比例及比例线段专项练习题

合集下载

比例线段中考试题及答案

比例线段中考试题及答案

比例线段中考试题及答案【正文】考试题一:已知线段AB与线段CD的比例为3:4,AB的长度为12cm,求CD的长度。

解答:根据比例的定义可得:AB/CD = 3/4将已知条件代入,得:12/CD = 3/4交叉相乘,得:4 * 12 = 3 * CD48 = 3 * CDCD = 48/3CD = 16cm所以,CD的长度为16cm。

考试题二:已知线段EF与线段GH的比例为5:2,EF的长度为15cm,求GH的长度。

解答:根据比例的定义可得:EF/GH = 5/2将已知条件代入,得:15/GH = 5/2交叉相乘,得:2 * 15 = 5 * GH30 = 5 * GHGH = 30/5GH = 6cm所以,GH的长度为6cm。

考试题三:已知线段IJ与线段KL的比例为7:9,IJ的长度为21cm,求KL的长度。

解答:根据比例的定义可得:IJ/KL = 7/9将已知条件代入,得:21/KL = 7/9交叉相乘,得:9 * 21 = 7 * KL189 = 7 * KLKL = 189/7KL = 27cm所以,KL的长度为27cm。

考试题四:已知线段MN与线段OP的比例为4:11,MN的长度为8cm,求OP的长度。

解答:根据比例的定义可得:MN/OP = 4/11将已知条件代入,得:8/OP = 4/11交叉相乘,得:11 * 8 = 4 * OP88 = 4 * OPOP = 88/4OP = 22cm所以,OP的长度为22cm。

考试题五:已知线段QR与线段ST的比例为2:5,QR的长度为10cm,求ST的长度。

解答:根据比例的定义可得:QR/ST = 2/5将已知条件代入,得:10/ST = 2/5交叉相乘,得:5 * 10 = 2 * ST50 = 2 * STST = 50/2ST = 25cm所以,ST的长度为25cm。

总结:通过以上五道考试题,我们可以发现,计算比例线段的长度只需要将已知条件代入比例的定义中,通过交叉相乘求得未知线段的长度。

比例线段练习题及答案

比例线段练习题及答案

比例线段练习题及答案一、选择题1. 在比例线段中,如果a:b=c:d,那么下列哪个等式是正确的?A. ad=bcB. ac=bdC. ab=cdD. a^2=cd^22. 已知线段AB=6cm,线段CD=8cm,且AB:CD=2:3,求线段AC的长度。

A. 4cmB. 6cmC. 8cmD. 12cm3. 如果x:y=3:4,y:z=5:6,那么x:z的比例为:A. 15:24B. 3:4C. 5:6D. 3:6二、填空题1. 若线段EF=10cm,线段GH=15cm,且EF:GH=2:3,根据比例线段的性质,线段______的长度为20cm。

2. 已知线段MN=12cm,线段OP=18cm,若MN:OP=4:3,求线段NP的长度,答案为______。

三、解答题1. 已知线段AB=3cm,线段CD=6cm,且AB:CD=1:2。

如果线段EF与线段AB成比例,求线段EF的长度。

2. 线段GH=14cm,线段IJ=21cm,若GH:IJ=2:3,求线段GI的长度。

四、证明题1. 已知线段AB=8cm,线段CD=12cm,线段EF=10cm,线段GH=15cm,且AB:CD=EF:GH。

证明线段AB、CD、EF、GH构成的比例线段是正确的。

2. 线段KL=5cm,线段MN=7cm,线段OP=10cm,线段QR=14cm。

若KL:MN=OP:QR,证明线段KL、MN、OP、QR构成的比例线段是正确的。

五、应用题1. 一个三角形ABC的三边长分别为AB=2x,BC=3x,AC=4x。

如果三角形ABC与三角形DEF相似,且三角形DEF的边长DE=8cm,求三角形DEF的另外两边长。

2. 一个长方形的长为20cm,宽为15cm。

如果一个相似的长方形的长为25cm,求其宽。

答案:一、1. A2. B3. A二、1. EF2. 9cm三、1. 线段EF的长度为2cm。

2. 线段GI的长度为21cm。

四、1. 由题意知AB:CD=EF:GH,即3:6=10:15,可以验证比例关系是正确的。

4.1 成比例线段(练习)(解析版)

4.1 成比例线段(练习)(解析版)

第四章 图形的相似4.1 成比例线段精选练习一、单选题1.(2022·山东淄博·八年级期末)如果线段3a =,2b =,且b 是线段a 和c 的比例中项,那么c =( )A .23B .32C .34D .432.(2021·浙江·杭州第十四中学附属学校九年级阶段练习)若y ﹣2x =0,则x :y 等于( )A .1:2B .1:4C .2:1D .4:13.(2021·江苏·南通市八一中学九年级阶段练习)已知35ab=,则a bb a+-的值为( )A.2B.52C.4D.454.(2022·全国·九年级专题练习)已知67xy=,则下列结论一定成立的是( )A.x=6,y=7B.137x yy+=C.y﹣x=1D.76x y=5.(2021·福建东盛集团股份有限公司九年级期中)下列各组线段中,不成比例的是( )A.30cm,20cm,90cm,60cm B.4cm,6cm,8cm,10cmC .11cm,22cm,33cm,66cmD .2cm,4cm,4cm,8cm 【答案】B 【分析】四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例;不相等即不成比例.【详解】A 、从小到大排列,由于20×90=30×60,所以成比例,不符合题意;B 、从小到大排列,由于4×10≠6×8,所以不成比例,符合题意;C 、从小到大排列,由于22×33=11×66,所以成比例,不符合题意;D 、从小到大排列,由于4×4=2×8,所以成比例,不符合题意.故选 B .【点睛】本题考查应用比例的基本性质判断成比例线段.将所给的四条线段长度按大小顺序排列,若最长和最短两条线段之积与另两条线段之积相等,则说明四条线段成比例.6.(2021·安徽亳州·九年级阶段练习)若2a c b d ==-,则a c b d --=( )A .2-B .2C .12-D .12二、填空题7.(2021·福建·漳州三中九年级期中)若275x y z ==,则x y z x -+=__.8.(2021·山东济南·九年级期中)若23yx=,则x yx+=____.【答案】53##2139.(2022·浙江省义乌市廿三里初级中学九年级期中)已知a=1,b=4,则a,b的比例中项c的值为________.【答案】±2【分析】根据比例中项的概念得到2c ab=,再根据平方根的定义求得c即可.【详解】解:∵c为a、b的比例中项,∴2c ab=,∵a=1,b=4,∴24c ab==,解得:c=±2,故答案为:±2.【点睛】本题考查比例中项的概念、平方根的求法,熟练掌握比例中项的概念得到2c ab=是解答的关键,注意正数的平方根有两个,且互为相反数.10.(2022·江苏镇江·中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的_________倍.【答案】1.2【分析】设被称物的重量为a,砝码的重量为1,根据图中可图列出方程即可求解.【详解】解:设被称物的重量为a,砝码的重量为1,依题意得,2.531a=´,解得 1.2a=,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.三、解答题11.(2022·广西·靖西市教学研究室九年级期中)如果a c ekb d f===(b+d+f≠0),且a+c+e=5(b+d+f).求k的值.12.(2022·全国·九年级专题练习)已知a:b=3:2,求:(1)a b b +(2)27 4a bb-13.(2022·全国·九年级专题练习)(1)已知线段a=2,b=9,求线段a,b的比例中项.(2)已知x:y=4:3,求y xy-的值.一、填空题1.(2022·湖南·岳阳市第十九中学九年级期末)若34a c e b d f ===,则2323a c e b d f -+=-+______.2.(2022·江西景德镇·九年级期末)已知234a b c ==¹,且4a b c +-=,则=a ______.3.若3是x 和4的比例中项,则x 的值为___________4.(2021·四川内江·中考真题)已知非负实数a ,b ,c 满足123234a b c ---==,设23S a b c =++的最大值为m ,最小值为n ,则n m 的值为 __.【答案】1116+##0.6875二、解答题5.(2022·全国·九年级专题练习)已知3a b +=4b c +=5c a +,求a b c c a b ---+的值.6.(2022·全国·九年级专题练习)已知2222a b c d b c d a c d a b d a b c ===++++++++=k ,求k 2-3k-4的值.【点睛】本题主要考查了比例的性质的运用,解决问题的关键是掌握比例的性质.7.(2022·全国·九年级专题练习)已知线段a 、b 满足a :b =3:2,且a +2b =28(1)求a 、b 的值.(2)若线段x 是线段a 、b 的比例中项,求x 的值.8.(2022·全国·九年级专题练习)(1)若x y =115,求代数式2x y y -的值;(2)已知2a =3b =5c ≠0,求代数式23a b c a b c -+-+的值.。

成比例线段练习题#(简化版)

成比例线段练习题#(简化版)

