[中国非常规油气网]低渗透油气藏体积压裂技术.
体积压裂技术在油田开发中的适用性分析
![体积压裂技术在油田开发中的适用性分析](https://img.taocdn.com/s3/m/140b5397c0c708a1284ac850ad02de80d4d806fc.png)
体积压裂技术在油田开发中的适用性分析体积压裂技术是一种常用的油田开发技术,其适用性取决于多个因素,包括地质条件、油藏特征和经济因素等。
本文将从这些方面进行分析。
一、地质条件:1. 储层岩性:体积压裂技术适用于岩石疏松、孔隙度高、渗透率低的储层,如砂岩和碳酸盐岩等。
对于非疏松储层如页岩等,压裂效果较差,适用性较低。
2. 差异性储层:体积压裂技术适用于具有水平、倾斜和弯曲井筒的储层。
通过水平井和多级压裂,可以最大限度地延伸裂缝,提高油气产能。
3. 快速排水储层:体积压裂技术适用于高渗透储层和对水敏感的快速排水储层。
通过压裂,可以提高渗透率,增大流动面积,加快采油速度。
二、油藏特征:1. 气候条件:体积压裂技术适用于气候温暖、气温变化不大的地区,以确保压裂液成分和性能的稳定性。
在极端气候条件下,如极低温或高温,压裂液的稳定性会受到很大影响,降低压裂效果。
2. 油藏压力:体积压裂技术适用于压力较高的油藏,可以有效地增加裂缝面积和渗透率,提高采收率。
对于低压油田,压裂效果较差,适用性较低。
3. 油藏温度:体积压裂技术对于高温油藏适用性较低,因为高温会导致压裂液流动性下降,增加压裂施工风险。
对于常温储层,适用性较高。
三、经济因素:1. 资金投入:体积压裂技术需要大量的资金投入,涉及到设备采购、作业费用和维护成本等。
只有对于有较高开发潜力和回报的油田才具备经济可行性。
2. 油价:高油价下,体积压裂技术的适用性较高,因为可以将更多的资源开采出来,提高经济效益。
低油价下,对于一些成本较高的油田,可能并不适合使用体积压裂技术。
3. 地区基础设施:体积压裂技术对基础设施的要求较高,包括供水、输油管道和天然气处理设施等。
如果地区基础设施不完善,可能会增加开发难度和成本,降低体积压裂技术的适用性。
体积压裂技术在油田开发中具有广泛的适用性,但需要根据具体地质条件、油藏特征和经济因素等综合考虑。
在选择使用体积压裂技术时,应做好技术评估与经济评估,确保其能够实现经济效益最大化。
非常规油气藏压裂新技术
![非常规油气藏压裂新技术](https://img.taocdn.com/s3/m/d2b10edc49649b6648d74745.png)
− 北美的非常规作业每3个中就 GULFCOAST
33%
有1个(33%)
ROCKIES
32%
− 国际市场中每5个中就有1个 WILLISTON/BAKKEN
30%
(20%)
MARCELLUS/UTICASHALE
25%
PERMIANBASIN
22%
▪ 总结出:“蛮力”不是解决
EAGLEFORDSHALE
18% 14%
施工人员缺乏经验/人为错误
13%
4 地面设备问题
12%
胶液没有破胶
1%
提高储层认知度
我们看到了什么– Barnett 案例
70%的产气量 30%
生产剖面
½ 的射孔
20%
10%
0% 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SPE 103202
应力
3.5
H3
2.5 2
• 在中等盐度水中性能优越 • 高浓度盐水中性能较好
总悬浮固体(TSS)
25 m (limits to be further defined)
总溶解固体 (TDS)
10,000 mg/L
20,000 mg/L
大于100,000 mg/L
(还未确定上限)
总多价阳离子
(e.g. Ca2+ + Mg2+ + Fe3+)
案例#1 – Seneca Resources
SPE 159681 – 2012ATCE
案例#1 – Seneca Resources
84,000 ft3/ft
132,000 ft3/ft
SPE 159681 – 2012ATCE
非常规油气藏新一代体积压裂技术的几个关键问题探讨
![非常规油气藏新一代体积压裂技术的几个关键问题探讨](https://img.taocdn.com/s3/m/15aad5260a1c59eef8c75fbfc77da26925c5969d.png)
第 51 卷 第 4 期石 油 钻 探 技 术Vol. 51 No.4 2023 年 7 月PETROLEUM DRILLING TECHNIQUES Jul., 2023doi:10.11911/syztjs.2023023引用格式:蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191.JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J].Petroleum Drilling Techniques,2023, 51(4):184-191.非常规油气藏新一代体积压裂技术的几个关键问题探讨蒋廷学1,2,3(1. 页岩油气富集机理与有效开发国家重点实验室, 北京 102206;2. 中国石化页岩油气钻完井及压裂重点实验室, 北京 102206;3. 中石化石油工程技术研究院有限公司, 北京 102206)摘 要: 体积压裂技术是实现非常规油气藏高效开发的关键,围绕有效改造体积及单井控制EUR最大化的目标,密切割程度、加砂强度、暂堵级数及工艺参数不断强化,导致压裂作业综合成本越来越高。
为此,开展了新一代体积压裂技术(立体缝网压裂技术)的研究与试验,压裂工艺逐渐发展到“适度密切割、多尺度裂缝强加砂、多级双暂堵和全程穿层”模式。
为促进立体缝网压裂技术的发展与推广应用,对立体缝网的表征、压裂模式及参数界限的确定、“压裂–渗吸–增能–驱油”协同提高采收率的机制、一体化变黏度多功能压裂液的研制、石英砂替代陶粒的经济性分析及“设计–实施–后评估”循环迭代升级的闭环体系构建等关键问题进行了探讨,厘清了立体缝网压裂技术的概念、关键技术及提高采收率机理,对于非常规油气藏新一代压裂技术的快速发展、更好地满足非常规油气藏高效勘探开发需求,具有重要的借鉴和指导意义。
低渗透油藏整体压裂方案设计内容及方法(word版)
![低渗透油藏整体压裂方案设计内容及方法(word版)](https://img.taocdn.com/s3/m/a9bd2ad8960590c69ec376f3.png)
