厌氧池缺氧池好氧池BODCOD
污废水处理问答集锦,快来看看有没有你能用到的?
污废水处理问答集锦,快来看看有没有你能用到的?1、根据微生物的特性,厌氧、缺氧、好氧池的COD分别维持在多少比较好?答:不讲维持,而是讲进水COD浓度,厌氧池一般按总磷的20倍保证进水BOD浓度,缺氧池进水按进水总氮的5倍提供进水COD 浓度,好氧池保证进水COD不低于100mg/L。
2、钙离子多高会对厌氧反应器有结垢的影响?对好氧也有同样的影响吗?一般厌氧内部pH比出水低多少?答:2000mg/L以下。
钙离子对厌氧影响远远大于好氧。
一般pH 值低0.5-1.0。
3、AAO工艺,进了一大股废水后pH低的进水后,进水又恢复正常,但生化池低于6,在哪个位置投加碱合适?投加量怎么计算?生化池廊道长,投加碱到什么程度合适?答:投加在pH低的地方,不要投加在pH没有异常的地方。
投加到pH值在6.5以上就可以了。
4、悬浮物进入厌氧可否理解为负荷增加了?答:也可以这样理解,因为它也会溶解后成为COD,但是,你采样原水是应该已经计算进去了,所以不存在增加一说。
5、多少COD能养多少MLSS?有没有一些经验值。
比如工业废水,COD6000大概能养多少MLSS?答:如果6000COD,一般直接进好氧系统太高浓度了,就要7000的污泥浓度对应。
6、好氧的参数为什没有容积负荷?答:因为容积负荷在好氧池不准,好氧池污泥浓度波动大,所以,用污泥负荷更准。
7、我们目前污泥浓度2000左右,COD和总氮有上涨趋势,总磷氨氮比较低。
进水COD每天平均68左右,碳源投加乙酸钠,是不是得依靠加大乙酸钠调节?答:可以加大乙酸钠,以控制总进水COD提升倒150-200mg/L为宜。
8、老化的浑浊和中毒的浑浊怎么区分?答:老化浑浊没有中毒浑浊厉害,中毒还会影响COD去除率,老化影响不明显。
9、生化池投加活性炭:适用场景?加什么规格的?加多少量?答:需要进一步不足活性污泥不足以达标排放的场景为主,需要根据小试定投加规格和投加量,有需要时可以单独把信息发三丰老师,判断是否可以投加活性炭或如何选型投加。
污水处理知识:为您解析缺氧、厌氧、好氧(第三期)
污水处理知识:为您解析缺氧、厌氧、好氧(第三期)厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
最详污水处理知识篇:为您解析缺氧、厌氧、好氧
最详污水处理知识篇:为您解析缺氧、厌氧、好氧
北极星节能环保网讯:厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH 值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;
厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
AAO处理工艺简介
AAO处理工艺介绍AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母简称(厌氧-缺氧-好氧法),是一个常见污水处理工艺,可用于二级污水处理或三级污水处理,和中水回用,含有良好脱氮除磷效果。
经过厌氧过程使废水中部分难降解有机物得以降解去除,进而改善废水可生化性,并为后续缺氧段提供适合于反硝化过程碳源,最终达成高效去除COD、BOD、N、P目标。
优点:1、本工艺在系统上能够称为最简单同时脱氮除磷工艺,总水力停留时间少于其它类工艺;2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值通常小于100;3、污泥含磷高,含有较高肥效;4、运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低;缺点:1、除磷效果难再提升,污泥增加有一定程度,不易提升,尤其是P/BOD 值高时更是如此;2、脱氮效果也难再深入提升,内循环量通常以2Q为限,不宜太高;(内循环范围为2Q-4Q)3、进入沉淀池处理水要保持一定浓度溶解氧,降低停留时间,预防产生厌氧状态和污泥释放磷现象出现,但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器干扰。
兴业县城区污水处理厂AAO工艺步骤图:泵房:关键是搜集从污水管网进来生活污水,利用潜水泵将污水提升至处理单元。
