《实数》单元测试

合集下载

人教版数学七年级下册:《实数》单元测试题

人教版数学七年级下册:《实数》单元测试题

人教版数学七年级下册:《实数》单元测试题实数单元测试题一、选择题1、下列哪个数是正有理数?A。

-4B。

0.xxxxxxxx3…C。

-πD。

4答案:D2、下列哪些数是无理数?A。

3B。

3.C。

2/3答案:B3、如果±1是b的平方根,那么b2013等于:A。

±1B。

-1C。

±2013答案:C4、已知a=24.72,则a的整数部分是:A。

24B。

25C。

26答案:A5、若a=1.147,b=2.472,c=0.5325,则2a+b-c等于:A。

11.47B。

53.25C。

114.7D。

3答案:A6、已知甲=6+√3,乙=2+√3,丙=2-√3,则甲、乙、丙的大小关系为:A。

甲=乙=丙B。

丙<甲<乙C。

甲<丙<乙答案:B7、下列等式正确的有几个?①√1=1②实数包括无理数和有理数③∛27=3④无理数是带根号的数⑤2的算术平方根是±2⑥-√4=-2A。

2B。

3C。

4答案:C8、下列判断正确的有几个?①一个数的平方根等于它本身,这个数是1和-1②实数包括无理数和有理数③∛9=3④无理数是带根号的数⑤2的算术平方根是±2A。

4B。

3C。

2D。

1答案:B9、已知实数a,b,c在数轴上的位置是:a在b的左边,b在c的左边,c在0的右边,则计算a+|b-a|+|b-c|的结果是:A。

cB。

2b+cC。

2a-cD。

-2b+c答案:B10、如图所示,数轴上表示√3、√5的对应点分别为C、B,点C是AB的中点,则点A表示的数是:A。

√2B。

1C。

2D。

3答案:A二、填空题11、-4的相反数是_________,π的绝对值是_________,1/4的倒数是_________.答案:4,π,412、已知:√x=5,则x+17的算术平方根为_________.答案:613、已知:2a-4、3a-1是同一个正数的平方根,则这个正数是_________.答案:2514、一个负数a的倒数等于它本身,则a=_________;若一个数a的相反数等于它本身,则a=_________.答案:-1,015、若(x-15)²=169,(y-1)³=-0.125,则x=_________,y=_________.答案:-4,-116、如图,A,B,C是数轴上顺次三点,BC=2AB,若点A,B对应的实数分别为1,则点C对应的实数是_________.答案:3三、解答题17、计算:① 3.5×(1.2-0.8)÷2.50.56② 3√(8÷27)×(5√2-2√5)÷(5+2√2)15√2+6√10)/35③ (2√3+3√2)²-(2√3-3√2)²24√6④ 3/8-5/12+7/161/16答案:①0.56,②-(15√2+6√10)/35,③24√6,④1/1618、求下列各等式中的x:1)27x³-125=027x³=125x³=125/27x=∛(125/27)=5/32)|x+2|-|x-2|=|x+3|当x≤-3时,等式变为-x-2+x-2=-x-3,无解;当-3<x≤-2时,等式变为-x-2+x-2=x+3,解得x=-1/2;当-2<x≤2时,等式变为x+2-x+2=x+3,无解;当x>2时,等式变为x+2-x+2=x+3,解得x=3/2.答案:(1)5/3,(2)-1/2,3/2.。

实数单元测试

实数单元测试

实数单元测试题(本试卷满分100分)班级_____ __ 姓名___ ____ 分数__ _____考场秘诀:谁沉着、冷静、认真、细心,谁就一定能够在考场上赢得最大的胜利!!一、 仔细选一选:(每题3分,共30分)1.下列实数: 32-,0,141592.3-,∙59.2,2π,25,3, 0.020020002……中,无理数有( )个.A.2B.3C.4D.52.25表示的是( )A.25的立方根B.25的平方根C.25的算术平方根D.5的算术平方根3.下列说法正确的是( )A.-4的平方根是-2;B. 4的算术平方根是2;C. (-2)2的平方根是2;D. 8的立方根是±2.4.下列各数中,互为相反数的是( )A.-2与2)2(-;B.-2与38-;C.-2与21-; D.2-与2. 5.算术平方根等于它本身的数是( )A .1和0B .0C . 1D . 1±和06. 某位老师在讲“实数”时,画了一个图(如图1),即“以数轴的单位线段为边做一个正方形,然后以O 为圆心,正方形的对角线长为半径画弧交x 轴上于一点A”。

