新人教版七年级下数学第一次月考试题及答案

合集下载

人教版七年级下册数学第一次月考测试题

人教版七年级下册数学第一次月考测试题

2021年七年级下册第一次月考数 学 试 题一、选择题:(每题3分,共30分)1.下列算式正确是( ) A .39±=±B .±=3C .=±3 D .211411= 2.已知一个二元一次方程组的解是12x y =⎧⎨=⎩,则这个方程组是( )A .3,2.x y xy +=-⎧⎨=⎩B .3,2 1.x y x y +=-⎧⎨-=⎩C .2,3.x y x y =⎧⎨+=⎩D .0,3 5.x y x y +=⎧⎨-=⎩3.点P(3,-2)所在的象限是( )A .第—象限B .第二象限C .第三象限D .第四象限4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .10°B .15°C .20°D . 25°5.用加减消元法解方程组42234x y x y -=⎧⎨+=⎩①②时,如果先消去y ,最简捷的方法是( )A .①2⨯-②B .①+②2⨯C .①3⨯+②4⨯D .①-②2⨯6.如图,图中的小三角形可以由三角形 ABC 平移得到的有( ) A .5 个 B .6 个 C .7 个 D .8 个7.下列命题是真命题的有( )①过直线外一点,有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④平面内垂直于同一直线的两直线平行. A .1 个B .2 个C .3 个D .4 个8.3270.2•,1π,7,71,0.3030030003...(每两个3之间增加1个0)中,无理数的个数是( ) A .2B .3C .4D .5姓名:学号:第11小题第15小题9.设260-=a,a在两个相邻整数之间,则这两个整数是( ).A.2和3 B.3和4 C.4和5 D.5和610.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.186二、填空题(每小题3分,共24分)11.如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC等于______°.12.若A(3,2+-xx)在x轴上,则A点坐标为.13.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b = ab2 + a.如:1☆3=1×32+1=10. 则(-2)☆3+3☆(-2)=__ ___.14.若方程组⎩⎨⎧-=++=+anmanm125324的解满足3m n+=,则a= .15.如图,AB∥CD∥EF,则∠1、∠2、∠3满足的等量关系为.16.把命题“等角的补角相等”改写成“如果…那么…”的形式是.17.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数yx,的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是⎩⎨⎧=+=+2341923yxyx,类似地,图2所示的算筹图我们可以用方程组形式表述为__________.18.如图,已知AB//CD,易得∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4 =540°,根据以上的规律求∠1+∠2+∠3+…+∠n = °.三、解答题(共8题,共72分)19.计算:(1)310.04-8-4+(2)2-333+20.求下列各式中x的值(1)()219x-=(2)3261x-=21.已知AB∥CD,EG,HF分别是∠AEF,∠EFD的角平分线,求证:EG∥HF22.利用直尺画图()1利用图()1中的网格,过P点画直线AB的平行线和垂线.()2把图()2网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.()3如果每个方格的边长是单位1,那么图()2中组成的三角形的面积等于______.23.已知一个面积为900正方形纸片,想用这块纸片沿着边的方向裁出一块面积为800的长方形纸片,使它的长宽之比为5:4,能否裁出这样符合条件的长方形纸片?请说明理由.24.如图,AB∥CD,AC∥BE,∠MAC=40,∠D=50°,CH平分∠ACD,BH平分∠ABD,(1)求∠EBH的角度(2)求∠BHC的角度25.已知点A和点C分别在直线MN和直线EF上,点B在直线外,∠BAN=α,∠BCF=β.(1)如图1,若MN∥EF,则∠B=(用α,β的式子表示,不写证明过程)(2)在(1)的条件下,点T在直线MN与直线EF之间,∠MAT=13∠BAN,∠TCB=2∠TCE,求∠B与∠T之间的数量关系.(3)如图2,若MN不平行于EF,直线AC平分∠MAB,且平分∠ECB,则∠B=(用α,β的式子表示,不写证明过程)26.已知A,B两点在直线m上,C,D两点在直线n上,∠BAD=α,∠BCD=β.(1)如图1,若∠BAD=∠ADC,求证∠ABC=∠BCD.(2)如图2,m∥n,过点D作DE⊥BC于点E,∠BAD与∠DEB的角平分线相交于点P,求∠P(用α,β的式子表示)(3)在(2)的条件下,若点A沿直线m向右运动,且不与B点重合,则∠APE=(用α,β的式子表示,不写证明过程).。

最新七年级下学期数学第一次月考试卷(含答案)

最新七年级下学期数学第一次月考试卷(含答案)

七年级下学期数学第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−122. 下面运算结果为a 6的是( )A. a 3+a 3B. a 8÷a 2C. a 2⋅a 3D. (−a 2)33. 已知二元一次方程组{x −3y =4(1)y =2x −1(2),把(2)代入(1),整理,得( )A. x −2x +1=4B. x −2x −1=4C. x −6x −3=6D. x −6x +3=44. 现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A. 50B. 60C. 70D. 805. 在下列的计算中,正确的是( )A. m 3+m 2=m 5B. m 5÷m 2=m 3C. (2m)3=6m 3D. (m +1)2=m 2+16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种8. 若代数式M ⋅(3x −y 2)=y 4−9x 2,那么代数式M 为( )A. −3x −y 2B. −3x +y 2C. 3x +y 2D. 3x −y 29. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =410. 若(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =0第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k的解也是二元一次方程2x −y =−7的解;则k 的值是______.12. (−0.5)2013×(−2)2014=______.13. 在等式y =kx +b 中,当x =3时,y =−2;当x =−1时,y =4,则k +b 的值为______.14. 若x +y =4,xy =3,则x 2+y 2= ______ .15. 已知二元一次方程2x +3y =18的解为正整数,则满足条件的解共有______对. 16. 计算:2(1+12)(1+122)(1+124)(1+128)+1214=______. 17. 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据如图中所示,则图中阴影部分的面积为__________(平方单位).18. 我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =12,现给出m 、n 、p 三者之间的三个关系式:①m +p =2n ,②m +n =2p −3,③m 2−mp =1,其中正确的是________.(填编号) 三、解答题(本大题共7小题,共78.0分)19. (10分)计算下列各式:(1)(3a −2)(4a −1);(2)3a(−a −4)+(3a −1)(a +3).20. (10分)已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a 的解为x 、y .(1)x =______,y =______(用含a 的代数式表示); (2)若x 、y 互为相反数,求a 的值;21. (10分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?22.(10分)如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式;(2)选取1张A型卡片,10张C型卡片,______张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为______;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.23.(12分)先阅读后解答:根据几何图形的面积关系可以说明一些等式.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________.(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图①或图②画出图形即可).24.(12分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?25.(14分)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?答案1.B2.B3.D4.B5.B6.B7.B8.A9.D10.B11.−112.−213.114.1015.216.417.1818.①②19.解:(1)(3a−2)(4a−1)=12a2−3a−8a+2=12a2−11a+2.(2)3a(−a−4)+(3a−1)(a+3)=−3a2−12a+3a2+9a−a−3 =−4a−3.20.解:(1)a−2−3a+1(2)由题意得,a−2+(−3a+1)=0,解得,a=−1.221.解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.22.解:(1)方法1:大正方形的面积为(a +b)2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b)2=a 2+2ab +b 2,(2)由面积拼图可知a 2+10ab +25b 2=(a +5b)2, 故答案为:25,(a +5b), (3)由图形面积之间的关系可得,S 阴影=12m 2−12n(m −n)=1m 2−1mn +1n 2 =12[(m +n)2−3mn] =12(102−3×19) =432.23.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2;(2)由题意,可画出几何图形如下:其中一条边可看做x +1,另一条边可看做x +3,四个区域面积的和即为计算结果.24.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95解得:{x =25y =10,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8−25n , ∵m ,n 均为正整数,∴{m 1=6n 1=5,{m 2=4n 2=10,{m 3=2n 3=15,∴共3种购买方案:方案一:购进A 型车6辆,B 型车5辆; 方案二:购进A 型车4辆,B 型车10辆; 方案三:购进A 型车2辆,B 型车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型车2辆,B 型车15辆获利最大,最大利润是91000元.25.解:(1)设需要甲车x 辆,乙车y 辆,根据题意可得{600x +800y =11400500x +600y =8700解得{x =3y =12;(2)设需要甲车x 辆,乙车y 辆,根据题意得 600x +800y +900(15−x −y)=11400, 整理得3x +y =21, ∵x ,y 都是正整数,x +y <15 x =4,5,6 ,方案一:甲车4辆,乙车9辆,丙车2辆,运费8800元 方案二:甲车5辆,乙车6辆,丙车4辆,运费8900元方案三:甲车6辆,乙车3辆,丙车6辆,运费9000元∵8800<8900<9000∴方案一运费最省,运费是8800元.。