粗格栅:粗格栅是用来去除可能堵塞水泵机组及管道阀门较粗大悬浮物,并确保后续处理设施能正常运行。
粗格栅是由一组相平行金属栅条和框架组成,倾斜安装在进水渠道,以拦截污水中粗大悬浮物及杂质。
细格栅:一个可连续清除流体中杂物固液分离设备,关键去除水中部分细小颗粒及悬浮物。
曝气沉砂池:去除污水中无机颗粒,经过水旋流运动,增加了无机颗粒之间相互碰撞和摩擦机会,使粘附在砂粒上有机物得以去除。
AAO池(生物反应池):利用活性污泥法生物脱氮除磷过程。
由3个池子组成,按次序是厌氧池,缺氧池,好氧池这三个,全部池子全部含有除去BOD 作用,也就是有机污染物。
厌氧池-缺氧池-好氧池 bod-cod
厌氧池缺氧池好氧池厌氧池主要是用于厌氧消化,对于进水COD浓度高的污水通常会先进行厌氧反应,提高COD的去除率,将高分子难降解的有机物转变为低分子易被降解的有机物,提高BOD/COD的比值。
而且在除磷工艺中,需要厌氧和好氧的交替条件.......在脱氮处理中,反硝化过程需要在缺氧条件下才能起作用。
而好氧池就不用说了,在生化处理中都用到好氧池的。
厌氧池搅拌不能用曝气系统来完成,要采用潜水搅拌机!其他两个都可以用曝气系统来完成搅拌厌氧池中的溶解氧的含量严格来说必须控制在0.2mg/L以下,缺氧池一般要控制在0.5mg/L左右,而好氧池按照工艺的要求,一般情况下,控制在2mg/L以上。
厌氧池中只悬挂填料,缺氧池中的搅拌设备一般采用的水下推进器或者潜水搅拌机,挂有填料,而好氧池中,根据工艺名称,有些悬挂了填料,有些没有,曝气方式也不一样。
在设计时主要根据所起作用和对溶解氧的要求进行设计,并且要按照水力停COD、BOD的定义COD是一种常用的评价水体污染程度的综合性指标。
它是英文chemical oxygen demand的缩写,中文名称为“化学需氧量”或“化学耗氧量”,是指利用化学氧化剂(如重铬酸钾)将水中的还原性物质(如有机物)氧化分解所消耗的氧量。
它反映了水体受到还原性物质污染的程度。
由于有机物是水体中最常见的还原性物质,因此,COD在一定程度上反映了水体受到有机物污染的程度。
COD越高,污染越严重。
我国《地表水环境质量标准》规定,生活饮用水源COD浓度应小于15毫克/升,一般景观用水COD浓度应小于40毫克/升。
生化需氧量(BOD)是指水中所含的有机物被微生物生化降解时所消耗的氧气量。
是一种以微生物学原理为基础的测定方法。
所有影响微生物降解的因素,如温度的时间等将影响BOD的测定。
最终的BOD是指全部的有机物质经生化降解至简单的最终产物所需的氧量。
一般采用20℃和培养5天的时间作为标准。
以BOD表示,通常用亳克/升或ppm作为BOD的量度单位。
厌氧池、缺氧池、好氧池
厌氧池(区)指非充氧池(区),溶解氧浓度一般小于0.2mg/L。
微生物在该池(区)吸收有机物并释放磷。
缺氧池(区)指非充氧池(区),溶解氧浓度一般为0.2~0.5mg/L。
当存在大量硝酸盐、亚硝酸盐和充足的有机物时,可在该池(区)内进行反硝化脱氮反应。
好氧池(区)指充氧池(区),溶解氧浓度一般不小于2mg/L,主要功能是降解有机物和进行硝化反应。
当以除磷为主时,应采用厌氧/好氧工艺,基本工艺流程如下:
当以除氮为主时,宜采用缺氧/好氧工艺,基本工艺流程如下:
需要同时脱氮除磷时,应采用厌氧/缺氧/好氧(A/A/O)工艺,基本工艺流程如下:。
污水处理菌种
污水处理菌种污水处理菌种是用枯草杆菌、光合细菌等,怎样保持这些菌种的优势地位,高效的自己培养繁殖能力强,直接稀释泼洒在水里可以在水里繁殖,水流冲走一部分,更多的是在水里繁殖,寄生在水草等表面繁殖净化水质,我们来了解下什么是生物菌。
1、好氧池、厌氧池、缺氧池可以用甘度复合菌种:降解COD、BOD、氨氮、总氮、总磷等污染物。
污水处理菌种主要是降解COD、BOD、氨氮、总氮、总磷等污染物,污水处理菌种是一个复合型菌种,属于兼性菌种,主要成分硝化细菌属、反硝化细菌属、芽孢杆菌属、假单胞菌属和活化酶以及多糖等等。
2、好氧池用甘度硝化细菌:主要降解氨氮氨氮的去除所用的细菌是硝化细菌,硝化细菌属于好氧菌种,主要应用于好氧池,其成分主要是亚硝酸菌和硝酸菌组成。
3、缺氧池和厌氧池甘度反硝化细菌:主要降解总氮总氮的去除所用的细菌是反硝化细菌,属于厌氧菌,主要应用于厌氧池或缺氧池,其主要成分是假单胞菌属、芽孢杆菌科等等。