则OA 的长就)A.数轴上的点和有理数一一对应B.数轴上的点和实数一一对应C.D.不能说明什么7.下列各式中运算正确的是( )A. =B. =C. 112=D. 2=-8a =,则a 的取值范围是( )A . a >0B . a ≥0C . a <0D . a ≤09、若实数x 满足|x |+x=0,则x 是( )A. 零或负数B. 非负数C. 非零实数D.负数. 10. 11的整数部分为3,小数部分为b ,则b 为( )A .0.3B .0.32C .11-3D .0.316 二、细心填一填(每题3分,共24分)1、-3的相反数是________,绝对值是________.2.9的算术平方根是______.3.若33-x =-2,则x 的值是 .4、如果3+a =3,那么(a+3)2的值为 .5= . 6、=-2)4( .7、比较大小3-______ 14.3-8、的整数有 个。

第6章 实数 人教版数学七年级下册单元测试(含答案)

第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

实数单元测试题及答案

实数单元测试题及答案

实数单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0/0D. 1/0答案:A2. 实数集R中,最小的数是:A. 0B. 1C. -∞D. ∞答案:C3. 以下哪个表达式表示有理数?A. πB. eC. √2D. 3/4答案:D4. 绝对值的定义是:A. 一个数与0的距离B. 一个数的相反数C. 一个数的平方D. 一个数的立方答案:A5. 下列哪个数是无理数?A. 2B. √4C. 0.5D. 0.333...答案:A6. 两个负实数相加,其和是:A. 正数B. 负数C. 零D. 无法确定答案:B7. 一个数的立方根是它自己,那么这个数可以是:A. 1B. -1C. 0D. 所有选项答案:D8. 实数的运算法则中,以下哪个是错误的?A. a + b = b + aB. a * b = b * aC. a + (b + c) = (a + b) + cD. a * (b + c) = a * b + a * c答案:D9. 一个数的倒数是它自己,那么这个数可以是:A. 1B. -1C. 0D. 2答案:A10. 下列哪个是实数的单位元?A. 0B. 1C. -1D. √2答案:B二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数可以是______。

答案:±52. 一个数的绝对值是3,那么这个数可以是______。

答案:±33. 一个数的立方是-8,那么这个数是______。

答案:-24. 一个数的倒数是1/3,那么这个数是______。

答案:35. 一个数的平方根是2,那么这个数是______。

答案:4三、解答题(每题10分,共50分)1. 计算:(√3 + 1)²答案:4 + 2√32. 计算:(2 - √5)²答案:9 - 4√53. 计算:√(4 + 4√3)答案:2 + √34. 计算:(√2 - 1)(√2 + 1)答案:15. 计算:(3 + 4√2)(3 - 4√2)答案:1。

实数单元测试题(附答案解析)

实数单元测试题(附答案解析)

WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。

14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。

16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。

学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。

《实数》单元测试3

《实数》单元测试3

第六章 实数 单元检测一、填空题(每题3分,共计27分)1.49的平方根是________,36的算术平方根是________,-8的立方根是________.2.若433=a ,则a =________;若422=b ,则b =________.3.在实数0,,0.73,9,2中,无理数有________.4.用计算器求32003的按键顺序为________.5.3641-的倒数是________,32的负倒数是________. 6.假如正数x 的平方根为a +2与3a -6,则363a +=________.7.若3||=a ,2=b ,且ab <0,则a +b =________. 8.比较大小:231________321,-3.14________-.9.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则AB 之间的距离为________二、选择题(每题3分,共计27分)10.若a <0,则3a -5|a |等于( )A .8aB .-2aC .-8aD .2a11.以下计算准确的是( )A .3163238=⋅B .652535=⋅C .662234=⋅D .28827=⋅12.以下各组数中互为相反数的一组是( )A .-2与2)2(-B .-2与38-C .-2与21-D .|-2|与213.16的立方根和平方根分别为( )A .316,±4B .34±,2C .316,2D .34,±214.不查表,估计56的大小应在( )A .6~7之间B .7~7.5之间C .7.5~8之间D .8.0~8.5之间15.一个正方形水池,池深2米,容积为11.52立方米,则此水池的边长为( )A .9.25米B .13.52米C .2.4米D .4.2米16.以下说法准确的是( )A .正整数,负整数统称为整数B .正有理数,0,负有理数统称为有理数C .无理数是指开方开不尽的数D .41的平方根是21 17.实数a ,b 在数轴上表示的位置如下图,则( )A .b >aB .| a |>| b |C .-a <bD .-b >a18.用计算器求3315-的按键顺序准确的是( )A .B .C .D .三、解答题(共46分)19.(12分)用计算器求以下各式的值: (1) 2880-; (2)30154.0-; (3)32031-20.(14分)化简计算: (1) 289008.0)31()53(310-+---⋅; (2)921)4()4()2(278233233-⎪⎭⎫ ⎝⎛⨯-+-⨯----.21.(10分)已知011=-++a b ,求20032003b a +的值.22.(10分)阅读以下解题过程:2545)4()5(45)45)(45()45(145122-=-=--=-+-=+⋅; 56)5()6(56)56)(56()56(156122-=--=-+-=+⋅; 请回答以下问题:(1)观察上面解题过程,请直接写出11-+n n 的结果为________;(2)利用上面所提供的解法,请化简10099199981431321211++++⋯++++++的值.参考答案1.±7 6 -2 2.4 ±4 3.,2 4.5.-4 23- 6.4 7.34- 8.< > 9.53-或53+10.A 11.D 12.A 13.D 14.B15.C 16.B 17.D 18.C19.(1)-53.6656;(2)-0.24879;(3)-1.04820.(1)-19.8;(2)614- 21.a =1,b =-1,0)1(12003200320032003=-+=+b a22.(1)1--n n ; (2) 9 提示:99342312+⋯+-+-+-=原式 911009910098=-=-+-。

人教版七下数学第6章《实数》单元测试卷

人教版七下数学第6章《实数》单元测试卷

人教版七下数学第6章《实数》单元测试卷一.选择题(共10小题)1.下列四个数中,是无理数的是( )A .π2B .227C .√4D .0.1010012.64的算术平方根是( )A .8B .±8C .6D .±63.9的平方根是( )A .3B .﹣3C .±3D .±√34.下列各式成立的是( )A .√643=8B .√(−2)2=−2C .√6+√2=2√2D .√6⋅√2=2√3 5.在227,2π3,√2,−√3,√−83,−√16,3.14,0.5757757775……(相邻两个5之间7的个数逐次加1)中,无理数的个数为( )A .2B .3C .4D .56.实数a 在数轴上对应的点如图所示,则a 、﹣a 、﹣1的大小关系正确的是( )A .﹣1<a <﹣aB .﹣a <﹣1<aC .﹣1<﹣a <aD .a <﹣1<﹣a7.下列说法中,正确的是( )A .﹣4没有立方根B .1的立方根是±1C .136的立方根是16D .﹣5的立方根是√−53 8.估计√3(√12+√6)的值在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间9.若一个数的平方根是±8,则这个数的立方根是( )A .4B .±4C .2D .±210.﹣a 2的立方根的值一定为( )A .非正数B .负数C .正数D .非负数二.填空题(共5小题)11.某正数的平方根分别是2a +1和a +5,则a = .12.计算:√(π−4)2=.13.若一个正数的两个平方根分别为a与﹣2a+3,则这个正数为.14.数轴上的点A表示的数是2−√5,那么它到原点的距离是.15.一块面积为5m2的正方形桌布,其边长为.三.解答题(共8小题)16.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√10的整数部分.(1)求a、b、c的值;(2)求2b﹣a+c的平方根.3.17.计算:−12023+√16+(−6)÷√−818.求下列各式中x的值:(1)x2﹣81=0;(2)(x﹣1)3=64.19.根据下表回答下列问题:x1717.117.217.317.417.517.617.717.817.918 x2289292.41295.84299.29302.76306.25309.76313.29316.84320.41324(1)295.84的算术平方根是,316.84的平方根是;(2)√29241=,√3.1329=;(3)若√325的整数部分为m,求√3m−5−(m−16)3的值.20.已知3a﹣2b+1的算术平方根是3,a+2b是﹣8的立方根,c是2+√7的整数部分.(1)求a,b,c;(2)求a﹣b+c的平方根.21.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是√10的整数部分,求7a﹣2 b﹣2c的平方根.22.有理数a,b在数轴上对应点的位置如图所示.(1)结合数轴可知:﹣a﹣b(用“>、=或<”填空);(2)结合数轴化简|1﹣a|﹣|﹣b+1|+|b﹣a|.23.已知x,y,z满足x2﹣4x+y2+6y+√z+4+13=0,求x,y,z的值.。

