数学建模感悟与展望

数学建模感悟与展望
数学建模感悟与展望

数学建模的收获与展望

每一件事,只有用心,才能经久不衰;每一个人,只有坚持,才能享受精彩。这

是我通过对《数学建模》的学习,得到的最大感受与领悟。我走进了新的数学天地,

学习与众不同的知识,被它的魅力深深地所吸引,陶醉在知识的海洋。

我认识了数学建模,接触后就爱不释手,从茫然的无所适从到学会用它解决实际

问题,我终于知道什么是数学建模,什么是它的特点,逐渐我慢慢能用它解决生活中

的问题,我们都知道数学科学的地位也在发生巨大的变化,它正在从经济和科技的后

备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充

使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够

普遍实施的技术。培养我们应用数学的意识和能力已经成为数学教学的一个重要方面。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困

难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学

结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和

方法去分折和解决问题。数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

数学建模的内容让我在深入调查研究、了解对象信息、作出简化假设、分析内在

规律等工作的基础上,用数学的符号和语言,把它表述为数学式子。线性规划——主

要学习线性规划模型、运用MATLAB优化工具箱解线性规划、运用LINGO解线性规划等。非线性规划——目标函数或约束条件中至少有一个是非线性函数的最优化问题叫

做非线性规划问题。本章主要学习的是非线性规划的数学模型、非线性规划问题的解、用MATLAB优化工具箱解非线性规划等。微分方程——微分方程是研究函数变化规律的有力工具,在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着

广泛的应用。建立微分方程模型要对研究对象作具体分析。一般有一下三种方法:一

是根据规律建模;二是用微元法建模;三是用模拟近似法建模。在这章主要学习微分

方程模型、微分方程的定性理论、微分方程的稳定性理论、微分方程数值解、用MATLAB解微分方程等。最短路问题——对某些较复杂的多阶段决策问题,可以通过

构造适当的图,将它转化成最短路问题,从而使问题变得清晰、直观。通过这章主要

学习了图论的基本概念、最短路问题及其算法、最短路问题的应用等等。数据的统计描述和分析——数理统计学是以概率论为基础,从实际观测资料出发,研究如何合理

的搜集资料(数据)来对随机变量的分布函数、数字特征等进行估计、分析和推断、

更具体地说:数理统计学是研究从一定总体中随机抽出的一部分(称样子或子样)的

某些性质,从此对所研究总体的性质作出推测性的判断。在这一章主要学习了统计的

基本概念、参数估计、假设检验、MATLAB统计工具箱中的基本统计命令等。

数学建模就是学习如何把物理的复杂的世界用适当(基于适当假设)的数学语言

描述出来(即建立数学模型),进而用数学的手段对模型加以分析,然后再用所得结

论回归现实,指导实践。一切领域都可能是它的研究对象,工程、经济、生态等你能

想到的领域的问题都可以用数学建模的方法研究。数学建模是联系实际与理论的桥梁,是应用数学知识解决实际问题的必经环节。可以毫不夸张的说,数学建模的应用遍及

生活的方方面面。比如说投资组合、饲料配方、指派问题、车辆调度、人口预报等等。测量河的宽度,用勾股定理。用影长测量楼的高度,用X:X。用路程=时间X速度来求出

汽车行驶的路程.时间.速度。用光速,和时间测量出光源离自己有多远。去买东西是需

算帐,不然会多收钱。给RT三角形两个边,求第三条边。

我对数学建模的学习得到如下看法:论文要写好,至少10也以上,一般15页以

上为好,题目太长了就不要在问题重速中重复题目了。面对论文格式有明确的要求,

更要按照要求来做。一定要有答案,而且答案要弄对,不管你用什么办法,答案错了,一般不会送到北京全国一起评阅。摘要要写好,一页纸,要把你们做的东西,用的方法,得出的结论都写上去。参考文献一定要有,而且要真实,这个地方弄假最吃亏不