低渗透油藏整体压裂设计内容和设计方法摘要在低渗透油田的开发过程中,压裂技术成为低渗透油气田开发的主导工艺,在设计思想上也由单井增产措施的优化向区块压裂方案的优化、整体改造开发方案的优化发展。
迄今为止,低渗透油藏压裂技术已伴随着整体压裂技术的发展而进入到一个新的阶段,朝着优化支撑剂、提高压裂液效率、大型整体优化压裂设计的方向发展。
本文介绍了整体压裂的基本特征及设计原则,详细介绍了整体压裂设计的内容及方法,并用G43断块油藏的整体压裂研究进行的整体压裂设计内容的说明。
关键字低渗透,整体压裂,水力压裂,优化设计随着我国石油勘探和开发程度的深入,低渗透油田储量所占比例愈来愈大。
低渗透油田的高效开发对迎接石油工业面临着严峻的挑战、缓解石油供需矛盾有着重要的作用。
在低渗透油田开发方面,相当多的油井采不出、注入井注不进,形成低产低效的半瘫痪状态。
同时相当多的低渗透油田储量仍然难以动用。
油层水力压裂作为低渗透油藏改造的主要措施,随着对压裂技术在认识上的深化,进入八十年代中、后期,在设计思想上有了新的突破:把原来的以单井产量或经济净现值为准则的单井优化设计扩展为以油藏(区块)作为总体单元、以获得最大的油藏经济净现值或采收率(扫油效率和波及系数)为准则的整体压裂优化设计。
油藏整体压裂的工作对象(工作单元)是从全油藏出发,就是将压裂缝长、缝宽、导流能力与一定延伸方位的水力裂缝置于给定的油藏地质条件和注采井网之中,然后反馈到油藏工程和油田开发方案中,从而优化井网、井距、井数及布井方位,以取得好的开发效果和效益。
上述研究成果从整体压裂方案的基础上再做单井的优化压裂设计;通过方案设计实施与评价,全面提高油藏的开发水平与经济效益。
从这个意义上来说,水力压裂已从一项单纯提高单井产量的战术手段,而发展成为经济有效地开采低渗透油藏不可或缺的战略措施,故整体压裂又称油田开发压裂。
制定低渗透油藏整体压裂方案不仅是编制采油工程方案所必需的,也是油田开发(或开发调整)方案的重要组成部分[1]。
《2024年低渗-致密油藏分段压裂水平井补充能量研究》范文
![《2024年低渗-致密油藏分段压裂水平井补充能量研究》范文](https://img.taocdn.com/s3/m/5f291d4a6d175f0e7cd184254b35eefdc9d31551.png)
《低渗-致密油藏分段压裂水平井补充能量研究》篇一低渗-致密油藏分段压裂水平井补充能量研究一、引言在油气开发过程中,低渗和致密油藏因其特殊的储层特性,常常面临开发难度大、采收率低等问题。
为了有效开发这类油藏,分段压裂水平井技术应运而生。
本文将探讨如何通过分段压裂水平井的方式为低渗/致密油藏补充能量,旨在为油气田开发提供新的技术方法和理论依据。
二、低渗/致密油藏的特殊性低渗/致密油藏指的是具有低渗透率和致密结构的储层。
其特性主要表现在储层物性差、油品黏度高、流动性差、采收率低等方面。
这些特性使得传统的垂直井开发方式难以有效开发这类油藏,因此需要寻求新的技术手段。
三、分段压裂水平井技术概述分段压裂水平井技术是一种针对低渗/致密油藏的开采技术。
该技术通过在水平井段进行分段压裂,形成多条裂缝,扩大储层的接触面积,从而提高采收率。
该技术具有以下优点:一是能够显著提高油藏的开采效率;二是可以降低开发成本;三是能够适应各种复杂的储层条件。
四、分段压裂水平井的补充能量机制为低渗/致密油藏采用分段压裂水平井技术进行补充能量的机制主要包括以下几个方面:1. 扩大储层接触面积:通过分段压裂形成多条裂缝,增加储层与井筒的接触面积,提高储层的开发效率。
2. 降低流体流动阻力:裂缝的形成降低了流体在储层中的流动阻力,提高了油气的采收率。
3. 补充地层能量:通过分段压裂,可以沟通更多的地层能量,使油气藏保持较高的压力,有利于油气的开采。
五、研究方法与实验结果本研究采用数值模拟和实验室模拟相结合的方法,对低渗/致密油藏分段压裂水平井的补充能量效果进行研究。
数值模拟主要关注分段压裂过程中裂缝的形成与扩展、流体的流动规律等方面;实验室模拟则通过模拟实际油藏条件下的实验,验证数值模拟结果的准确性。
实验结果表明,采用分段压裂水平井技术能够有效提高低渗/致密油藏的采收率,并显著降低开发成本。
六、结论与展望本研究表明,低渗/致密油藏采用分段压裂水平井技术进行补充能量是可行的,且具有显著的效果。
低渗油藏压裂技术研究与应用
![低渗油藏压裂技术研究与应用](https://img.taocdn.com/s3/m/cf7ece74c950ad02de80d4d8d15abe23492f034f.png)
低渗油藏压裂技术研究与应用一、低渗油藏概述低渗油藏是指渗透率小于1mD(1毫达西)的油藏,通常被认为是非常难以开采和开发的类型,因为油和天然气在渗透率较低的地层中难以流动。
低渗油藏的开发需要特殊的技术和方法,这也是科技进步不断带来的新挑战之一。
二、压裂技术概述压裂技术是一种利用高压将液态流体喷射到井口以达到裂缝形成的作用。
通过高压向地层岩石注入水、液化石油气或压实空气等流体,将地层岩石产生裂缝,从而使油和天然气得以流动。
压裂技术不仅应用于陆地和近海油气藏的开采,也广泛应用于煤层气开采。
三、低渗油藏压裂技术研究1. 压裂液配方研究低渗油藏与高渗油藏的最大区别在于,由于低渗油藏的渗透率非常低,因此需要使用低粘度的压裂液才能够充分渗透进入岩石中,并形成裂缝。
此外,还需要使用一些添加剂来提高压裂液在岩石中的效率,从而提高压裂效果。
例如,聚合物添加剂可以增加压裂液的黏度,提高在地层中的分散度,从而让压裂液更容易渗透进入岩石。
2. 井技术参数研究压裂技术需要精细的操作和调节,包括注入压力、注入速度和注入量等井技术参数的控制。
这些参数的调节非常重要,因为不同的压裂条件会导致不同的压缩力和破裂情况,从而影响产油率和破裂宽度等指标。
为了获得最佳的压裂效果,需要进行大量的研究和实验,以优化井技术参数的调节。
3. 岩石力学特性研究在进行压裂操作前,需要先对地层进行详细的岩石力学特性研究,以了解地层的破裂特性和裂缝的形成情况。
构建地层模型和岩石力学特性模型,可以帮助确定最佳的井技术参数,以获得最佳的压裂效果。
四、低渗油藏压裂技术应用压裂技术在低渗油藏中的应用成效显著。
当合适的压裂技术被应用时,生物源压裂剂能够适应各种岩性,同时对环境也更友善。
经过压裂后,通过水流的作用,地下棕色能够产出更多的油气。
压裂在审计和优化岩石性质上扮演了重要角色。
不同的压裂技术可以影响压缩率和裂缝宽度,从而达到最佳的采收率。
五、结论总之,低渗油藏是一个重要的资源开发领域,需要利用先进的技术和方法进行开发。
