可以更加直观地认识信号,从而更深入地理解信号的特性和规律。
在通信领域和信号处理领域,傅里叶变换被广泛应用于信号滤波、频谱分析等方面。
三、个人观点与理解奈奎斯特采样定律和傅里叶变换是数字信号处理中的基础概念,对于理解信号的采样和分析具有重要意义。
在我的理解中,奈奎斯特采样定律告诉我们,在进行信号采样时,要尽量满足一定的采样频率,以保证采样后的信号能够准确地还原原始信号。
而傅里叶变换则为我们提供了一种更直观、更深入地认识信号的方法,通过傅里叶变换,我们能够将信号的频域特性展现在我们面前,从而更好地进行信号分析和处理。
总结而言,奈奎斯特采样定律和傅里叶变换是数字信号处理中不可或缺的两个概念,它们深刻影响着通信、音频处理等领域。
傅里叶变换通俗理解
![傅里叶变换通俗理解](https://img.taocdn.com/s3/m/17b6cedf844769eae109ed3c.png)
通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,是将函数向一组正交的正弦、余弦函数展开,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。
傅里叶变换通俗理解
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。
最初傅立叶分析是作为热过程的解析分析的工具被提出的。
傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
傅里叶变换 讲解
![傅里叶变换 讲解](https://img.taocdn.com/s3/m/81b8ebaff9c75fbfc77da26925c52cc58bd690b7.png)
傅里叶变换讲解傅里叶变换是基于信号的频域分析方法,被广泛应用于信号处理、图像处理、通信等领域。
它是法国数学家傅里叶在19世纪提出的一种数学变换方法。
在介绍傅里叶变换之前,我们先来了解一下频域和时域的概念。
在时域中,信号是按照时间变化的,我们可以观察信号的振幅、相位等特性。
而在频域中,信号是按照频率变化的,我们可以观察信号的频率成分、频谱分布等特性。
傅里叶变换的核心思想是将一个时域信号分解成若干个不同频率的正弦和余弦波形成的谐波的叠加。
通过傅里叶变换,我们可以将信号从时域转换到频域,得到信号的频谱图或频域表示。
傅里叶变换的数学表达式为:F(ω) = ∫[f(t) * e^(-jωt)] dt其中,F(ω)表示信号在频率ω处的频谱;f(t)表示时域信号;e^(-jωt)为复指数函数;∫表示积分运算。
傅里叶变换不仅可以将信号从时域转换到频域,还可以通过反变换将信号从频域转换回时域。
这使得我们可以对信号进行频谱分析、滤波、卷积等处理操作,进一步理解和提取信号的特征。
在实际应用中,傅里叶变换有多种形式,常见的有连续傅里叶变换(CTFT)、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。
其中,FFT是一种高效的离散傅里叶变换算法,广泛应用于数字信号处理领域。
通过FFT算法,我们可以快速计算信号的频谱,加速信号处理的速度。
傅里叶变换在信号处理领域有着广泛的应用。
例如,在音频处理中,我们可以通过傅里叶变换将音频信号转换到频域,从而实现音频的谱分析、音频合成等功能。
在图像处理中,我们可以通过傅里叶变换进行图像滤波、图像压缩等操作。
在通信领域,傅里叶变换可以帮助我们理解信号的频率特性,优化信号的传输和接收过程。
总之,傅里叶变换是一种非常重要的信号处理方法,通过将信号从时域转换到频域,可以帮助我们对信号进行更深入的分析和处理。
掌握傅里叶变换的原理和应用,对于从事信号处理相关工作的人员具有重要的指导意义。
傅里叶变换通俗解释
![傅里叶变换通俗解释](https://img.taocdn.com/s3/m/ec73bb0632687e21af45b307e87101f69e31fb2c.png)
傅里叶变换通俗解释
傅里叶变换是一种重要的数学工具,被广泛应用于信号处理、图像处理和物理学中。
它能够将一个函数或信号分解成不同频率的正弦和余弦函数的叠加。
这种分解使我们能够更好地理解信号的频谱特性和频域信息。
想象一下,当我们听到一段音乐时,实际上我们在感知不同频率的声音。
低音和高音在频率上有所不同,而傅里叶变换可以帮助我们分析和展示这些不同频率的声音成分。
在数学中,任意一个函数可以用无穷多个正弦和余弦函数相加的形式来表示。
傅里叶变换的核心思想就是利用这个性质,将函数分解成许多不同频率的正弦和余弦函数。
这些正弦和余弦函数分别对应信号中的不同频率成分。
傅里叶变换的结果可以用频域表示,即以频率为横轴的图像。
通过分析这个频谱图,我们可以判断信号中存在哪些频率成分以及它们的强度。
这对于音频处理、图像处理和信号滤波等应用非常重要。
举个简单的例子,如果我们有一个包含不同频率的声音信号,通过对该信号进行傅里叶变换,我们可以得到一个频谱图,显示出各个频率成分的强度。
通过观察这个频谱图,我们可以判断出这个声音中哪些频率的声音更强烈或更突出。
这使我们能够更好地理解信号的特性和对其进行处理。
总结而言,傅里叶变换是一种将函数或信号分解成不同频率的正弦和余弦函数的技术。
它在信号处理、图像处理和物理学等领域中发挥着重要作用,帮助我们理解和处理信号的频谱特性。
它的应用范围广泛,对于科学研究和工程技术都具有重要意义。
傅里叶变换知识点总结