讨好,大家建模过程中用到的资料,网址都要记下来,这是习惯。其他的如模型检验,评价,不足,等等老师肯定说得很多了,自己注意就行,就算自己没有时间做,论文

中也要反映。我们坚持对数学建模的学习,一定能解决更多的生活问题,更好的锻炼

我们的思维能力、合作交流能力、动手与计算能力。培养我们自主学习,在工作、学

习中不断进步。同时让我们在以后的生活中更能在于坚持与探索,更有挑战困难的毅

力与勇气。

数学建模简而言之就是应用数学模型来解决各种实际问题的过程,也就是通过对

实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数间的关系

的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评

价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。我

喜欢它独特的课程内容,习惯这种探索式的学习,不断了解其中的原理,学会将它运

用到生活中,我对自己充满希望与信心,自己将不停地迈出成功的步伐,也对《数学

建模》满怀期待,它能更快、更广、更好的运用和融入到我们的生活中。

数学建模课后感想

一、简答题谢俊雄信计一班 1、通过数学建模选修课程的学习,请谈谈对数学建模的认识,学习数学建模课程的收获。(不少于500字)(30分) 通过学习数学建模,我觉得不管对我的学习还是对我的人生都是一次很重要的成长,通过学习数学建模使我懂得了利用数学的知识去解决的生活中的问题,以前我刚进入大学的时候得知我学习的学习的专业可是数学的时候就常抱怨说,学习以后能干吗啊?,数学在生活中能有什么作用啊?但是通过建模课,让我对数学有了新的认识,数学无处不在。重要的是我们只要懂得怎么样用数学的知识通过建立模型去解决生活中的问题。 通过学习让我知道了睡你觉数学建模,当需要从定量的角度分析和研究一个实际问题 时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的 模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 2、简要说明数学建模的一般过程或步骤。(10分) 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解

数学建模的经典模板

一、摘要 内容: (1)用1、2句话说明原问题中要解决的问题; (2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点; (3)算法思想(求解思路),特色; (4)主要结果(数值结果,结论);(回答题目的全部“问题”) (5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广 要求 (1)特色和创新之处必须在这里强调; (2)长度 (3)要确保准确、简明、条理、清晰、突出特色和创新点; 二、问题的提出 内容: 用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求; 要求: (1)不是题目的完整拷贝 (2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求; 三、条件假设 内容 (1)根据题目中的条件做出假设 (2)根据题目中的要求做出假设; 要求 (1)合理性最重要; (2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺; (3)合理假设作用: 简化问题,明确问题,限定模型的适用范围 四、符号约定 五、问题分析 1.名词解释 2.问题的背景分析 3.问题分析 六、模型建立 抽象要求 (1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、

优化模型、决策模型、图论模型等 (2)几种常见的建模目的:(对应相对(1)的方法) 描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性; 预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法; 优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法; (3)建模过程常见的几个要点: 模型的整体设计、合理的假设、建立数学结构、建立数学表达式; (4)模型的要求: 明确、合理、简洁、具有一般性; 例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应)) (5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理 (6)避免出现罗列一系列的模型,又不做评价的现象; 具体要求: (1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出; 七、模型求解 每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称 写作要求: 1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密 2、需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 3、计算过程,中间结果可要可不要的,不要列出 4、设法算出合理的数值结果 5、最终数值结果的正确性或合理性是第一位的 6、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进 7、题目中要求回答的问题,数值结果,结论,须一一列出 8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 9、结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式 ▲求解方案,用图示更好 10、必要时对问题解答,作定性或规律性的讨论。最后结论要明确 内容 (1)算法设计或选择,算法的思想依据,步骤; (2)引用或建立必要的数学命题和定理; (3)在不能给出精确解的情况下,需要给出不知一种解法(算法),并进行测试比较,给出