长庆油田超低渗透油藏体积压裂技术研究与试验
![长庆油田超低渗透油藏体积压裂技术研究与试验](https://img.taocdn.com/s3/m/84cb01cc2cc58bd63186bdae.png)
优 化 选择 雄腹 人
中图 分 类 号 : E T S 文献 标 识 码 : A 文 章编 号 :0 8 9 5 (0 ) — 0 0 0 1 0 — 2 X2 1 09 0 5 — 2 2
摘要 : 长庆油 田超低渗透油藏是指油层平均渗透率为(.— . 1 - 1 2的油藏 , 鄂 尔多斯盆地分布 广泛 , O1 1 )X 0 3 m 0 * 在 储量 资源
减快 ,储层非达 四渗流特征 明 , 启动压 力梯度大 , 从而影响单 储 层 转 化 . 层 的 渗 透 率 已经 达 到 T 03 03n2 储 . Ll、目前 压 裂 r 艺 1  ̄ "产世 , H渗透率越低 . 油井产量降低 幅度越大 非均质性对驱 已经不能适应超低渗透油藏 开发的需要 .为 _ r 解决新 投油井单
参考文献 : [ 催旺来. 1 ] 政府海洋管理研究 [] M. 北京 : 海洋 出版社 ,0 9 20 [《 2 浙江省 舟山市土地利 用总体规划 ( 0 6 2 2 ). ] 2 0 — 00 }舟山市
人 民政府 .0 0 2 1 3 适度控制 围垦指标 、 『 俞树彪. 3 1 舟山群岛新 区推进 海洋 生态文明建设 的战略思考 填海造地 、围海造 田曾为国家经济 的发展作 出了很大 的贡 J未来与发展 ,0 2 1 . 】 2 1() 献 .但大 面积的填海 围垦给海 洋 自然生态带来毁 灭性的破坏也 [. [ 俞燕 . 于舟 山海 洋生 态文 明的若 干思考 [ _ 4 】 关 J 商业文 化 , 】 是不争 的事实 舟山市沿海滩涂 资源丰富. 滩涂围垦是缓解土地 资源 紧缺的重要手段 未来几 年舟 山市 围填海规模 将达 到 10 2 1 ( ) 0 0 2 1.
体积压裂技术在石油开发中的应用
![体积压裂技术在石油开发中的应用](https://img.taocdn.com/s3/m/76a8eff36394dd88d0d233d4b14e852458fb39c2.png)
根据相关统计,发现我国低渗低压油气藏占量非常多,实现对其的开采和利用,能够有效缓解我国目前石油资源的紧张局面,该类石油开发存在一定难度,可以在开发当中积极应用体积压裂技术,全面提高石油开发效率。
一、体积压裂技术概述常规压裂增产理念主要是在压裂时抑制次生裂缝的扩展,主要形成一条主裂缝,产能源自裂缝的高渗流能力;体积压裂与常规压裂改造理念相反,压裂时通过各种工艺形成更多的裂缝,沟通更大的渗流区域,充分发挥主裂缝和天然裂缝增产优势。
当水力压裂时人工裂缝中产生的裂缝延伸净压力大于储层本身存在的最大最小应力差值,以及储层天然裂缝或者胶结面张开需要的临界压力时,人工裂缝就有极大机会在储层中出现多个分支缝,人工主裂缝和分支缝相互穿过,扭曲,交叉,形成初步的缝网结构。
这种结构类似与多裂缝形态,但比多裂缝稍显复杂,缝网仍然以主裂缝为主体,分支缝分布在主裂缝周围。
当主裂缝延伸一定长度以后,其缝内净压力小于应力差时,其分支裂缝会闭合,或者张开一些与主裂缝成一定角度的分支缝,裂缝形态会回归到主裂缝形态。
形成的这种主裂缝与分支缝不断交错分布的裂缝形态就叫做缝网,实现这种裂缝形态的压裂技术被称作体积压裂技术。
二、体积压裂技术在石油开发中的应用1.裂缝封堵压裂技术裂缝封堵技术包括缝内封堵以及缝口封堵。
缝内封堵与“端部脱砂”压裂技术核心机理类似,均是通过一定的裂缝封堵来增加裂缝中的净压力。
缝内封堵相对更加注重微观,天然裂缝发育储层,压裂时一般会开启多条裂缝并同时延伸,裂缝之间相互作用,裂缝狭窄,不利于加砂压裂提高砂比,对支撑剂颗粒大小要求较高,同时还增加了液体的滤失作用。
其一般采用粉砂或者缝内暂堵剂对主裂缝进行封堵,缝内净压力逐渐升高,达到一定程度便可改变原有裂缝走向,产生分支裂缝。
采用缝内暂堵进行缝网压裂时,缝网系统由人工主裂缝与天然裂缝或弱面形成的次生网络组成。
缝口封堵,常常也叫缝口暂堵压裂,其技术伴随着多簇射孔压裂而发展,通过北美页岩气生产测井分析,大约50%的射孔簇无效,29%的射孔簇低效,而21%的射孔簇贡献了70%的产量。
体积压裂技术在低孔致密油藏的应用
![体积压裂技术在低孔致密油藏的应用](https://img.taocdn.com/s3/m/ab2802faba0d4a7302763ad1.png)
体 积改造 技术具 有狭 义与广 义 的定 义 区别 。狭 义 的体 积改造 技术 是针对 通过压 裂手 段产 生 网络 裂 缝 为 目的 的改 造技 术 而言 的 , 通 过 压裂 的方 式对 储
中图分类号 : B
0 引
言
与 裂缝延 伸净 压力 的关 系 , 当裂 缝 延伸 净 压 力 大于 储 层天然 裂缝 或胶 结 弱 面张 开 所需 的临 界 压 力时 , 产 生分 支缝 或净压力 达到某 一数 值能 直接在 岩石 本
吉林 油 田大部 分属 于低 孑 L 低渗 透 岩 性 油藏 , 储
吉林松原 1 3 8 0 0 0 ; 4 . 渤海钻探油气井测试公 司 河北廊坊 0 6 5 0 0 7 ) 3 . 吉林油 田公司采油工艺研究院
摘要 阐述 了体 积压 裂技术的来源 、 概念及其在 吉林油 田低孔 致 密油藏 的初 步应用 , 主要包 括缝 网压裂 工艺
技术 、 直 井多层压裂工 艺技术及水平井多段压裂工 艺技术。体 积压 裂技术 不仅可 以大幅度提 高单井产 量, 还 能够
5 1
裂缝 的净 压力 , 实 现 主 裂缝 满 足 预 期 目标缝 长 条 件
下的“ 缝 网” 系统 。
解封。
( 2 ) 端部 脱砂 压裂 技术 在很 多 情 况下 , 裂 缝 内净 压 力 与施 工 参 数 ( 压 裂 液 粘度 、 施 工排 量 、 砂液 比) 并不敏感 , 导 致 净 压 力 变 化 幅度 不 大 , 此时, 可 以通 过 端 部 脱 砂 压 裂 设
低渗透油气藏水力压裂工艺技术
![低渗透油气藏水力压裂工艺技术](https://img.taocdn.com/s3/m/6f9d8806f6ec4afe04a1b0717fd5360cba1a8df5.png)
第8页/共122页
