西安电子科技大学雷达对抗原理第一次大作业

合集下载

雷达抗干扰技术的实现方法

雷达抗干扰技术的实现方法

雷达抗干扰技术的实现方法发布时间:2021-11-08T07:13:10.842Z 来源:《中国电业》2021年第17期作者:马征1 许保卫2 李文学3 [导读] 随着现代电子技术的发展,电磁环境日益复杂,灵巧的干扰样式对雷达的性能构成严重威胁马征1 许保卫2 李文学3西安电子工程研究所陕西西安 710100摘要随着现代电子技术的发展,电磁环境日益复杂,灵巧的干扰样式对雷达的性能构成严重威胁。

雷达抗干扰技术正在成为现代雷达设备领域的一个重要课题。

适应旁瓣相消技术和副瓣匿影技术在现代雷达系统中起着不可或缺的作用,是有效抑制干扰重要技术。

关键词:空域对抗;极化对抗;频率对抗在现代战争情况下,不抗干扰措施的雷达系统再也无法探测、控制敌方目标。

因此,改进和提高抗干扰控制已成为现代雷达系统的优先事项。

当抗干扰技术的有效性也是衡量作战推进系统性能的重要尺度时。

随着集成电路的发展,数字电子技术在雷达系统中的广泛应用,以及新型干扰方法、技术手段和技术系统的出现,雷达抗干扰技术得到了发展。

一、雷达的抗干扰对抗技术1.空域对抗技术。

雷达空域对抗是指尽量减少雷达被另一方探测到并干扰空间的可能性。

也可以说,雷达波束是低扰动空域的对抗方法。

根据相关研究,雷达空域的对抗由天线波束参数决定。

天线束的主波束越窄,旁瓣越低,雷达空域就越坚固。

雷达天线分为主和旁瓣。

主瓣比较窄,但旁瓣比较宽。

如果雷达天线受到严重干扰,接收到的对主瓣的干扰将对雷达产生不利影响,在目标检查时会影响天线的主瓣。

因此,雷达天线旁瓣必须具有良好的抗干扰能力。

事实上,较低的旁瓣可以避免干扰,但理论上可以减少雷达天线旁瓣降低,但实际上很难做到这一点。

如果我们设计低旁瓣天线,会有很多外部干扰,使得低旁瓣天线的设计变得困难。

因此,我们通常采用另一种方法,即消隐和对消技术旁瓣,以消除对旁瓣的干扰。

这些技术使用独立的通道。

此外,不同雷达天线的接收通道也不同。

主天线是主接收信道,次天线自然是次接收信道。

雷达对抗原理与技术

雷达对抗原理与技术
相位细化输出: ci, 4 ci,0 si,0 a cosni 4 si, 4 si,0 ci,0 a sin ni 4 ,i 1,2, k
极性量化输出: sgnci, ,sgnsi, ,i 1,2, k, 0, 4
频率编码量化: f 1 nk12m
特点 多路相关器并用,短延迟保证无模糊测频范围,长延迟保证精度 瞬时带宽大(16GHz),测频速度快(250ns),测频精度较高 (35MHz),不能同时测量多信号,灵敏度低(-60dBm)
2.1.3 雷达侦察的技术特点
作用距离远(一般为雷达作用距离 的1.2倍以上)
安全、隐蔽性好 获取的信息多而准 要求敌方雷达发射 不能测距,所以一般不能单站定位
2.1.4 雷达侦察的主要战术技术指标
1、适用的辐射源类型、数量与信号环境 2、角度测量范围、瞬时视野、精度与分辨 3、频率测量范围、瞬时带宽、精度与分辨 4、脉冲重频测量范围、精度与分辨 5、脉宽测量范围、精度与分辨 6、截获概率与截获时间 7、灵敏度和动态范围 8、安装平台、工作环境条件、可靠性等
2.1.1 雷达侦察的基本原理与条件
基本原理
侦察接收天线
侦察接收机
雷达发射天线
雷达 发射机
传播空间
处理模型

空间


传播


调制


矩阵



n
nk


k
基本条件:
1、雷达发射信号进入传播空间,传播空间对雷达发射信号进行传播调制 (衰减、迟延、相移/频移,混叠等) 2、侦察接收机收到足够强度的雷达发射信号 (高于侦察接收机灵敏度) 3、雷达信号调制参数属于侦察处理能力范围内 4、侦察接收机能够适应其所在的信号环境

雷达原理习题解答1

雷达原理习题解答1

雷达原理习题解答1雷达原理习题解答西安电子科技大学信息对抗技术系《雷达原理教研组》2005.9第一章1-1. 解:目标距离:685100010310 1.510()15022cR m km τ-⨯⨯⨯===⨯= 波长m 1.010310398=⨯⨯=λ,多卜勒频率KHz MHz f d 10300001.3000=-= 径向速度s m f V d r /5001021.024=⨯==λ,线速度s m V /100060cos 500=︒= 1-2. 解:a )Km Km R 6.3751.010041max =⎪⎭⎫⎝⎛⨯= b )dB k S kS i i 72.051,511.010min min -===∴⨯=⨯1-3. 解: T r同步器输出调制器输出发射机高放输出接收机高放输出混频输出 中放输出第二章2-1. 解:重复周期:ms T r 110001==,平均功率:W P av 2400100031085=⨯⨯= 工作比: 003.010003==D2-2. 解:对发射信号的频率、相位和谱纯度任一参数有较高要求的情况下选用主振放大式发射机,3参数均无较高要求的情况下选用单级振荡式发射机。

2-3. 解:[]dBc KHz L 501010000010lg 101-=⎪⎭⎫ ⎝⎛⨯=2-4. 答:(1)p44图2.18中V2的作用是:在阴极负高压作用期间,在管腔内产生高功率的电磁振荡,并通过腔内的耦合探针将电磁能输出到腔外;(2)p47图2.23中V D1的作用是当PFN 谐振充电到2倍电源电压后,防止PFN 向电源的放电,而保持在2倍电源电压状态;V D2的作用是在PFN 放电期间改善其与负载的匹配,并抑制不匹配时产生的振荡;(3)在p45图2.21中若去掉V 2,则在C 0上可进行正常充电过程,但没有放电开关V 2后,只能通过R 放电,放电时间过长,且波形很差,微波管可能因连续工作时间过长而损坏,不能正常工作。