人教版数学七年级下册第一次月考试卷含答案解析

人教版数学七年级下册第一次月考试卷含答案解析

七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。

最新】人教版七年级下册数学第一次月考试题及答案

最新】人教版七年级下册数学第一次月考试题及答案

最新】人教版七年级下册数学第一次月考试题及答案七年级第一次月考数学试题一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2=145°,∠3=35°。

2.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,DC/BD=6.4,AD=3.6,AC=6,点A到BC 的距离是2.4,点A,B两点间的距离是8.4.3.把命题“平行于同一条直线的两条直线平行”,改写成“如果两条直线在同一条直线上,那么它们平行”的形式为。

4.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=50°。

5.如图,已知直线a∥b,∠4=40°,则∠2=140°。

6.如图,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=125°,则∠MND=55°。

7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=100°。

8.如图,AB∥CD,BC∥DE,则∠B与∠D的关系是对应角相等。

9.XXX将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90°。

10.如图,DH∥EG∥BC,且DC∥EF,则图中与∠1相等的角有两个,分别是∠3和∠4.二、单项选择题(每小题3分,共18分)11.下列各图中,∠1和∠2是对顶角的是(B)。

12.如图,点A到直线CD的距离是指哪一条线段的长(D)。

13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是(B)。

14.如图,下列条件中能判定AB∥CD的是(C)。

15.在如图所示的长方体中,和棱AB平行的梭有(C)。

16.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:1=∠2(已知)。

人教版七年级下册数学第一次月考试题附答案

人教版七年级下册数学第一次月考试题附答案
C.等角的补角相等D.垂线段最短
【分析】根据线段、垂线段的公理、平行线的性质以及补角的性质判断即可.
【解答】解:A、两点之间,线段最短,是真命题;
B、两直线平行,同旁内角互补,原命题是假命题;
C、等角的补角相等,是真命题;
D、垂线段最短,是真命题;
故选:B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
6.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
【分析】根据对顶角的定义作出判断即可.
【解答】解:根据对顶角的定义可知:只有选项C中的是对顶角,其它都不是.
故选:C.
【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
12(3分).如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().
2022年七年级下册第一次月考
数 学试 题
满 分:120分时间:120分钟
亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)49的算术平方根是( )
A.±7B.7C.± D.

七年级数学(下册)第一次月考数学试卷(含答案) (2)

七年级数学(下册)第一次月考数学试卷(含答案) (2)

七年级(下)第一次月考数学试卷一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.22.(3分)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2 3.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.(3分)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣45.(3分)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=6.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣27.(3分)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(每小题3分,共21分)9.(3分)计算0.1252015×(﹣8)2016=.10.(3分)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为.11.(3分)若2x=3,4y=5,则2x+2y的值为.12.(3分)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.13.(3分)若x﹣y=2,xy=4,则x2+y2的值为.14.(3分)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为cm.15.(3分)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为.三、解答题(8个小题,共75分)16.(8分)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).17.(8分)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).18.(10分)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.19.(8分)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.20.(8分)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.21.(10分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)22.(11分)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?23.(12分)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)(2016春•宝丰县月考)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.2【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=1+1=2,故选:D.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.2.(3分)(2016春•宝丰县月考)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2【分析】根据平方差公式,即两数之和与两数之差的积等于两数的平方差,作出判断即可.【解答】解:A、(a﹣1)(a+1),正确;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2,故错误;C、(a+2b)(2a﹣b)属于多项式乘以多项式,故错误;D、(﹣a﹣3)2属于完全平方公式,故错误;故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.(3分)(2013•西藏)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故选:B.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2016春•宝丰县月考)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣4【分析】直接利用公式把(x﹣4)2展开后可得m2=42=16,求解即可得到m的值.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵(x﹣4)2=x2﹣8x+16,∴m2=16,解得m=±4.故选D.【点评】本题考查了完全平方公式,根据公式的平方项得到方程是求解的关键.5.(3分)(2016春•宝丰县月考)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、不是同类项不能合并,故C错误;D、负整数指数幂与正整数指数幂互为倒数,故D正确;故选:D.【点评】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键.6.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.7.(3分)(2016春•苏州期中)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故选:B.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.8.(3分)(2010秋•宝应县校级期中)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4【分析】由题意输入x然后平方得x2,然后再乘以2,然后再减去4,若结果大于0,就输出y,否则就继续循环,从而求解.【解答】解:输入x的值为1,由程序平方得,12=1,然后再乘以2得,1×2=2,然后再减去4得,2﹣4=﹣2,∵﹣2<0,继续循环,再平方得,(﹣2)2=4,然后再乘以2得,4×2=8,然后再减去4得,8﹣4=4,∵4>0,∴输出y的值为4,故答案为4.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.二、填空题(每小题3分,共21分)9.(3分)(2016春•徐州期中)计算0.1252015×(﹣8)2016=8.【分析】根据指数相同的幂的乘法等于积的乘方,可得答案.【解答】解:原式=(﹣0.125×8)2015×(﹣8)=8.故答案为:8.【点评】本题考查了幂的乘方与积的乘方,利用积的乘方是解题关键.10.(3分)(2008秋•辽源期末)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为8x5y3﹣12x5y2+4x6y3.【分析】根据被除式=商×除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式=(4x3y2﹣6x3y+2x4y2)×2x2y=8x5y3﹣12x5y2+4x6y3.【点评】本题考查了单项式除单项式,弄清被除式、除式、商三者之间的关系是求解的关键.11.(3分)(2016春•宝丰县月考)若2x=3,4y=5,则2x+2y的值为15.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则将原式变形,进而得出答案.【解答】解:∵2x=3,4y=5,∴2x+2y=2x×(22)y=3×5=14.故答案为:15.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,熟练应用运算法则是解题关键.12.(3分)(2016春•宝丰县月考)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.【分析】直接利用单项式乘以单项式运算法则得出关于m,n的等式进而得出答案.【解答】解:∵﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,∴m+1+1=4,2n﹣1+2=4,解得:m=2,n=,则m﹣n=2﹣=.故答案为:.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(3分)(2016春•盐都区月考)若x﹣y=2,xy=4,则x2+y2的值为12.【分析】把x﹣y=2两边平方,利用完全平方公式化简,将xy=4代入即可求出所求式子的值.【解答】解:把x﹣y=2两边平方得:(x﹣y)2=x2﹣2xy+y2=4,把xy=4代入得:x2+y2=12,故答案为:12【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(3分)(2016春•宝丰县月考)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为2ab2cm.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:3a3b5÷(ab•ab2)=2ab2(cm);故答案为:2ab2【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•宝丰县月考)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为2.【分析】先利用多项式乘多项式的法则展开,然后合并同类项,再利用整体代入的思想解决问题即可.【解答】解:∵x2﹣2x=2,∴x2=2+2x,∴原式=3x2+x﹣3x﹣1﹣x2﹣2x﹣1=2x2﹣4x﹣2=2(2+2x)﹣4x﹣2=4+4x﹣4x﹣2=2.故答案为2.【点评】本题考查整式的混合运算﹣化简求值,利用整体代入的思想是解决问题的关键,计算时注意符号问题,括号前面是负号时去括号要变号,属于展开常考题型.三、解答题(8个小题,共75分)16.(8分)(2016春•宝丰县月考)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).【分析】(1)原式利用完全平方公式化简,去括号合并即可得到结果;(2)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=4x2+12xy+9y2﹣4x2+12xy﹣9y2=24xy;(2)原式=(9m2﹣16n2)(9m2+16n2)=81m4﹣256n4.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(8分)(2016春•宝丰县月考)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).【分析】(1)先由立方公式展开,再利用整式的加减,即可求解;(2)根据单项式的乘法和除法的计算法则计算.【解答】解:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3)=x3+1+6x3﹣2x3=5x3+1(2)(﹣5xy3)2×(﹣x2y)3÷(﹣9x3y2)=25x2y6×(﹣)x6y3÷(﹣9x3y2)=25x2y6×x6y3÷9x3y2=x8y9÷9x3y2=x5y7.【点评】此题是整数的混合运算,解本题的关键是记住整式运算的法则,(2)易出现符号错误.18.(10分)(2016春•宝丰县月考)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.【分析】(1)先算除法和乘法,再合并同类项,最后代入求出即可;(2)先算除法和乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab,把a=,b=﹣代入﹣2ab=;(2)原式=(9x5y2﹣27x5y7)÷9x4y2=x﹣3xy5,把x=3,y=﹣1代入x﹣3xy5=3﹣3×3×(﹣1)5=12.【点评】本题考查了整式的混合运算和求值的应用,熟练掌握运算法则是解本题的关键.19.(8分)(2016春•宝丰县月考)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.【分析】根据题意列出关系式,计算即可得到结果,把a的值代入计算即可得到具体数.【解答】解:根据题意得:(5a x•3ax)÷(x•30x)=15a2x2÷30x2=a2,则应该至少购买a2块这样的塑料扣板,当a=4时,原式=8,即具体的扣板数为8张.【点评】此题考查了整式的除法,以及代数式求值,熟练掌握运算法则是解本题的关键.20.(8分)(2016春•宝丰县月考)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.【分析】已知等式利用完全平方公式展开,相加即可求出原式的值.【解答】解:由题意得:x2+2xy+y2=64①,x2﹣2xy+y2=16②,①+②得:2(x2+y2)=80,则x2+y2=40.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.21.(10分)(2016春•宝丰县月考)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)【分析】(1)利用圆的面积公式计算,图中的大圆半径是;(2)把x=4,y=2代入上式计算即可.【解答】解:如题中图,(1)S剩=.==(2)当x=4,y=2时,S剩=×3.14×2×4=6.28(面积单位).【点评】本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.22.(11分)(2016春•宝丰县月考)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n ﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?【分析】(1)将原式展开化简可得4(3n﹣5),根据n是自然数可知原式能被4整除;(2)先根据误乘的结果用除法求出原多项式,再用该多项式除以a可得结果.【解答】解:(1)能,原式=n2+3n﹣(n2﹣5n﹣4n+20)=n2+3n﹣n2+5n+4n﹣20=12n﹣20=4(3n﹣5),因为n是自然数,所以3n﹣5是整数,因此原式能被4整除;(2)根据题意,原多项式为(8a4b﹣4a3+2a2)÷a=16a3b﹣8a2+4a.故正确结果为:(16a3b﹣8a2+4a)÷a=32a2b﹣16a+8.【点评】本题主要考查整式的运算能力,熟练掌握多项式与单项式相乘、除,多项式与多项式相乘的运算法则是关键也是基础.23.(12分)(2016春•宝丰县月考)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?【分析】(1)根据已知规律直接写出第5个等式即可;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1,整理即可;(3)整理右边可知:为完全平方.【解答】解:(1)根据已知可以得出:第5个等式为:62=5+52+6;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1;所以:(n+1)2=n+n2+n+1;(3)整理(2)得,(n+1)2=n+n2+n+1=n2+2n+1,可化为完全平方公式.【点评】此题主要考查数字的规律问题,认真观察题中已知,弄清已知数与序数n之间的关系是解题的关键.。