数学建模参赛感想

数学建模竞赛参赛感想 怀着锻炼自己的心和学习数学建模知识的心,参加了全国大学生数学建模大赛。说起为什么会想到参加这个比赛,还得从一年前说起。那时候我刚步入大二,在参加学院的数学建模选修课的时候,对数学建模产生了浓厚的兴趣。之后参加了学院的数学建模选拔赛,获得了三等奖的成绩,这愈发让我有了继续学习和研究下去的动力。 随后在暑假的时候就参加了数学建模暑期培训。看着别的同学都回家了、去找兼职工作了,自己却还在学校呆着。而且学校在夏天的时候特别热、吃饭都成为了问题。但是和一群有着共同目标的小伙伴一起,并肩作战。每天大家都呆在一起,大家一起学习、讨论,然后完成老师布置的题目。我们还需要学习使用统计软件、数学分析软件、学会写论文,如何排版、如何使用各种编辑工具。这些对我们以后深造、升学、工作、学习都是十分有帮助的。学习使用数学软件的时候,体会到了数学软件的神奇的一面,生活的许多的问题都可以和数学结合起来。十分具有趣味性,丰富了自己的知识面和提升自己的数据处理和分析能力。经过将近一个月的学习,我们组队参加了2012年的全国大学生数学建模竞赛。 比赛的时间是三天,现在今年是第二次了。还记得第一次的时候,连续两晚上都没怎么睡觉,努力的编程、书写论文。小组的三个人,各司其职,每个人都进行自己的工作,吃住几乎都在机房了。还记的比赛结束回寝室就呼呼大睡了。虽然很累,但是觉得很有收获。收获知识、收获友谊、收获成长。享受过程,结果将水到渠成。坚持做完题目,完成了论文的写作,我觉得是十分成功的。虽然最后结果出来,没有获奖。但是我觉得是值得的,不能以等奖作为自己动机,这样太短暂。坚持学习、做下去,成功不期而至。抱着这种信念,我和小伙伴参加了华中地区的数学建模邀请赛,大家一起奋斗了三天。大家也算是同甘共苦的好哥们了,并肩作战。顺利完成的竞赛论文的写作。 时间飞逝,今年暑期到了,我还在犹豫要不要参加今年的暑期数学建模培训,最终我决定坚持下来、留下来。坚持学好数学建模,取得一定的成绩。暑期的培训是艰苦的。学校到处很难找到吃饭的地方,睡觉也苦难。因为天气和楼层的原因,晚上睡觉特别热。但是我们没有被这些困难吓倒,我们依然每天坚持上课培训,我们按时,保质保量完成老师的作业。经常和老师交流和讨论,小组一起完成模拟练习,完成论文的写作。不断的磨合团队,大家找到最适合自己的位置,找到自己的长处。 最后时间定格在2013年9月13日早上8点,2013年的比赛正式打响。我们小组三位队员,大家一起查找资料、一起编程、一起写论文。我们几乎没有离开过电脑,一直不断的编程实现,寻找最优答案,找到最好的解题方法。我们选定B题,这道题比较注重编程实现这方面。我们在编程这块花费大量时间,最终我们在规定的时间完成了论文的写作。 两个月后结果出来了,我们小组取得了全国二等奖的好成绩,我们大家很高兴。我们的付出终于有了回报,同时我们也十分感谢老师赛前给予的执导和培训,我们在这个参赛的过程收获颇多。我觉得参加数学建模比赛,是十分有意义、有挑战性的事情。