《实数》单元测试卷

《实数》单元测试卷

《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。

2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。

3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。

4. 两个实数相除,如果除数为零,则结果为_______。

5. 实数的乘方运算中,任何数的零次方等于_______。

三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。

2. 解释绝对值的概念,并给出几个绝对值的例子。

3. 讨论实数的运算规则,特别是乘方和开方。

五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。

【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。

第13章《实数》单元水平测试(含答案)

第13章《实数》单元水平测试(含答案)

2 248 1426 48 88?第13章 实数整章水平测试题一、选择题:1、在实数70107.081221.03、、、、- 。

π中,其中无理数的个数为( ) A 、1 B 、2 C 、3 D 、4 2、16的算术平方根为( )A 、4B 、4±C 、2D 、2±3、下列语句中,正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 4、若a 为实数,则下列式子中一定是负数的是( )A 、2a - B 、2)1(+-a C 、2a - D 、)1(+--a 5、下列说法中,正确的个数是( )(1)-64的立方根是-4; (2)49的算术平方根是7±; (3)271的立方根为31; (4)41是161的平方根。

A 、1 B 、2 C 、3 D 、4 6.估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间 7、下列说法中正确的是( )A 、若a 为实数,则0≥aB 、若a 为实数,则a 的倒数为a1 C 、若y x 、为实数,且y x =,则y x =D 、若a 为实数,则02≥a8、若10<<x ,则x xx x 、、、12中,最小的数是( )A 、xB 、x1 C 、x D 、2x 9、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、1000、1000B 、2、3、5C 、222543、、 D 、33364278、、10. (南宁课改)观察图8寻找规律,在“?”处填上的数字是()(A)128 (B)136 (C)162 (D)188二、填空题:1. 和数轴上的点一一对应.2.若实数a b ,满足0a b a b +=,则________ab ab=. 3、如果2a =,3b =,那么2a b 的值等于 . 4.有若干个数,依次记为123n a a a a ,,,,若112a =-,从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则2005a = . 5.比较大小:23- 0.02-;6. 如图,数轴上的两个点A B ,所表示的数分别是a b ,,在a b +,a b -,ab ,a b -中,是正数的有 个.7.若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________. 8、计算:2)4(3-+-ππ的结果是______。

《实数》单元测试题

《实数》单元测试题

一、选择题1.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.492 .能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3 .如果一个实数的平方根与它的立方根相等,则这个数是( )A. 0B. 正整数C. 0和1D. 14. 如果 25.0=y ,那么y 的值是( )A. B. —0.5 C. D .±5.下列说法正确的是( )A. 0.25是 的一个平方根 B .正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7 D. 负数有一个平方根6、下列说法正确的是( )A 、是 的一个平方根B 、正数有两个平方根,且这两个平方根之和等于0C 、7 2的平方根是7D 、负数有一个平方根二、填空题的平方根是 ; 10的算术平方根是 。