最新人教版七年级数学下册第一次月考试题(3篇)

最新人教版七年级数学下册第一次月考试题(3篇)

人教版七年级下册第一次月考数学试卷一、选择题(每题2分,共24分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直3.下列实数:π、、、、0.1010010001,其中无理数的个数有()A.2个 B.3个 C.4个 D.5个4.如果一个数的平方根与立方根相同,则这个数为()A.0 B.1 C.0或1 D.0或±15.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原方向上平行前进,两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐50°D.第一次左拐50°,第二次右拐50°6.若|m+2|+(n﹣1)2=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.47.如图,数轴上点A表示的数是2,点B表示的数是,且AB=AC,则点C表示的数是()A.B.C.D.8.下列说法正确的是()A.0.01是0.1的一个平方根B.64的立方根是±4C.如果a+b=0,那么D.﹣1的平方根是±19.如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度10.如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠811.在实数范围内,下列判断正确的是()A.若=,则a=b B.若|a|=()2,则a=bC.若a>b,则a2>b2D.若()2=()2则a=b12.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有()(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.A.1个 B.2个 C.3个 D.4个二、填空题(本大题6个小题,每小题3分,共18分)13.3﹣π的相反数是;的值是.14.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是.15.比较大小:﹣3﹣2,(填“>”或“<”或“=”)16.如图所示,已知a∥b,则∠1=.17.已知a、b为两个连续的整数,且,则a+b=.18.如图,一个零件ABCD需要AB边与CD边平行,现已测得拐角∠ABC=120°,则∠BCD=零件才合格.三.计算题和解答题:(共58分)19.(8分)计算.(1);(2)+|1﹣|+﹣.20.(10分)解方程:(1)(3x+1)2﹣1=0;(2)2(x﹣1)3=﹣.21.(6分)将下图中的阴影部分向右平移6个单位,再向下平移4个单位.22.(7分)推理填空:已知,如图∠1=∠2,∠3=∠4,求证:BC∥EF.证明:∵∠1=∠2∴∥()∴=∠5 ()又∵∠3=∠4∴∠5=()∴BC∥EF ()23.(9分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.24.(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.25.(10分)类比平方根(二次方根)、立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫做a的四次方根;②如果x5=a,那么x叫做a的五次方根;请根据以上两个定义并结合有关数学知识回答问题:(1)81的四次方根为;﹣32的五次方根为;(2)若有意义,则a的取值范围为;若有意义,则a的取值范围为;(4)解方程:①x4=16②100000x5=243.人教版七年级下册第一次月考数学试卷一、选择题:(本大题12个小题,每小题2分,共24分)1.π、,﹣,,3.1416,0.中,无理数的个数是()A .1个B .2个 C.3个 D.4个2.四条直线相交于一点,总共有对顶角()A.8对 B.10对C.4对 D.12对3.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D .4.下列说法正确的个数是()(1)两个无理数的和必是无理数;(2)两个无理数的积必是无理数;(3)无理数包括正无理数,0,负无理数;(4)实数与数轴上的点是一一对应的.A.1 B.2 C.3 D.45.如图,三条直线相交于点O.若CO⊥AB,∠1=52°,则∠2等于()A.37°B.28°C.38°D.47°6.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°7.下列说法正确的是()A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根8.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120° D.130°9.已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n的值为()A.6 B.7 C.8 D.910.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D .10911.如图,已知AB∥CD,AD∥C,∠ABE 是平角,则下列说法中正确的是()A.∠1+∠2=∠3 B.∠1=∠2>∠3C.∠1+∠2<∠3 D.∠1+∠2与∠3的大小没有关系12.如图,数轴上的点A 所表示的数为x,则x的值为()A.B.+1 C.﹣1 D.1﹣二、填空题(本大题6个小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,倒数是.14.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.15.如果+(2x﹣4)2=0,那么2x﹣y=.16.如图,两条平行线AB、CD被直线EF所截.若∠1=118°,则∠2=°.17.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=4,则2a+b=.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么12※4=.三、解答题:(58分)19.(16分)计算或求值:(1)(x﹣3)3=27(2)÷﹣×+.(3)|﹣|﹣|﹣2|﹣|﹣1|;(4)﹣12016++3﹣27﹣|2﹣|++﹣.20.(8分)若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B的值.21.(10分)如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,求∠EDC的度数.22.(12分)如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.23.(12分)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.七年级数学下册第一次月考试题一、选择题:(24分)1.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个 B.2个 C.3个 D.4个2.四条直线相交于一点,总共有对顶角()A .8对 B.10对C.4对 D.12对3.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.4.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°5.如图,三条直线相交于点O.若CO⊥AB,∠1=52°,则∠2等于()A.37°B.28°C.38°D.47°6.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定7.如图,已知直线AB、CD被直线AC所截,AB∥CD ,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④8.下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个9.已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n的值为()A.6 B.7 C.8 D.910.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C .99 D.10911.如图,已知AB∥CD,AD∥C,∠ABE是平角,则下列说法中正确的是()A.∠1+∠2=∠3 B.∠1=∠2>∠3C.∠1+∠2<∠3 D.∠1+∠2与∠3的大小没有关系12.如图,数轴上的点A 所表示的数为x ,则x 的值为()A.B.+1 C.﹣1 D.1﹣二、填空题(本大题6个小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,倒数是.14.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.15.如果+(2x﹣4)2=0,那么2x﹣y=.16.如图,两条平行线AB、CD被直线EF所截.若∠1=118°,则∠2=°.17.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=4,则2a+b=.18.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.三、解答题:(共78分)19.(10分)计算或求值:(1)(x﹣3)3=27(2)÷﹣×+.20.(7分)如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.21.(7分)若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B的值.22.(10分)如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.23.(10分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?24.(10分)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.25.(12分)阅读材料,并完成下列问题: 不难求得方程x +=3+的解是x 1=3,x 2=; x +=4+的解是x 1=4,x 2=; x +=5+的解是x 1=5,x2=;(1)观察上述方程及其解,可猜想关于x 的方程x +=m +(m ≠0)的解是 . (2)试用“求出关于x 的方程x +=m +(m ≠0)的解”的方法证明你的猜想; (3)利用你猜想的结论,解关于x 的方程=m +.26.(12分)如图,已知直线l 1∥l 2,且l 3和l 1、l 2分别交于A 、B 两点,点P 在AB 上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 不重合)。