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模课心得体会

第一次接触数学建模是在高二的时候,那时候参加全国第二届“赛先生”数学知识竞赛,笔试取得了一等奖的成绩,复试是自己选题建模,现在回想起来那时候真是天真,以为数学建模就是简单问题复杂化的弄,好比一个简单应用题偏偏要弄成几千字的论文。但是,也是那次的接触,是我对数学有了更浓厚的兴趣,也是我想到了大学要参加数学建模比赛这回事。 抱着对数学建模的憧憬,这学期的选修课,我选择了《数学建模》课程,去上课后发现老师并不给我们讲数学建模,而是讲软件MATLAB,原本有点失望的,但是自从认真听完第一次课,我的失望就全都一扫而光,因为MATLAB太强大了,不仅能解决我们微积分、线性代数上的问题,还能画出我们想不清楚的各种立体图。并且,还知道了在数学建模中,大都采取MATLAB来编程计算,于是,我下定决心要学好MATLAB。 MATLAB给我带来了很多意想不到的东西。第一就是是我对计算机的兴趣更加浓厚了,还记得安装MATLAB时就费了老大功夫,还改变了电脑系统盘某些参数,放在从前这是我想都不敢想的事,安装成功那会,真是特别开心。第二就是通过MATLAB我结交到了一些好朋友,尤其是天津一网友。因为我想学好MATLAB,于是我加入了MATLAB贴吧,再通过贴吧加入了一个MATLAB交流学习群,但后来发现在那个群上愿意帮人解决问题的并不多,有一次,有个人提了一个简单的问题,他的程序有错误,但仅仅是矩阵乘除、乘方时没有加点,于是我就顺手告诉了他,然后他就加上了我,原来他是天津一大学的大二的学生,他正好要参加学校的数学建模比赛,要用到MATLAB,但是他也只是才接触,还没上手,于是他遇到问题就会找我,我就会尽力想去帮他解决,当我不会的时候,我会查阅书籍或者翻出老师的PPT课件仔细研究,就那样几次交流我们成了好朋友,后来他正式比赛了,他都把他的论文中程序发给我要我帮他看是否能改进之类的,还把他的建模论文发给我看,并且一再鼓励我一定要学好MATLAB以后参加比赛就不会那么着急。直到现在,我们都一直保持着联系,一起探讨交流MATLAB、数学(他是学数学的)上的各种问题。第三就是意外得解决了一些问题。记得前不久一同学叫我帮他在网上做份题,原本说是高中的题,但我后来发现都是微积分的题目,偏偏好多积分微分我都觉得会比较花时间,于是我想到了MATLAB,当即我就决定能用MATLAB编程解决的问题我就用MATLAB解决,果然,试卷我完成的又快又好,当我给那同学说的时候讲得他一愣一愣的,只剩下崇拜。 在我学习MATLAB的时候,也遇到了很多问题。第一次做老师给的题时,前几题我就花了几个小时,当我后来回过头总结的时候发现,基本上我出错的地方提示的错误都是一致的:Inner matrix dimensions must agree或者是Matrix must be square,后来我懂得这是矩阵乘除、乘方维数不一致等导致的,我得出结论关于矩阵的乘除、乘方运算必须是点运算,之后就很少出现这样的错误了。还记得刚开始画三维图的时候,总是出现一个错误Matrix dimensions must agree, not rendering mesh,其实原因很简单,只是我漏了一句话:[x,y]=meshgrid(x,y),也正因为这个,更加是我坚定了不能不拘小节这一思想。就在几天前,画一个分段函数的图 像,我原本只是这样编的程序: x1=1.1:0.02:3.3; x2=-1.1:0.02:1.1; x3=-3.3:0.02:-1.1; y1=1.1; y2=x2; y3=-1.1; plot(x1,y1,x2,y2,x3,y3)

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

体会:数学建模的学习心得体会

数学建模的学习心得体会 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它

数学建模__SPSS_典型相关分析

典型相关分析 在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。 典型相关分析计算步骤 (一)根据分析目的建立原始矩阵 原始数据矩阵 ?? ????????? ???nq n n np n n q p q p y y y x x x y y y x x x y y y x x x 2 1 2 1 222212221 1121111211 (二)对原始数据进行标准化变化并计算相关系数矩阵 R = ?? ? ? ??22211211 R R R R 其中11R ,22R 分别为第一组变量和第二组变量的相关系数阵,12R = 21 R '为第一组变量和第二组变量的相关系数 (三)求典型相关系数和典型变量 计算矩阵=A 111-R 12R 122-R 21R 以及矩阵=B 122-R 21R 1 11-R 12R 的特征值和特征向量,分 别得典型相关系数和典型变量。 (四)检验各典型相关系数的显著性 第五节 利用SPSS 进行典型相关分析 第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。