时差定位与两种测时差方法

时差定位与两种测时差方法

时差定位与两种测时差方法2t1~6年l2【)【】6.No.1电f对抗EI(ROMCW ARFARE总第106蛐SerieN¨.106时差定位与两种测时差方法刘刚赵国庆(西安电子科技大学电子对抗研究所,西安710071)摘要介绍了时差定位以及两种测时差的方法——基于统一信号和基于统一时间的时差测量方法,并针对测量精度进行分析,最后给出GDOP仿真.关键词时差定位信号同步时间同步定位精度TDOALocationandTwoMethodsofTimeDifferenceMeasurement LiuGangZhaoGuoqing(ResearchInst.ofElectronicCountermeasures,XidianUniv.,Xi'all710071,China) Abstract:TwomethodsoftimedifferencemeasurementinTDOAlocationaregiveninthisarti cle: themethodbasedonthesignalsynchronizationandthemethodbasedonthetimesynchronizat ion. Thenthealgorithmandaccuracyoflocationareanalyzedwithformulate.GeometricDilution OfPre—cisiongivestheeffectsofthetimemeasuringprecisionintheend.Keywords:TDOAlocation;signalsynchronization;timesynchronization;locationaccurac yO引言时差定位(TimeDifferenceOfArrivalLocation)是一种重要的无源定位方法,而无源定位系统本身并不发射电磁波,完全是被动工作的,因此具有隐蔽性好的优点,对于提高系统在电子战环境下的生存能力具有重要的作用.目前在对时差定位的研究中多关注于定位算法,精度分析和布站方式,而较少关注另一个影响定位精度的重要因素: 辐射源信号到达各观测站时间的测量,即时差测量的精度问题.这在时差定位中是相当重要的.因为我们都知道电磁波以光的速度(近似为3×l0sm/s)在空气中传播,一微秒(1OI6秒)的时间测收稿日期:2005年7月11日量误差反映到距离上就是30o米的误差,可谓是"失之毫厘,谬以千里".因此,探讨时差测量的相关问题是十分必要的.当前在时差定位中通常采用两种测时差的方式:基于统一信号的方式和基于统一时间的方式. 前者是目前比较常用的方式,而后者也处在不断发展之中.本文对这两种方式进行简要介绍,作为相关研究的参考.1时差定位原理[1][2】[3】时差定位实际上是反"罗兰"系统的应用,罗兰导航系统根据来自3个已知位置的发射机信号来确定自身的位置,而时间差测量定位系统是利22电子对抗2006年第l期用3个(多个)已知位置的接收机接收菜一个未知位置的辐射源的信号,来确定该辐射源的位置. 两个观测站采集到的信号到达时问差确定了一对双曲(面)线,多个双曲面(线)相交就可以得到目标的位置,因此时差定位又被称为双曲线定位. y'///'i/tl/,/I',,'/I(1.y1),(2.J11)图I时差定位原理图如图l所示,以平面二维三站定位为例:目标71的位置为(,),),so(o,Y o)为主站,sl(l,Y1),S2(2,),2)分别为副站l和副站2.ro,rl,r2分别为目标到主站so,副站s.和副站S2的距离.距离差为Ar,i:1,2,则定位方程为:fo=(—XO)+(Y一),0){=(—)+(Y—Yi),(i=1,2)(1)【c?△£=c?(t—to)=一ro对上式整理化简得:(0一)+(Y o—Y)Y=ki+c'△£'ro(2)其中k去[(c?△£i)+(o+yo2)一(+yi2)],(i:l,2),c:3XlOSm/s,解方程组即可得到目标位置.2两种测时差方式的介绍2.1基于统一信号方式的时差测量这种方法又称为基于信号同步的时差测量.通常各观测站之间的距离是固定的,各站位置坐标均精确标注,且只在主站有一个高稳定时钟,副站没有时钟.各站同时开始接收辐射源信号,分别收到辐射源信号后,副站立即将辐射源信号直接或变频转发到主站,本身则不对信号做任何处理.主站收到从副站转发的信号,并分别测量各副站转发信号的到达时间,因为已知各站间距,且可以预先估计出信号从各副站转发的延迟,所以可以测出辐射源信号到达各观测站的时间差,从而完成时差定位./\电磁淳/,I,,,/磁渡/电磁,,电磁渡/电磁渡\副图2基于统一信号方式的时差测量这种方法是目前普遍采用的方式,在工程上易行.但缺点也比较明显,首先此方法要求各观测站位置固定,必须在主副站间有可靠的直视传输路径,一般有效间距为15km,最大间距为30km, 不够机动灵活;其次需要建立专门的信号转发设备及传输通道,比较复杂;三是定位过程有两次信号检测和到达时间的误差.一次是在副站检}贝4辐射源直达信号,检测判别后才进行转发,第二次是在主站对副站转发信号的检测,才测量时间,由于脉冲的前沿是有斜率的,所以引起两次的时间误差.信号差转误差较大.2.2基于统一时间方式的时差测量这种方法又称为基于时间同步的时差测量.在这种方法中,主站和各副站均设有高稳定度的时钟,并且每隔一段时间(1s或Ims等)对一次时间(将当前时间归零),因此可认为各站是高度时间同步的,即拥有统一的时间基准.这样各站均可分别测量处理辐射源信号的到达时间,各副站只需将信号到达时间信息传递给主站即可.对于固定站,其位置可以预先精确标注;对于运动站, 目标,,电磁,,一//\///电磁渡,/电磁波\副味.(时钟1)-占(时钟2'(时钟)图3基于统一ri,JI'~il方式的时差测量总第106期刘刚,等:时差定位与两种测时差方法则在传递信号到达时间的同时还需要传递自身的当前位置.主站根据时间信启,计算时间差并计算出辐射源的位置.这种方法的优点是可以实现测量站的机动且便于展开站间距(基线),便于多站长基线组网,不必建立转发设备和专门的转发信号传输通道,只需利用已有的数据传输线路传递时间数据即可, 使用灵活.定位过程只有一次信号检测,所以时间测量误差较小.而缺点则是对各站的时钟稳定度要求非常高,若没有统一的时间基准(即各站时钟问的误差较大)的话则定位误差会很大.3精度分析及仿真[4】[5]3.1精度分析定位精度用GDOP(GeometricDilutionOfPreci—sion)来表示:GDOP:√(盯+盯)(3)式中,表示,Y方向上的定位标准差.首先对式C?AtC?(tf—t0)=r—r0,(=l,2)求微分,可得到:C?d(t—t0)=(c一c0)出+(.打一C0y)dy+:李:一亟:坐,(1,2)一一=一I,=I/J.一a—c3x一''一' :妻:一:,(l,2)一_-_一=一一.I,=1./,.