2. 比较下列实数的大小 ①140 12 ②215- 5.0; 3. 25-的相反数是 ,绝对值是 。

三、解答题1、先阅读下列的解答过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a > 例如:化简347+解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯ 即7)3()4(22=+,1234=⨯ ∴347+=1227+=32)34(2+=+ 由上述例题的方法化简:42213-;2、小明买了一箱苹果, 装苹果的纸箱的尺寸为50×40×30(长度单位为厘米). 现小明要将这箱苹果分装在两个大小一样的正方体纸箱内, 问这两个正方体纸箱的棱长为多少厘米3、小芳想在墙壁上钉一个三角架(如图), 其中两直角边长度之比为3:2, 斜边长520厘米, 求两直角边的长度.。

实数单元测试(人教版)(含答案)

实数单元测试(人教版)(含答案)

学生做题前请先回答以下问题问题1:平方根的定义:一般地,如果 ___________________ ,那么这个数就叫做 a 的平方根,记作________.问题2:正数有____个平方根,它们________; 0 有_____个平方根,是_______;负数______ 平方根.问题3:算术平方根的定义:一般地,如果 ___________________ ,那么这个正数 x 就叫做 a 的算术平方根,记作_______.问题4:立方根的定义:一般地,如果 ___________________ ,那么这个数就叫做 a 的立方根,记作____________.问题5:正数的立方根是_____, 0 的立方根是______ ,负数的立方根是 ______.问题6: ______________________ 叫做无理数.无理数的和、差、积、商 ______是无理数.问题7: _______________________ 统称为实数.实数单元测试(人教版)一、单选题(共12道,每道8分)1.的平方根是( )A.9B.±9C.±3D.3答案: C解题思路:试题难度:三颗星知识点:算术平方根2.的平方根是( )A. B.2C. D.±2答案: C解题思路:试题难度:三颗星知识点:算术平方根, 0.1414,,.其中无理数有( )3.下列实数:,A.2 个B.3 个C.4 个D.5 个答案: B解题思路:试题难度:三颗星知识点:无理数的定义4.下列说法正确的是( )A.无限小数是无理数B.有理数只是有限小数C.无理数的相反数还是无理数D.两个无理数的和还是无理数答案: C解题思路:试题难度:三颗星知识点:无理数的概念5.一个正方体的水晶砖,体积为 100cm3 ,它的棱长大约在( )A.4cm 与 5cm 之间B.5cm 与 6cm 之间C.6m 与 7cm 之间D.7cm 与 8cm 之间答案: A解题思路:试题难度:三颗星知识点:比较大小6.已知一个正数的两个平方根分别是和,则这个正数是( )A.4B.2C.-2D.36答案: A解题思路:试题难度:三颗星知识点:平方根的性质7.关于 x 的方程的解为( )A.x=2B.x=-2C.x=-4D.A.B .答案: B 解题思路:试题难度: 三颗星知识点: 立方根的定义8.若,则化简的结果是( )A.B.C.-1D.1答案: D 解题思路:试题难度: 三颗星知识点: 实数的化简9.若实数( )在数轴上的对应点的位置如图所示,则化简 的结果为C.D答案: D解题思路:试题难度:三颗星知识点:实数的化简10.计算的结果为( )A.3B.C.1D.-1答案: D解题思路:试题难度:三颗星知识点:实数的计算11.计算:=( )A. B.C. D.0答案: B解题思路:试题难度:三颗星知识点:实数的计算12.如图,在数轴上表示 -1,的对应点分别为 A, B,若点 A 是线段 BC 的中点,则点 C 表示的数为( )A. B.C. D.答案: D解题思路:试题难度:三颗星知识点:实数的数轴表示。