1、点击“Files→New→Syntax”打开如下对话框。 2、输入调用命令程序及定义典型相关分析变量组的命令。如图

输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。 第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键,即可得到所有典型相关分析结果。

数学建模课程感想

数学建模学习感想 数学与计量经济系信计1101班 学号:11415124 姓名:彭玉能眨眼间,大二的课程就结束了,伴随着的是我们的数学建模课程也结束了,但是它带给我的影响却不会就此结束。在这个学期的建模课程的学习中,我了解了建模的重要性,以及他对我们的提高。在此说说自己对数学建模的感想。 数学建模对一个人思考问题的方式和思路都有启发式的指导作用,增强了我在考虑问题时的逻辑性。而数学建模比赛中团队精神和小组成员之间的取长补短也让我体会到人无完人,在时间短,工作量大的情况下,合作的必要性和重要性。而如果没有数学建模这门课程,我就不会有这么丰富的体验。我觉得作为一名理工科的学生,特别是作为数学专业的学生,如果不学习数学建模,真的是有些遗憾。开设这门课程确实可以让我们在许多方面得到锻炼。 在课上,老师介绍了许多数学模型和利用层级分析法解决实际问题的模型等。由于课时有限,有些细节需要自己回头思考。而这一点恰恰是这门课的迷人之处—一一个看似已经解决的很好的问题,只要细细的思索和推敲,就很有可能发现其中的不完善之处或者是明显的弊端,这就又给了我们自由发挥的机会,用自己的智慧结合强大的资料库,建立或者完善现有的模型,提出在假定前提下的优化解。在具体求解过程中,又需要到很多旁类的知识,也就是说,如果想建立起一个模型,总是需要其他相关学科知识作为自己的强大后盾—

C+,MATLAB,S-PLUS,Word Excel等工具的使用;基础的高等代数,数学分析中的知识,以及概率论,数理统计,多元回归分析等专业知识的使用;同时,更要拥有很好的表达逻辑和表达能力。而作为大学生,这些能力的拥有不仅对学习今后的专业课知识有着十分重要的意义,而且在以后的生活中,处理问题的逻辑性会比没有经过锻炼的人有着明显的优势。 在我看来这门课程开设的非常有必要,只是时间有些短,好多只是和内容都一带而过,没有进行深入的讨论和进一步的启发。最后,谢谢老师在数学建模这门课上对我们的耐心指导以及思路启发,相信您的悉心教导和我的认真学习必将会将学习这门课程中锻炼的能力和优势在以后的各个方面发挥出来!

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模学习心得体会

数学建模学习心得体会 【1】数学建模学习心得体会 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生 与选择的过程。它给学生再现了一种“微型科研”的过程。数学建 模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感 体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学 模型的构建意识与能力,才能指导和要求学生通过主动思维,自主 构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些 实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从 而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是 学生学习数学的重要方式。学生的数学学习活动应当是一个主动、 活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导 学生自主探索、合作交流,对学习过程、学习材料、学习发现主动 归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。 询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、 优劣,鼓励学生有创造性的想法和作法。 2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模心得体会