第一代压裂(1940’-1970’):小型压裂 加砂量较小,在10m3左右,主要是解除近井地带污染 第二代压裂(1970’-1980’):中型压裂 加砂量迅速增加,主要是增加地层深部油流通道, 提高低渗透油层导流能力第三代压裂(1980’-1990’):端部脱砂压裂 将压裂增产措施应用到中、高渗储层,双倍缝宽,主要是大幅度提高储 层导流能力第四代压裂(1990’- ):大型压裂、开发压裂 将压裂作为一种开发方式,从油藏系统出发,应用压裂技术
第28页/共122页
6.岩石力学参数
岩心三轴力学参数测试压裂施工压力资料分析DSI测井
第29页/共122页
动静态杨氏模量对比
第30页/共122页
断裂韧性的测量与预测
岩石断裂韧性是描述裂尖附近的应力场的参数,是应力奇异性的度量。断裂韧性是载荷参数(如缝中压力,原地应力)和岩体参数(如裂缝尺寸)的函数它可以提供裂缝扩展的判据。但是,长期以来,由于测试手段和理论研究的局限,在水力压裂设计中往往只能给出断裂韧性的经验估计。 过建立内压式岩石断裂韧性试验,测量不同围压、不同岩性岩石的断裂韧性,建立了基于声波测井资料的岩石断裂韧性解释模型。
第31页/共122页
为了保证岩样加工的精度,专门开发了岩石断裂韧性测试岩样加工装置。
第32页/共122页
建立了利用测井资料预测岩石断裂韧性的理论模型,从而使断裂韧性的预测走向实用化
第33页/共122页
模拟地层条件下,地层岩石断裂韧性与应力变化规律研究,建立了地层断裂韧性与有效应力的线性方程,并考察了其对裂缝形状的影响。
第45页/共122页
压裂液配制的可操作性
现场配制要求:配制简单,易于操作,配液时间短,劳动强度低,工作时效高;性能可控,便于现场及时调整。经济因素要求:成本低,经济易行;货源广,易于准备。
薄互层低渗透油藏整体压裂开发技术
![薄互层低渗透油藏整体压裂开发技术](https://img.taocdn.com/s3/m/3429ea8b0129bd64783e0912a216147916117e75.png)
薄互层低渗透油藏整体压裂开发技术薄互层低渗透油藏整体压裂开发技术薄互层低渗透油藏整体压裂开发技术摘要:针对薄互层低渗透油藏储层薄、微裂缝发育的特点,通过开展地应力与人工裂缝扩展研究、压裂裂缝参数优化、压裂工艺技术优化等研究,在滨南油田滨660块实施整体压裂开发,取得了良好的效果,为薄互层低渗油藏高效开发探索了新的道路。
关键词:薄互层;低渗透油藏;整体压裂;地应力一、薄互层油藏概况滨南薄互层油藏主要分布在滨南油田,其中滨660块构造位置位于东营凹陷西北边缘,滨南――利津二级断裂带西段,滨649滚动背斜北台阶,其北部隔单家寺油田为滨县凸起,东北部隔利津油田为陈家庄凸起,东南临利津洼陷。
主要含油层系沙四上,埋深2863-3096米,含油面积1.99km2,地质储量235万吨,平均单井有效厚度18m。
1、薄互层油藏地质特征(1)层多,单层厚度薄,平面上广泛分布滨660块沙四段属扇三角洲前缘亚相的沉积,纵向上含油井段长,油层多,单层厚度小。
沙四上划分为2个砂组,并对含油的1、2砂组精细划分为6个小层,在100m含油井段内视分层系数最多达16层/井,最小为6层/井,平均9层/井。
(2)岩性复杂,储层物性差沙四段岩性主要为浅灰色泥岩、白云质泥岩、劣质油页岩与粉细砂岩的不等厚互层,夹有薄层白云质砂岩,平均孔隙度15.2%,渗透率11.7×10-3um2,为低孔低渗透储层。
(3)常温常压油藏,原油性好沙四段油层埋深一般2863-3096米,平均2800m,地层温度117℃,温度梯度3.44℃/100m,原始地层压力29.05MPa,压力系数为0.968,属于常温常压系统。
2、薄互层特低渗透油藏开发难点(1)自然产能低,常规压裂有效期短沙四段储层因层薄且低渗透,油井自然产能低(<3t/d)。
通过压裂改造后,初产较高,但压裂有效期短,产量递减快。
(2)注水压力高,注水效果差因储层特低渗透,沙四段吸水能力差、启动压力高,注水压力上升快,注水泵压高28MPa,油井受效不均的矛盾突出,部分井长期不见效,见效后也表现为低产稳定,总体注水开发效果差。
体积压裂的原理和应用
![体积压裂的原理和应用](https://img.taocdn.com/s3/m/19d16960dc36a32d7375a417866fb84ae45cc3e1.png)
体积压裂的原理和应用一、引言体积压裂(Volume Fracturing)是一种常用于岩石裂缝间隙的强制增大和扩展的工程技术。
它通过将高压液体注入岩层,迫使裂缝张开和扩展,从而提高油气储集层的渗透性,促进油气的流动和采收。
体积压裂已经成为油田开发的重要手段之一,本文将介绍体积压裂的原理和应用。
二、体积压裂的原理体积压裂是基于岩石力学原理和流体动力学原理的工程技术。
它的工作原理可以概括为以下几个步骤:1. 创建裂缝体积压裂首先需要通过注入高压液体来创建裂缝。
在注入过程中,液体通过高压泵将岩层内的裂缝张开和扩展。
这种高压注入的作用类似于在地下岩石中施加巨大的压力,从而使岩石发生破裂和裂缝。
2. 砂类介质注入在裂缝形成后,需要将砂类介质注入其中。
通过注入砂类介质,可以防止裂缝在压力释放后闭合。
砂类介质具有较高的颗粒度和流动性,可以在裂缝中填充,增加渗透性,促进油气的流动。
3. 压力释放在创建裂缝和注入砂类介质后,需要逐渐释放压力。
当压力释放时,裂缝中的砂类介质会保持裂缝张开状态,从而形成一条可供油气流动的通道。
三、体积压裂的应用体积压裂广泛应用于油气田开发中,其主要应用包括:1. 增加油气产量体积压裂可以通过扩大油气储集层中的裂缝和通道,增加储集层与井筒之间的渗透性,提高油气的产量。
通过体积压裂,可以使原本无法开采的低渗透性储层具备经济开发的潜力。
2. 增加油气储量体积压裂可以改善储集层的渗透性,提高油气的开采效率。
在一些含气或含油岩层中,由于岩石的裂缝狭小,无法有效采收储量。
通过体积压裂,可以扩大裂缝,提高岩石的渗透性,从而增加油气储量。
3. 增加注水效果体积压裂不仅可以应用于增加油气产量,还可以应用于改善注水效果。
在一些含水层的油田中,为了提高采油效果,需要通过注水来增加储层的压力。
通过体积压裂,可以增加注水井与储集层之间的渗透性,提高注水效果。
4. 油气储层评价体积压裂可以用于油气储层的评价。
通过对岩石进行体积压裂实验,可以评估岩石的裂缝发育程度、渗透性和强度等参数,为油田的勘探和开发提供重要的依据。
低渗透油田压裂工艺及趋势
![低渗透油田压裂工艺及趋势](https://img.taocdn.com/s3/m/94d215a9afaad1f34693daef5ef7ba0d4a736d19.png)
低渗透油田压裂工艺及趋势低渗透油田是指地下储层渗透率低于0.1md的油田。