一一—…=Clx--COxCly一-OOyCC2COC2Co】=Izy—yJl一一=I一2一.y—y2),一y.l—一=c-[d(tl—t0)d(t2一to)]rdY=C-dX+flXs=(CrC)Cr(dY一)(6)(CrC)一Cr=B=(22(7)Pet=FL?j=B{E[dY?dyr]+E[dXs?]}Br(8)'『2.r/t2r11[dY"dYr]=c2l,盯△.'盯△,盯,!j其中0"3(i=1,2)为第i站的时间测量误差,-2为At.与At2间的相关系数.假设站址误差各分量的标准差是相同的,即盯2I_:盯2盯]-(kokt]=[(9)E[_dY?dj+ELs?j=(盯)22=[m]22fc?盯+2盯(i=)盯1c2.+盯(≠)m=66(£,h=l,2)=I1I'22,,,,,24电子对抗2006年第1期GDOP=厕=[笛2菁2(+b2i62j)(11)3.2仿真对于给定的布站方式,时差定位的精度主要取决于时间测量的精度和基线长度,本文分别就这两项因素对定位误差的影响进行了仿真.y\站阈夹角/剐蝴>//W152"t:;DOpf..,/一,星:薯……一-…j¨00.-:/,,,≮∥一,,0害呻㈡,,,',0j一图8三站夹角120~,时间测量误差30ns,基线长度30kin时的GIX)P图4结语仿真时令主站位于坐标原点,且对称分布(图4),副站与主站的间距为基线长度,各站的时间测量误差相同.表1为仿真中的各主要参数.表I仿真中的各主要参数三站夹时间测量误基线长GDOP图角/度差/ns度/km1803030图51803050图61801050图7l203030图8l203050图9120l050图l0图6三站夹角180~,时间测量误差30ns,基线长度50km时的GDOP图三4020.h';I)t)p,磊落i.蜉..≯;,..,,『151)lJ¨lx/kin图9三站夹角120~,时间测量误差30ns,基线长度50km时的GDOP图由仿真可以看出,对于相同的布站方式,在一定的站间距范围内(因为站间距过长反而会降低定位精度【1]),基线越长(对比图5与图6,图8与图9),测时误差越小(对比图6与图7,图9与图§图7三站夹角l8,时问测量误差10m,基线长度50km时的GDOP图图l0三站夹角120~,时间测量误差IOns,基线长度50km时的GDOP图lO),则定位精度越高.所以无论是基于统一信号还是基于统一时间的}贝4时方法,关键问题是如何延长站间距离,并提高测时精度.基于统一信号的测时方法目前可以采用通过卫星差转信号的方法来延长站间距,并通过对转发信号的相关检测来提高测时差精度;而对于基于统一时间的测时差方法来说,其核心——高稳定度原子钟,在过去一一.,§,,,■一..一一一~_i~,,...;~一一一一一一一~,敛一|q≮.三;…一总第106期刘冈0,等:时差定位与两种测时差方法25因为造价昂贵,不易维护等原因,没能使这种方法得到广泛应用.而现在得益于科技的进步,高稳定度的铯钟,铷钟等制造成本下降,体积更小,更易于存放和维护,使得这个方法可以得到更多的应用.参考文献1赵国庆.雷达对抗原理.西安:西安电子科技大学出版,1999:63—672孙仲康,周一宇,何黎星.单多基地有源/无源定位技术.北京:国防工业出版社,1996:1811863FredrikGustafsson,FredrikGunnarsson.PositioningUsing Time—DifferenceOfArrivalMeasurements.Acoustics,Speech, andsiProcessing,2003.Proceedings(ICASSP'03),2003 IEEEInternationalConferenceOnV olume6,6—10April2003Page(s):VI一553—64杨林,周一宇,孙仲康.TDOA被动定位方法及精度分析.国防科技大学,1998;20(2):49535潘琴格.无源系统测向及时差频差联合定位方法研究.西安:西安电子科技大学硕:f=毕业沦文,2004:1723作者简介刘刚(1980一),男,2003年毕业于西安电子科技大学,电子信息工程专业.现为西安科技大学电子工程学院电路与系统专业在读硕士研究生,从事电子对抗方面研究.赵国庆男,教授,西安电子科技大学电路与系统学科博士研究生导师,校学术带头人,信息技术系主任,电子对抗研究所所长,是总装备部综合电子战专家组成员和国防973专家组组长,电子对抗学会委员,《电子对抗》杂志编委,"电子对抗"国防重点实验室学术委员.跃期从事电子对抗系统的理论与工程实践技术研究,主持和参加完成863,973,国防预研和基金项目40余项,着有国家级重点教材《雷达对抗原理》.俄罗斯重视电子战部队建设据俄罗斯国防部可靠消息称,俄罗斯武装力量中将很快增加一个新的兵种或者特种司令部——电子战部队或者电子战司令部.目前提交高层军政领导讨论该问题的所有文件都已经准备好.俄罗斯武装力量中现有三个独立的兵种:战略火箭兵,航天部队和空降部队.二十世纪下半叶的军事实践证实了一个无可否认的事实:电子战已经从一种作战保障形式变成一种极具特色的或者作战效果极其显着的作战形式.据专家统计,使用电子部队和武器,使陆军部队的作战潜力提高了2倍,空军的损失降低了三分之一至二分之一,战舰的损失减少了三分之二.目前俄罗斯电子战装备有能力侦察到敌方的电子目标,精确判定其位置,并将其消灭,并在同时对己方同类系统提供有效防御.装备现代化电子战装备的部队能够实施猛烈的电磁打击.从其与敌方武器和装备作战效果来看,完全可与使用大规模杀伤性武器的效果相媲美.据俄国防部提供的消息,新军种将用于在太空,空中,陆地和海上的对敌作战,并为国家重要目标和己方军队提供防御.俄罗斯认为,建立这支部队是完全符合逻辑的,美国的电子战部队早就已经存在了,俄罗斯当然不能落后.俄军目前已经拥有电子战部队,该部队由总参谋部电子战部指挥.一些专家将这些部队称为特种电子部队,因为这支部队完成一些特殊的任务,其工作和部署地点完全保密.五角大楼早就意-/Z$4了电子战的重要性,其叫法也不是模糊的"电子战作战",而是更加准确的"电磁战争".美军电子战部队也比俄军电子战部队在国防部的地位高.目睹美军电子战部队在最近的几次局部战争中所发挥的重要作用之后,俄军也加强了对电子战部队的重视.虽然目前俄军可以进行独立的电子战演习,但据专家估计,还不具备大规模使用专用电子装备的能力.主要原因是部队基础设施少,物质保障不足,因而发展很受限制.目前俄罗斯军方部门已经计划采取措施,将俄军的电子战水平提升至与美军对等.俄罗斯一位领导人指出,俄政府将改组军工企业,以便形成生产电子战装备的企业体系.当前的首要任务是研制出新型有效的电子战设备,例如能够精确判定恐怖分子在地形复杂区域的基地的坐标的设备等.另外,也在期待工业部门生产出使用新物理原理的电子战武器.例如作战半径不限的量子发生器,这些武器可以在几百千米的高度上摧毁敌方飞机,舰艇,战车上的电子设备.这在目前听起来像是天方夜谭,但专家认为在近几十年这将成为现实.(肖霞提供)。

