2018年深圳市南山区中考数学一模试卷含答案
2018年广东省中考数学试卷及答案解析(精析版)
2018年广东省中考数学试卷一.选择题(共5小题)1.(2011河南)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.(2018广东)地球半径约为6400000米,用科学记数法表示为()A. 0.64×107B. 6.4×106C. 64×105D. 640×104考点:科学记数法—表示较大的数。
解答:解:6400000=6.4×106.故选B.3.(2018广东)数据8、8、6、5、6、1、6的众数是()A. 1 B. 5 C. 6 D. 8考点:众数。
解答:解:6出现的次数最多,故众数是6.故选C.4.(2018广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。
解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.5.(2018广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B. 6 C. 11 D. 16考点:三角形三边关系。
解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.二.填空题(共5小题)6.(2018广东)分解因式:2x2﹣10x=2x(x﹣5).考点:因式分解-提公因式法。
解答:解:原式=2x(x﹣5).故答案是:2x(x﹣5).7.(2018广东)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。
解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.(2018广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。
解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:509.(2018广东)若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。
2018年广东省深圳市中考数学试卷(含答案解析版)
2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2024年广东省深圳市南山区初三一模数学试题含答案解析
2024年广东省深圳市南山区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.−2023C.12023D.−12023【答案】B【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,OA=OB,∴OB=2023,∴点B表示的数是−2023,故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是().A.B.C.D.【答案】D【分析】根据中心对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C. 不是中心对称图形,故此选项不合题意;D. 是中心对称图形,故此选项符合题意;【点睛】本题考查的是中心对称图形.中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A .0.186×105B .1.86×105C .18.6×104D .186×103【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将数据186000用科学记数法表示为1.86×105;故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.4.一技术人员用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB =90°,点D 为边AB 的中点,点A 、B 对应的刻度为1、7,则CD =( )A .3.5cmB .3cmC .4.5cmD .6cm 【答案】B【分析】本题考查直角三角形性质,涉及直角三角形斜边上的中线等于斜边的一半,读懂题意,直接利用直角三角形性质求解即可得到答案,熟记直角三角形斜边上的中线等于斜边的一半是解决问题的关键.【详解】解:由题意可知,AB =7−1=6cm ,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,则CD =12AB =62=3cm ,故选:B .5.一元一次不等式组x−2>1x <4的解集为( )A .−1<x <4B .x <4C .x <3D .3<x <4【答案】D第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x−2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°【答案】C【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB∥OF,∴∠1+∠BFO=180°,∴∠BFO=180°−155°=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠BFO=30°+25°=55°;故选:C.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形的其中一个内角是72°D.单项式πab2的次数是43【答案】B【分析】本题考查命题真假的判断,涉及同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识,根据相关定义与性质逐项验证即可得到答案,熟记同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识是解决问题的关键.