由于地下储层孔隙度小、孔隙连通性差、油气持留性高等特点,低渗透油田勘探开发难度大,生产成本高。
为了提高低渗透油田的开采率,压裂技术被广泛应用。
本文将介绍低渗透油田压裂工艺及未来发展趋势。
一、低渗透油田压裂工艺1. 压裂原理低渗透油田采用压裂技术的主要目的是通过增加地层渗透率,提高油层产能。
压裂原理是通过在井孔周围形成高压区,使压裂液进入油层裂隙并在其中扩展,最终形成人工裂隙。
这一过程能够直接增加油层有效渗透面积,提高油井产能。
2. 压裂液压裂液是进行压裂作业的关键材料。
常见的压裂液包括水基压裂液、油基压裂液和泡沫压裂液。
水基压裂液价格低廉,但对环境的影响较大;油基压裂液对环境的影响较小,但价格较高;泡沫压裂液具有低密度、高扩展性等优点,适用于低渗透油田的压裂作业。
3. 压裂工艺流程低渗透油田压裂工艺一般包括以下几个步骤:确定压裂目标层段、设计压裂参数、进行地层力学分析、选取合适的压裂液配方、进行裂缝设计和力学模拟、执行压裂作业、实施压裂效果评价等步骤。
1. 技术创新随着油价的不断上涨以及对能源安全的重视,低渗透油田的开发已成为各国石油工业的重点。
为了降低开发成本、提高开采效率,各种新型的压裂技术不断涌现。
水力压裂技术、致密砂岩压裂技术、纳米压裂技术等不断推陈出新,为低渗透油田的开发提供了新的技术手段。
2. 智能化智能化是当今油田开发的一个重要趋势。
在低渗透油田的压裂工艺中,智能化技术能够提高作业效率、降低安全风险。
智能化压裂液输送系统、智能化压裂泵技术等,都能够大大提高油田压裂作业的效率和安全性。
3. 环保化随着全球环保意识的提高,环保要求也日益严格。
在低渗透油田的压裂作业中,环保化已成为不可忽视的因素。
未来压裂液的选择将更加关注其对环境的影响,压裂废水的处理技术将更加成熟,以满足环保要求。
4. 数据化数据化已成为油田开发的新趋势。
石油工程中的低渗透油藏开发技术分析
![石油工程中的低渗透油藏开发技术分析](https://img.taocdn.com/s3/m/d5a722485bcfa1c7aa00b52acfc789eb162d9e70.png)
石油工程中的低渗透油藏开发技术分析近年来,随着现代科技的发展,石油工程技术也在快速进步,低渗透油藏开发技术逐渐受到行业内的关注。
低渗透油藏的开发在石油开采过程中具有重要的意义,本文将从以下几个方面进行分析。
一、低渗透油藏的概念低渗透油藏是指孔隙度低、储层渗透率小于或等于0.1mD的油藏。
该类型的油藏的勘探难度大,储量较小,开发成本较高,但其也拥有一些优点,比如储量稳定、开采稳定、油藏物性好等。
因此,低渗透油藏的开发尤为重要。
二、低渗透油藏开发技术分析1.增透压驱油技术增透压驱油技术是现代低渗透油藏开发中的一项重要技术。
该技术是通过改变地下水的含盐量,使地下水中盐分浓度大于油藏水中盐浓度,从而形成外排水环境,促进油藏水的外溢,降低油藏渗透率,增加采收率。
增透压驱油技术的成功应用不仅有助于提高采收率,还可降低采油成本。
2.聚合物驱油技术聚合物驱油技术是一种能够调控油藏物理性质的高分子混合驱。
其通过加入聚合物调节水油相对渗透率,提高原油采出率,从而达到提高采收率的目的。
该技术应用广泛,具有高效、节能、环保等优点。
3.热采技术热采技术是低渗透油藏开发的重要方法之一。
渗透率低的油脂固结在储层孔隙中,难以开采。
热采技术可以通过人造热源将油脂加热,使其粘度降低,流动性增强,从而有利于提高采收率。
该技术应用广泛,并通过实践证明取得了成功。
4.增加有效堵水剂量油藏中可能存在多个阶段的开采,随着开采时间的延长,砂岩颗粒和化学物质的堵塞作用会减弱,孔隙度和渗透率逐渐增大,较低的渗透压势也可能使得油剂的强制排流失效,改变油藏压力分布。
因此,在低渗透油藏开采中,增加堵水剂量是提高采收率的一个重要手段。
三、低渗透油藏开发技术的应用范围低渗透油藏开发技术的应用范围广泛。
当新油田勘探遇到储层渗透率较低的情况时,低渗透油藏开发技术是实现该油田勘探与开发的重要保障。
同时,低渗透油藏开发技术也可以应用于老油田、特殊油藏(如稀油油藏等)等领域。
非常规油藏蓄能体积压裂的合理压裂规模研究
![非常规油藏蓄能体积压裂的合理压裂规模研究](https://img.taocdn.com/s3/m/c34f82be6394dd88d0d233d4b14e852458fb39a0.png)
收稿日期:2023-05-21;修订日期:2023-11-08。
作者简介:许宁(1965—),男,研究生,教授级高级工程师,现从事油气开发研究工作。
E-mail:xn7028@sohu.com。
基金项目:中国石油天然气股份有限公司科技专项“超低渗油藏驱渗结合提高采收率关键技术研究”(2021DJ1304)。
文章编号:1673-8217(2024)02-0097-05非常规油藏蓄能体积压裂的合理压裂规模研究许 宁1,张俊杰1,叶 锋1,周明旺1,贾林兵2,崔晓磊1(1.中国石油辽河油田分公司勘探开发研究院,辽宁盘锦124010;2.盘锦市水务集团辽宁盘锦124010)摘要:蓄能体积压裂是致密油、页岩油主要增产改造技术并成为开发前期主要方式,压裂规模是影响开发成效的重要因素。
根据物质平衡原理,建立了未饱和油藏蓄能体积压裂物质平衡方程。
经实测数据检验,能够准确预测压裂后井控范围内地层压力和地层压力系数随入地物量的变化规律,解决了蓄能体积压裂入地物量、入地液量定量预测问题,有利于优化压裂规模。
结合致密油、页岩油水平井体积压裂投产后平均日产油、无效排液量等开发指标统计和数模预测,认为进液强度15~17m3/m较为合理。
成果认识对于致密油、页岩油蓄能体积压裂开发合理压裂规模确定具有借鉴意义,有助于非常规油藏经济效益开发。