一种基于STFT的数字信道化方法

一种基于STFT的数字信道化方法

一种基于STFT的数字信道化方法王开;束坤【摘要】数字信道化接收机是电子战中应用最广泛的一种宽带侦察接收机.将短时傅里叶变换(STFT)与数字信道化相结合,阐述了基于STFT的信道化原理,通过Matlab仿真验证了该方法的正确性和可行性以及信号时频参数测量和分辨多信号的能力.【期刊名称】《舰船电子对抗》【年(卷),期】2013(036)005【总页数】5页(P56-60)【关键词】雷达侦察接收机;数字信道化;短时傅里叶变换【作者】王开;束坤【作者单位】船舶重工集团公司723所,扬州225001;船舶重工集团公司723所,扬州225001【正文语种】中文【中图分类】TN971.10 引言当前电子战接收机通常要求具有大的瞬时带宽、高频率分辨率、大动态范围、多信号并行处理等性能[1]。

数字信道化接收机可以很好地实现上述性能。

本文阐述了一种基于短时傅立叶变换(STFT)的数字信道化方法[2],能够测量单脉冲信号的脉冲载波频率fRF、脉冲到达时间tTOA、脉冲重复周期TPRI、脉冲宽度τPW、脉冲幅度AP等脉冲信号参数,并能够分辨同时刻到达的2个信号。

1 数字滤波器组与信道化数字信道化可以看成一个数字滤波器组[3],即具有一个共同输入端、多个输出端的一组滤波器。

图1中s (n)为输入信号,yk(n),k=0,1,…,K-1为输出信号,hk (n),k=0,1,…,K-1为第k个滤波器的冲击响应。

信号 s (n)的整个带宽被这K个滤波器均匀分成K个子频带,然后分别进行滤波输出,这K个滤波器就叫做信道化滤波器组。

将1个实信号带宽划分成3个信道的滤波器组的情况如图2所示。

图1 信道化滤波器组构建上述滤波器组有很多办法,其中最直接的方法是单独设计这些滤波器。

从理论上讲,这些单独设计的滤波器具有不同的带宽和滤波器特性,但在实际工程中这种方法有以下几个缺点:一是侦察接收机的频率分辨率可能不一致,这是由于每个滤波器具有不同的带宽和滤波特性导致的;二是滤波器组工作时运算很复杂;三是占用硬件资源多。

西安电子科技大学雷达对抗原理第一次大作业

西安电子科技大学雷达对抗原理第一次大作业

雷达对抗原理大作业学校:西安电子科技大学专业:信息对抗指导老师:魏青学号/ 学生:雷达侦查中的测频介绍与仿真如今,战争的现代水平空前提高,电子战渗透到战争的各个方面。

军事高技术的发展,使电子对抗的范围不断扩大,并逐步突破了原有的战役战斗范畴,扩展到整个战争领域。

海湾战争、科索沃战争、阿富汗战争、伊拉克战争和最近的利比亚战争都表明,电子对抗在现代战争中有着极其重要的作用。

电子对抗不仅在战时大量使用,在和平时期侦察卫星、侦察飞机、侦察船和地面侦察站不停地监视着对方的电磁辐射,以探明阵地布置、军事集结和调动;也不断收集对方电磁设备的性能参数,以期在战前进行模拟的对抗试验,确保在战争中有效地压制对方的电子设备。

侦察是对抗的基础。

电子侦察的基本任务是截获、分析对方的辐射信号,测量信号的到达方向、频率、信号调制特性,最终目的是识别辐射源的属性,以便有针对性的对抗。

自电子对抗出现后的60多年来,电子技术的飞跃发展引起了雷达、通信、导航等技术的飞速发展。

使对电子侦察设备同时处理多信号的能力、快速反映能力及信号特征处理能力的要求是越来越高。

但是现在雷达参数的搜索变化,给信号的分选、识别带来很大困难。

所幸大多数辐射源是慢运动或固定的,因此刹用到达角这一参数将来自很大空域内的辐射源进行分离,然后对各个辐射源分析,成了现代电子侦察的一个特点。

图1典型雷达接收机原理框图对雷达信号测频的重要性 载波频率是雷达的基本、重要特征,具有相对稳定性,使信号分选、识别、干扰的基本依据。

对雷达信号测频的主要技术指标a. 测频时间定义:从信号到达至测频输出所需时间,是确定或随机的。

要求:瞬时测频,即在雷达脉冲持续时间内完成载波频率测量。

重要性:直接影响侦察系统的截获概率和截获时间。

频域截获概率:即频率搜索概率,单个脉冲的频率搜索概率定义为(△ f r 测频接收机瞬时带宽,f2-f1是测频范围,即侦察频率范围)1.概述S 聞一测向大线 I輻射鴻播述7 宿 号 处理*辐射源的属性 +辎射源的参數>威帥等级截获时间:达到给定的截获概率所需的时间,如果采用瞬时测频接收机,则单个脉冲的截获时间为hri二厂尸十5(其中Tr是脉冲重复周期,t th是侦察系统的通过时间)b. 测频范围、瞬时带宽、频率分辨力和测频精度测频范围:测频系统最大可测的雷达信号的频率范围;瞬时带宽:测频系统在任一瞬间可以测量的雷达信号的频率范围;频率分辨力:测频系统所能分开的两个同时到达信号的最小频率差;测频精度:把测频误差的均方根误差称为测频精度;晶体视频接收机:测频范围等于瞬时带宽,频率截获概率= 1,但频率分辨率很低,等于瞬时带宽。

一种雷达信号类型识别方法

一种雷达信号类型识别方法

一种雷达信号类型识别方法胡爱明;胡可欣【摘要】雷达信号脉内调制识别是雷达侦察的一个重要内容,基于瞬时频率的识别技术可以实现对多种调制类型信号的识别及参数提取,该方法在一定信噪比条件下有较高的正确识别率,算法也较为简单,适合在雷达对抗侦察数字接收机上高速实现,分析表明此方法是侦察雷达信号的有效手段.【期刊名称】《现代电子技术》【年(卷),期】2006(029)014【总页数】4页(P123-126)【关键词】电子侦察;脉内调制;线性调频;相位编码信号【作者】胡爱明;胡可欣【作者单位】中国电子科技集团公司第38研究所,安徽,合肥,230031;中国电子科技集团公司第38研究所,安徽,合肥,230031【正文语种】中文【中图分类】TN95各种新体制雷达大量应用,现代战场电磁环境中的复杂雷达信号大大增加,基于常规雷达信号的传统雷达对抗情报分析已明显不适用于对复杂雷达信号的分析,对雷达对抗情报分析带来了巨大的挑战。

1 信号脉内调制的分析对雷达辐射信号的侦察分析通常需进行信号调制信息的提取和识别。

识别信号脉内调制的类型和检测信号脉内调制的参数。

脉内调制参数用于显示脉内分析的结果,包括脉冲批号、信号类型、脉宽、中心频率、起始 /终止频率(线性调频信号)、子码宽度和编码序列(相位编码)。

本文采用时频分析算法(短时傅里叶变换STFT和WIGNER分布),主要对线性调频信号和相位编码信号进行了调制类型的识别仿真。

所以雷达信号脉内特征分析的关键是提取雷达的各种脉内特征。

主要有2类典型特征:脉内频率特征;脉冲宽度及上下沿特征。

1.1 信号脉内调制的频率特征新型雷达对抗侦察装备的显著特点是数字接收机的应用;脉内分析给出的脉内参数已成为雷达对抗侦察情报分析的重要信息;数字接收机的应用为脉内非人为调制细微特征(“电子指纹”)的获取提供了广阔的前景。