七年级实数单元测试题

七年级实数单元测试题

七年级实数单元测试题一、选择题(每题2分,共20分)1. 实数-3的相反数是:A. -3B. 3C. 0D. 12. 下列哪个数不是实数:A. πB. √2C. -1D. i3. 若a是一个无理数,b是一个有理数,那么a+b是:A. 有理数B. 无理数C. 实数D. 无法确定4. 以下哪个数是实数的平方根:A. 4B. -4C. 2D. -25. 绝对值|-5|等于:A. -5B. 5C. 0D. 106. 两个实数相除,结果为实数,那么这两个实数:A. 必须都是有理数B. 必须都是无理数C. 至少有一个是有理数D. 可以是任意实数7. 实数集合中,最小的数是:A. 0B. -∞C. 1D. 没有最小数8. 以下哪个数是实数的立方根:A. 1B. -1C. 0D. 89. 两个负实数相加,结果为:A. 正实数B. 负实数C. 零D. 实数10. 如果x是实数,那么x²的值:A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任意实数二、填空题(每题2分,共20分)11. 无理数 ________ 的平方是2。

12. 绝对值是5的数有两个,分别是 ________ 和 ________ 。

13. 两个相反数的和是 ________ 。

14. 立方根是它本身的数有 ________ 个。

15. 一个数的相反数等于它本身,这个数是 ________ 。

16. 一个数的绝对值是非负数,最小的绝对值是 ________ 。

17. 一个数的平方根有两个,它们互为 ________ 。

18. 两个数的乘积为正数,那么这两个数 ________ 。

19. 一个数的立方根是它本身,这个数可以是 ________ 或________ 。

20. 一个数的绝对值等于它本身,这个数是非负数,也可以是________ 。

三、计算题(每题5分,共30分)21. 计算 |-7| + √9 - 3²。

22. 求 (-2)³ + √4 - (-3)。

实数单元测试题2及答案

实数单元测试题2及答案

实数单元测试题2及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是()。

A. 0B. 1C. 2D. 32. 若a > 0,b < 0,且|a| < |b|,则a + b()。

A. 一定小于0B. 一定大于0C. 一定等于0D. 无法确定3. 下列数中,不是实数的是()。

A. πB. √2C. iD. -14. 一个数的相反数是它本身,这个数是()。

A. 1B. 0C. -1D. 25. 若实数x满足|x - 3| = 2,则x的值是()。

A. 1或5B. 3或5C. 1或4D. 2或46. 一个正数的平方根是()。

A. 正数B. 负数C. 0D. 正数或负数7. 实数的绝对值()。

A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任何实数8. 若a,b是实数,且a² + b² = 0,则a和b的值是()。

A. a = 0,b = 0B. a = 1,b = 0C. a = 0,b = 1D. a和b可以是任意实数9. 以下哪个表达式的结果不是实数?()A. √4B. √(-1)C. √9D. √1610. 一个数的立方根是它本身,这个数可以是()。

A. 1B. -1C. 0D. A和C二、填空题(每题2分,共10分)11. 若|a| = 5,则a的值可以是______。

12. 一个数的倒数是1/2,这个数是______。

13. 两个相反数的和为______。

14. 一个数的绝对值是它本身,则这个数是______。

15. 若x² = 4,则x的值可以是______。

三、解答题(每题10分,共60分)16. 计算以下表达式的值:|-5| + √(-4)²。

17. 证明:对于任意实数a和b,(a + b)² = a² + 2ab + b²。

18. 解方程:|x + 1| = 3。

19. 证明:对于任意实数x,x³ - 3x = 0的解是x = 0或x = ±√3。

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。

沪科版七年级下数学第6章《实数》单元测试(含答案)

沪科版七年级下数学第6章《实数》单元测试(含答案)