4、沉淀池泥面过高,并且出水悬浮物升高产生原因:(1)COD过高,有机物分解不完全影响污泥沉淀性能,沉降效果变差。
(2)COD过低,污泥缺乏营养,耐低营养细菌增多絮凝性能变差。
(3)污泥泥龄较长,系统中污泥浓度过高并且污泥结构松散不易沉降。
(4)水温过高使小分子有机物增多,菌胶团吸附过多有机物造成污泥解絮。
解决办法:(1)降低负荷减少进水COD总量,提高溶解氧使污泥性能逐渐恢复。
(2)增加进水量控制在合适的范围,保持较高溶解氧状态一段时间抑制低营养细菌继续增加。
(3)加大剩余污泥排放量,将系统污泥浓度控制到合理范围内。
(4)降低曝气池中的水温,控制好溶解氧水平,一段时间后污泥可恢复正常欢迎大家免费咨询,乾界生物,水产养殖,农业养殖,环保处理污水处理,免费咨询。
为您全面解析缺氧、厌氧、好氧看完你就知道了
为您全面解析缺氧、厌氧、好氧看完你就知道了厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
污水处理之缺氧、厌氧、好氧的工艺流程分析
污水处理之缺氧、厌氧、好氧的工艺流程分析厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池——水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池——水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池——有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
好氧池缺氧厌氧池容设计
好氧池缺氧厌氧池容设计好氧池缺氧厌氧池容设计一、好氧池1.1 好氧池的定义和作用好氧池是废水处理系统中的一个重要环节,主要是通过生物降解将废水中的有机物转化为无机物,同时也可以去除废水中的悬浮颗粒物和溶解性有机物。
好氧池通常位于生化池之前,其作用是为生化反应提供充足的含氧量。
1.2 好氧池容积设计原则好氧池的容积设计需要考虑以下几个方面:(1)水质特性:包括进水COD、BOD5、NH3-N等指标,这些指标直接影响好氧反应器内微生物种类和数量,从而影响反应器的处理效果。
(2)进出水流量:进出水流量对于好氧反应器内微生物代谢产生影响,因此需要根据实际情况确定。
(3)停留时间:停留时间是指废水在好氧反应器内停留的时间,通常需要根据进出水质量和流量来计算。
(4)填料类型和填料比例:填料类型和比例对于好氧反应器内微生物种类和数量也有影响,因此需要根据实际情况选择。
1.3 好氧池容积设计计算方法好氧池容积的计算方法通常采用进水COD负荷法或进水BOD负荷法。
以进水COD负荷法为例,其计算公式如下:V = Q × CODin / (K × θ × (Ss - X))其中,V为好氧反应器的有效容积,单位为m3;Q为废水进水流量,单位为m3/d;CODin为废水进水COD浓度,单位为mg/L;K为比容系数,取值范围在0.3-0.5之间;θ为停留时间,单位为d;Ss和X 分别表示好氧反应器内微生物生长所需的最小底物浓度和微生物污泥浓度。
二、缺氧池2.1 缺氧池的定义和作用缺氧池是一种介于好氧池和厌氧池之间的处理设施。
缺氧条件下微生物可以利用废水中的硝酸盐、亚硝酸盐等化合物进行呼吸代谢,并将有机物降解成较简单的化合物。
缺氧池主要是用来去除废水中的有机氮和部分有机物质。
2.2 缺氧池容积设计原则缺氧池的容积设计需要考虑以下几个方面:(1)进出水水质:进出水水质对于缺氧反应器内微生物种类和数量有影响,因此需要根据实际情况确定。
污水处理之缺氧、厌氧、好氧的工艺流程分析
污水处理之缺氧、厌氧、好氧的工艺流程分析北极星水处理网讯:厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池——水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池——水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池——有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