关键词:非常规油藏;进液强度;蓄能压裂;地层压力系数;物质平衡方程中图分类号:TE357 文献标识码:AStudyonreasonablefracturingscaleofaccumulativevolumefracturinginunconventionalreservoirXUNing1,ZHANGJunjie1,YEFeng1,ZHOUMingwang1,JIALinbing2,CUIXiaolei1(1.Exploration&DevelopmentResearchInstituteofLiaoheOilfieldCompany,PetroChina,Panjin,Liaoning124010,China;2.PanjinWaterGroup,Panjin124010,Liaoning,China)Abstract:Energystoragevolumefracturingisthemainstimulationandtransformationtechnologyoftightoilandshaleoil,andithasbecomethemainmethodinearlydevelopmentstage.Accordingtothematerialbal anceprinciple,thebalanceequationofenergystoragevolumefracturinginunsaturatedreservoirisestab lished.Itcanpredicttheformationpressurevariationandcoefficientwiththevolumeofmaterialenteringthegroundafterfracturing,andsolvetheproblemofquantitativepredictionofthevolumeofmaterialenteringthegroundandthevolumeofliquidenteringthegroundafterfracturing,anditisbeneficialtooptimizethescaleoffracturing.Accordingtothestatisticalanalysisandnumericalmodelpredictionoftheaveragedailyoilproductionandtheinvalidfluiddisplacementafterthevolumefracturingofthehorizontalwellsoftightoilandshaleoil,itisconsideredthattheinjectionstrengthof15-17m3/misreasonable.Theresultscanbeusedforreferencetodeterminethereasonablefracturingscaleandishelpfulfortheeconomicbenefitsofun conventionaloilreservoirdevelopment.Keywords:unconventionalreservoir;fluidinflowintensity;energystoragefracturing;formationpressurecoefficient;materialbalanceequation 国际能源署(IEA)评价中国页岩油可采资源量达43.52×108t,位居世界第三[1-2]。
低渗透油气藏压裂水平井产能计算方法
![低渗透油气藏压裂水平井产能计算方法](https://img.taocdn.com/s3/m/7770c3721ed9ad51f01df25e.png)
低渗透油气藏压裂水平井产能计算方法【摘要】随着我国经济的不断发展,我国石油工业在发展过程中面临着新的挑战。
低渗透油气藏压裂水平井产能计算方法,对于石油的开采有着非常重要的作用,应用矩阵方程、叠加原理以及复位势理论这三者中的数值分析求解方法,对相关裂缝位置中压力损失以及渗流阻力进行深入的分析与研究,重新的修正与推理出了低渗透油气藏压裂水井产能中的预测公式,这在很大程度上使计算出来的结果更加的精准、合理以及符合实际的状况。
利用修正与推理出来的预算公式,根据某一个实际低渗透气田中的实际情况,将压裂水平井产能中的几个非常重要的影响因素之间进行分析与对比,得出来的结论对于低渗透气藏压裂水平井的设计有着十分重要的实际意义。
【关键词】低渗透油气藏水平井产能计算方法在对低渗透油气藏进行开发的过程中,如果只是单一的采取水平井这一种方式进行开发,无法达到低渗透油气藏在开发初期所设立的目标以及相应的开发效果,所以,在低渗透油气藏的开发中经常采取水利压裂这一形式来产生出很多的裂缝,从而增强水平井中的产能。
但是在对低渗透油气藏压裂水平井产能中的预测公式进程推导的过程中,假设每一条裂缝都相等,而这一理论与实际中的状况不相符合,存在一定程度上的误差,按照推导出来的预测公式对压裂水平井产能以及每一条裂缝之间关系的变化曲线进行预测的结果,在一定程度上会出现相关的跃变。
1 低渗透油气藏压裂水平井产能预测公式的推导1.1 渗流模型的构建根据对低渗透油气藏压裂水平井产能研究的信息数据,做出相关的假设:(1)低渗透油气藏中处于上下封闭状态,且无限大非均质的地层,假设其水平渗透率是Kh,在这一地层的中心地带中有一口相应的水平井,假设这口水平井的长度为L。
(2)为了提升低渗透油气藏中的产量,在水平段的位置采取了压裂这一形式,在水平段中压裂出了N条处于垂直状态的裂缝,裂缝之间按照等距离进行分布,还穿过了低渗透油气藏整个油层中的厚度,假设裂缝中的渗透率为K1,裂缝的半径为X1。
非常规储层压裂改造技术进展及应用
![非常规储层压裂改造技术进展及应用](https://img.taocdn.com/s3/m/958dd806e55c3b3567ec102de2bd960591c6d97f.png)
非常规储层压裂改造技术进展及应用一、本文概述随着全球能源需求的持续增长,非常规储层资源的开发利用越来越受到重视。
非常规储层,如页岩、致密砂岩等,由于其低孔低渗特性,压裂改造技术成为了提高其开采效率的关键。
本文旨在综述非常规储层压裂改造技术的最新进展,包括压裂液体系、压裂工艺、裂缝监测与控制等方面,并探讨这些技术在国内外油气田的实际应用情况。
通过对相关文献的梳理和案例分析,本文旨在为非常规储层压裂改造技术的发展提供理论支持和实践指导,推动该领域的技术创新和产业升级。
二、非常规储层压裂改造技术的发展历程非常规储层压裂改造技术的发展,经历了从传统水力压裂到现代复杂储层压裂技术的转变。
在过去的几十年里,随着全球能源需求的不断增长,以及对传统油气资源的日益开采,非常规储层如页岩、致密砂岩等逐渐成为油气勘探开发的重要领域。
这些储层具有低孔、低渗、非均质性强等特点,使得常规的压裂技术难以满足开发需求,推动了非常规储层压裂改造技术的不断创新与发展。
初期,非常规储层压裂主要依赖于传统的水力压裂技术,通过高压泵注大量液体来形成裂缝,从而提高储层的渗透性。
然而,这种方法在非常规储层中往往效果不佳,因为这些储层的岩石性质复杂,裂缝扩展困难。
随着技术的进步,科研人员开始尝试使用多种压裂液体系,如泡沫压裂液、稠化压裂液等,以提高压裂效果和降低对储层的伤害。