《实数》单元测试一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a,=b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵P A的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)实数a,b在数轴上的位置如图所示,化简
= -2a .
a 0b
【归纳拓展】 1.实数与数轴上的点是一一对应的关系;
2.在数轴上表示的数,右边的数总是比左边的数大.
通过这节课的学习,你有何收获?
本节课你有什么收获,还有什么疑问?
1.知识上: 2.思想上:整体思想、分类讨论、 数形结合
如果一个正数的平方根为a 1和 2a 7 , 求这个正数。
算术平方根 平方根
立方根
表示方法
a
a
3a
a的取值 a ≥ 0
a≥ 0
a 是任何数
性 正数 一个(正数) 两个(互为相反数) 一个(正数)
质0 负数
开方运算
0 没有
0
没有
求一个数的平方根 的运算叫开平方
0
一个(负数)
求一个数的立方根 的运算叫开立方
是它本身 0,1
0
0,1,-1
专题复习
专题一 开方运算
6.如图,以数轴的单位长线段为边做一个正方形,
以数轴的原点为圆心,正方形对角线长为半径画
弧,交数轴正半轴于点A,则点A表示的数是(C )
A.1.5
B.1.4
C. 2
D. 3
7.求 x 的值:x2 81 0
3(x 1)3 24
(3 2x 1)2 27
8.试化简:2 - 3 3 - 2
9(1) 20位于整数 4 和 5 之间.
【例1】求下列各数的平方根:
(1) 25 ; (2) 6 1 ; (3) (10)2;(4)16
36
4
【例2】求下列各数的立方根:
(1)
8 ;(2)0.027;(3)1125
7 8
【归纳拓展】解题时,要注意题目的要求,是求平方 根、立方根还是求算术平方根,要注意所求结果处理.
【迁移应用1】求下列各式的值:
若3a 4 (4b 3)2 0求, -ab 的平方根.
解:∵|3a+4|≥0且(4b-3)2≥0
而|3a+4|+(4b-3)2=0
∴|3a+4|=0且(4b-3)2=0
∴a= 4 ,b= 3 .
3
4
∴-ab=-(
4 3
×
3 4
)=1
,
∴ 1 的平方根是±1.
, ,0.15 , 中,无理
A. 1个 B. 2个 C.3个 D.4个
【归纳拓展】对实数进行分类不能只看表面形式, 应先化简,再根据结果去判断.
2. 下列说法错误的有( C )个 ①无限小数一定是无理数; ②无理数一定是无限小数; ③带根号的数一定是无理数; ④不带根号的数一定是有理数. A. 1 B.2 C.3 D.4
3.将下列各数分别填入下列的集合括号中
3 9、5 、、-
7
5、 25、 94、0、0.3737737773
无理数集合: 有理数集合: 整数集合: 分数集合:
4. 3 的相反数是 3 ; 2 1 相反数是 1 2 ; 2的绝对值是 2 ; 2 3 3 2 。
5. (a 1)2 b 3 0,则a _1__,b _-3_____。
第六章 实 数
复习检测
【学习目标】
1.知道平方根、立方根的概念,会进 行开平方和开立方运算,会求一个非负数 的平方根、算术平方根;
2.知道实数的分类;会对实数准确分 类;
3.知道实数的有关概念,会进行实数 大小比较;
4.能够运用实数的有关知识解决问题。
区别
你知道算术平方根、平方根、立方根联系和区别吗?
④7是(-7)²的算术平方根,即 72 7
其中正确的是( C )
A. ①③ B. ②③ C. ②④ D. ①④
已知



=0.08138 ,
= 37.77 .
【归纳拓展】开立方运算时要注意小数点的变化规律,开立方
是三位与一位的关系,开平方是二位与一位的关系.
专题二 实数的有关概念
1. 在-7.5, , 4, 数的个数是( B )
① 400 ;
③ 49 100
② 16 81
答案:①
20;②
4 9
;③
7 10

火眼晴晴选一选
(1)下列说法中正确的是( A)
A. 81 的平方根是±3 B.1的立方根是±1
C. 1 =±1
D. 5 是5的平方பைடு நூலகம்的相反数
(2)下列式子中
① 4是16的算术平方根,即 16 4
②4是16的算术平方根,即 16 4 ③-7是49的算术平方根,即 72 7
相关文档
最新文档