成比例线段练习题#(简化版)题目1已知两条线段分别为AB和CD,且线段AB与线段CD成比例关系。

线段AB的长度为4 cm,线段CD的长度为6 cm。

求线段AB上的点E,使得线段AE与线段EB的比例与线段CD的比例相等。

解答:设点E的坐标为(x, y)。

根据题意,我们可以列出等式:AB / CD = AE / EB代入已知条件,得到:4 / 6 = AE / EB进一步化简,得到:2 /3 = AE / EB设EB的长度为m,由此可以得到AE的长度为2m/3。

又因为AE + EB = AB = 4 cm,所以我们可以列出等式:2m/3 + m = 4解方程可得:5m/3 = 4得到m = 12/5 cm。

因此,EB的长度为12/5 cm,AE的长度为2 * (12/5) / 3 = 8/5 cm。

所以点E的坐标为(x, y) = (8/5, 12/5)。

题目2已知线段EF为线段AB的延长线,线段EF的长度为10 cm,线段DF的长度为15 cm。

求线段DE与线段DF的比例。

解答:设线段DE的长度为x。

根据题意,我们可以列出等式:DE / DF = AE / AB代入已知条件,得到:x / 15 = AE / 4进一步化简,得到:x / 15 = AE / 4设AE的长度为y,由此可以得到DE的长度为x = 15y/4。

又因为AE + EB = AB = 4 cm,所以我们可以列出等式:y + 15y/4 = 4解方程可得:19y/4 = 4得到y = 16/19 cm。

因此,DE的长度为15 * (16/19) / 4 = 60/19 cm。

所以线段DE与线段DF的比例为60/19 : 15,可简化为4/19 : 1。

---以上是成比例线段练习题#(简化版)的题目和解答。

希望对你有帮助!。

比例线段的练习题

比例线段的练习题

比例线段的练习题在几何学中,比例线段是一种重要的概念,它常常出现在各种几何问题和计算中。

通过练习比例线段的计算和应用,我们可以更好地理解和运用这一概念。

本文将提供一些关于比例线段的练习题,帮助读者加深对比例线段的理解。

练习题一:已知线段AB长为12cm,线段CD长为8cm,且线段AB与线段CD成比例。

请计算线段EF的长度,使得线段EF与线段CD的比例与线段AB与线段CD的比例相同。

解答:设线段EF的长度为x,则根据线段比例的定义可得:AB/CD = EF/CD将已知条件代入上式,得到:12/8 = x/8通过求解方程,可得x = 12/2 = 6因此,线段EF的长度为6cm。

练习题二:已知线段PQ的长度为8cm,线段RS的长度为16cm,且线段PQ 与线段RS成比例。

如果线段ST的长度为12cm,且线段ST与线段RS 的比例与线段PQ与线段RS的比例相同,求线段UV的长度,并画出线段PQ、RS、ST、UV的关系示意图。

解答:设线段UV的长度为y。

根据线段比例的定义,可得到以下两个比例关系:PQ/RS = ST/RSRS/ST = UV/ST将已知条件代入上述比例关系,得到:8/16 = 12/1616/12 = y/12通过求解方程,可得y = 16/3因此,线段UV的长度为16/3 cm。

下面是线段PQ、RS、ST、UV的关系示意图(图中标注的长度并非按比例绘制):[图示]通过上述练习题,我们可以加深对比例线段的理解和应用。

通过计算和推导,我们能够更好地掌握比例线段的概念和运用方法。

希望读者通过这些练习题能够提高对比例线段的认识,并在实际问题中能够灵活运用。

成比例线段练习题及答案

成比例线段练习题及答案

成比例线段练习题及答案一、选择题1. 若线段AB与线段CD成比例,且AB=10cm,CD=8cm,则线段AB与线段CD的比例系数为:A. 0.8B. 1.25C. 1.5D. 2.52. 在比例线段中,若a:b = c:d,且a=6cm,b=3cm,c=4cm,则d的值是:A. 2cmB. 6cmC. 8cmD. 12cm3. 若线段EF与线段GH成比例,且EF=15cm,GH=20cm,求EF:GH的比例系数:A. 0.75B. 3/4C. 4/5D. 5/4二、填空题4. 若线段XY与线段PQ的比例系数为2,且XY=4cm,则PQ的长度是______。

5. 在比例线段中,若x:y = 3:5,且x=9cm,则y的长度是______。

6. 若线段MN与线段RS的比例系数为4/3,且RS=12cm,则MN的长度是______。

三、解答题7. 已知线段AB与线段CD的比例系数为3/2,求证线段AB与线段CD的乘积等于线段AB的平方。

8. 若线段EF与线段GH的比值为4:7,线段EF的长度为16cm,求线段GH的长度。

9. 线段IJ与线段KL成比例,比例系数为5/6,若线段IJ的长度为20cm,求线段KL的长度。

四、证明题10. 已知线段MN与线段OP成比例,比例系数为k,求证线段MN与线段OP的长度之和等于线段MN的长度加上k倍的线段OP的长度。

五、应用题11. 在一个矩形ABCD中,AB=6cm,BC=8cm,若将矩形ABCD按比例放大,使得AB变为12cm,求放大后的矩形的对角线AC的长度。

12. 某工厂生产零件,原设计零件长度为10cm,现需按比例缩小至5cm,求缩小后零件的面积与原零件面积的比例。

六、综合题13. 在三角形ABC中,AB=5cm,AC=7cm,BC=6cm,若三角形DEF与三角形ABC相似,且DE=10cm,求三角形DEF的边长DF和EF。

14. 已知线段GH与线段IJ的比例系数为3,若线段GH的长度为9cm,求线段IJ的长度,并计算线段GH与线段IJ的面积比。

七年级数学上成比例线段练习题

七年级数学上成比例线段练习题

七年级数学上成比例线段练习题
题目1
已知线段AB = 3cm,CD = 4cm,且AB与CD成比例,求线段AB的比例系数。

解题思路1
由题可知,线段AB与CD成比例,设比例系数为k,则有AB = k * CD,代入AB和CD的长度,得到3 = k * 4,解得k = 0.75,所以线段AB的比例系数为0.75。

题目2
在平面直角坐标系中,已知A(-3,4)、B(x,2),若线段AB与x 轴正半轴成比例,求x的值。

解题思路2
由题可知,线段AB与x轴正半轴成比例,所以线段AB的比例系数等于x轴正半轴上的点到点B的距离与点A到点B的距离之比。

设线段AB的比例系数为k,则有AB = kx,AE = kx,DE = 2 - kx,由勾股定理可得:$AB^2$ = $AE^2$ + $DE^2$,即
($kx$)$^2$ = ($kx$)$^2$ + (2 - $kx$)$^2$,简化得到3$kx^2$ - 4kx + 4 = 0,解得x = 2/3或2,由于点B在第二象限,所以x = 2/3。

题目3
已知线段AB = 6cm,DE = 15cm,且线段AB与DE成比例,求线段DE的长度。

解题思路3
由题可知,线段AB与DE成比例,设比例系数为k,则有AB = k * DE,代入AB和DE的长度,得到6 = k * 15,解得k = 0.4,所以线段DE的长度为15 * 0.4 = 6cm。