同时,为了更精确地控制裂缝的扩展方向和长度,研究人员开始引入地质导向、数值模拟等先进技术,为压裂施工提供更为准确的指导。
近年来,随着水平井技术的广泛应用,非常规储层压裂改造技术迎来了新的突破。
水平井技术能够使得井筒与储层接触面积更大,有利于裂缝的扩展和油气的流动。
在此基础上,研究人员又进一步开发出了分段压裂、多级压裂等复杂压裂技术,以适应不同储层条件和开发需求。
随着环保要求的日益严格,非常规储层压裂改造技术也在不断探索环保型压裂液和减少水资源消耗的新方法。
例如,利用二氧化碳等环保介质作为压裂液,既能够满足压裂需求,又能减少对环境的影响。
压裂技术现状及发展趋势
![压裂技术现状及发展趋势](https://img.taocdn.com/s3/m/5c8f014b26284b73f242336c1eb91a37f111328d.png)
压裂技术(jìshù)现状及发展趋势(长城(Chángchéng)钻探工程技术(jìshù)公司(ɡōnɡsī)) 在近年(jìn nián)油气探明储量中,低渗透储量所占比例上升速度在逐年加大。
低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开辟中的作用日益明显。
1、压裂技术发展历程自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开辟效果的重要手段。
压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。
压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。
(2)1970年-1990年:中型压裂。
通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开辟。
(3)1990年-1999年:整体压裂。
压裂技术开始以油藏整体为单元,在低渗透油气藏形成为了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开辟中发挥了巨大作用。
(4)1999年-2005年:开辟压裂。
考虑井距、井排与裂缝长度的关系,形成最优开辟井网,从油藏系统出发,应用开辟压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。
(5)2005年-今:广义的体积压裂。
从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。
2、压裂技术(jìshù)发展现状经过五个阶段的发展,压裂技术(jìshù)日益完善,形成为了三维压裂设计软件和压裂井动态预测(yùcè)模型,研制(yánzhì)出环保(huánbǎo)的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开辟的重要手段之一。
非常规油气藏体积压裂2.0工艺及发展建议
![非常规油气藏体积压裂2.0工艺及发展建议](https://img.taocdn.com/s3/m/a5904177326c1eb91a37f111f18583d048640f48.png)
非常规油气藏体积压裂2.0工艺及发展建议郑新权;何春明;杨能宇;翁定为;才博;易新斌【期刊名称】《石油科技论坛》【年(卷),期】2022(41)3【摘要】中国石油非常规油气藏水平井体积压裂改造技术经历了从无到有、从1.0向2.0的跨越式发展历程。
体积压裂2.0工艺以“段内多簇+小簇间距+限流射孔+暂堵转向+大排量泵注+高强度加砂+石英砂替代陶粒+滑溜水连续加砂”为核心,有力推动了非常规油气资源提产、提效、降本。
缩短簇间距是非常规油气藏提高产量和采出程度的核心,段内多簇+限流射孔+暂堵转向组合工艺是高效低成本改造的关键,大规模注液增能结合密切割布缝为石英砂替代陶粒创造了条件,多簇射孔大排量施工破解了低黏滑溜水连续加砂难题。
体积压裂2.0工艺在中国石油非常规油气藏应用中取得了良好成效。
结合中国石油“十四五”规划对水平井体积改造技术的需求,提出5个方面发展建议:(1)强化非常规储层改造基础研究,支撑新技术体系构建;(2)提升工艺核心参数的科学性和经济性,扩大工艺应用规模;(3)推进水平井立体开发技术实践,拓展新技术应用领域;(4)推进低成本材料规模应用,支撑体积压裂2.0工艺规模实施;(5)加大裂缝监测新技术研发应用,深化新工艺改造裂缝认识。
【总页数】9页(P1-9)【作者】郑新权;何春明;杨能宇;翁定为;才博;易新斌【作者单位】中国石油勘探与生产分公司;中国石油勘探开发研究院;国家能源致密油气研发中心储集层改造部【正文语种】中文【中图分类】TE357【相关文献】1.非常规油气藏体积压裂数值模拟新进展2.低渗透油气藏压裂返排一体化工艺技术3.非常规油气藏地质工程一体化数据优化应用的思考与建议4.非常规油气藏水平井体积压裂改造体积计算方法5.非常规油气藏体积压裂全生命周期地质工程一体化技术因版权原因,仅展示原文概要,查看原文内容请购买。
海上低渗油藏体积压裂可行性研究
![海上低渗油藏体积压裂可行性研究](https://img.taocdn.com/s3/m/eae34d20a36925c52cc58bd63186bceb19e8edeb.png)
海上低渗油藏体积压裂可行性研究
江锚;张丽平;周俊;彭成勇;邹剑
【期刊名称】《非常规油气》
【年(卷),期】2024(11)3
【摘要】随着海上新发现的常规油气资源量越来越少,低渗油气储量的动用问题是决定海上油气增储上产的关键,低渗油气储量的动用依赖于适合岩性构造的水力压裂工艺。
为了搞清海上低渗油藏的压裂可行性,针对3H水平井所在层位的构造特征、物性特征和岩性特征复杂的特点,开展了岩石力学参数、综合脆性指数及三维地应力参数计算,并评价了3H水平井段体积压裂可行性。
结果表明:1)沙四段至中生界杨氏模量为31.80~35.66 GPa,泊松比为0.20~0.23,地层抗压强度为
26.8~30.3 MPa,内摩擦角为42.7°~44.8°;2)3H水平井综合脆性指数高于40%,水平主应力差为3.30~3.65 MPa,整体偏小,具备形成复杂缝网的地质和工程方面的条件。
以上成果认识,对海上砂岩储层低渗储量的有效动用具有重要的意义。
【总页数】9页(P130-138)
【作者】江锚;张丽平;周俊;彭成勇;邹剑