人教版2020年七年级下册数学第一次月考试题五(含答案解析)

人教版2020年七年级下册数学第一次月考试题五(含答案解析)

人教版2020年七年级下册数学第一次月考试题五一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行 B.垂直 C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠3=∠5 D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个8.(3分)把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= ,∠COB= .13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF= °15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC= .三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN 上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE 与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°= °;根据当∠ECB+∠CBD= °时,可得CE∥AB.所以∠ECB= °此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN 与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).参考答案与试题解析1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时x=2,y=3,x+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时x=2,y=3,x+y=5;②长边重合,此时x=2,y=5,x+y=7.综上可得:x+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.10.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.11.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.12.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=26°,∴∠AOC=∠BOD=90°﹣26°=64°,∴∠BOC=180°﹣∠AOC=180°﹣64°=116°,故答案为:64°,116°.13.【解答】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.14.【解答】解:根据折叠的特性,G、H、D共线,∠DEF=∠FEG=∠EFG=19°,根据三角形的外角等于不相邻的内角的和,如图②,∠DGF=2∠E=2×19°=38°,如图③,同理∠DHF=38°+19°=57°.故答案为:57.15.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .16.【解答】解:设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠BFE多6°,∴x﹣2y=6,∵x+y=180°,可得x=122°故答案为122°.17.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.18.【解答】解:如图所示,直线CD即为所求.19.【解答】解:(1)∵∠BOD=∠AOC=76°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×76°=38°.∴∠COE=180°﹣∠DOE=180°﹣38°=142°,∵OF平分∠COE,∴∠EOF=∠COE=×142°=71°,∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°.(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠DOE=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得:x=36°,故∠AOC=72°.(3)设∠BOE=x,则∠DOE=x,则∠COA=2x,∠BOF=90°﹣x,∵|∠AOC﹣∠BOF|=α°,∴|2x﹣(90°﹣x)|=α°,解得:x=()°+α°或x=()°﹣α°,当x=()°+α°时,∠AOC=2x=()°+α°,∠BOF=90°﹣x=()°﹣α°;当x=()°﹣α°时,∠AOC=2x=()°﹣α°,∠BOF=90°﹣x=()°+α°.20.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时,∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合,所以,不存在.21.【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.22.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,(两直线平行,同旁内角互补)∵∠A=∠B,∴∠A+∠O=180°,(等量代换)∴OB∥AC.(同旁内角互补,两直线平行)(2)(ⅰ)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF,∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(ⅱ)∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(ⅲ)∵OB∥AC,∴∠OCA=∠BOC,设∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.23.【解答】解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN=∠AMN,∠ENM=∠MNC,∴∠EMN+∠ENM=90°,即∠MEN=90°,又∵NG⊥EN,∴∠MEN+∠ENH=180°,∴EM∥NG;(2)设∠HEG=x,则∠HGE=∠MEG=x,∠NEH=90°﹣2x,∵EP平分∠FEH,∴∠FEH=2∠PEH=2(∠PEG+x),又∵∠FEH+∠HEN=180°,∴2(∠PEG+x)+90°﹣2x=180°,解得∠PEG=45°.24.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n =∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.第11 页共11 页。

人教版数学七年级第一次月考答案

人教版数学七年级第一次月考答案
2023——2024第一学期月考质量检测
七年级数学试题(答案)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的.
1——5 CACBA6——10ADDBA
二、填空题(本大题共6小题,每小题4分,共24分)
11.答案为 12.【答案】2,
13.答案为:2614.答案为:百
15.【答案】116.【答案】①④⑤
三、解答题(本大题共6小题,共66分)
17.(14分)
【解析】
(1)
(2分)
;(1分)
(2)
(2分)
;(1分)
(3)
(3分)
;(1分)
(4)
(3分)
.(1分)
18.(10分)
(5分)
在数轴上表示为:
(3分)
由数轴可知: .(2分)
19.(7分)
【解析】(1)故答案为:<;>;<.(3分)
(2)∵a<0,c﹣a>0,b+c<0,
∴ .(4分)
20.(9分)
【解析】(1) .
故这10袋小麦总计超过 ;(4分)
(2) (元 .
故10袋小麦一共可以卖2263.5元来自(5分)21.(12分)
【解析】(1)4,1(2分)
(2)5, (2分)
(3)这样的整数点有 , ,0,1,2,3,4,5(4分)
(4) 表示数轴上有理数 所对应的点到 的距离和到2的距离的和,
则当 时, 的值最小为5(4分)
22.(14分)
【解析】(1)答案为 (3分)
(2)
(3分)
(2分)
(3)
(4分)
.(2分)

人教版七年级下册数学第一次月考试题

人教版七年级下册数学第一次月考试题
求证:BD∥CE.
23.(8分)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
24.(9分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB;
(2)求∠DFC的度数.
25.(9分)如图所示是甲、乙二人在△ABC中的行进路线,甲:B→D→F→E;乙:B→C→E→D.已知∠1+∠2=180°,∠3=∠B.
C. ∠1=∠4,∠5=∠7D. ∠2=∠3,∠6=∠8
11.在实数 , ,π﹣2, ,0.121 221 222 1…(两个”1”之间依次多一个“2”)中,有理数有( )
A. 1个B. 2个C. 3个D. 4个
12.如图所示,BE平分∠ABC,DE//BC,图中相等的角共有( )
A.3对B.4对C.5对D.6对
A.1个B.2个C.3个D.4个
7.下列现象中,不属于平移的是()
A. 滑雪运动员在的平坦雪地上滑行B. 钟摆的摆动
C. 大楼上上下下地迎送来客的电梯D. 火车在笔直的铁轨上飞驰而过
8.已知 ≈0.793 7, ≈1.710 0,那么下列各式正确的是( )
A. ≈17.100B. ≈7.937C. ≈171.00D. ≈79.37
A. 1个B. 2个C. 3个D. 4个
5.下列命题中,正确的是( )
A. 在同一平面内,垂直于同一条直线的两条直线平行;
B. 相等的角是对顶角;
C. 两条直线被第三条直线所截,同位角相等;
D. 和为180°的两个角叫做邻补角.
6.下列语句中不是命题的有()
⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.