经过一个学期数学建模的学习,学到了很多,收获也很多,老师们的精彩讲课,让我感受到了老师们的热情以及对学术的尊敬,也让我陶醉在数学建模这门深奥而又让人着迷于这门科学,在此,感谢老师的栽培和培育.接下来让我谈谈对数学建模的理解。 在我看来,数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并”解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型。 数学建模广泛涉猎课外知识、利用数学和计算机工具、为某一具体问题建立抽象模型、给出求解方法并解决问题、最后撰写论文并给出客观评价的一个系统工程。数学建模就是利用数学知识对一些实际问题建立模型,但又不是纯数学的。它不仅要数学思维,还要计算机编程能力,论文写作能力,其实更重要的是团队协作能力,这是对以后工作有非常大的帮助的,更甚是人生。 第一、 通过这学期学的题目来体现我对数学建模的理解,由于一个学期的笔记太多,现 在我就用一道题来表达一下数学建模的应用 例:工厂有两条生产线,分别生产M 和P 两种型号的产品,利润分别为200元/ 个和300元/个,生产能力分别为100和120,生产一个产品分别需1个和2个 劳动日,工厂每天能提供160个劳动日。假设原材料不受限制,如何安排生产计 划,利润最大。 设生产计划为生产x1个M和x2个P,数学模型为 ???????≥≥≤+≤≤+=. 02,01, 1602211202,1001..2 3001200max x x x x x x t s x x z 由此看出,数学建模就是运用数学实现模型化,运用数学理论,公式,定律,定理,函数等数学物理知识来实现,求得最我们想要的最大值或者最小值以及通过模型来实现趋势的预测。

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

学习数学建模心得体会2.doc

学习数学建模心得体会 2 随着科学技的速展,人越来越到数学科学的重要性:数学的思考方式具有根本的重要性,数学和构造知提供了方法,将它用于技能使科学家和工程生出系的、能复制的、且可以播的知??数学科学于争是必不可少的, 数学科学是一种关性的、普遍的、可行的技. 在当今高科技与算机技日新月异且日益普及的社会里,高新技的展离不开数学的支持,没有良好的数学素养已无法工程技的新与突破。因此,如何在数学教育的程中培养人的数学素养,人学会用数学的知与方法去理,得数学工作者的思考。大学生数学建模活及全国大学生数学建模正是在种形下开展并展起来的,其目的在于激励学生学数学 的极性,提高学生建立数学模型和运用算机技解决的合能力,拓学生的知面,培养造精神及合作意, 推大学数学教学体系、教学内容和教学方法的改革. 极富意的活,大学参加了全国大学生数学建模。了更好地、指此活,更多的学生投入此活并从中受益,学生根据与指的践,数学建模活的作用与施一些,以期起到深化数学教学改革、推程建的作用。方法,去近似刻画、建立相数学模型并加以解决的程。大学生数学建模的能力,而我国大学生数学建模。参加数学建模活的教与学生普遍反映,数学建模活既丰富了学生的外生活,又培养了学生各方面的能力,同也促了大学数学教学的改革。通数学建模活,教与学生数学的作用有了一步的。激学生学数学的趣。今大学工科数学教学普遍存在内容多、学少的情况,此很多教采取了牲用、偏重理解以完成教学度的方法,使学生数学的重要性不,影响了学生学数学的趣,很多学生入学段才感到数学的重要,但已晚。 数学建模活及的目是社会、和生践中适当化的,体了数学用的广泛性;学生参与数学建模及活,感受到了数学的生机与活力,感受到了自己各方面能力的促,从而激起他学数学的趣。培养学生多方面的能力,培养合用数学知及方法行分析、推理、算的能力。由于数学建模的程是反复用数学知与方法行分析、推理与算,以得出的最佳数学模型及模型最解的程,因而学生明感到自己一方面的能力在具体的建模程中得到了大提高 学数学建模也有一段了,在没学数学建模,我以程是跟几何形相关的,但在学了之后才完全理解了,通段的学使得我数学建模有了一个全新的,数学建模就是当人面各种,根据人的理解,完成模型的假,建立和确定求解的方法与途径,然后建立好方程,然后再与算机的件相合,最得到的最佳求解答案。

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

相关文档
最新文档