九年级数学上册成比例线段练习题精选

九年级数学上册成比例线段练习题精选

第1课时 线段的比和比例的基本性质基础题知识点1 线段的比1.如图,线段AB∶BC=1∶2,则AC∶BC 等于( )A .1∶3B .2∶3C .3∶1D .3∶22.已知a =0.2,b =0.04,则a∶b=________.3.已知a =2 cm ,b =30 mm ,则a∶b=________.4.在△ABC 中,∠B =90°,AB =BC =10 cm ,在△DEF 中,ED =EF =12 cm ,DF =8 cm ,求AB 与EF 之比, AC 与DF 之比.知识点2 比例线段5.四条线段a ,b ,c ,d 成比例,其中a =3 cm ,d =4 cm ,c =6 cm ,则b 等于( )A .8 cm B.29cm C.92cm D .2 cm 6.2013版《中华人民共和国全图》在左下角特别配有一幅放大的钓鱼岛插图,比例尺为1∶1 500 000,已知钓鱼岛东西长约3.5公里,则在地图上的东西长约为( )A .0.002 3 cmB .0.23 cmC .4.29 cmD .0.042 9 cm7.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为________米.8.已知a 、b 、c 、d 四条线段依次成比例,其中a =3 cm ,b =(x -1)cm ,c =5 cm ,d =(x +1)cm.求x 的值.知识点3 比例的基本性质9.已知x 3=y 2,那么下列式子中一定成立的是( ) A .2x =3y B .3x =2yC .x =2yD .xy =610.若2y -5x =0,则x∶y 等于( )A .2∶5B .4∶25C .5∶2D .25∶411.已知线段m ,n ,且m n =34,求m +n m 的值. 中档题 12.不为0的四个实数a 、b 、c 、d 满足ab =cd ,改写成比例式错误的是( )A.a c =d bB.c a =b dC.d a =b cD.a b =c d13.有四组线段,每组线段长度如下:①2,1,2,2;②3,2,6,4;③12,1,5,2;④1,3,5,7,能组成比例的有( )A .1组B .2组C .3组D .4组14.将两块长a 米,宽b 米的长方形红布,加工成一个长c 米,宽d 米的长方形,有人就a ,b ,c ,d 的关系写出了如下四个等式,不过他写错了一个,写错的那个是( )A.2a c =d bB.a c =d 2bC.2a d =c bD.a 2c =d b15.已知线段a =2,b =2+3,c =2- 3.(1)若a∶b=c∶x,求线段x 的长;(2)若b∶y=y∶c,求线段y 的长.16.在比例尺为1∶8 000 000的地图上,测量出太原到北京的铁路全长为6.4 cm ,若某火车从太原到北京一共行驶了3小时12分钟,求该火车的速度是多少.17.已知三条线段的长分别为1 cm 、2 cm 、 2 cm ,如果另外一条线段与它们是成比例线段,试求出另外一条线段的长. 18.如图所示,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,AP BP =AQ BQ =32,求线段PQ 的长.综合题19.在△ABC 中,AB =12,点E 在AC 上,点D 在AB 上,若AE =6,EC =4,且AD DB =AE EC. (1)求AD 的长;(2)试问DB AB =EC AC能成立吗?请说明理由.参考答案1.D 2.5∶1 3.2∶3 4.在Rt △ABC 中,根据勾股定理知,AC =AB 2+BC 2=10 2 cm ,则AB EF =1012=56,AC DF =1028=524. 5.D 6.B 7.9.6 8.依题意,得3x -1=5x +1.解得x =4.经检验,x =4是原方程的解,∴x =4. 9.A 10.A 11.∵m n =34,∴可设m =3k ,则n =4k.∴m +n m =3k +4k 3k =73. 12.D 13.B 14.D 15.(1)由题意得22+3=2-3x .解得x =12.(2)由题意得2+3y =y 2-3.解得y =±1.由于线段y 为正数,所以y =1. 16.6.4厘米×8 000 000=51 200 000厘米=512千米.3小时12分钟=315小时.该火车的速度是512÷315=160(千米/小时). 17.设另一条线段长为x cm ,有三种情况:①1×2=2x ,解得x =2;②2×2=1×x,解得x =22;③1×2=2x ,解得x =22.综上所述,另外一条线段的长是2 2 cm 或 2 cm 或22cm. 18.设AP =3x ,BP =2x.∵AB=10,∴AB =AP +BP =3x +2x =5x ,即5x =10.∴x=2.∴AP=6,BP =4.∵AQ BQ =32,∴可设BQ =y ,则AQ =AB +BQ =10+y.∴10+y y=32.解得y =20.∴PQ=PB +BQ =4+20=24. 19.(1)AD =365.(2)能,由AB =12,AD =365,故DB =245.于是DB AB =25.又EC AC =410=25,故DB AB =EC AC.比例线段姓名__________一.选择题(共12小题)1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.已知=,那么的值为()A.B.C.D.3.已知,则的值是()A.B.C.D.4.(2016•闵行区一模)在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是()A.2000000cm2 B.20000m2C.4000000m2 D.40000m25.(2016•黄浦区一模)已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm6.(2015春•成都校级期末)下列长度的各组线段中,能构成比例线段的是()A.2,5,6,8 B.3,6,9,18C.1,2,3,4 D.3,6,7,97.(2015秋•龙海市校级期末)下列各组中的四条线段成比例的是()A.6cm、2cm、1cm、4cmB.4cm、5cm、6cm、7cmC.3cm、4cm、5cm、6cmD.6cm、3cm、8cm、4cm8.已知,则的值是()A.3B.4C.﹣4D.﹣39.(2015秋•莘县期末)若==,且3a﹣2b+c=3,则2a+4b﹣3c的值是()A.14 B.42 C.7 D.10.(2015春•苏州校级期末)已知线段a=l,c=5,线段b是线段a、c的比例中项,线段b的值为()A.2.5 B.C.±2.5 D.±11.(2004•遂宁)如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.:1B.1:C.:1D.1:12.(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5二.填空题(共5小题)13.已知≠0,则的值为.14.(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.15.(2015•大庆)已知=,则的值为.16.(2000•天津)已知,则a:b=.17.(2002•福州)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.三.解答题(共1小题)18.(2015秋•浦东新区月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.参考答案一.选择题(共12小题)1.B;2.B;3.D;4.B;5.C;6.B;7.D;8.A;9.D;10.B;11.A;12.A;二.填空题(共5小题)13.;14.3;15.-;16.19:13;17.6;三.解答题(共1小题)18.;成比例线段同步练习题精选命题:平顶山市状元郎数学辅导学校 杨书山【概念回顾】:1.四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比, 如:d c b a =(或a ∶b =c ∶d ),那么这四条线段叫做__________,简称_________.2.成比例线段的性质:如果dc b a =,那么__________ 3.合比性质:_____________________________________4.等比性质:______________________________________________________________________________【练习题】:一、选择题:1、判断下列线段是否是成比例线段:(1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.2、下列线段能成比例线段的是( )(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm(C)2cm,5cm,3cm,1cm(D)2cm,5cm,3cm,4cm3、已知32=b a ,则b b a +的值为( )(A)23 (B)34 (C)35 (D)53 4、若互不相等的四条线段的长a,b,c,d 满足a b =c d ,m 为任意实数,则下列各式中,相等关系一定成立的是( )(A ) a +m b +m =c +m d +m (B )a +b b =c +d c (C )a c =d b (D )a -b a +b =c -d c +d 5、如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)326、若ac =bd ,则下列比例式中不正确的是 ( ) (A)c b d a = (B)d a c b = (C)d b c a = (D)dc a b = 7、若3x =x 4 ,则x 等于( ) (A)12 (B)2 3 (C)- 2 3 (D)±2 38、若(m+n):n=5:2,则m:n 的值是( )(A)5:2 (B)2:3 (C)3:2 (D)2:59、若a b =c d ,下列各式中正确的个数有( )a d =c d , d:c=b:a, ab =a 2b 2 , a b =c+5d+5 , a b =a+c a+d , c d =ma mb (m ≠0)(A)1 (B)2 (C)3 (D)410、若ba c a cbc b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12 二、填空题1 、线段a=1cm ,b=4cm ,c=9cm , 那么a 、b 、c 的第四比例项d=____2、已知5x-8y=0,则x+y x = ,如果053=-y x ,且y ≠0,那么yx = . 3、如果x y =73 ,那么x -y y = ,x +y y = , x +y x +y= 4、如果5:4:3::=c b a ,那么=+--+cb ac b a 3532 ; 5、.若9810z y x ==, 则 ______=+++zy z y x ,已知x 5 =y 3 =z 4 ,则2x+y-z x+3y+z = 6、.若322=-y y x , 则_____=yx . 7、已知32==d c b a ,若0≠+d b ,则=++db c a 8、已知a b =c d =e f =35 ,b +d +f =50,那么a +c +e =9、若0622=--y xy x ,则=y x : ; 10、若43===f e d c b a , 则______=++++fd be c a . 11、若k ba c a cbc b a =+=+=+ 则k=______ 12、已知(-3):5=(-2):(x -1),则x =14、已知a b =c d =e f =35 ,则____432432=+-+-f d b e c a 15、如果y y x +=73 ,那么___=y x ,x -y y = , yx y x +-= 16、如图,已知ΔABC 中,CE AE DB AD =,AC=7cm,CE=3cm,AB=6cm,则AD= ; 17、已知S 正方形=S 矩形,矩形的长和宽分别为10cm 和6cm ,则正方形的边长为18、在Rt ΔABC 中,∠C=90°, ∠A=30°则a:b:c=19、已知x:y=2:3,则(3x+2y ):(2x-3y)=20、已知5x+y 3x-2y =12 ,则x y = , x+y x-y = ;三、解答题1、已知0753≠==z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++354322、已知有三条线段长为1cm 、4cm 、9cm ,请你再添加一条线段,使这四条线段为成比例线段,求所添加线段的长A BCD E3. 已知0≠-=-=-z a c y c b x b a ,求x+y+z 的值.。

比例及比例线段专项练习题

比例及比例线段专项练习题

一、填空题1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。

2、线段a=2cm ,b=3cm ,c=1cm , 那么a 、b 、c 的第四比例项d= 。

3.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .4.若9810z y x ==, 则 ______=+++z y z y x .5.若43===f e d c b a , 则______=++++f d b e c a . 6.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .7.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = .8.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .13.已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________.14.设实数x ,y ,z 使│x -2y│+ (3x-z )2=0成立,求x :y :z 的值________.15、已知3)(4)2(y x y x -=+,则=y x : ,=+x y x 16、543z y x ==,则=++xz y x ,=+-++z y x z y x 53232 17比例尺为1:50000的地图上,两城市间的图上距离为20cm ,则这两城市的实际距离是 公里。

18、如果3:1:1::=c b a ,那么=+--+cb ac b a 3532 19..图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .20.如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ;17.已知b a =d c =52 (b+d ≠0),则d b c a ++= 20.已知35=y x ,则=-+)(:)(y x y x21.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a 22.已知a b a 3)(7=-,则=b a 23.如果2===c z b y a x ,那么=+-+-cb a z y x 3232 24、若312=-n n m ,则n m = ;若7:4:2::=z y x ,且3223=+-z y x ,则x = , y = ,z = 。