七年级数学下学期第一次月考试卷(含解析)新人教版

七年级数学下学期第一次月考试卷(含解析)新人教版

七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.06.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是;的算术平方根是.12.用“<”或“>”填空: +1 4.13.点到直线的距离是指这点到这条直线的.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF()∴∠C+∠=180°()∵∠C=∠D∴∠D+∠DEC=180°()∴BD∥CE ().22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.2015-2016学年河南省安阳市滑县大寨一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直【考点】平行线.【专题】常规题型.【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.0【考点】直线、射线、线段.【专题】计算题.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.【解答】解:交点个数最多时, ==6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【点评】本题考查了相交线的交点问题,熟记公式是解题的关键.6.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等【考点】算术平方根;平方根;垂线;同位角、内错角、同旁内角.【分析】根据平方根的概念、平行公理和平行线的性质判断即可.【解答】解:1的平方根是±1,A错误;6是36的算术平方根,B正确;同一平面内的三条直线满足a⊥b,b⊥c,则a∥c,C错误;两直线被第三条直线所截,内错角不一定相等,D错误,故选:B.【点评】本题考查的是平方根、算术平方根的概念、垂直的定义,正确理解相关的概念和性质是解题的关键.7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.【解答】解:相等的锐角有:∠B=∠CAD,∠C=∠BAD共2对.故选C.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°【考点】平行线的判定.【分析】直接利用平行线的判定定理判定,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵∠3=50°,∠4=50°,∴∠3=∠4,∴AD∥BC,故错误;B、∵∠B=40°,∠DCB=140°,∴∠B+∠DCB=180°,∴AB∥CD,正确;C、∵∠1=60°,∠2=60°,∴∠1=∠2,∴AB∥CD,正确;D、∵∠D+∠DAB=180°,∴AB∥CD,正确.故选A.【点评】此题考查了平行线的判定.此题比较简单,注意掌握数形结合思想的应用.9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°【考点】平行线的性质.【专题】计算题.【分析】首先根据BC∥DE,依据两直线平行,同位角相等求得∠1的度数,然后根据AB∥EF,依据两直线平行,同旁内角互补即可求解.【解答】解:∵BC∥DE,∴∠1=∠B=70°,∵AB∥EF,∴∠E+∠1=180°,∴∠E=180°﹣∠1=180°﹣70°=110°.故选B.【点评】本题利用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°【考点】平行线的性质.【分析】由AB∥CD∥EF,∠ABE=38°,∠ECD=110°,根据平行线的性质,即可求得∠BEF与∠CEF 的度数,继而求得答案.【解答】解:∵AB∥CD∥EF,∠ABE=38°,∠ECD=110°,∴∠BEF=∠ABE=38°,∠CEF=180°﹣∠ECD=70°,∴∠BEC=∠CEF﹣∠BEF=32°.故选B.【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是±6 ;的算术平方根是.【考点】算术平方根;平方根.【分析】根据平方根的定义和算术平方根的定义进行计算即可得解.【解答】解:∵(±6)2=36,∴36的平方根是±6;∵()2=,∴的平方根是.故答案为:±6;.【点评】本题考查了算术平方根、平方根的定义,是基础题,熟记概念是解题的关键.12.用“<”或“>”填空: +1 >4.【考点】实数大小比较.【分析】首先估算出的取值范围,再进一步确定+1的范围,进一步得出结论解决问题.【解答】解:∵3<<4,∴4<+1<5,所以+1>4.故答案为:>.【点评】此题考查实数的大小比较,估算的取值范围是解决问题的关键.13.点到直线的距离是指这点到这条直线的垂线段的长度.【考点】点到直线的距离.【分析】根据点到直线的距离的定义解答.【解答】解:点到直线的距离是指这点到这条直线的:垂线段的长度.故答案为:垂线段的长度.【点评】本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为 3 .【考点】平方根.【分析】根据一个正数的平方根有两个,它们互为相反数,根据互为相反数的两个数的和为0,可得答案.【解答】解:一个正数的平方根为2﹣m与3m﹣8,(2﹣m)+(3m﹣8)=0m=3,故答案为:3.【点评】本题考查了平方根,注意一个正数的两个平方根的和为0.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有 2 个.【考点】平行线的性质.【分析】根据两直线平行,同位角相等,内错角相等找出与∠1相等的角即可.【解答】解:如图,∵EG∥BC,∴∠1=∠2,∠1=∠3,∴与∠1相等的角有2个角.故答案为:2.【点评】本题考查了平行线的性质,熟记性质并准确识图,找出∠1的同位角、内错角是解题的关键.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为72°.【考点】平行线的判定与性质.【分析】根据“同位角相等,两直线平行”判定AB∥CD,然后由“两直线平行,同旁内角互补”得到∠3+∠4=180°,由此易求∠4的度数.【解答】解:如图,∵∠1=∠2,∴AB∥CD,∴∠3+∠4=180°.又∵∠3=108°,∴∠4=72°.故答案是:72°.【点评】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是平行.【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故答案为:平行.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.【考点】作图—基本作图;余角和补角;平行线的性质.【分析】(1)根据平行线的画法画图即可;(2)根据平行线的性质:两直线平行,同旁内角互补可得答案;(3)根据平行线的性质:两直线平行,同位角相等可得答案.【解答】解:(1)如图所示:(2)与∠O互补的角有∠PDO,∠PCO;(3)与∠O相等的角有∠PDB,∠PCA.【点评】此题主要考查了平行线的画法,以及平行线的性质,关键是掌握平行线性质定理;定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.【考点】立方根.【分析】(1)根据移项,可得乘方的形式,根据开方,可得答案;(2)根据移项,等式的性质,可得乘方的形式,根据开方,可得答案.【解答】解:(1)x2=81,x=±9;(2)36x2=49,xx=±.【点评】本题考查了平方根,先化成乘方的形式,再开方运算.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC =180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠DEC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).【考点】平行线的判定与性质.【专题】推理填空题.【分析】由已知的一对内错角相等,利用内错角相等两直线平行得出AC与DF平行,再由两直线平行内错角相等得到∠D=∠1,而∠C=∠D,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到BD与CE平行.【解答】证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠D EC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).故答案是:内错角相等,两直线平行;DEC;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【考点】算术平方根.【专题】计算题.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x==7∴4x=4×7=28 (cm) 3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【点评】本题考查了算术平方根,开平方是求边长的关键,注意算术平方根都是非负数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。

人教版七年级下册第一次月考数学试卷(含答案)

人教版七年级下册第一次月考数学试卷(含答案)