对于脉内频率变化的信号,可以采用现代信号处理的方法,分析脉内时频特性、脉内调制式样、频率变化范围或相位编码规律等。

雷达原理读书笔记

雷达原理读书笔记

欧阳学文雷达原理(Radar Principles)——读书“笔记”姓名:林中朝学号:07074033西安电子科技大学111一、雷达的简介雷达基本工作原理如图11,由雷达发射机产生的电磁能,经收发开关后传输给天线,再定向辐射于大气中,如果目标位于定向天线波束内,截取一部分电磁能,再将这些截取能量向各方向散射,部分能量进入到雷达接收机。

接收机将散射回波信号经信号处理送终端显示图11雷达的原理及基本组成基本雷达方程1、距离R 处任一点处的雷达发射信号功率密度:,雷达发射功率。

2、对于定向天线,考虑到天线增益G,表示相对于各向同性天线,则3、以目标为圆心,雷达处散射的功率密度:,σ雷达散射截面积。

4、雷达天线接收面积,收到功率.5、最大测量距离:当雷达接收功率为接收机最小检测功率(即临界灵敏度)时时,雷达的基本组成如图1.2所示:1.2 脉冲雷达基本组成框图1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。

2、收发开关:收发隔离。

3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。

4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。

(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。

5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。

6、显示器(终端):原始视频,或经过处理的信息。

7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。

二、雷达发射机雷达发射机的任务和基本组成一、任务:产生大功率的特定调制的电磁振荡即射频信号。

1、振幅调制:①CW ②pulse:width,repeat frequency2、频率调制:①fixed freq ②频率分集③freq coded ④LFM ⑤频率捷变3、相位调制:①随机相位②相位相参③相位编码二、分类与组成1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)图21 单级振荡式发射机(1)定时器提供以为间隔的脉冲触发信号(2)脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的大功率视频脉冲信号。

雷达对抗原理实验报告

雷达对抗原理实验报告

实验一 雷达测距和接收机灵敏度实验一、 实验目的1. 掌握目标回波测距的方法。

2. 雷达回波信号能量变化对接收机输出的信号的幅度(包络)的影响。

3. 掌握切线灵敏度的定义。

二、 实验内容1. 距离测量。

雷达工作时,发射机经天线向指定空间发射一串重复周期的高频脉冲。

如果在电磁波传播的路径上有目标存在,那么雷达可以接收到由目标反射回来的回波。

由于回波信号往返于雷达和目标之间,它将滞后于发射脉冲一个时间r t 。

如图3.1示电磁波以光速传播,设目标的距离是R ,则传播的距离为光速乘以时间间隔,即r t C R ⨯=2,可得r t CR 2=。

2. 切线灵敏度。

在某一输入脉冲功率电平的作用下,雷达接收机输出端脉冲与噪声叠加后信号的底部与基线噪声(只有接收机内噪声)的顶部在一条直线上(相切),则称此输入脉冲信号功率为切线信号灵敏度TSS P 。

对于单脉冲雷达信号,则有rt 回波tt图3.1 雷达测距图3.2切线灵敏度m UnU 发射脉冲R A P TSS /212=(3-1)其中,A 是输入信号的幅度,R 为接收机内阻。

本实验仪接收机内阻为50欧姆。

三、 实验数据信号时延:T=52μs 信号衰减值:95 % 切线灵敏度:P TSS = 噪声电压峰值: 噪声最大值:四、 思考题1. 根据记录回波的时延,计算目标回波距离。

答:目标回波时延:,根据公式计算得回波距离R=7.8km 。

2. 距离分辨率为多少? 答:距离分辨率()2c nc dr v τ∆=+≈B 12c *,实验测得目标回波脉冲宽度τ为240ns ,代入距离分辨率公式得到c r ∆约为36m 。

3. 目标回波输入信号的幅度改变,示波器输出信号有何变化?答:由前面数据整理的表格可以看出,目标回波输入信号的幅度衰减越来越大时,示波器输出信号幅度越来越小。

4. 雷达的切线灵敏度是多少? 答:接收机灵敏度为: 。

5. 基线噪声电压峰值n U 和满足切线灵敏度条件下有信号处输出噪声的峰值m U 是否相同?为什么?答:基线电压峰值n U 小于满足切线灵敏度条件下有信号处输出噪声的峰值m U ,因为nU 只是接收机内噪声而m U 不仅包含接受机内噪声还包含外界干扰噪声所以n U <m U 。

西安电子科技大学雷达原理 大作业——关于单脉冲角度跟踪技术的研究

西安电子科技大学雷达原理 大作业——关于单脉冲角度跟踪技术的研究

雷达原理作业报告题目关于单脉冲角度跟踪技术的研究西安电子科技大学2013年5月论绪Monopulse radars are similar in general construction to conical scanning systems, but split the beam into parts and then send the two resulting signals out of the antenna in slightly different directions. When the reflected signals are received they are amplified separately and compared to each other, indicating which direction has a stronger return, and thus the general direction of the target relative to the boresight. Since this comparison is carried out during one pulse, which is typically a few microseconds, changes in target position or heading will have no effect on the comparison.关键词单脉冲角度跟踪圆锥形扫描引言单脉冲雷达是一种精密跟踪雷达。

它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。

西安电子科技大学雷达对抗原理第一次大作业汇编

西安电子科技大学雷达对抗原理第一次大作业汇编

雷达对抗原理大作业学校:西安电子科技大学专业:信息对抗指导老师:魏青学号/学生:雷达侦查中的测频介绍与仿真如今,战争的现代水平空前提高,电子战渗透到战争的各个方面。

军事高技术的发展,使电子对抗的范围不断扩大,并逐步突破了原有的战役战斗范畴,扩展到整个战争领域。

海湾战争、科索沃战争、阿富汗战争、伊拉克战争和最近的利比亚战争都表明,电子对抗在现代战争中有着极其重要的作用。

电子对抗不仅在战时大量使用,在和平时期侦察卫星、侦察飞机、侦察船和地面侦察站不停地监视着对方的电磁辐射,以探明阵地布置、军事集结和调动;也不断收集对方电磁设备的性能参数,以期在战前进行模拟的对抗试验,确保在战争中有效地压制对方的电子设备。