比例性质和比例线段专项练习30题(有答案)

比例性质和比例线段专项练习30题(有答案)

比的性质和比例线段30题(有答案)1.若==(abc≠0),求的值.2.已知:(x、y、z均不为零),求的值.3.已知:,求代数式的值.4.已知===k,求k的值.5.已知x:y:z=2:3:4,求的值.6.已知a:b:c=3:2:1,且a﹣2b+3c=4,求2a+3b﹣4c的值.7.已知,(1)求的值;(2)若,求x值.8.已知xyz≠0且,求k的值.9.若==,求a:b:c的值.10.已知:==,求的值.11.若=k,且x+y﹣z=5,求x,y,z的值.12.如果,求k的值.13.已知线段.(1)若a:b=c:x,求x;(2)若b:y=y:c,求y.14.已知:=,说明:ab+cd是a2+c2和b2+d2的比例中项.15.已知:==≠0,求a:b:c的值.16.操场上有一群学生在玩游戏,其中男生与女生的人数比是3:2,后来又有6名女生参加进来,此时男生与女生人数的比为5:4,求原来各有多少名男生和女生?17.已知,求的值.18.求的值.19.已知,且b+d+f≠0(1)求的值;(2)若a﹣2c+3e=5,求b﹣2d+3f的值.20.已知a、b、c为△ABC的三边长,且a+b+c=36,==,求△ABC三边的长.21.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.22.(1)已知a=4,c=9,若b是a,c的比例中项,求b的值.(2)已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长.并思考两题有何区别.23.已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比以及比值;(2)如果线段a,b,c,d成比例,求线段d的长.24.在长为a的线段AB上有一点C,且AC是AB,BC的比例中项,求线段AC的长.25.在△ABC中,D是BC上一点,若AB=15cm,AC=10cm,且BD:DC=AB:AC,BD﹣DC=2cm,求BC的长.26.下列各组中的a,b,c,d四个数是否成比例,若成比例请写出比例式(式中须含全部4个字母).(1)a=1cm,b=3cm,c=6cm,d=9cm;(2)a=5cm,b=10cm,c=15cm,d=20cm;(3)a=1.9cm,b=8.1cm,c=5.7cm,d=2.7cm;(4)a=126cm,b=23cm,c=14cm,d=207cm.27.已知a,b,c,d四个数成比例,且a,d为外项.求证:点(a,b),(c,d)和坐标原点O在同一直线上.28.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).29.(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长.(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项.求线段c的长.(3)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4,x=2时,y=5.求:①y与x之间的函数关系式;②当x=4时,求y的值.30.如图,已知△ABC中,AB=AC,∠BAC=120°,求AB:BC的值.比的性质和比例线段30题参考答案:1.解:设===k,则a=2k,b=3k,c=5k,所以===.2.解:设=k,则x=6k,y=4k,z=3k∴===3.3.解:设=t,∴,解得,,∴==.4.解:①a+b+c≠0时,∵===k,∴k==2;②a+b+c=0时,a+b=﹣c,a+c=﹣b,b+c=﹣a,所以,k==﹣1,综上所述,k的值为2或﹣15.解:∵x:y:z=2:3:4,∴设x=2k,y=3k,z=4k,∴===6.解:∵a:b:c=3:2:1,∴设a=3k,b=2k,c=k,∵a﹣2b+3c=4,∴3k﹣4k+3k=4,∴k=2,∴a=6,b=4,c=2,∴2a+3b﹣4c=12+12﹣8=16.7.解由,设x=2k,y=3k,z=4k,(1),(2)化为,∴2k+3=k2,即k2﹣2k﹣3=0,∴k=3或k=﹣1,经检验,k=﹣1不符合题意,∴k=3,从而x=2k=6,即x=6.8.解:∵xyz≠0,∴x、y、z均不为0,①当x+y+z≠0时,∵===k,∴k==2,②当x+y+z=0时,x+y=﹣z,z+x=﹣y,y+z=﹣x,所以,k=﹣1,综上所述,k=2或﹣1.9.解:∵==,∴==,∴a+c=2b,∴==,∴=,整理得,a=b,∴b+c=2b,c=b,∴a:b:c=b:b:b=2:3:410.解:设比值为k,则2a﹣b﹣c=ka,﹣a﹣c+2b=kb,﹣a﹣b+2c=kc,所以,b+c=(2﹣k)a,a+c=(2﹣k)b,a+b=(2﹣k)c,∵==,∴=k=0,∴==(2﹣k)3,∵k=0,∴(2﹣k)3=(2﹣0)3=8,∴=8.11.解:∵===k,∴x=2k,y=3k,z=4k,∵x+y﹣z=5,∴2k+3k﹣4k=5,解得k=5,∴x=10,y=15,z=20.12.解:①当x+y+z=0时,y+z=﹣x,z+x=y,x+y=﹣z,∴k为其中任何一个比值,即k==﹣1;②x+y+z≠0时,k===2.13.解:(1)整理得:=,∴x=c÷==(2+)(2﹣)×2=2;(2)由,可得,∴y2=(2+)(2﹣)=1.∴y=±1.14.解:∵=,∴ad=bc,∵(ab+cd)2=a2b2+2abcd+c2d2,(a2+c2)(b2+d2)=a2b2+a2d2+b2c2+c2d2=a2b2+2abcd+c2d2,∴(ab+cd)2=(a2+c2)(b2+d2),∴ab+cd是a2+c2和b2+d2的比例中项15.解:设:===k,则:,①﹣②得:a﹣c=﹣k ④,③+④得:2a=6k,∴a=3k,∴b=﹣k,c=4k,∴a:b:c=3:(﹣1):4.16.解:设男生与女生原来的人数分别为3k、2k,由题意得,=,整理得,12k=10k+30,解得k=15,3k=3×15=45,2k=2×15=30.答:原来各有45名、30名男生和女生.17.解:设=x,分情况进行:当a+b+c+d≠0时,根据等比性质,得x===1,∴a=b=c=d,∴==2;当a+b+c+d=0时,则=0.故的值为2或018.解:设=x,分情况进行:当a+b+c≠0时,根据等比性质,得x==;当a+b+c=0时,则a+b=﹣c,x=﹣1.故的值为﹣1或.19.解:(1)∵===2,∴=2;(2)∵===2,∴a=2b,c=2d,e=2f,∵a﹣2c+3e=5,∴2b﹣2(2d)+3(2f)=5,∴b﹣2d+3f=2.520.解:==,得a=c,b=c,把a=c,b=c代入且a+b+c=36,得c+c+c=36,解得c=15,a=c=9,b=c=12,△ABC三边的长:a=9,b=12,c=15.21.解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×3=18;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.22.解:(1)∵b是a,c的比例中项,∴a:b=b:c,∴b2=ac;b=±,∵a=4,c=9,∴b=±=±6,即b=±6;(2)∵MN是线段,∴MN>0;∵线段MN是AB,CD的比例中项,∴AB:MN=MN:CD,∴MN 2=AB•CD,∴MN=±;∵AB=4cm,CD=5cm,∴MN=±=±2;MN不可能为负值,则MN=2,通过解答(1)、(2)发现,c、MN同时作为比例中项出现,c可以取负值,而MN不可以取负值.23.解:a=0.3m=3dm,b=60cm=6dm,c=12dm.(1)a:b=3:6=;(2)∵线段a,b,c,d成比例,∴3:6=12:d,解得d=24.故线段d的长是24分米24.解:设AC=x,则BC=a﹣x,∵AC是AB,BC的比例中项,∴AC2=BC•AB,即x2=(a﹣x)•a,解得:x=a,∵AC>0,∴AC=a.故线段AC的长为a25.解:∵BD:DC=AB:AC,AB=15cm,AC=10cm,∴BD:DC=15:10=3:2,设BD=3x则DC=2x,∵BD﹣DC=2,∴3x﹣2x=2,x=2,∴BC=BD+CD=5x=10cm.26.解:(1)从小到大排列,由于1×9≠3×6,所以不成比例;(2)从小到大排列,由于5×20≠10×15,所以不成比例;(3)从小到大排列,由于1.9×8.1=5.7×2.7,所以成比例,比例式为a:c=d:b;(4)从小到大排列,由于14×207=23×126,所以成比例,比例式为a:c=d:b.(或c:b=a:d)27.证明:设经过点O和(a,b)的直线是y=kx,则b=ak,则k=,设经过点O和(c,d)的直线的解析式是:y=mx,则d=cm,解得:m=,∵a,b,c,d四个数成比例,∴=,∴=,∴k=m,则直线y=kx和直线y=mx是同一直线,即点(a,b),(c,d)和坐标原点O在同一直线上28.解:(1)路线图(6分)(P、A、C点各2分)注意:起点是必须在所给的图形中画,否则即使画图正确扣;(2分)(2)量得∠PAC≈105°,∠ACP≈45°;(9分)(只有1个正确得2分)(3)量路线图得AC≈3.5厘米,PC≈6.8厘米.∴AC≈3.5千米;PC≈6.8千米(13分)29.解:(1)∵a、b、c、d是成比例线段,∴=,∵a=3,b=2,c=6,代入得:d=4,答:线段d的长是4cm.(2)解:∵线段c是线段a和b的比例中项,∴c2=ab,∵a=4,b=9,代入得:c=6,答:线段c的长是6cm.(3)①解:∵y1与x成正比例,设y1=ax,(a≠0),∵y2与x成反比例,设y2=(b≠0)∴y=ax+,把x=1,y=4和x=2,y=5代入得:,解得:,∴y=2x+,答:y与x之间的函数关系式是y=2x+.②解:由①知:y=2x+,当x=4时,y=,答:当x=4时,y的值是.30.解:如图,过点A作AD⊥BC于D,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BD,设AD=x,则AB=2AD=2x,根据勾股定理,BD===x,∴BC=2x,∴AB:BC=2x:2x=1:.。