污水处理常用名词
污水处理常用名词标题:污水处理常用名词引言概述:污水处理是一项重要的环保工作,涉及到许多专业名词。
本文将介绍污水处理中常用的名词及其含义。
一、污水处理工艺1.1 生物处理:利用微生物降解有机物质的过程,包括好氧生物处理和厌氧生物处理。
1.2 化学处理:通过添加化学药剂,如氯化铁、氯化铝等,去除污水中的悬浮物和溶解物。
1.3 物理处理:采用物理方法,如过滤、沉淀等,将污水中的固体物质分离出来。
二、水质指标2.1 COD(化学需氧量):反映水中有机物质的含量,是衡量污水污染程度的重要指标。
2.2 BOD(生化需氧量):衡量水中有机物质被微生物降解的能力,是评价污水生物性质的指标。
2.3 SS(悬浮物):反映水中悬浮物质的含量,影响水体透明度和水质。
三、处理设备3.1 曝气池:用于提供氧气,促进好氧微生物的生长和有机物质的降解。
3.2 沉淀池:通过重力作用,使固体颗粒沉降到底部,实现固液分离。
3.3 滤池:采用过滤介质,如砂、炭等,去除水中的悬浮物和微生物。
四、处理工艺4.1 一体化污水处理设备:将生物处理、化学处理、物理处理等工艺整合在一起,实现高效处理。
4.2 中水回用:将经过处理的污水再次利用,减少对地下水和自然水资源的消耗。
4.3 厌氧消化:利用厌氧微生物降解有机物质,产生沼气和有机肥料。
五、环保标准5.1 排放标准:规定了污水处理厂排放的COD、BOD、SS等指标的限值,保障水体的环境质量。
5.2 回用标准:规定了再生水的水质要求,确保再生水符合生活用水和工业用水的标准。
5.3 运行标准:对污水处理设备的运行、维护和管理提出了具体要求,确保设备正常运行和高效处理污水。
结论:污水处理是一项复杂的工程,涉及到多个环节和专业名词。
只有深入了解这些名词的含义和作用,才能更好地开展污水处理工作,保护环境和水资源的可持续利用。
污水三大处理方法解析:缺氧、厌氧、好氧
污水三大处理方法解析:缺氧、厌氧、好氧厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
1.水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
2.发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
3.产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
4.甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
BOD、COD、TOD、TOC这些指标有什么联系和区别
BOD、COD、TOD、TOC这些指标有什么联系和区分生化需氧量(BOD)也称为生化耗氧量。
是反映水中有机物等需氧物质含量的综合指标。
水中所含的有机物与空气接触时,由于好氧微生物的作用而分解,无机化或气化所需的氧气量称为生化需氧量,以ppm或mg/L表示。
数值越高,说明水中有机污染物越多,污染越严重。
事实上,有机物完全分解的时间因微生物的种类和数量以及水的性质而异。
完全氧化分解通常需要几十天或几百天。
而且有时由于水中重金属和有毒物质的影响,微生物的活动受到拦阻,甚至造成死亡。
因此,很难精准测量BOD。
为了缩短时间,一般以五天的需氧量(BOD5)作为水中有机污染物的基本估算标准。
BOD5大约等于完全氧化分解耗氧量的70%。
一般来说,BOD5低于4ppm的河流可以说是无污染的。
化学需氧量(COD)是在肯定条件下,用氧化剂(如重铬酸钾或高锰酸钾)氧化水中有机污染物和某些还原性物质所需的氧气量,以每升水样消耗的氧气毫克数表示。
化学需氧量是评价水质的一个紧要指标。
化学需氧量具有测定方法简单、快速的特点。
氧化剂重铬酸钾能完全氧化水中的有机物,也能氧化其他还原性物质。
氧化剂高锰酸钾只能氧化约60%的有机物。
这两种方法都不能反映水中有机污染物的实际降解情况,由于它们都不能表达微生物可以氧化的有机物的量。
因此,生化需氧量常被用于有机污染物水质的讨论。
总有机碳是指水中溶解和悬浮有机物中碳的总量。
通常称为“TOC”。
水中的有机物种类繁多,除碳外,还含有氢、氮、硫等元素,均无法分别鉴定。