侦察是对抗的基础。

电子侦察的基本任务是截获、分析对方的辐射信号,测量信号的到达方向、频率、信号调制特性,最终目的是识别辐射源的属性,以便有针对性的对抗。

自电子对抗出现后的60多年来,电子技术的飞跃发展引起了雷达、通信、导航等技术的飞速发展。

使对电子侦察设备同时处理多信号的能力、快速反映能力及信号特征处理能力的要求是越来越高。

但是现在雷达参数的搜索变化,给信号的分选、识别带来很大困难。

所幸大多数辐射源是慢运动或固定的,因此刹用到达角这一参数将来自很大空域内的辐射源进行分离,然后对各个辐射源分析,成了现代电子侦察的一个特点。

1.概述图1典型雷达接收机原理框图对雷达信号测频的重要性载波频率是雷达的基本、重要特征,具有相对稳定性,使信号分选、识别、干扰的基本依据。

对雷达信号测频的主要技术指标a. 测频时间定义:从信号到达至测频输出所需时间,是确定或随机的。

要求:瞬时测频,即在雷达脉冲持续时间内完成载波频率测量。

重要性:直接影响侦察系统的截获概率和截获时间。

频域截获概率:即频率搜索概率,单个脉冲的频率搜索概率定义为(Δf r测频接收机瞬时带宽, f2-f1是测频范围,即侦察频率范围)截获时间:达到给定的截获概率所需的时间,如果采用瞬时测频接收机,则单个脉冲的截获时间为(其中Tr是脉冲重复周期,t th是侦察系统的通过时间)b.测频范围、瞬时带宽、频率分辨力和测频精度测频范围:测频系统最大可测的雷达信号的频率范围;瞬时带宽:测频系统在任一瞬间可以测量的雷达信号的频率范围;频率分辨力:测频系统所能分开的两个同时到达信号的最小频率差;测频精度:把测频误差的均方根误差称为测频精度;晶体视频接收机:测频范围等于瞬时带宽,频率截获概率=1,但频率分辨率很低,等于瞬时带宽。

一种宽带高斯白噪声的设计与实现

一种宽带高斯白噪声的设计与实现

一种宽带高斯白噪声的设计与实现石远东;卢雪怡;李霄【摘要】噪声遮盖性干扰是一种常用的干扰方法,高斯白噪声具有最佳遮盖干扰波形.提出了一种宽带高斯白噪声的产生方法,通过多路并行的M序列产生噪声数据,再经过系数可重新配置的多相滤波器,最后经过并串转换送给高速数模变换器.通过实测,产生了比较理想的宽带高斯白噪声,具有很好的实用价值.【期刊名称】《舰船电子对抗》【年(卷),期】2018(041)002【总页数】5页(P22-26)【关键词】高斯白噪声;M序列;高速数模变换器【作者】石远东;卢雪怡;李霄【作者单位】中国船舶重工集团公司第七二三研究所,江苏扬州225101;江苏科技大学,江苏镇江212003;中国船舶重工集团公司第七二三研究所,江苏扬州225101【正文语种】中文【中图分类】TN9720 引言干扰目前主要分为遮盖性干扰和欺骗性干扰。

遮盖性干扰就是利用高干信比的噪声信号遮盖住目标回波,从而使雷达无法正常检测目标。

雷达接收机处理的信号是含有加性噪声的,噪声的随机性越强,检测结果的不确定性越高。

在相同功率条件下,当噪声信号服从高斯分布时,其不确定性最高,为最佳遮盖干扰波形[1]。

高斯白噪声可以通过模拟或数字的方法产生,目前的研究主要是基于数字合成方法开展的。

数字合成的一般方法是先产生均匀分布的白噪声,然后通过转换将均匀分布变为高斯分布从而得到高斯白噪声。

文献[2]首先采用Tausworthe算法生成均匀分布的白噪声,然后通过查表法实现均匀分布白噪声到高斯白噪声的转化。

文献[3]则先采用lagged-Fibonacci算法生成均匀分布的随机序列,然后通过公式法产生高斯白噪声。

而文献[4]利用M序列发生器产生均匀分布随机数,通过15段折线逼近法实现了高斯白噪声序列。

本文主要介绍了一种基于高性能现场可编程门阵列(FPGA)和高速数模变换器(DAC)的宽带高斯白噪声的快速产生方案。

首先通过M序列发生器产生伪随机序列,利用并行取样的方法降低随机数的相关性,再将数据送入系数可重新配置的多相滤波器,最后将多相滤波器输出数据进行并串转换后送高速DAC。

为国科研,练就“千里眼和顺风耳”——记西安电子科技大学雷达信号处理全国重点实验室

为国科研,练就“千里眼和顺风耳”——记西安电子科技大学雷达信号处理全国重点实验室

74 科学中国人 2023年9月支撑平台为国科研,练就“千里眼和顺风耳”——记西安电子科技大学雷达信号处理全国重点实验室雷达作为人类观风云、知天象的“千里眼和顺风耳”,在帮助人类感知外界态势方面具有不可替代的作用。

经过多年努力,“中国雷达技术已经与世界先进水平接轨,并在局部领域处于领先地位”。

西安电子科技大学雷达信号处理全国重点实验室(以下简称“实验室”)的前身是1974年成立的数字信号处理小组,1980年发展成为电子工程研究所,1991年获批我国首批国家级重点实验室。

特色浓厚 实力强劲实验室学科特色浓厚,旗帜鲜明。

实验室是承担雷达信号处理领域基础性研究任务的国家级实验室,同时也是西安电子科技大学“信号与信息处理”国家级重点学科的科研、教学基地和依托单位,设有硕士点、博士点和博士后流动站。

“信号与信息处理”国家级重点学科在2002年和2007年的教育部国家重点学科评估中两次均名列全国第一,所在的一级学科“信息与通信工程”在全国第四轮一级学科评估中获评A档,在最新一轮学科评估中位居前列,并获得国家双一流建设重点学科。

2014年,以实验室为主体的“信息感知技术协同创新中心”通过国家“2011计划”认定,位列行业产业类第一,进一步奠定了西安电子科技大学在全国高校中突出的科研特色优势地位。

科研队伍实力雄厚,结构合理。

实验室经过多年建设和运行,已形成了一支高素质的科研梯队。

实验室现有教职工75人,教授41人(博士生导师49人),副教授19人。

教师中具有博士学位73人。

迄今获批国家级人才51人次,陕西省“三秦学者”特聘教授等省部级人才65人次。

团队获省部级以上创新团队8个,其中国家级创新团队3个。

获批111引智基地、国家示范型国际科技合作基地、民用雷达国家地方联合工程研究中心、陕西省国际科技合作基地、陕西省民用雷达工程研究中心省部级以上基地5个。

科研服务国家需求,成果显著。

实验室科研工作的整体定位:基础研究方面“国际前沿有地位”,应用基础研究方面“关键技术有突破”,应用研究方面“重大装备有贡献”。

雷达信号包络特征的检测与分析

雷达信号包络特征的检测与分析

中图分类号:T N971.+1,T N911123 文献标识码:A 文章编号:C N51-1418(2002)03-0012-05收稿日期:2002-06-14作者简介:刘爱霞,女(1977年—),河南省南阳市人,西安电子科技大学硕士研究生,目前研究方向为雷达信号处理与仿真。