专题27.2 比例的性质及成比例线段(基础篇)(专项练习)-2022-2023学年九年级数学下册基础

专题27.2 比例的性质及成比例线段(基础篇)(专项练习)-2022-2023学年九年级数学下册基础

专题27.2 比例的性质及成比例线段(基础篇)(专项练习)一、单选题1.地图上乐山到峨眉的图上距离为3.8厘米,比例尺是1:1000000,那么乐山到峨眉的实际距离是( )A .3800米B .38000米C .380000米D .3800000米2.已知线段b 是线段a 和线段c 的比例中项,若3a =,4c =,则b 的值是( )A .3.5B .6C .D .3.某地图上1cm 2面积表示实际面积900m 2,则该地图的比例尺是( ) A .1:30B .1:3000C .1:900D .1:900000004.已知线段d 是线段a 、b 、c 的第四比例项,其中a =2cm ,b =4cm ,c =5cm ,则d 等于( )A .1cmB .10cmC .52cmD .85cm5.下面的四个数中能组成比例的是( )A .14、34、0.6和0.3B .20、14、4和5C .3、4、12和13D .6、10、9和156.如果4a =5b (ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45b a = 7.已知a cb d=,则下列各式成立的是( ) A .a d c b = B .b a c d=C .a ca d c b=++ D .a b ac d c+=+ 8.下列四组线段中,是成比例线段的是( ) A .0.5,3,2,10 B .3,4,6,2 C .5,6,15,18D .1.5,4,1.2,59.如果:12:8a b =,且b 是a ,c 的比例中项,那么:b c 等于( )A .4:3B .3:2C .2:3D .3:410.如图,P 是线段AB 的黄金分割点,且P A >PB ,S 1表示P A 为一边的正方形的面积,S 2表示长为AB 、宽为PB 的矩形面积,则S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定二、填空题11.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是_______厘米. 12.已知点B 在线段AC 上,2AB BC =,那么:AC AB 的比值是_________. 13.若32a b =,则235a b a b +-=_____.14.若234a b c ==,则63a bb c +=-___________.15.已知线段8a =,2b =,线段c 是线段a ,b 的比例中项,则c =_______. 16.已知52a b =,则():a b b +的值为_________.17.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,可列方程为__________.18.两地的实际距离是1200千米,在地图上量得这两地的距离为2厘米,则这幅地图的比例尺是1∶___.19.已知三条线段a 、b 、c ,其中1a cm =,4b cm =,c 是a 、b 的比例中项,则c =_____cm .20.如图1)一次又一次对开,按图2叠放,可以发现,这些叠放起来的矩形的右上顶点与左下顶点在同一直线上. 若以图2最大矩形的左下顶点为原点,以宽和长所在直线分别为x 轴和y 轴,则这组矩形的右上顶点所在直线的函数表达式为______.三、解答题21.(1)已知线段a =2,b =9,求线段a ,b 的比例中项. (2)已知x :y =4:3,求y xy-的值.22.已知x :y :z =3:5:7,求234532x y zx y z-++-的值.23.线段a 、b 、c ,且234a b c ==. (1)求a bb+的值. (2)如线段a 、b 、c 满足27a b c ++=,求a b c -+的值.24.已知线段a 、b 、c 满足a :b :c =3:2:6,且a +2b +c =26. (1)求a 、b 、c 的值;(2)若线段x是线段a、b的比例中项,求x的值.参考答案1.B【分析】设乐山到峨眉的实际距离为x cm ,利用比例尺的定义得到3.8:x =1:1000000,然后利用比例的性质求出x ,再化单位化为米即可.解:设乐山到峨眉的实际距离为x 厘米,根据题意得3.8:x =1:1000000, 解得x =3800000,所以乐山到峨眉的实际距离是3800000厘米,即38000米. 故选:B .【点拨】本题考查了比例线段,正确理解比例尺的定义是解决问题的关键. 2.C 【分析】根据题意列出比例式,计算即可求得答案 解:23412b ac ==⨯=∴b =故选C【点拨】本题考查了成比例线段,比例中项的概念,理解比例的性质是解题的关键.比例式为 ::a b b c =,则内项 b 称为外项 a 和c 的比例中项.3.B 【分析】先设该地图的比例尺是1:x ,根据面积比是比例尺的平方比,列出方程,求得x 的值即可.解:设该地图的比例尺是1:x ,根据题意得:1:x 2=1:9000000,解得x 1=3000,x 2=−3000(舍去). 则该地图的比例尺是1:3000; 故选:B .【点拨】此题考查了线段的比,根据面积比是比例尺的平方比,列出方程是解题的关键. 4.B 【分析】根据第四比例项的概念,得a :b =c :d ,再根据比例的基本性质,求得第四比例项.解:∶线段d 是线段a 、b 、c 的第四比例项,∶a :b =c :d ∶bc d a=∶a =2cm ,b =4cm ,c =5cm , ∶45102bc da cm ∶线段a ,b ,c 的第四比例项d 是10cm . 故选:B .【点拨】本题考查的是比例的基本性质,熟悉第四比例项的概念,写比例式的时候一定要注意顺序.再根据比例的基本性质进行求解是关键.5.D 【分析】根据比例的性质依次判断四个选项即可.解:A 、因为14:0.3≠0.6:34,所以A 选项不符合题意;B 、因为4:5≠14:20,所以B 选项不符合题意;C 、因为13:12≠3:4,所以C 选项不符合题意;D 、因为6:9=10:15,所以D 选项符合题意. 故选:D .【点拨】本题考查比例的性质,熟练掌握该知识点是解题关键. 6.A 【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案. 解:两边都除以20,得54a b=,故A 正确; B 、两边都除以20,得54a b=,故B 错误; C 、两边都除以4b ,得54a b =,故C 错误; D 、两边都除以5a ,得45ba=,故D 错误. 故选:A .【点拨】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.7.D 【分析】根据比例的性质解答并判断. 解:∶a cb d=, ∶a b c d b d ++=,b ad c=, ∶a b bc d d+=+, ∶a b ac d c+=+, 故选:D .【点拨】此题考查了比例的性质,熟记比例的性质是解题的关键. 8.C 【分析】根据各个选项中的数据可以判断哪个选项中的四条线段不成比例,本题得以解决. 解:∶052310≠.,故选项A 中的线段不成比例,不符合题意; ∶3642≠,故选项B 中的线段不成比例,不符合题意; ∶515=618,故选项C 中的线段成比例,符合题意; ∶151245≠..,故选项D 中的线段不成比例,不符合题意, 故选:C【点拨】本题考查比例线段,解题的关键是明确题意,找出所求问题需要的条件. 9.B 【分析】由b 是a 、c 的比例中项,根据比例中项的定义,即可求得=b ac b,又由a :b =12:8,即可求得答案.解:∶b 是a 、c 的比例中项,∶b 2=ac ,b ac b∴=∶a:b=12:8,∶12382ab==,:3:2b c∴=,故选:B.【点拨】此题主要考查了比例线段,正确把握比例中项的定义是解题关键.10.B【分析】根据黄金分割的定义得到P A2=PB•AB,再利用正方形和矩形的面积公式有S1=P A2,S2=PB•AB,即可得到S1=S2.解:∶P是线段AB的黄金分割点,且P A>PB,∶P A2=PB•AB,又∶S1表示P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∶S1=P A2,S2=PB•AB,∶S1=S2.故选B.【点拨】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.11.4【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求.解:∶线段b是a、c的比例中项,∶b2=ac=2×8=16,解得b=±4,又∶线段是正数,∶b=4.故答案为4.【点拨】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.12.32【分析】根据题意作出图形,进而即可求解. 解:如图,∶2AB BC = 设,BC a =则2AB a =23AC AB BC a a a ∴=+=+=∶:3:2AC AB = 故答案为:3:2【点拨】本题考查了比例线段,数形结合是解题的关键. 13.1213【分析】根据32a b =,设3,2a k b k ==,代入代数式求值即可. 解:∶32a b =,设3,2a k b k ==,∶235a b a b +-661215213k k k k +==-, 故答案为:1213【点拨】本题考查了比例的性质,掌握比例的性质是解题的关键. 14.3 【分析】 设234a b ck ===,则2a k =,3b k =,4c k =,然后代入所求的代数式即可求解. 解:设234a b ck ===,则2a k =,3b k =,4c k =, ∶662315333345a b k k kb c k k k+⨯+===-⨯-, 故答案为:3【点拨】本题考查了比例的性质,根据题意设k 法是比较好的解题方法. 15.4【分析】利用比例中项的定义得到c 2=ab =16,然后求出16的算术平方根即可. 解:∶线段c 是线段a ,b 的比例中项,∶c 2=ab ,而线段a =8,b =2, ∶c 2=8×2=16, 而c >0, ∶c =4. 故答案为:4.【点拨】本题考查了成比例线段,掌握比例中项的定义是解决问题的关键. 16.75【分析】首先得到a =25b ,然后代入代数式求值.解:∶5a =2b ,∶a =25b ,∶277555b b ba b b b b ++===, 故答案为:75.【点拨】本题考查比例的性质和分式的化简求值,解题的关键是掌握分子和分母都除以同一个不为0的数.17.33x xx -=或()233x x =- 【分析】设雕像的下部高为x m ,则上部长为(2-x )m ,然后根据题意列出方程即可. 解:设雕像的下部高为x m ,则上部长为(3-x )m ,由题意得:33x xx -=, 即()233x x =-,故答案为:33x xx -=或()233x x =-.【点拨】本题考查了线段的比,解题的关键在于读懂题目信息并列出方程. 18.60000000【分析】根据比例尺=图上距离:实际距离列式计算即可.解:1200千米=120000000厘米,2:120000000=1:60000000.故答案为:60000000.【点拨】本题考查了比例线段,掌握比例尺的定义是解题的关键,注意单位的换算问题.19.2【分析】由c 是a 、b 的比例中项,根据比例中项的定义,列出比例式即可得出线段c 的长,注意线段的长度不能为负.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段长度的乘积.∶c 是a 、b 的比例中项,∶2144c ab ==⨯=,解得:2c =±(线段的长度是正数,负值舍去),则2c cm =.故答案为:2【点拨】本题考查了比例线段;理解比例中项的概念,这里注意线段的长度不能是负数.20.y =【分析】设直线为y =kx +b .解:设直线为y =kx +b ,∶直线经过原点,∶b =0.由矩形的性质可知:矩形的右上顶点的坐标为该矩形的宽和长,∶长∶宽,∶y ∶x ∶1,∶y x ,故答案为y =;【点拨】本题考查了一次函数解析式,矩形的性质,比例的性质;掌握一次函数的性质是解题关键.21.(1)2)1 3 -【分析】(1)设线段x是线段a,b的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.(2)设x=4k,y=3k,代入计算,于是得到结论.解:(1)设线段x是线段a,b的比例中项,∶a=3,b=6,x2=3×6=18,x=±∶线段a,b的比例中项是(2)设x=4k,y=3k,∶y xy-=343k kk-=13-.【点拨】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.22.19 16【分析】根据x:y:z=3:5:7设x=3k、y=5k、z=7k,然后代入234532x y zx y z-++-化简求解即可.解:∶x:y:z=3:5:7,∶设x=3k、y=5k、z=7k,∶234 532 x y z x y z-++-=233547 533527k k kk k k ⨯-⨯+⨯⨯+⨯-⨯=19 16【点拨】此题考查了比例的性质,解题的关键是根据比例的性质转化成含同一字母的式子.23.(1)53;(2)9【分析】(1) 根据比例的性质得出23a b =, 即可得出a b b +的值; (2) 首先设234a b c ===k, 则a=2k, b=3k, c=4k,利用a+b+c=27求出的值即可得出答案. 解:(1)23a b =,∴23a b = ∴53a b b +=; (2)设234a b c ===k, 则a=2k, b=3k, c=4k , 由a+b+c=27,由2k+3k+4k=27,得:k=3,∴a=6,b=9,c=12故a b c -+ =6-9+12=9, 故答案:53;9. 【点拨】这是一道考查代数式求值的题目, 属于中等难度的题目, 只要同学们认真分析就可以求出答案.24.(1)a =6,b =4,c =12;(2)x 的值为【分析】(1)设比值为k ,然后用k 表示出a 、b 、c ,再代入等式求解得到k ,然后求解即可; (2)根据比例中项的定义列式求解即可.解:(1)∶a :b :c =3:2:6,∶设a =3k ,b =2k ,c =6k ,又∶a +2b +c =26,∶3k +2×2k +6k =26,解得k =2,∶a =6,b =4,c =12;(2)∶x 是a 、b 的比例中项,∶x 2=ab ,∶x 2=4×6,x =∶x =x =-(舍去),即x 的值为【点拨】本题考查比例与比例中项问题,掌握比例性质以及比例中项定义,如果a 、b 、c三个量成连比例即a:b=b:c,b叫做a和c的比例中项.。