TOC是快速验证的综合指标,用碳量来表示水中有机物的总量。
但由于不能反映水中有机物的种类和构成,不能反映相同总量有机碳造成的不同污染后果。
由于TOC的测定采纳燃烧法,可以完全氧化有机物。
它比BOD5或COD更能直接代表有机物的总量。
它通常作为评价水体有机污染程度的紧要依据。
总需氧量(TOD)是指将水中的还原性物质,重要是有机物质在燃烧过程中还原成稳定的氧化物所需的氧气量,计算结果为O2含量(mg/L)。
厌氧池缺氧池好氧池 BODCOD
厌氧池缺氧池好氧池厌氧池主要是用于厌氧消化,对于进水COD浓度高的污水通常会先进行厌氧反应,提高COD的去除率,将高分子难降解的有机物转变为低分子易被降解的有机物,提高BOD/COD的比值。
而且在除磷工艺中,需要厌氧和好氧的交替条件。
..。
.在脱氮处理中,反硝化过程需要在缺氧条件下才能起作用.而好氧池就不用说了,在生化处理中都用到好氧池的.厌氧池搅拌不能用曝气系统来完成,要采用潜水搅拌机!其他两个都可以用曝气系统来完成搅拌厌氧池中的溶解氧的含量严格来说必须控制在0。
2mg/L以下,缺氧池一般要控制在0。
5mg/L左右,而好氧池按照工艺的要求,一般情况下,控制在2mg/L以上。
厌氧池中只悬挂填料,缺氧池中的搅拌设备一般采用的水下推进器或者潜水搅拌机,挂有填料,而好氧池中,根据工艺名称,有些悬挂了填料,有些没有,曝气方式也不一样。
在设计时主要根据所起作用和对溶解氧的要求进行设计,并且要按照水力停COD、BOD的定义COD是一种常用的评价水体污染程度的综合性指标.它是英文chemical oxygen demand的缩写,中文名称为“化学需氧量”或“化学耗氧量”,是指利用化学氧化剂(如重铬酸钾)将水中的还原性物质(如有机物)氧化分解所消耗的氧量。
它反映了水体受到还原性物质污染的程度。
由于有机物是水体中最常见的还原性物质,因此,COD在一定程度上反映了水体受到有机物污染的程度。
COD越高,污染越严重。
我国《地表水环境质量标准》规定,生活饮用水源COD浓度应小于15毫克/升,一般景观用水COD浓度应小于40毫克/升。
生化需氧量(BOD)是指水中所含的有机物被微生物生化降解时所消耗的氧气量。
是一种以微生物学原理为基础的测定方法。
所有影响微生物降解的因素,如温度的时间等将影响BOD的测定。
最终的BOD 是指全部的有机物质经生化降解至简单的最终产物所需的氧量.一般采用20℃和培养5天的时间作为标准。
以BOD表示,通常用亳克/升或ppm作为BOD的量度单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厌氧池缺氧池好氧池
厌氧池主要是用于厌氧消化,对于进水COD浓度高的污水通常会先进行厌氧反应,提高COD的去除率,将高分子难降解的有机物转变为低分子易被降解的有机物,提高BOD/COD的比值。
而且在除磷工艺中,需要厌氧和好氧的交替条件.......在脱氮处理中,反硝化过程需要在缺氧条件下才能起作用。
而好氧池就不用说了,在生化处理中都用到好氧池的。
厌氧池搅拌不能用曝气系统来完成,要采用潜水搅拌机!其他两个都可以用曝气系统来完成搅拌
厌氧池中的溶解氧的含量严格来说必须控制在0.2mg/L以下,缺氧池一般要控制在0.5mg/L左右,而好氧池按照工艺的要求,一般情况下,控制在2mg/L以上。
厌氧池中只悬挂填料,缺氧池中的搅拌设备一般采用的水下推进器或者潜水搅拌机,挂有填料,而好氧池中,根据工艺名称,有些悬挂了填料,有些没有,曝气方式也不一样。
在设计时主要根据所起作用和对溶解氧的要求进行设计,并且要按照水力停
COD、BOD的定义
COD是一种常用的评价水体污染程度的综合性指标。
它是英文chemical oxygen demand的缩写,中文名称为“化学需氧量”或“化学耗氧量”,是指利用化学氧化剂(如重铬酸钾)将水中的还原性物质(如有机物)氧化分解所消耗的氧量。
它反映了水体受到还原性物质污染的程度。
由于有机物是水体中最常见的还原性物质,因此,COD
在一定程度上反映了水体受到有机物污染的程度。
COD越高,污染越严重。
我国《地表水环境质量标准》规定,生活饮用水源COD浓度应小于15毫克/升,一般景观用水COD浓度应小于40毫克/升。
生化需氧量(BOD)是指水中所含的有机物被微生物生化降解时所消耗的氧气量。