![傅里叶变换知识点总结](https://img.taocdn.com/s3/m/cbe8cdbd7d1cfad6195f312b3169a4517723e51d.png)
傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。
一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。
2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。
(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。
(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。
二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。
对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。
2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。
(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。
(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。
3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。
三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。
2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。
傅里叶变换 通俗理解
![傅里叶变换 通俗理解](https://img.taocdn.com/s3/m/4bfb3dd5162ded630b1c59eef8c75fbfc77d942a.png)
傅里叶变换通俗理解傅里叶变换是一种数学工具,用来将一个函数在时域中的表达转换为在频域中的表达。
它的原理是将一个函数表示为一系列正弦和余弦函数的叠加,从而得到函数在不同频率下的分量。
这个变换在信号处理、图像处理和物理学中都有广泛的应用。
傅里叶变换的概念最早由法国数学家傅里叶提出,他发现任何一个周期函数都可以表示为一系列正弦和余弦函数的和。
这个发现引起了人们的广泛兴趣,随后傅里叶变换逐渐被推广到非周期函数上。
傅里叶变换可以将一个函数在时域中的信息转换到频域中,从而可以更好地分析和处理信号。
在傅里叶变换中,函数在时域中的表示被称为时域函数,函数在频域中的表示被称为频域函数。
时域函数表示了函数在时间上的变化,而频域函数表示了函数在频率上的变化。
通过傅里叶变换,我们可以得到一个函数在不同频率下的分量,这些分量可以帮助我们更好地理解和处理信号。
傅里叶变换可以将一个函数表示为正弦和余弦函数的和,这些正弦和余弦函数可以看作是不同频率下的振动。
通过傅里叶变换,我们可以将一个函数的振动分解为不同频率下的分量,从而可以更好地理解和处理信号。
傅里叶变换可以用来分析信号的频谱,从而可以帮助我们更好地理解信号的特性。
傅里叶变换在信号处理中有广泛的应用。
通过傅里叶变换,我们可以将一个信号转换到频域中,从而可以更好地分析和处理信号。
例如,通过傅里叶变换,我们可以将一个音频信号转换到频域中,从而可以分析音频信号的频谱特性。
在图像处理中,傅里叶变换可以帮助我们分析图像的频谱特性,从而可以实现图像的滤波和增强等操作。
傅里叶变换的应用不仅局限于信号处理领域,它在物理学、工程学和数学等领域也有广泛的应用。
在物理学中,傅里叶变换可以用来分析电磁波的频谱特性,从而可以帮助我们理解光的传播和干涉等现象。
在工程学中,傅里叶变换可以用来分析电路的频谱特性,从而可以帮助我们设计和优化电路。
在数学中,傅里叶变换可以用来研究函数的周期性和振荡性质,从而可以帮助我们理解函数的性质和行为。
傅里叶变换本质及其公式解析
![傅里叶变换本质及其公式解析](https://img.taocdn.com/s3/m/c5e91b5bb6360b4c2e3f5727a5e9856a56122630.png)
傅里叶变换本质及其公式解析在数学上,傅里叶变换可以用如下的公式表示:F(ω) = ∫[−∞,+∞]f(t)e^(−iωt)dt其中,F(ω)是频域表示函数f(t)的复数结果,ω是频率,t是时间,e是自然对数的底。
这个公式的解析可以分为两个部分进行解释。
首先,我们将函数f(t)看作一个在时间域内的波形,它的频域表示F(ω)是复平面上的一个点。
通过求解这个积分,我们得到了不同频率分量上的幅度和相位信息。
其次,我们将e^(−iωt)作为一个固定频率的正弦或余弦函数,它的角频率是ω。
通过将它与函数f(t)进行乘积并积分,我们对整个时间域内的波形进行了“扫描”。
如果f(t)中包含了与e^(−iωt)相同频率的分量,乘积后的值在积分过程中会叠加并增大;而如果f(t)不包含与e^(−iωt)相同频率的分量,乘积后的值在积分过程中会互相抵消并趋于零。
这样,通过求解这个积分,我们可以从时间域的角度看到不同频率分量在信号中的贡献。
傅里叶变换不仅可以用于分析信号的频谱特性,还可以用于信号的处理和合成。
在信号处理中,傅里叶变换可以将信号转换到频域进行滤波、降噪和特征提取等操作。
同时,通过将频域表示的信号进行反变换,我们可以将信号从频域再转换回时域。