成比例线段练习题初三

成比例线段练习题初三

成比例线段练习题初三题目一:已知线段AB与线段CD成比例关系,且AB=15cm,CD=6cm。

求线段EF的长度,已知线段EF与线段AB成比例,且EF=10cm。

解答:根据题意已知AB与CD成比例,可以得到比例关系式:AB/CD = AE/CF将已知数据代入得:15/6 = AE/CF进一步计算可得:AE = 15 * CF / 6又已知EF与AB成比例,得到比例关系式:AB/EF = CD/EF = AE/EF代入已知数据,得:15/10 = AE/EF进一步计算可得:AE = 15 * EF / 10将上述两个关系式相等,得到:15 * CF / 6 = 15 * EF / 10化简上述方程,消去分数,得到:5CF = 3EF进一步化简,得:CF = 3/5 * EF根据上述结果可知,CF与EF也是成比例的,且比例系数为3/5。

由此,线段EF的长度为10cm,CF的长度可以根据比例关系计算出来:CF = 3/5 * EF代入EF的值得:CF = 3/5 * 10 = 6cm总结,根据已知线段AB与线段CD成比例的关系以及线段EF与线段AB成比例的关系,可以计算出线段EF的长度为10cm,线段CF的长度为6cm。

题目二:已知线段MN与线段OP成比例,且MN=8cm,OP=20cm。

求线段PQ的长度,已知线段PQ与线段MN成比例,且PQ=12cm。

解答:根据题意已知MN与OP成比例,可以得到比例关系式:MN/OP = PQ/QN代入已知数据,得:8/20 = PQ/QN进一步计算可得:Qn = PQ * 20 / 8又已知PQ与MN成比例,得到比例关系式:MN/PQ = OP/PQ = Qn/PQ代入已知数据,得:8/12 = Qn/PQ进一步计算可得:Qn = 8 * PQ / 12将上述两个关系式相等,得到:PQ * 20 / 8 = 8 * PQ / 12化简上述方程,消去分数,得到:5PQ = 2PQ进一步化简,得:3PQ = 0显然,上述方程无解。

九年级数学比例线段练习题

九年级数学比例线段练习题

九年级数学比例线段练习题题目一:一根长度为20厘米的线段,按照比例1:4分成两段。

求较长的线段的长度。

解答:设较长的线段为x,较短的线段为y,则根据比例关系可以得到以下等式: x + y = 20 (1) x:y = 1:4 (2)
由(2)式可得 x = 4y,代入(1)式得: 4y + y = 20 5y = 20 y = 4
将y的值代入(2)式可得: x:4 = 1:4 x = 4
所以,较长的线段的长度为4厘米。

题目二:在一个比例尺为1:20的地图上,两个城市的实际距离为15千米。

求地图上这两个城市之间的距离。

解答:设地图上这两个城市之间的距离为x,根据题意可以得到以下等式:x/20 = 15
将等式两边乘以20,可得: x = 15 * 20 x = 300
所以,地图上这两个城市之间的距离为300千米。

题目三:一根线段的长度为12厘米,按照比例1:3:5分成三段。

求较长的线段的长度。

解答:设较长的线段为x,中间的线段为y,较短的线段为z,则根据比例关系可以得到以下等式: x + y + z = 12 (1) x:y:z = 1:3:5 (2)由(2)式可得 x = 3y,z = 5y,代入(1)式得: 3y + y + 5y = 12 9y = 12 y = 12/9 y = 4/3
将y的值代入(2)式可得: x:4/3:5/3 = 1:3:5 x = 4/3 * 1 x = 4/3
所以,较长的线段的长度为4/3厘米。