人教版数学七年级下册第一次月考试卷考试时间:100分钟;总分:120分一.选择题(共10小题,每小题3分,满分30分)1.所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .3.如图,从直线EF 外一点P 向EF 引四条线段P A ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD4.下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=35.如图中,∠1的同位角是()A .∠2B .∠3C .∠4D .∠56.在实数0,-√3,√2,﹣2中,最小的是()A .﹣2B .-√3C .√2D .07.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠BOD =35°.则∠COE 的度数为()A .35°B .55°C .65°D .70°(7题)(8题)(9题)8.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A .50°B .110°C .130°D .150°9.如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A 到达点A ′的位置,则点A ′表示的数是()A .π﹣1B .﹣π﹣1C .﹣π﹣1或π﹣1D .﹣π﹣1或π﹢110.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10二.填空题(共5小题,每小题3分,满分15分)11.(3分)√9的算术平方根等于.12.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.(12题)(13题)(15题)14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.三.解答题(共8小题,满分75分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°().∴∠A+∠C=180°,∴AF∥CD().又∵BE∥CD.∴AF∥BE().∴∠F=∠BED().19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.21.(10分)如图,AB ∥DG ,∠1+∠2=180°,(1)求证:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.西平县第一初级中学七年级下册第一次月考参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数【解答】解:所有和数轴上的点组成一一对应的数组成实数,故选:D .2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .【解答】解:∵只有B 的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B .3.(3分)如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD【解答】解:从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是PB ,故选:B .4.(3分)下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=3【解答】解:A 、√25=5,故此选项错误;B 、√(-6)2=6,故此选项错误;C 、√-273=-3,正确;D 、-√9=-3,故此选项错误;故选:C .5.(3分)如图中,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选:C.6.(3分)在实数0,-√3,√2,﹣2中,最小的是()A.﹣2B.-√3C.√2D.0【解答】解:因为0,√2分别是0和正数,它们大于﹣2和-√3,又因为2>√3,所以﹣2<-√3所以最小的数是﹣2故选:A.7.(3分)已知,如图,直线AB,CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为()A.35°B.55°C.65°D.70°【解答】解:∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE﹣∠AOC=90°﹣35°=55°.故选:B.8.(3分)将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.9.(3分)如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1【解答】解:∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是﹣π﹣1;当圆向右滚动时点A′表示的数是π﹣1.故选:C.10.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)√9的算术平方根等于√3.【解答】解:√9的算术平方根=√3,故答案为:√312.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∠ABD,∴∠1=12∵DE是∠BDC的平分线,∠CDB,∴∠2=12∴∠1+∠2=90°,故答案为:90°.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是√11.【解答】解:∵墨迹覆盖的数在3~4,即√9~√16,∴符合条件的数是√11.故答案为:√11.14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为22.【解答】解:根据题中的新定义得:(﹣3)⊕4=﹣3×(﹣3﹣4)+1=﹣3×(﹣7)+1=21+1=22.故答案为:22.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.三.解答题(共8小题,满分73分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.【解答】解:(1)原式=2√3-√5+√3=3√3-√5;(2)原式=﹣6+32+3=-32.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.【解答】解:(1)3x+2=4或3x+2=﹣4,解得x=23或x=﹣2;(2)(2x﹣1)3=﹣8,2x﹣1=﹣2,x=-12.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).【解答】证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.【解答】解:(1)∵点A、B分别表示1,√2,∴AB=√2-1,即x=√2-1;(2)∵x=√2-1,∴原式=(??-√2)2=(√2-1-√2)2=1,∴1的立方根为1.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.【解答】证明:设∠1、∠2、∠3分别为x°、2x°、3x°,∵AB∥CD,∴由同旁内角互补,得2x°+3x°=180°,解得x=36°;∴∠1=36°,∠2=72°,∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.21.(10分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【解答】证明:(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠2+∠BAD =180°,∴AD ∥EF ;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG 是∠ADC 的平分线,∴∠GDC =∠1=30°,∵AB ∥DG ,∴∠B =∠GDC =30°.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.【解答】解:∵√1-2??3与√3??-23(y ≠0)互为相反数,∴1﹣2x+3y ﹣2=0,解得2x =3y ﹣1,则2??+1=3??-1+1??=3,即2??+1??的值是3.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.【解答】解:(1)如图1,过点P作PG∥AB,则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)∠AEG=2∠PFD.理由如下:如图3,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=180°﹣2(90°﹣∠2)=2∠2,即∠AEG=2∠PFD.。

人教版七年级数学下册第一次月考数学试题

人教版七年级数学下册第一次月考数学试题

七年级第一次月考数学试卷学号——————姓名-----------------一、单项选择题(每小题3分,满分30分)1.下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题中,正确的是( )A.互补的角是邻补角 B.一条直线有且只有一条垂线C.同位角相等 D.两直线平行,同旁内角互补3.如图,不能判断1l∥2l的条件是( )A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°4、如图由AB∥CD,可以得到()A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠45、如图AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A、1800B、 2700C、 3600D、5406、下列说法正确的是()A、 a、b、c是直线,且a∥b, b∥c,则a∥cB、 a、b、c是直线,且a⊥b, b⊥c ,则a⊥cC、 a、b、c是直线,且a∥b, b⊥c则a∥cD、 a、b、c是直线,且a∥b, b∥c,则a⊥c7、下列说法不正确的是()A、251的平方根是15± B、-9是81的一个平方根C、0.2的算术平方根是0.04D、-27的立方根是-38、在下列各式中正确的是()A、2)2(-=-2 B、=3 C、16=8 D、22=29、在-2,4,2,3.14,327-,5π,0.151151115…)个之间依次多两个115(这7个数中,无理数共有( )A、4个B、3个C、2个D、1个10. 若225a=,3b=,则ba+的值为()A.-8 B.±8C.±2 D.±8或±2二、填空题(每小题3分,满分30分)1、如图一个弯形管道ABCD的拐角∠ABC=1200,∠BCD=600,这时说管道AB∥CD,是根据2、如图,∠1=75°,若m∥n,则∠2= º.3、如图,已知AB∥CD,∠E=80°,∠B=30°,则∠C=________度.4、如图直线AB分别交直线EF,CD于点M,N只需添一个条件就可得到EF∥CD。

最新人教版七年级数学下册第一次月考试题

最新人教版七年级数学下册第一次月考试题

七年级下册第一次月考数学试题一、选择题:(本大题12个小题,每小题3分,共36分)1.如图,点D、E分别为三角形ABC边BC、AC上一点,作射线DE,则下列说法错误的是()A.∠1与∠3是对顶角B.∠2与∠A是同位角C.∠2与∠C是同旁内角D.∠1与∠4是内错角2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.若直线l外一点P与直线l上三点的连线段长分别为2cm,3cm,4cm,则点P到直线l的距离是()A.2cm B.不超过2cm C.3cm D.大于4cm4.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣55.如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A .70 B.60 C.48 D.186.9的平方根是()A.±3 B.3 C.81 D.±81 7.下列说法不正确的是()A.的平方根是±B.﹣9是81的平方根C.0.4的算术平方根是0.2 D.=﹣38.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD 的值为()A.20°B.30°C.40°D.70°9.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣3 D. +=10.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°11.若|a﹣5|+=0,则a﹣b的立方根是()A.﹣8 B.8 C.2 D.±212.如图,已知l1∥l2,且∠1=120°,则∠2=()A.40°B.50°C.60°D.70°二.填空题(共8小题,满分40分,每小题5分)13.某个正数的平方根是x与y,3x ﹣y的立方根是2,则这个正数是.14.如图,直线AB、CD、EF 相交于点O ,CD⊥EF,OG平分∠BOF.若∠FOG=29°,则∠BOD 的大小为度.15.已知a为实数,那么等于.16.如图将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,若∠1=35°,则∠2的大小为度.17.化简:||=.18.阅读下面材料:在数学课上,老师提出如下问题:作图:过直线外一点作已知直线的平行.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小凡利用两块形状相同的三角尺进行如下操作:如图所示:(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB.所以,直线AB即为所求.老师说:“小凡的作法正确”请回答:小凡的作图依据是.19.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=;(2)若,则x的取值范围是.20.如图,△ABC的面积为10,BC=4,现将△ABC沿着射线BC平移a个单位(a>0),得到新的△A'B'C',则△ABC所扫过的面积为.三、解答题(共8小题,满分74分)21.(12分)计算:(1)+﹣;(2)求下式中x的值:9(2x﹣1)2=81.(3)已知a、b、c满足+|a+1|=+.①求证:b=c;②求﹣4a+b+c的平方根.22.(8分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.23.(6分)如图,梯形ABCD,按要求作图:(1)连AC,过D作AC的平行线;(2)过A作AD的垂线,交直线BC于E;(3)将线段AB沿着BC方向平移,使B点的对应点是C点.24.(8分)完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=(),∵DF∥CA,∴∠A=(),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(),∴∠C=,∴AC∥BD().25.(8分)如图,MG是∠BME的平分线,NH是∠CNF的平分线,且∠BME=∠CNF;求证:(1)AB∥CD;(2)MG∥NH.26.(10分)张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?27.(10分)如图,已知∠A =∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上(1)求证:CD∥AB;(2)若∠A=∠ACB +30°,求∠D的度数.28.(12分)如图1,点E,F分别在直线AB,CD上,点P在AB,CD之间,连接EP,FP.过FP上的点M作MN∥EP,交CD于点N,且∠MNF=∠AEP.(1)求证:AB∥CD;(2)如图2,将射线FC沿FP折叠后交EP于点G,GH平分∠EGF,若GH∥AB,请写出∠EPF与∠GFC的数量关系,并证明你的结论;(3)如图3,将射线EA沿EP折叠,射线FC沿FP折叠,折叠后两条射线相交于点Q,直接写出当∠EPF=度时,EQ⊥FQ.人教版七年级数学下册第一次月考试题一、选择题:(本大题10个小题,每小题3分,共30分)1.2的立方根是()A.B.±C.D.﹣2.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直3.若式子在实数范围内有意义,则x的取值范围是()A.x>5 B.x≥5 C.x≠5 D.x≥04.在实数中π,,0,,﹣3.14,无理数有()A.1个B.2个C.3个D.4个5.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是()A.∠1=∠2 B.∠B=∠DCEC.∠3=∠4 D.∠D+∠DAB=180°6.下列各式中正确的是()A.=±4 B.=4 C.=3 D.=7.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c8.下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算(+)=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A.1个B.2个C.3个D.4个9.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a<1,则a>D.若a>|b|,则a2>b210.一个台球桌面如图所示,一个球在桌面上的点A滚向桌边的PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向桌边PQ上的点D,如此运动,球经过D点反弹到RQ上的点E,经过E点反弹到RS上的点F.如果PQ∥RS,RQ⊥PQ,SP⊥QP,AB、BC、CD、DE、EF都是线段,且∠ABC的平分线BN⊥PQ,∠BCD的平分线CM⊥RS,∠CDE的平分线DG⊥PQ,∠DEF的平分线EH⊥QR,且∠ABP=65°,那么∠REF的度数是()A.20°B.25°C.30°D.35°二、填空题(共6小题,每小题3分,满分18分)11.计算:9的平方根是;(﹣2)2=;=.12.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a=.13.与最接近的两个整数为.14.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是米2.15.∠A的两边与∠B的两边分别平行,且3∠A﹣∠B=60°,则∠B的度数为.16.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.三.解答题(共7小题,满分72分)17.(8分)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.18.(8分)已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.19.(8分)完成下面的证明:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,求证:∠EGF+∠AEG=180°.证明:∵DE∥AB(已知),∴∠A=∠CED()又∵∠BFD=∠CED(已知),∴∠A=∠BFD()∴DF∥AE()∴∠EGF+∠AEG=180°()20.(8分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)过点C画直线AB垂线CE,垂足为E(利用网格点和直尺画图).21.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.22.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.23.(10分)先阅读下面的文字,然后解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用﹣1表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.由此我们还可以得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果﹣=a+b,其中a是整数,且0<b<1,那么a=,b=;(2)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.24.(10分)已知:点P在射线AB上,且∠A=∠C.(1)如图1,若AB∥CD,求证:∠APC=∠D;(2)如图2,AD⊥CD,请探究∠BPC与∠A的数量关系,写出你的探究结论,并加以证明;(3)操作:在(2)的条件下,过点C作CE⊥CD交射线AB于点E,当∠BEC=2∠BPC时,求∠BPC的度数.。