【作者单位】中海油研究总院有限责任公司;中海石油(中国)有限公司天津分公司【正文语种】中文
【中图分类】TE357
【相关文献】
1.超低渗油藏体积压裂与渗吸采油开发新模式
2.低成本特低渗油藏水平井体积压裂实践
3.超低渗油藏体积压裂与渗吸采油开发新模式
4.体积压裂+渗吸采油技术研究及其在沧东凹陷深层低渗透油藏中的应用
5.基于体积压裂的深层低渗油藏开发新模式
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
3、大型滑溜水压裂技术
技术特点为大排量、大液量、大砂量、小粒径、低 砂比。主要施工参数为:排量10m3/min以上,每段压裂 液量1000-1500m3,每段支撑剂量100-200t,支撑剂以 40/70目为主,平均砂比3%-5%。 施工步骤为:
“体积压裂”理念的提出,颠覆了经典压裂理论,体 积改造形成的已经不再是双翼对称裂缝,而是复杂的网状 裂缝系统,裂缝的起裂与扩展不简单是裂缝的张性破坏, 而且还存在着剪切、滑移、错段等复杂的力学行为。
*
* *
* * *
体积压裂技术在美国Barnett页岩气的开发中最具代表性,储 层改造的主体技术有:水平井套管完井+分段多簇射孔+快速 可钻式桥塞+滑溜水多段压裂。 储层改造技术关键体现在一下几个方面:
一、体积压裂的提出及概念 二、体积压裂作用机理 三、体积压裂在美国Barnett页岩气田的应用 四、我国体积压裂开展状况
五、总结
*随着低渗、超低渗油气藏的开发,由于受到储层条件、
注采井网、压裂工艺等多重限制,单一增加缝长来提 高超低渗油藏产量效果不明显,常规压裂工艺改造难 以实现该类油气藏的商业开采,所以必须探索研究新 型的压裂改造技术,“体积压裂”的提出具有深刻意 义,国外已将此工艺技术应用于致密页岩气藏的成功 开发,其必将逐渐成为低渗、超低渗油气藏、致密气、 煤层气、页岩气经济有效开发的关键技术。
SRV: 改造 体积,106ft3
*
“体积压裂”改造对象:
体积压裂改造对象是基质孔隙性储层,天然裂缝不发 育,低渗、超低渗油气藏。这类油气藏的压裂裂缝仅 扩大了井控面积,但由于垂直于人工裂缝壁面方向的 渗透性很差,不足以提供有效的垂向渗流能力,导致 压裂产量低或者压后产量递减快等问题。通过体积压 裂在垂直于主裂缝方向形成人工人工多裂缝,改善了 储层的渗流特性,提高了储层改造效果和增产有效期。
“分段多簇”射孔技术
快速可钻式桥塞工具
大型滑溜水压裂技术
* 1、“分段多簇”射孔技术
分段多簇射孔的特点是:一次装弹+电缆传输+液体输送+桥 塞脱离+分级引爆,每级分4~6 簇射孔,每簇长度0.46~ 0.77m,簇间距20~30m,孔密16~20孔/m,孔径13mm,相 位角60°或者180°
* 2、快速可钻式桥塞工具
水力压裂过程中,当裂缝延伸净压力大于两个水平主应力 的差值与岩石的抗张强度之和时,容易产生分叉缝,多个分叉缝 就会形成“缝网”系统,其中,以主裂缝为“缝网”系统的主干, 分叉缝可能在距离主缝延伸一定长度后,又恢复到原来的裂缝 方位,最终形成以主裂缝பைடு நூலகம்主干的纵横“网状缝”系统。
*
常规压裂技术是建立在以线弹 性断裂力学为基础的经典理论的技 术,该技术是假设人工裂缝起裂为 张开型,且沿井筒射孔层段形成双 翼对称裂缝,以一条主裂缝为主导 实现改善储层渗流能力,主裂缝的 垂向上仍然是基质向裂缝的长距离 渗流,主流通道无法改善储层的整 体渗流能力,后期研究中尽管研究 了裂缝的非平面扩展,但也仅限于 多向缝、弯曲裂缝、T型缝等复杂裂 缝的分析与表征,但理论上未有突 破。
*
通过运用微 地震裂缝诊 断技术,证 实水平井分 簇射孔分段 压裂形成网 络裂缝,提 高了压裂体 积。
井下微地震波裂缝监测结果
*
压裂改造效果: 压裂改造后4 个月的累计产量 随着改造体积的 增加而增加,压 后3年增加的幅度 更大,这充分说 明体积改造对页 岩气压后产量的 重要作用。
*
长庆油田从“体积压裂”理念出发,提出水平井 分簇多段压裂思路,在国内外首次采用双级喷射器开 展了“分簇多段”压裂,一趟管柱可连续施工4簇8段, 施工效率大幅提升,促进了超低渗储层水平井的有效 开发。目前已累计试验的9口井,最高实现了10簇20段 压裂施工,其中3口水平井压后自喷,试排日产纯油最 高达122.4吨,已投产井与直井相比增产3.2倍至4.8倍, 实现了超低渗油气藏水平井开发的突破。 * 2010年12月13日,华北油田煤层气分公司在郑村 区块首次实施体积压裂施工,首次把“整体压裂”理 念引入到煤层气压裂领域。
*体积压裂具体作用方式为: *通过压裂的方式对储层实施改造,在形成一条或者多条主
裂缝的同时,通过分段多簇射孔、高排量、大液量、低粘 液体、以及转向材料及技术的应用,使天然裂缝不断扩张 和脆性岩石产生剪切滑移,实现对天然裂缝、岩石层理的 沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生 裂缝上继续分支形成二级次生裂缝,以此类推。让主裂缝 与多级次生裂缝交织形成裂缝网络系统,将可以进行渗流 的有效储层打碎,使裂缝壁面与储层基质的接触面积最大, 使得油气从任意方向的基质向裂缝的渗流距离最短,极大 的提高储层的整体渗透率,实现对储层在长、宽、高三维 方向的全面改造,提高初始产量和最终采收率。
1)第一段采用油管或连续油管传输射孔,提出射孔枪; 2)从环空进行第一段压裂;3)凝胶冲洗井筒;4)用 液体泵送电缆+ 射孔枪+ 桥塞工具入井;5)电引爆 座封桥塞,射孔枪与桥塞分离,试压(约过射孔段 25m);6)拖动电缆带射孔枪至射孔段,射孔,拖出 电缆;7)压裂第二层,重复步骤4~7,实现多层分段 压裂。
*
*
*
“体积压裂”是有效改造超低渗储层的有效方法和途 径, 我国石油储层渗透率动用下限不断降低,从20世 纪80年代末的5md到目前不断攻关的0.3md,而致密气大 多在0.01md以下,研究推广体积压裂技术,是不断提高 储量动用率的最佳技术途径。 近年来,我国低渗透油气藏压裂技术取得了长足进 步,但与国际先进水平仍有较大差距,还需转变观念, 紧跟国外压裂技术发展趋势,全力推动低渗透油气藏压 裂增产技术上的创新进步。
体积压裂概念:
所谓“体积压裂”就是指在水力压裂过程中, 使天然裂缝不断扩张和脆性岩石产生剪切滑 移,形成天然裂缝与人工裂缝相互交错的裂 缝网络,从而增加改造体积,提高初始产量 和最终采收率。
数值模拟研究表明,储层改造的体积越大(以页岩气为 例),压后增产效果越明显,储层改造体积与增产效果具有 显著的正相关性。