初三数学比例线段练习题

初三数学比例线段练习题

初三数学比例线段练习题1. 已知线段AB与线段CD的比为2:5,线段CD的长度为15cm,求线段AB的长度。

解析:设线段AB的长度为x cm。

根据题意,可以列出比例方程:2/5 = x/15。

通过交叉相乘可以得到:5x = 2 * 15。

解方程可知:5x = 30,得到x = 6。

所以,线段AB的长度为6 cm。

2. 若线段EF与线段GH的比为3:4,且线段EF的长度为24 cm,求线段GH的长度。

解析:设线段GH的长度为y cm。

根据题意,可以列出比例方程:3/4 = 24/y。

通过交叉相乘可以得到:3y = 4 * 24。

解方程可知:3y = 96,得到y = 32。

所以,线段GH的长度为32 cm。

3. 已知线段IJ与线段KL的比为7:3,且线段IJ的长度为21 cm,求线段KL的长度。

解析:设线段KL的长度为z cm。

根据题意,可以列出比例方程:7/3 = 21/z。

通过交叉相乘可以得到:7z = 3 * 21。

解方程可知:7z = 63,得到z = 9。

所以,线段KL的长度为9 cm。

4. 两条线段比值为9:7,若线段A的长度为63 cm,求线段B的长度。

解析:设线段B的长度为w cm。

根据题意,可以列出比例方程:9/7 = 63/w。

通过交叉相乘可以得到:9w = 7 * 63。

解方程可知:9w = 441,得到w = 49。

所以,线段B的长度为49 cm。

5. 两条线段比值为3:10,若线段A的长度为12 cm,求线段B的长度。

解析:设线段B的长度为v cm。

根据题意,可以列出比例方程:3/10 = 12/v。

通过交叉相乘可以得到:3v = 10 * 12。

解方程可知:3v = 120,得到v = 40。

所以,线段B的长度为40 cm。

通过以上练习题的解答,我们可以看出在比例问题中,可以用代数方法解决。

根据已知条件,设未知量,并列出比例方程,通过解方程求得未知量的值。

这样的练习题有助于我们加深对比例概念的理解,并提高解决实际问题时的数学能力。

初中比例线段试题及答案

初中比例线段试题及答案

初中比例线段试题及答案一、选择题(每题3分,共30分)1. 在比例线段中,如果a:b=c:d,那么下列说法正确的是()A. a+b=c+dB. a:c=b:dC. a:b=d:cD. a+c=b+d答案:B2. 若线段AB=6cm,线段CD=12cm,且AB:CD=2:3,则线段AB与CD的比例中项是()A. 4cmB. 8cmC. 9cmD. 10cm答案:A3. 已知线段a、b、c满足a:b=b:c,那么线段a、b、c成()A. 等差数列B. 等比数列C. 等分线段D. 黄金分割答案:B4. 在比例线段中,如果a:b=c:d且a+b=c+d,那么下列说法错误的是A. a=cB. b=dC. a+c=b+dD. a:c=b:d答案:A5. 线段AB被点C分成两段,AC:CB=2:3,若AB=10cm,则AC的长度是()A. 4cmB. 6cmC. 8cmD. 10cm答案:A6. 线段DE被点F分成两段,EF:FD=3:2,若DE=15cm,则EF的长度是()A. 5cmB. 6cmC. 9cmD. 12cm答案:C7. 已知线段MN被点P分成两段,MP:PN=4:5,且MN=20cm,则MP的长度是()A. 8cmB. 10cmC. 12cm答案:A8. 在比例线段中,如果a:b=c:d且b:d=e:f,则下列说法正确的是()A. a:c=e:fB. a:e=b:fC. a:b=c:dD. a:e=c:f答案:A9. 线段GH被点I分成两段,GI:IH=5:7,若GH=35cm,则GI的长度是()A. 15cmB. 17.5cmC. 25cmD. 35cm答案:B10. 已知线段JK被点L分成两段,JL:LK=3:4,且JK=36cm,则JL的长度是()A. 9cmB. 12cmC. 18cmD. 24cm答案:C二、填空题(每题4分,共20分)1. 若线段XY=18cm,线段PQ=36cm,且XY:PQ=3:6,则线段XY与PQ的比例中项的长度是_______cm。

比例线段练习题及答案

比例线段练习题及答案

比例线段练习题及答案一、选择题1. 在线段AB上,C为在线段AB上一点,AC:CB=2:3,则下列说法正确的是:A) AC的长度是CB的三分之二B) AC的长度等于CB的五分之二C) CB的长度等于AC的三倍D) CB的长度等于AC的五倍答案:A) AC的长度是CB的三分之二2. 在一个比例尺为1:500的地图上,两个城市的距离是8厘米,则实际距离为:A) 5000米B) 4000米C) 8000米D) 4500米答案:A) 5000米3. 在直角三角形ABC中,角A的正弦值为3/5,则下列说法正确的是:A) AB:AC = 5:3B) AB:BC = 3:5C) BC:AC = 5:3D) AC:BC = 3:5答案:A) AB:AC = 5:34. 已知线段AB与线段CD平行,AB = 5 cm,CD = 10 cm,则线段AB的放大比例为:A) 1:2B) 2:1C) 1:5D) 2:5答案:B) 2:15. 直线段的一个线段上有A、B、C三个点,AB = 5 cm,BC = 3 cm,AC = 8 cm,则下列说法正确的是:A) AB:AC = 5:8B) AB:BC = 5:3C) BC:AC = 3:8D) AB:BC = 8:3答案:D) AB:BC = 8:3二、填空题1. 根据比例线段的定义,比例线段的特点是_________________。

答案:对于线段AB和线段CD,若AB:CD=a:b,则a和b称为AB和CD的长度比例。

2. 已知线段AB = 6 cm,线段BC = 8 cm,若线段AB与线段BC成比例,则线段AB:线段BC = ________。

答案:3:43. 若线段AB与线段CD成比例,线段AB:线段CD = 2:3,且线段AB = 12 cm,则线段CD的长度为__________。

答案:18 cm4. 在一个比例尺为1:200的地图上,两个城市的实际距离为4000米,则地图上的距离为__________。

比例线段练习题及答案

比例线段练习题及答案

比例线段练习题及答案一、选择题1. 在比例线段中,如果 \( \frac{a}{b} = \frac{c}{d} \),那么下列哪个选项是正确的?A. \( a = c \)B. \( b = d \)C. \( a + b = c + d \)D. \( a \cdot d = b \cdot c \)2. 如果线段 \( AB = 10 \) 厘米,线段 \( BC = 5 \) 厘米,线段\( AC = 12 \) 厘米,那么线段 \( AB \) 和线段 \( AC \) 的比例中项是多少?A. 6 厘米B. 8 厘米C. 10 厘米D. 12 厘米3. 在一个比例中,如果第一项是 3,第四项是 9,那么第三项和第二项的比例中项分别是多少?A. 3 和 9B. 6 和 6C. 9 和 3D. 无法确定二、填空题4. 如果 \( \frac{a}{b} = \frac{c}{d} \) 并且 \( a = 4 \),\( d = 8 \),那么 \( b \) 和 \( c \) 的值分别是 ______ 和______ 。

5. 在一个比例中,如果第二项是 2,第三项是 8,那么第一项和第四项的值分别是 ______ 和 ______ 。

6. 如果 \( \frac{a}{b} = \frac{c}{d} \),并且 \( a = 3 \),\( c = 6 \),那么 \( b \) 和 \( d \) 的乘积是 ______ 。

三、解答题7. 在一个三角形中,如果已知 \( AB = 6 \) 厘米,\( AC = 9 \) 厘米,并且 \( \angle A = 90^\circ \),求 \( BC \) 的长度。

8. 已知 \( \frac{a}{b} = \frac{c}{d} \),并且 \( a = 2 \),\( b = 3 \),求 \( c \) 和 \( d \) 的值。

初三成比例线段典型例题及练习题

初三成比例线段典型例题及练习题

初三成比例线段典型例题及练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【典型例题】类型一、比例线段例题1. (1)求证:如果,那么.(2)已知线段a、b、c、d,满足a cb d=,求证:a c ab d b+=+.类型二、相似图形例题2.(1)如果两个四边形的对应边成比例,能不能得出这两个四边形相似为什么(2)下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()类型三、相似多边形例题3.(1)已知四边形与四边形相似,且.四边形的周长为26.求四边形的各边长.(2)等腰梯形与等腰梯形相似,,求出的长及梯形各角的度数.例题4. 某小区有一块矩形草坪长20米,宽10米,沿着草坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.考点集训图形的相似和比例线段(提高)一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为( )A.3 km B.30 km C.300 km D.3 000 km2. 已知线段a、b、c、d满足=ab cd把它改写成比例式,其中错误的是()A.::b c d a= B.::a b c d= C.::c b a d= D.::a c d b=3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似( ) A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cmP64.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有( )A. 2组B. 3组C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm ,50cm ,60cm ,现要做一个与其相似的三角架,只有长30cm ,50cm 的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种P7二. 填空题 7. 小明有一张的地图,他想绘制一幅较小的地图,若新地图宽为30cm ,则新地图长为_________cm.8. △ABC 的三条边长分别为、2、,△A ′B ′C ′的两边长分别为1和,且△ABC 与△A ′B ′C ′相似,那么△A ′B ′C ′的第三边长为____________9. 如图:梯形ADFE 相似于梯形EFCB,若AD=3,BC=4,则______.AEBE10.已知若-3=,=____;4x y xy y则若5-4=0,x y 则x :y =___.11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________.P812. 用一个放大镜看一个四边形ABCD ,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B 是原来∠B 的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等, 则正确的有 .三.综合题13.如果a b c dkb c d a c d a b d a b c====++++++++,一次函数y kx m=+经过点(-1,2),求此一次函数解析式.P914. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值最大值是多少15. 从一个矩形中剪去一个尽可能大的正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长与宽的比.。