傅里叶变换的应用非常广泛,几乎在所有领域都有涉及。
在通信领域,傅里叶变换被用于信号调制、解调和信道估计。
在图像处理领域,傅里叶变换被用于图像增强、去噪和特征提取。
在物理学和工程学中,傅里叶变换被用于分析和合成信号、振动和波动等。
总结起来,傅里叶变换通过将复杂的时域波形转换到频域,揭示出了信号中不同频率分量的存在。
它的公式解析是通过将函数与特定频率的正弦或余弦函数进行乘积,并求解积分,得到了不同频率分量上的幅度和相位信息。
傅里叶变换在信号处理、通信和图像处理等领域有广泛的应用。
傅里叶变换的意义和理解(通俗易懂)
![傅里叶变换的意义和理解(通俗易懂)](https://img.taocdn.com/s3/m/6a28abc8cd22bcd126fff705cc17552706225e58.png)
傅里叶变换是数学中的一种重要概念,广泛应用于信号处理、图像处理、物理学和工程学等领域。
它的理论和应用领域非常广泛,对傅里叶变换的理解对于加深我们对数学和科学的理解有着重要的意义。
下面将从通俗易懂的角度来解释傅里叶变换的意义和理解。
一、什么是傅里叶变换?1.1 傅里叶变换的概念傅里叶变换是一种将时域信号转换到频域的方法,它可以将一个时域信号表示为一系列不同频率的正弦和余弦波的叠加。
傅里叶变换通过分解信号的频谱,可以帮助我们理解信号的频率和振幅等信息。
1.2 傅里叶级数和傅里叶变换傅里叶变换是从傅里叶级数推广而来的,傅里叶级数可以将周期信号表示为一系列正弦和余弦函数的线性组合。
傅里叶变换则是将非周期信号进行频域分析的工具,可以用于处理任意时域信号。
二、傅里叶变换的意义2.1 时域和频域的转换傅里叶变换的最大意义在于将时域信号转换到频域,这样我们就能够从频域的角度来理解信号的性质。
通过傅里叶变换,我们可以分析音频信号中不同频率的成分,帮助我们理解音乐和语音信号的特性。
2.2 信号的滤波和处理傅里叶变换也提供了一种方便的工具来对信号进行滤波和处理。
在频域中,我们可以通过去除特定频率的成分来实现信号的滤波,也可以通过增强特定频率的成分来实现信号的增强。
2.3 解决微积分和偏微分方程傅里叶变换在解决微积分和偏微分方程中也有重要意义。
通过傅里叶变换,我们可以将微分方程转换为代数方程,从而简化求解过程。
2.4 图像处理和通信在图像处理和通信领域,傅里叶变换也有着重要的应用。
通过傅里叶变换,可以将图像信号转换到频域,方便我们对图像进行处理和分析;在通信中,傅里叶变换可以帮助我们理解信号的频谱,实现信号的调制和解调。
三、傅里叶变换的理解3.1 傅里叶变换的几何意义从几何角度来理解,傅里叶变换可以将信号表示为不同频率和振幅的正弦和余弦函数的叠加。
这种表示方式可以帮助我们理解信号中包含的频率成分和它们的相对重要性。
3.2 采样定理和频谱泄漏在理解傅里叶变换时,采样定理和频谱泄漏是两个重要的概念。
傅里叶变换(FFT)详解
![傅里叶变换(FFT)详解](https://img.taocdn.com/s3/m/8c53b50202020740be1e9b70.png)
关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。
深入浅出的讲解傅里叶变换学习资料
![深入浅出的讲解傅里叶变换学习资料](https://img.taocdn.com/s3/m/2d0d2651e2bd960591c67758.png)
深入浅出的讲解傅里叶变换我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。
老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。
(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。
至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。
但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。
这样的例子太多了,也许几年后你都没有再打开这个页面。
无论如何,耐下心,读下去。
这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。
这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。
但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。
先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。
傅里叶变换详细解释
![傅里叶变换详细解释](https://img.taocdn.com/s3/m/539b8a12814d2b160b4e767f5acfa1c7ab008251.png)
傅里叶变换详细解释傅里叶变换是一种数学工具,可以将一个函数分解成一系列正弦和余弦函数的和。
它在信号处理、图像处理、通信和物理学等领域中广泛应用。
傅里叶变换的详细解释包括其定义、数学表达式、性质和应用等方面。
首先,傅里叶变换可以将一个连续函数f(t) 分解成一系列正弦和余弦函数的和。
这些正弦和余弦函数的频率是连续的,可以覆盖整个频谱。
傅里叶变换的定义如下:F(ω) = ∫f(t) e^(-jωt) dt其中,F(ω) 是傅里叶变换后的函数,f(t) 是原始函数,ω 是频率,e 是自然常数。