赵国庆,男(1953年—),西安电子科技大学教授,发表论文数十篇,研究方向为电子对抗及信号处理。

雷达信号包络特征的检测与分析刘爱霞 赵国庆(西安电子科技大学电子对抗研究所,西安・710071)摘要:雷达信号的分类识别是电子对抗的一个重要方面,而雷达信号包络分析是识别它的一种重要方法,它利用检测设备截获敌方雷达信号,通过分析它的包络特征来识别雷达信号以便于干扰或反干扰。

采用平滑、微分的方法对包络进行处理,获得它的各项参数信息,从而达到对雷达信号识别的目的。

关键词:信号包络 微分 平滑 雷达信号识别Detection and Analysis of the R adar Signal E nvelop CharactersLIU Ai 2xia ,ZHAO G uo 2qing(Research Inst.O f Electronic C ountermeasures ,XI DI AN Univ.,X i ’an 710071,China )Abstract :The sort of radar signals is a very im portant aspect in electronic countermeasures and the analysis of radar signals envelop is an im portant method to identify radar signals..This method analyses the envelop character of radar signals intercepted by detection equipment to identify radar signals for jamming and counter -jamming.This paper adopts sm oothing and differential methods to process the envelop of radar signals and gain their parameters.From these methods radar signals can be identified success fully.K eyw ords :Signal Envelop ;Sm oothing ;Differential ;Radar Signal Identification0 引言在军事上,雷达信号的分类识别是电子对抗的一个重要方面,而雷达信号包络特征分析是识别它的一种重要方法,它利用检测设备截获敌方雷达信号,通过分析它的包络特征来识别雷达信号以便于干扰或反干扰。

西安电子科技大学雷达原理大作业

西安电子科技大学雷达原理大作业

雷达原理大作业指导老师:魏青班级: 021231振幅和差单脉冲雷达在自动测角系统中的应用摘要:对目标的定向,是雷达的主要任务之一,单脉冲定向是雷达定向的一个重要方法。

单脉冲探测技术的作用就是首先选择一个具体的目标,然后在角度、距离,有时还在频率(或者速度)坐标上跟随目标的路线。

其中,角度跟踪,即测角可分为最大信号法和等信号法两大类。

本文重点对等信号法的基本原理进行分析,基于MATLAB进行仿真和应用。

关键词:振幅法测角等信号法MATLAB目录0 引言 (2)1 振幅和差单脉冲雷达基本原理 (2)1.1 和差法测角 (2)1.2 单脉冲自动测角系统 (4)1.3 公式推导 (6)1.4 系统组成 (8)2 主要优缺点 (9)3 MATLAB实现4 振幅和差单脉冲雷达的应用5 结论参考文献0 引言单脉冲雷达测角体制已有几十年历史,迄今仍然是精度较高的雷达测角方法。

单脉冲是指在目标回波一个探测脉冲周期内能够完整分离目标角度信息,而不同于锥扫(线扫)体制,通过多个脉冲周期扫描得到回波幅度调制信息,再从中提取角度信息。

单脉冲雷达测角体制有四种类型,振幅和差、振幅-振幅、相位和差、相位-相位。

其中应用最广泛的是振幅和差及振幅-振幅,又叫比幅单脉冲。

单脉冲测角的基本原理是运用指向目标(或发射机)的有方向性的天线波束,测量接收信号的到达角。

单脉冲雷达系统中,目标的角位置信息是将回波信号加以成对比较得到的,在进行这种比较时,系统输出电压只取决于信号的到达角。

在一个平面内,两个相同的波束部分重叠,其交叠方向即为等信号轴。

将这两个波束同时接收到的回波信号进行和差处理,就可取得目标在这个平面上的角误差信号,然后将此误差电压放大变换加到驱动电动机控制天线向减小误差的方向运动。

因为两个波束同时接收回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只需分析一个回波脉冲就可以确定角误差。

近年来,测角效率和测角精度不断提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达对抗原理大作业学校:西安电子科技大学专业:信息对抗指导老师:魏青学号/学生:雷达侦查中的测频介绍与仿真如今,战争的现代水平空前提高,电子战渗透到战争的各个方面。

军事高技术的发展,使电子对抗的范围不断扩大,并逐步突破了原有的战役战斗范畴,扩展到整个战争领域。

海湾战争、科索沃战争、阿富汗战争、伊拉克战争和最近的利比亚战争都表明,电子对抗在现代战争中有着极其重要的作用。

电子对抗不仅在战时大量使用,在和平时期侦察卫星、侦察飞机、侦察船和地面侦察站不停地监视着对方的电磁辐射,以探明阵地布置、军事集结和调动;也不断收集对方电磁设备的性能参数,以期在战前进行模拟的对抗试验,确保在战争中有效地压制对方的电子设备。

侦察是对抗的基础。

电子侦察的基本任务是截获、分析对方的辐射信号,测量信号的到达方向、频率、信号调制特性,最终目的是识别辐射源的属性,以便有针对性的对抗。

自电子对抗出现后的60多年来,电子技术的飞跃发展引起了雷达、通信、导航等技术的飞速发展。

使对电子侦察设备同时处理多信号的能力、快速反映能力及信号特征处理能力的要求是越来越高。

但是现在雷达参数的搜索变化,给信号的分选、识别带来很大困难。

所幸大多数辐射源是慢运动或固定的,因此刹用到达角这一参数将来自很大空域内的辐射源进行分离,然后对各个辐射源分析,成了现代电子侦察的一个特点。

1.概述图1典型雷达接收机原理框图对雷达信号测频的重要性载波频率是雷达的基本、重要特征,具有相对稳定性,使信号分选、识别、干扰的基本依据。

对雷达信号测频的主要技术指标a. 测频时间定义:从信号到达至测频输出所需时间,是确定或随机的。

要求:瞬时测频,即在雷达脉冲持续时间内完成载波频率测量。

重要性:直接影响侦察系统的截获概率和截获时间。

频域截获概率:即频率搜索概率,单个脉冲的频率搜索概率定义为(Δf r测频接收机瞬时带宽, f2-f1是测频范围,即侦察频率范围)截获时间:达到给定的截获概率所需的时间,如果采用瞬时测频接收机,则单个脉冲的截获时间为(其中Tr是脉冲重复周期,t th是侦察系统的通过时间)b.测频范围、瞬时带宽、频率分辨力和测频精度测频范围:测频系统最大可测的雷达信号的频率范围;瞬时带宽:测频系统在任一瞬间可以测量的雷达信号的频率范围;频率分辨力:测频系统所能分开的两个同时到达信号的最小频率差;测频精度:把测频误差的均方根误差称为测频精度;晶体视频接收机:测频范围等于瞬时带宽,频率截获概率=1,但频率分辨率很低,等于瞬时带宽。