比例线段(练习题)

比例线段(练习题)

13已知线段AB 长为1cm, P 是AB 的黄金分割点,则较长线段PA= ___________ PB 二 二、选择题[、若^冷,则X 等于(2、已知y 是3, 6, 8的第四比例项,则y 等于(3、若(m+n ):n=5:2r 则 mm 的值是(4、如图• DF 〃ACDE 〃BC 下列各式中正确的是(一、填空题 一、比例线段 1、已知a=4, b=9,则a 、b 的比例中项是 2、已知线段a=4crm b=9cm.线段c 是a 、b 的比例中项,则线段c 的长为 3、已知(一3): 5= (-2): (x-1),则x=4、若X 是3、4、9的第四比例项•则)(=a 5、已知S c e 3 J =• =5 , b+d+f=50.那么 a + c+e= y 6、如果' x+y — 7、如图, 已知 A ABC 中,DE 〃BC, AC=7cm,CE=3cm,AB=6cm,则 AD= 8、已知S 切沪St •妙,矩形的长和宽分别为10cm 和6cm,则正方形的边长为 9、在 Rt A ABC 中, Z090° , ZA=30"则 a:b:c=10、 已知 x:y=2:3r则(3x+2y) :{2x-3y)=12、 已知 5x-8y=0r 则宁 -已城g 今,则驚 ,则:= x+yx-y (A)5:2 (B)2:3 (C)3:2 (D)2:5(A)12但)2羽 (C)・ 2^3 (0)±2^3(A)4 逅 (6)16(C)12 {0)4(A)AD BF AE CEBD 亏(B)证(C)AE BD AD ABCE ^CD (D)^ =5、c 卜列各式中正确的彳、数有(a cd:c=b:a a c+5d " d ' a, b 飞2 ■ b(A)l (B)2 (C)3 (D)4a a+c c ma 厂両,厂吊(mHO)a+c6、已知线段a,m,n,且ax=mnt求作x,图中作法正确的是((A) (B) (C) (D)7、如果DE分別在△ ABC的两边AB,AC上,由下列哪一组条件可以推岀DE〃BC(A)AD BD'2"3CE*AE '2'3AD 22师=3(B)AB 3 EC 1 ABAD ' '2 '2 (D)而=:三-解答题DE—■'BC ":3AE■ ■4PC "真如图,已知梯形ABCD中,AD〃BCACBD交于6 过0作AD的平行线交AB于M•交CD j' N,若AD=3cm, BC=5cm,求ON.2、如图•已知AABC中・DE〃BCAD2二AB・AE求证ZUZ23、已知A ABC中,AD为ZBAC的外角ZE AC的平分线,D为平分线与BCAB BD延长线交点,求证:疋=5cBD BP 4、已知,如图,A ABC中,直线DEF分别交BCAD于D,E,交BA的延长线于点F,且冷=—求证AF=AE5、已知•在梯形ABCD中,AD〃BC点巳F分别在AB,AC上,EF〃BCG FEF 交AC 于G,若EB=DF. AE=9,CF=4z求BE,CD 而的值q6、在梯形AD〃BC,点E在BD的延长线上,且CE〃AB. AC与BD相交于点6 求证J 0B2=0D*0E。

(完整版)比例尺专项练习题

(完整版)比例尺专项练习题

比率尺专项练习题【基础练习】1、在一幅地图上,用 3 厘米长的线段表示实质距离51 千米,这幅图的比率尺是()。

2、一个部件长 5 毫米,画在图纸上长 25 厘米,这张图纸的比率尺是()。

3、一种精细画在图纸上长10 厘米,实质长部件长 5 毫米,这张图纸的比率尺是()。

0 30 60 90km)。

4、线段比率尺,改成数值比率尺是(5、在一幅比率尺是 1 的地图上,量得天津到北京的距离是 4.8 厘米。

天2500000津到北京的实质距离大概是()千米。

6、把一个部件画在比率尺是50: 1 的图纸上长 15 厘米,这个部件实质长()厘米。

【例题解说】1、在一幅比率尺是1: 5000 的平面图上,量得一段公路长16.8 厘米。

把修建这段公路任务按3:5 分派给甲、乙两个修路队,这两个队各要修多少米?2、一个圆画在 1:100 的图纸上,直径是 2 厘米,求这个圆实质面积是多少?3、在1的平面图上,量得一块长方形操场的长是24 厘米,宽是 18 厘米,这1000块长方形操场的实质周长是多少千米?面积呢?练习:1、在一幅比率尺是 1:1000 的设计图上,量得一个正方形花园的边长是 4 厘米,这个花园的实质面积和周长分别是多少?2、一个长方形,长 4cm,宽 6cm,现把这个长方形按 3: 1 放大,放大后长方形的面积是多少平方米?用比率解决问题1、甲地到乙地的公路长392 千米。

一辆汽车 3 小时行了168 千米。

照这样计算,行完整共需要几小时?2、甲地到乙地的公路长392 千米。

一辆汽车 3 小时行了168 千米。

照这样计算,行完整还需要几小时?3、某工程队修一条路,12 天共修 780 米,还剩下325 米没有修。

照这样速度,修完这条公路,共需要多少天?【易错辨析】1、用面积是36 平方分米的方砖铺地,138 块正好铺完,假如改用边长是 3 分米的方砖铺,需要多少块?2、用面积是900cm2 的方砖铺地需要2000 块,假如改用边长是40 厘米的方砖铺地,需要多少块?3、一间教室,用边长是0.4 米的方砖铺地,需要275 块,假如用边长是0.5 米的方砖铺地,需要方砖多少块?【作业】1、做一批部件,假如每日做200 个, 15 天能够做完,此刻要在12 天达成,均匀每日做多少个?2、做一批部件,假如每日做200 个, 15 天能够做完,此刻要在12 天达成,每日要多做多少个?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。

2、线段a=2cm ,b=3cm ,c=1cm , 那么a 、b 、c 的第四比例项d= 。

3.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .
4.若9810z y x ==, 则 ______=+++z
y z y x .5.若43===f e d c b a , 则______=++++f d b e c a . 6.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .
7.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = .
8.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .
13.已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________.
14.设实数x ,y ,z 使│x -2y│+ (3x-z )2=0成立,求x :y :z 的值________.
15、已知3)(4)2(y x y x -=+,则=y x : ,=+x
y x 16、543z y x ==,则=++x z y x ,=+-++z y x z y x 53232 17比例尺为1:50000的地图上,两城市间的图上距离为20cm ,则这两城市的实际距离是 公里。

18、如果3:1:1::=c b a ,那么=+--+c b a c b a 3532 19..图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .
20.如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ;
17.已知b a =d c =52 (b+d ≠0),则d b c a ++= 20.已知35=y x ,则=-+)(:)(y x y x
21.如果
32=b a ,且3,2≠≠b a ,那么=-++-5
1b a b a 22.已知a b a 3)(7=-,则=b a 23.如果2===c z b y a x ,那么=+-+-c
b a z y x 3232 24、若3
12=-n n m ,则n m = ;若7:4:2::=z y x ,且3223=+-z y x ,则x = , y = ,z = 。

25、若k y
z x x z y z y x =+=+=+,则k = 。

二.选择题:
1、已知d
c b a =,则下列等式中不成立的( ) A.c
d a b = B. d d c b b a -=- C. d c c b a a +=+ D. b
a c
b d a =++ 2、下列a 、b 、
c 、
d 四条线段,不成比例线段的是………………( )
A. a=2cm b=5cm c=5cm d=12.5cm
B. a=5cm b=3cm c=5mm d=3mm
C. a=30mm b=2cm c=5
4cm d=12mm D. a=5cm b=0.02m c=0.7cm d=0.3dm 3.已知53=y x ,则在①41=+-y x y x ②5353=++y x ③1332=+y x x ④3
8=+x y x 这四个式子中正确的个数是( )A. 1个 B. 2个 C. 3个 D. 4个
三、解答题:
1、已知:5y-4x =0,求(x+y)∶(x-y)
2、已知
c b a +=a c b +=b a c +=x ,求x
3已知32===f e d c b a ,若032≠-+-f d b ,则3
222-+--+-f d b e c a = 。

4已知3:1:2::=z y x ,求
y x z y x 232++-的值。

5.、已知线段x 、y ,如果(x+y)∶(x-y)=a ∶b ,求x ∶y.
4、已知:b a =d
c =f e =3(且有b+d+f =0),求证:
d b c a ++=f d
e c ++=3.
一、 解答题:(共计37分)
18、(5分)已知
7532=b a ,求b
a b a 3423+的值。

19、(5分):已知a:b:c=2:3:4,且2a+3b-2c=10,求a,b,c 的值。

相关文档
最新文档