新人教版七年级数学下册第一次月考试题及答案

新人教版七年级数学下册第一次月考试题及答案

七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是 A .同位角相等. B .邻补角一定互补. C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置. 11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 .15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 . 19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23的值为 .EC第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (222.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ; (2)写出两个图中与∠O 互补的角; (3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________). ∴∠ =∠C (__________________________). 又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分)29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)E第27题七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF ∥AD ,AD ∥BC (已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分 ∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分 25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分 341082376x y x y +=⎧⎨+=⎩……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分) 27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分 ∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分 ∴∠1=∠2.(同角的补角相等)……………………………4分 ∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分 28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分 (3)连接AA 1、CC 1; ∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=.答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分 (3)设租用45座客车m 辆,60座客车n 辆,依题意得 4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分 当0,4m n ==时,租车费用为:30041200⨯=(元); 当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元); ∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥,∴2210(24)0a b a b ++=+-=且 . ∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12 △ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分(3)OPD DOE∠∠的值不变,理由如下:∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90° ∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPDDOE∠=∠.……………………………12分。

人教版七年级下册数学第一次月考试题附答案

人教版七年级下册数学第一次月考试题附答案

人教版七年级下册数学第一次月考试卷一、单选题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .22的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 3.下列说法错误的是( )A .5是25的算术平方根B 2是64的立方根C .()34-的立方根是4-D .()24-的平方根是4±4.下列说法正确的是( )A .有且只有一条直线与已知直线平行B .垂直于同一条直线的两条直线互相平行C .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D .在平面内过一点有且只有一条直线与已知直线垂直5.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2 6.如图,直线AB BE 、被AC 所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③∠ABC 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④7.如图,下列条件中,能判断直线a ∥b 的有( )个.①∠1=∠4; ②∠3=∠5; ③∠2+∠5=180°; ④∠2+∠4=180°A .1B .2C .3D .48.如图,数轴上的点A B C D 、、、分别表示数-1,1,2,3,则表示2P 应在( )A .线段CD 上B .线段OB 上C .线段BC 上D .线段AO 上 9.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则50!48!的值为( ) A .5048 B .49! C .2450 D .2! 10.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°二、填空题11.25的平方根与8的立方根的和是________.12.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)13.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:_______.14.如图所示,AB ∥CD ,∠1=115°,∠3=140°,则∠2=__________.15.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .三、解答题16.计算:(1)|1|3|+- (2)17.求下列各式中x 的值.(1)25x 2-64=0;(2)343(x +3)3+27=0.18.如图,方格纸中每个小正方形的边长都为1,在方格纸中将三角形ABC 经过一次平移后得到三角形A'B' C′,图中标出了点C 的对应点C'.(1)请画出平移后的三角形A'B'C′;(2)连接AA′,CC′,则这两条线段之间的关系是 ;(3)三角形A'B'C'的面积为 .19.完成下面推理过程.如图:在四边形ABCD 中,106,74A ABC αα∠=︒-∠=︒+,BD DC ⊥于点D ,EF DC ⊥于点F ,求证:12∠=∠证明:106,74A ABC αα∠=︒-∠=︒+(已知)180A ABC ∴∠+∠=︒∴AD// ( )1∴∠= ( )BD DC ⊥, EF DC ⊥ (已知)90BDF EFC ∴∠=∠=︒ ( )∴BD// ( )2∴∠ = ( )∴ 12∠=∠ ( )20.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =,求a ,b 的值.解:因为52b a =所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17-=-x y +的值.21.已知:如图,∠A+∠D=180°,∠1=3∠2,∠2=24°,点P 是BC 上的一点.(1)请写出图中∠1的一对同位角,一对内错角,一对同旁内角;(2)求∠EFC 与∠E 的度数;(3)若∠BFP=46°,请判断CE 与PF 是否平行?22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.23.已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH//EP,交CD于点H,且∠1=∠2.(1)求证:AB//CD;(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK//AB,则∠BEP 与∠EPF之间有何数量关系,并证明你的结论;(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.参考答案1.D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.2.C【分析】【详解】<<,∵479∴23<.∴425<.故选:C.【点睛】考查了估算无理数的大小,解题是掌握估算无理数大小的方法.3.B【分析】将选项中的各个要求的问题都计算出来,然后进行对照,即可得到哪个选项是错误,从而可以解答本题.【详解】解:5=4=4=-,4=±,∴选项B 错误.故选:B .【点睛】考查了立方根、平方根、算术平方根,解题关键是明确它们各自的计算方法.4.D【分析】利用平行公理以及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.【详解】解:A 、过直线外一点,有且只有一条直线与已知直线平行,故此选项错误;B 、在同一平面内,垂直于同一条直线的两条直线互相平行,故此选项错误;C 、从直线外一点到这条直线的垂线段长,叫做这点到这条直线的距离,故此选项错误;D 、在平面内过一点有且只有一条直线与已知直线垂直,故此选项正确.故选:D .【点睛】此考查了平行公理以及其推论和垂线的定义、点到直线的距离的定义,正确把握相关定义是解题关键.5.B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .6.D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③∠ABC与4∠是同位角,说法正确;④1∠是内错角说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.7.C【分析】根据平行线的判定方法,对各选项分析判断后利用排除法求解.【详解】解:①∵∠1=∠4,∴a∥b(内错角相等,两直线平行);②∵∠3=∠5,∴a∥b(同位角相等,两直线平行),③∵∠2+∠5=180°,∴a∥b(同旁内角互补,两直线平行);④∠2和∠4不是同旁内角,所以∠2+∠4=180°不能判定直线a∥b.∴能判断直线a∥b的有①②③,共3个.故选C.【点睛】本题考查了平行线的判定,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,解题时要认准各角的位置关系.8.D【分析】根据5在平方数4与92的取值范围即可确定P点的位置.∵23∴-2>-3,0>-1即-1<0∴点P在线段AO上故选:D【点睛】此题主要考查了无理数的估算,解题关键是正确估算2 9.C【分析】根据50!=50×49×…×4×3×2×1,…,48!=48×47×…×4×3×2×1,…,求出50!48!的值为多少即可.【详解】解:50!48!=5049432148474321⨯⨯⋯⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=50×49=2450,故选:C.【点睛】此题主要考查了有理数的乘法的运算方法,以及阶乘的含义和求法,要熟练掌握.10.C【分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.11.7或-3【分析】根据平方根和立方根的定义求解即可.【详解】25的平方根是5±,8,25的平方根与8的立方根的和是5+2=7,或-5+2=-3.故答案为7或-3【点睛】此题考查了平方根和立方根的定义,熟练掌握这两个定义是解答问题的关键.12.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.13.如果一个三角形是直角三角形,那么它的两个锐角互余.