是一种以微生物学原理为基础的测定方法。
所有影响微生物降解的因素,如温度的时间等将影响BOD的测定。
最终的BOD是指全部的有机物质经生化降解至简单的最终产物所需的氧量。
一般采用20℃和培养5天的时间作为标准。
以BOD表示,通常用亳克/升或ppm作为BOD的量度单位。
BOD:生化需氧量,即是一种用微生物代谢作用所消耗的溶解氧量来间接表示水体被有机物污染程度的一个重要指标。
其定义是:在有氧条件下,好氧微生物氧化分解单位体积水中有机物所消耗的游离氧的数量,表示单位为氧的毫克/升(O2,mg/l)。
一般有机物在微生物的新陈代谢作用下,其降解过程可分为两个阶段,第一阶段是有机物转化为CO2、NH3、和H2O的过程。
第二阶段则是NH3进一步在亚硝化菌和硝化菌的作用下,转化为亚硝酸盐和硝酸盐,即所谓硝化过程。
NH3已是无机物,污水的生化需氧量一般只指有机物在第一阶段生化反应所需要的氧量。
微生物对有机物的降解与温度有关,一般最适宜的温度是15~30℃,所以在测定生化需氧量时一般以20℃作为测定的标准温度。
20℃时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成在第一阶段的氧化分解过程(完成过程的99%)。
就是说,测定第一阶段的
生化需氧量,需要20天,这在实际工作中是难以做到的。
为此又规定一个标准时间,一般以5日作为测定BOD的标准时间,因而称之为五日生化需氧量,以BOD5表示之。
BOD5约为BOD20的70%左右。
COD和BOD有什么不同?
COD表示在强酸性条件下重铬酸钾氧化一升污水中有机物所需的氧量,可大致表示污水中的有机物量。
BOD5是微生物在五天内生物降解一升污水中有机物所需的氧量(在20度培养),由于五天的培养阶段可完成有机物碳化过程的约70%,可间接反映污水中能被微生物降解的有机物的量。
COD是化学需氧量,当然与选用的氧化剂有关(测量数据需要标注何种氧化剂)。
BOD5是生物需氧量,与水温、水质、有毒无毒等条件密切相关(在不同条件下微生物活性是不一样的)。
COD大于BOD
COD-BOD约等于不可生化有机物
基本可以这样说,但不确切,因为COD=COD(B)+COD(NB),前者是可生化性部分,后者是不可生化部分。
而微生物在20度情况下完成碳化过程约需20天(也即BOD20,约等于CODNB),所以确切说,COD-BOD20大致等于不可生化的有机物(忽略还原性无机物的干扰因素)。
CODcr 化学需氧量其优点能够精确地表示污水中有机物的含量,并且测定时间短,不受水质的限制,缺点不能象BOD 测定那
样,表示出所消耗的氧量。
微生物氧化的有机物量,另外还有许多无机物被氧化,并全部代表有机物含量。
BOD5 生化需氧量生化需氧量是在指定的温度和时间段内,在有氧条件下由微生物(主要是细菌)降解水中有机物所需的氧量。
一般将有机物完全降解需要100天。
实际采用20℃下20天的生化需氧量BOD20为代表。
往往在生产应用20天时间太长,不利用指导生产工艺,对于城市污水。
其BOD5大约为BOD20的70%~80%。
城市中的污水中COD>BOD。
两者之间的差值大致为难于生物降解的有机物量。
在城市污水中BOD/COD的比值作为可生化性指标。
当BOD/COD≥0.3时可生化性较好,适应于生化处理工艺。
在工业废水中大部分BOD/COD<.03以下,所以可生化性差.必须进行调值后才可进行生化处理
BOD:水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。
COD:用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量称为化学需氧量
COD和BOD都是表示废水中有机物的一个指标.BOD是用生物分解有机物时的好氧量来表示废水中有机物的.
通常人们都认为BOD是表示可以被生物降解的有机物.但这里有一些误解:由于测BOD的条件与实际运行的条件完全不同,因此不能简单的用COD-BOD来表示不可降解的有机物,这是没有道理的。
另外实际系统中对有机物的去除包括了许多过程,不仅仅是生物的降解过程。
实际中采用BOD/COD来表示废水的可生物降解性,是按照实际的经验来考虑的,这里不能形而上学的将BOD和COD的概念简单的用于实际情况。
AA0工艺概述。