傅里叶变换的数学表达式可以用复数的形式来表示。
当函数 f(t) 是实函数时,傅里叶变换F(ω) 是一个复函数,具有实部和虚部。
实部表示函数在频域中的振幅,虚部表示函数在频域中的相位。
傅里叶变换有一些重要的性质。
首先,傅里叶变换具有线性性质,即对于常数a 和 b,有 F(a*f(t) + b*g(t)) = a*F(f(t)) + b*F(g(t))。
这使得傅里叶变换在信号处理中非常有用,可以将多个信号叠加在一起进行分析。
其次,傅里叶变换具有平移性质。
如果将函数 f(t) 在时间域上平移 t0,那么它的傅里叶变换F(ω) 在频域上也会相应地平移 e^(-jωt0)。
这个性质使得我们可以通过平移信号来改变其频谱。
另外,傅里叶变换还具有对称性质。
当函数 f(t) 是实函数时,其傅里叶变换F(ω) 的实部是偶函数,虚部是奇函数。
这个对称性质使得我们可以通过傅里叶变换将实函数分解成实部和虚部的和。
傅里叶变换在许多领域中有广泛的应用。
在信号处理中,傅里叶变换可以将时域上的信号转换成频域上的信号,从而可以分析信号的频谱特性。
例如,通过傅里叶变换,我们可以将音频信号转换成频谱图,可以分析音频信号中不同频率的成分。
在图像处理中,傅里叶变换可以将图像转换成频域上的图像,从而可以对图像进行频域滤波和增强处理。
例如,通过傅里叶变换,我们可以将模糊的图像恢复成清晰的图像,或者将图像中的噪声去除。
傅里叶变换详细解释
![傅里叶变换详细解释](https://img.taocdn.com/s3/m/b8bcdd9748649b6648d7c1c708a1284ac85005d1.png)
傅里叶变换详细解释
傅里叶变换是数学中的一种重要分析工具,用于将一个函数表示为一系列复指数的加权和。
它得名于法国数学家约瑟夫·傅
里叶。
简单来说,傅里叶变换可以将一个函数或信号从时域(即时间域)转换到频域(即频率域),从而揭示出了信号中不同频率分量的强弱情况。
傅里叶变换的数学表示如下:
F(ω) = ∫[−∞,+∞] f(t) e^(−jωt) dt
其中,F(ω)表示频率为ω的复指数分量的权重,f(t)表示输入
函数或信号,e^(−jωt)表示复指数函数。
傅里叶变换将输入函
数或信号f(t)与复指数函数相乘,并对结果进行积分,得到频
率域的表示。
傅里叶变换可以将任意复数函数f(t)分解为多个复指数函数的
加权和,每个复指数函数的频率和权重由变换结果F(ω)确定。
所以,傅里叶变换可以将时域的函数转换为频域的复数表示。
傅里叶变换的应用非常广泛,尤其在信号处理、图像处理和通信领域中发挥着重要作用。
它可以帮助我们理解和分析信号的频域特性,如频率分量的强度、相位关系和频谱形状。
此外,傅里叶变换还可以用于信号滤波、频率分析、谱估计、图像压缩等方面。
总之,傅里叶变换通过将函数或信号从时域转换到频域,使我
们能够更好地理解和处理信号的频率特性,并在许多应用中发挥着重要的作用。
《傅里叶变换》课件
![《傅里叶变换》课件](https://img.taocdn.com/s3/m/9bca3158b6360b4c2e3f5727a5e9856a561226d6.png)
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
傅里叶变换详解(课堂PPT)
![傅里叶变换详解(课堂PPT)](https://img.taocdn.com/s3/m/51503640ba1aa8114431d9d4.png)
5
7.1 傅里叶级数
本节简明扼要地复习高等数学中的傅里叶级数基本内容
7.1.1 周期函数的傅里叶展开
定义7.1.1 傅里叶级数 傅里叶级数展开式 傅里叶系数
若函数 f ( x )以 2 l 为周期,即为
f(x2l)f(x)
6
的光滑或分段光滑函数,且定义域为 [ l , l ] ,则可取三角
另外需要说明的是,当选取不同的积分区域和核函数时, 就得到不同名称的积分变换:
3
(1)特别当核函数 K(t, )ei(t 注意已将积分参
变量 改写为变量 ),当 a,b,则
F() f(t)eitdt
称函数F ( ) 为函数 f ( t ) 的傅里叶(Fourier)变换,
简称 F ( ) 为函数 f ( t ) f 的傅氏变换.同时我们称 ( t ) 为 F ( ) 的傅里叶逆变换.
7
式(7.1.3)称为周期函数 f ( x ) 的傅里叶级数展开式
(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简 称傅氏系数).
函数族 (7.1.2)是正交的.即为:其中任意两个函数的乘 积在一个周期上的积分等于零,即
8
l 1cos kπx d x 0
l
l
l 1 sin kπx d x 0
l
l
bk
1 l
l l
f (x)sin(kπx)d x l
(7.1.4)
其中
k
2 1
(k 0) (k 0)
关于傅里叶级数的收敛性问题,有如下定理:
狄利克雷(Dirichlet)定理 7.1.1 若函数 f ( x ) 满足条件:
10
(1)处处连续,或在每个周期内只有有限个第一类间断点;
《傅里叶变换详解》课件
![《傅里叶变换详解》课件](https://img.taocdn.com/s3/m/8ed90fa8afaad1f34693daef5ef7ba0d4a736d01.png)
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换?来源:胡姬的日志写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。
在此向多位原创作者致敬一、傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。
直到拉格朗日死后15年这个论文才被发表出来。
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。
但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。
用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。
一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。
且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
三、傅立叶变换分类这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。
因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。
面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。
还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。
这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。
但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。
所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DF T方法,后面我们要理解的也正是DFT方法。
这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。
每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。
还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。
四、傅立叶变换的物理意义傅立叶变换是数字信号处理领域一种很重要的算法。
要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。
而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。
该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。
因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。
最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。
它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。
"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5.著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
五、图像傅立叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。
换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。
由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。
为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。
傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。
一般来讲,梯度大则该点的亮度强,否则该点亮度弱。
这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。
对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。
将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。
另外我还想说明以下几点:1、图像经过二维傅立叶变换后,其变换系数矩阵表明:若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。
若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。
这是由二维傅立叶变换本身性质决定的。
同时也表明一股图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。
六、一个关于实数离散傅立叶变换(Real DFT)的例子先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:9个正弦信号:9个余弦信号:把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。