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【详解】解:故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余.【点睛】此题主要考查学生对命题的理解及运用能力.14.75°【分析】根据两直线平行,同旁内角互补求出∠4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠2的度数.【详解】如图,∵AB∥CD,∠3=140°,∴∠4=180°-140°=40°,∵∠1=115°,∴∠2=∠1-∠4=115°-40°=75°.故答案为75°.【点睛】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.15.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.16.(1)4(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式-;(2)原式=-(-2)+5+2=2+5+2=9.17.(1)85x=±(2)247x=-【解析】试题分析:(1)根据平方根,即可解答;(2)根据立方根,即可解答.试题解析:(1)根据题意,得x=解得:85 x=±.(2)根据题意,得3x+=33,7x+=-解得:24.7 x=-18.(1)见解析;(2)平行且相等;(3)10.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′,从而得到三角形A'B'C’;(2)利用平移的性质求解;(3)利用三角形面积公式求解.【详解】(1)如图所示:三角形A′B′C′即为所求;(2)由平移的性质可知AA′与CC′平行且相等,故答案为平行且相等;(3)三角形A′B′C′的面积=12×5×4=10, 故答案为10.【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.答案见解析【分析】首先根据同旁内角互补,两直线平行得出AD ∥BC ,从而根据两直线平行,内错角相等得出∠1=∠DBC ,根据垂直与同一条直线的两直线平行得出BD ∥EF ,从而得出∠2=∠DBC ,从而根据等量代换得出答案.【详解】 解: 106,74A ABC αα∠=︒-∠=︒+(已知)180A ABC ∴∠+∠=︒∴AD// BC ( 同旁内角互补,两直线平行 )1∴∠= DBC ∠ ( 两直线平行,内错角相等 )BD DC ⊥, EF DC ⊥ (已知)90BDF EFC ∴∠=∠=︒ ( 垂直的定义 )∴BD// EF ( 同位角相等,两直线平行)2∴∠ = DBC ∠ ( 两直线平行,同位角相等 )∴ 12∠=∠( 等量代换 )20.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17-=-所以()2x 2y 17-=-所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.21.(1)见解析;(2)∠EFC=108°;(3)不平行,理由见解析.【分析】(1)根据同位角、内错角以及同旁内角的定义,即可得出结论;(2)由∠A+∠D=180°可得出AB ∥CD ,根据平行线的性质可得出∠1=∠DFE ,再结合∠1=3∠2、∠2=24°通过角的计算即可得出∠EFC 与∠E 的度数;(3)由(2)中∠E 的度数结合∠BFP=46°,即可得出∠E≠∠BFP ,从而得出CE 与PF 不平行. 【详解】(1)同位角:∠1与∠DFE ;内错角:∠1与∠BFC ;同旁内角:∠1与∠DFB . (2)∵∠A+∠D=180°,∴AB ∥CD ,∴∠1=∠DFE .∵∠1=3∠2,∠2=24°,∴∠1=∠DFE=72°.∵∠DFE=∠E+∠2,∴∠E=48°.∵∠DFE=180°-∠EFC,∴∠EFC=108°.(3)不平行.∵∠E=48°,∠BFP=46°,∴∠E≠∠BFP,∴CE与PF不平行.【点睛】考查了平行线的判定与性质、同位角、内错角以及同旁内角;能够找出一个角的同位角、内错角以及同旁内角、得出AB∥CD和熟悉各平行线的判定定理是关键解题的关键. 22.(1)证明见解析;(2)∠AFG=60°.【分析】(1)根据平行线的判定定理,由∠AGF=∠ABC,可判断GF∥BC,由平行线的性质可得∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°,即可判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,从而得出结论.【详解】(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【点睛】本题考查了平行线的判定与性质.解题的关键是熟练掌握平行线的判定与性质.23.(1)证明见解析;(2)∠BEP+23∠EPF=180º.证明见解析;(3)∠EPF=135º【分析】(1)延长FP交AB于点Q,根据平行线性质可得∠2=∠3,再由∠1=∠2可得∠1=∠3,即可证明结论;(2)过点P作PM//CD,即可证得JK//AB//CD//PM,根据平行线的性质解答即可;(3)作PG//AB,MH//AB,则PG//MH∥AB//CD,根据平行线的性质进行分析解答即可.【详解】(1)延长EP交CD于点Q∵GH//PE,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴AB//CD.(2)过点P作PM//CD,又AB//CD,∴PM//AB.∴∠FPM=∠1,∠EPM=∠2,∴∠FPE=∠FPM+∠EPM=∠1+∠2.又∵JK//AB//CD,同理可证:∠FJE=∠CFJ+∠2.又∵∠FJK=∠CFJ=2∠1=∠3=∠2,∵∠BEP+∠3=180º,∴∠BEP+2∠1=180º,∴∠BEP+2(∠EPF-∠2)=180º,∴∠BEP+2∠EPF-2∠2=180º,∴∠BEP+2∠EPF-2(180º-∠BEP)=180º.即:21803BEP EPF∠+∠=︒(3)作PG//AB,MH//AB,则PG//MH//AB//CD.∵FM⊥EM,∴∠EMF=90º易证:∠1+∠2=∠EMF=90º,∠EPF=∠3+∠4,又∵∠3=∠PFM,∠4=∠PEM,∴∠1=180º-2∠3,∠2=180º-2∠4.∴180º-2∠3+180º-2∠4=90º,∴2∠3+2∠4=270º.∴∠3+∠4=135º,∴∠EPF=135º点睛:本题考查平行线的判定和性质,关键是构建平行线,利用平行线的性质进行解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-2013学年度七年级下学期月考数学试题考试时间:120分钟试卷满分:150分编辑人:丁济亮第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是 A .同位角相等. B .邻补角一定互补. C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置. 11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _.13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 .15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________. 16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 . 19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23 的值为 .第19题图1FABC DE G 第18题图马将车BE2413A DE C第9题图4321第12题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (2)743211432x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩ 22.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ; (2)写出两个图中与∠O 互补的角; (3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________). ∴∠ =∠C (__________________________). 又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数. 25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分)如图,在平面直角坐标系中有三个点A (-3,2)、B (﹣5,1)、C (-2,0),P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b +2).(1)画出平移后的△A 1B 1C 1,写出点A 1、C 1的坐标;(2)若以A 、B 、C 、D 为顶点的四边形为平行四边形,直接写出D 点的坐标; (3)求四边形ACC 1A 1的面积.29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);第28题第27题图2图1(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标; ②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF∥AD,AD∥BC(已知),∴EF∥BC.(平行于同一条直线的两条直线互相平行)………………6分∴∠FEC=∠ECB.(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分 25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分 341082376x y x y +=⎧⎨+=⎩ ……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分) 27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分 ∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分 ∴∠1=∠2.(同角的补角相等)……………………………4分 ∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分 28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分 (3)连接AA 1、CC 1;∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=.答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分 解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分 (3)设租用45座客车m 辆,60座客车n 辆,依题意得 4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分 当0,4m n ==时,租车费用为:30041200⨯=(元); 当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元); ∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥,∴2210(24)0a b a b ++=+-=且 . ∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12 △ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS=52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分(3)OPDDOE∠∠的值不变,理由如下:∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90° ∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF ∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPDDOE∠=∠.……………………………12分。

相关文档
最新文档