窄带搜索接收机:瞬时带宽很窄,频率截获概率很低,但频率分辨率很高。

最大测频误差为:瞬时带宽越宽,测频误差越大。

c.可测信号形式现代雷达信号可以分成脉冲和连续波。

脉冲信号:低工作比脉冲信号、高工作比的脉冲多普勒信号、重频抖动和参差信号、编码信号、宽脉冲线性调频信号(其中宽脉冲线性调频信号的测频比较困难)测频系统允许的最窄脉宽尽可能窄、是否可以检测脉内频率调制等是其重要的指标。

d.同时信号分离能力同时到达信号按照两个脉冲前沿的时差分成两类:第1类同时到达信号:<10ns第2类同时到达信号:10ns<<120ns要求测频接收机能够对同时到达信号的频率分别进行精确的测定,而且不丢失其中的弱信号。

e.灵敏度和动态范围灵敏度是保证正确的发现和测量信号的前提。

它域接收机体制和接收机的噪声电平有关。

动态范围是指保证测频接收机精确测频条件下信号功率的变化范围,它包括:工作动态范围:保证测频精度条件下的强信号与弱信号的功率之比,也称为噪声限制动态范围。

瞬时动态范围:保证测频精度条件下的强信号与寄生信号的功率之比。

现代测频技术分类2.典型的几种测频技术频率搜索测频技术1.搜索式超外差测频技术的基本原理图2 搜索式超外差接收机方框图超外差接收机的工作原理是利用中放的高增益和优良的频率选择性特性,对本阵与输入信号变频后的中频进行检测和频率测量。

由于变频后的中频信号可以保留窄带输入信号中的各种调制信息,消除了变频前输入信号载频的巨大差异,便于进行后续的各种信号处理,特别是数字信号处理,因此超外差接收机被广泛地应用于各种电子战接收机中,频率搜索主要是对变频本阵的调谐和控制。

2.寄生信道及其消除方法如果在混频器输入同时加入信号fR和本振信号fL, 由于混频器的非线性作用,许多频率组合可以产生中频信号,其一般关系为:m,n 为整数,其中当m=1, n=-1时为主信道,m=-1,n=-1为镜像干扰,主信道和镜像信道示意如图:主信道:超外差寄生信道:m=1,n= -1除外主要寄生信道:镜像信道:镜像抑制比:提高镜像抑制的方法:微波预选-本振统调、宽带滤波-高中频、镜像抑制混频器、零中频3.几种典型超外差接收机a. 窄带超外差接收机采用微波预选器与本振通调,对每个分辨单元顺序搜索。

射频带宽:20~60MHz。

优点:频率分辨率高、灵敏度高、抗干扰能力强、输出信号密度低、对信号处理要求低。

缺点:截获时间长,截获概率低,不能检测频率捷变、线性调频、编码信号。

b. 宽带超外差接收机瞬时带宽:100~200MHz。

优点:能检测频率捷变、线性调频、编码信号;截获时间缩短。

c. 宽带预选超外差接收机采用宽带预选器和高中频,扩展瞬时带宽。

比相法测频技术比相法测频是一种宽带、快速的测频技术,也称瞬时测频技术(IFM)。

1.基本工作原理比相法通过延迟频率变换成相位差,由宽带微波相关器将相位差换成电压,再经信号处理,输出信号频率测量值。

图3 比相法测频的基本电路图2.极性量化法极性量化法是根据鉴相输出信号的正负极性进行信号频率测量和编码输出的。

图4实用的微波鉴相器原理图3.主要技术参数不模糊带宽: F倍频程或者更高频率分辨率:1~2MHz测频精度:1~2MHz频率截获概率:1频率截获时间:脉冲重复周期灵敏度:-40dBm~ -50dBm动态范围:50~60dB信道化测频技术信道化测频技术是利用毗邻的滤波器组对输入信号进行频域滤波和检测的测频技术。

主要采用模拟滤波器组和数字滤波器组实现,分别称为模拟信道化测频技术和数字信道化测频技术。

这里主要探讨数字信道化测频技术。

1.数字信道化测频技术概述信道化是将接收机带宽划分为若干个子信道,然后对每个子信道输出分别进行检测、分析,以确定信号是否存在和测量参数的方法,与其等效的关键处理就是滤波器组。

因此,数字信道化可以看成一个数字滤波器组,它也可以看成有K个输出口的网络,通过测量滤波器组的输出,可以确定输入脉冲信号的部分参数,比如载频、到达时间TOA、脉宽、脉冲幅度以等。

数字信道化原理框图,如下图5。

图5数字信道化原理方框图所谓的数字滤波器组是指具有一个共同输入x(n),若干个输出端的一组滤波器,如图5虚线框所示。

图中h(k),k=O,1,⋯,K—l为第k个滤波器的冲击响应,这K个滤波器的功能是把宽带信号s(n)分成K 个子频带滤波输出,覆盖整个频带,因此,它们就构成了一个信道化滤波器组。

该滤波器组将整个无模糊采样频带(复信号为[0,fs],实信号为[-fs/2,fs/2])划分为若干个并行的信道输出,使得信号无论何时在何信道出现,均能加以截获,并进行解调分析。

所以这种滤波器组信道化方法具备了全概率截获能力。

由此可见,实现数字信道化的关键技术是如何设计符合要求的滤波器组。

2.数字信道化测频原理设各滤波器3dB带宽均为B,各信道中心频率为fo,m=0,l,⋯,M-1各信道带宽ΔF=fo,m-fo,m-1。

其中ΔF保持不变,改变带通滤波器的带宽可以得到不同的信道划分,主要有两种不同的滤波器配置方法:无重叠的频带分配(图6)和有重叠的频带分配(图7)。

a.B=ΔF频带无折叠其滤波器的配置方法如图所示:图6无重叠的频带分配方案b.信道之间相互重叠其滤波器的配置方法如图所示:图7叠l/3带宽频带分配方案无论上述哪种信道分配方式,当多个信号同时落入一个信道中时,将无法把它们区分开,因此信道化的频率分辨率取决于各子信道带宽。

设计时,子信道的带宽越窄,频率分辨率和测频精度就越高,相反子信道的带宽越宽,频率分辨率和测频精度就越低。

频率搜索接收机MATLAB仿真f=inputf1=10.^9; %起始频率f2=2*10.^9; %终止频率u=150*10.^6; %带宽Tf=1/30; %测频周期Tr=0.005; %脉冲重复周期N=round(Tf/Tr); %脉冲数fi=zeros(1,N);n=1:1:N+1;fi(n)=f1+(n-1)*u;j=1;f=f*10^9;while j<=Nif f>=fi(j)&f<=fi(j+1)disp(输出 frequency is (Hz)');f=(fi(j)+fi(j+1))/2break;else j=j+1;endif j==N+1disp(不在测频范围内');endend仿真结果:总结:通过这次大作业让我知道并了解了在雷达侦察中的测频方法,以及其原理。

但依然发现许多不足之处,在程序编写方面有所欠缺,以后应该多加练习,熟悉MATLAB的运用等等。

相关文档
最新文档