【详解】解:A、根据同位角定义与性质,当两条直线平行时,同位角才相等,故选项说法错误,不是真命题,不符合题意;B、根据菱形定义与性质,菱形的四条边相等,故选项说法正确,是真命题,符合题意;=72°,从而由正多边形外角与其C、由正五边形外角和为360°,则每一个外角均为360°5相应内角和为180°即可得到正五边形的其中一个内角是180°−72°=108°,故选项说法错误,不是真命题,不符合题意;D、单项式πab2的次数是3而不是4,故选项说法错误,不是真命题,不符合题意;3故选:B.8.某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.年龄(岁)12岁13岁14岁15岁16岁人数(个)283在下列统计量,不受影响的是()A.中位数,方差B.众数,方差C.平均数,中位数D.中位数,众数【答案】D【分析】根据频数表可知,年龄为13岁与年龄为14岁的频数和为7,即可知出现次数最多的数据及第10、11个数据的平均数,可得答案.【详解】解:由表可知,年龄为13岁与年龄为14岁的频数和为20−2−8−3=7,故该组数据的众数为15岁,总数为20,按大小排列后,第10个和第11个数为15,15,则中位数为:15+152=15岁,故统计量不会发生改变的是众数和中位数,故选:D.【点睛】本题考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.x240=x+12150B.x240=x150−12C.240(x−12)=150x D.240x=150(x+12)【答案】D【分析】设快马x天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x天可追上慢马,由题意得240x=150(x+12)故选:D.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.10.在平面直角坐标系xoy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.若m<n<c,则t的取值范围是()A.32<t<2B.1<t<3C.0<t<1D.12<t<1【答案】A【分析】本题考查二次函数的性质,二次函数图象上点的坐标特征,根据m<n<c,可得出a+b+c<9a+3b+c<c,解得3a<−b<4a,进而可确定t的取值范围,函数图象上点的坐标满足函数解析式是解题的关键.【详解】解:∵m<n<c,二、填空题11.若a2=3b,则ab=.【答案】6【分析】本题考查比例性质,交叉相乘即可得到答案,熟记比例性质是解决问题的关键.【详解】解:∵a2=3b,∴ab=2×3=6,故答案为:6.12.已知一元二次方程x2−5x+2m=0有一个根为2,则另一根为.【答案】3【分析】本题考查一元二次方程根与系数的关系,根据题意,设另一个根为a,则由根与系数的关系得到a+2=5,解得a=3,熟练掌握一元二次方程根与系数的关系是解决问题的关键.【详解】解:∵一元二次方程x2−5x+2m=0有一个根为2,设另一个根为a,∴a+2=5,解得a=3,故答案为:3.13.如图,一束光线从点A(−2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m−n的值是.由题意知,∠ABG=∠CBF ∴△AGB∼△CFB∴BF CF =BGAG∵A(−2,5),B(0,1)∴AG=2,BG=5−1=4∴BF CF =BGAG=214.如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=kx (k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.【详解】解:设C a,∵⊙A 与x 轴相切于点B ,∴BC ⊥x 轴,15.如图,在四边形ACBD 中,对角线AB 、CD 相交于点O ,∠ACB =90°,BD =CD 且sin ∠DBC =35,若∠DAB =2∠ABC ,则AD AB 的值为 .设∠ABC=α,∠ABD=β,∴∠DAB=2∠ABC=2α,∠DBC ∵BD=CD,DE⊥BC,三、解答题16.计算:|−3|−(4−π)0−2sin60°+.【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】=4.【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.先化简x−1−÷x2−4,然后从−1,1,−2,2中选一个合适的数代入求x2+2x+1值.【答案】x+1,2【分析】本题考查分式化简求值,涉及通分、因式分解、分式加减乘除混合运算、约分、分式有意义的条件等知识,先将分式分子分母因式分解、再由分式加减乘除混合运算法则,利用通分、约分化简,再根据分式有意义的条件取得x的值,代值求解即可得到答案,熟练掌握分式加减乘除混合运算法则,根据分式有意义的条件取值是解决问题的关键.【详解】18.2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m的值为______;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【详解】(1)解:根据题意得,本次抽取的人数为:5÷10%=50人,∵B组人数为15人,∴15÷50×100%=30%,故答案为:50;30;(2)解:C组人数为:50-10-15-5=20人,补全统计图如图所示:(3)(4)【点睛】题目主要考查条形统计图与扇形统计图,列表法或树状图法求概率,用样本估计总体等,理解题意,综合运用这些知识点是解题关键.19.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)甲型自行车利润为150元,一台乙型自行车利润为100元(2)最少需要购买10台甲型自行车【分析】本题考查二元一次方程组及一元一次不等式解实际应用题,涉及解二元一次方程组、解一元一次不等式等知识,读懂题意,准确列出方程组及不等式求解是解决问题的关键(1)设一台甲型自行车利润为x元,一台乙型自行车利润为y元,读懂题意,找准等量关系列二元一次方程组求解即可得到答案;(2)设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,读懂题意,找到不等关系列不等式求解即可得到答案.【详解】(1)解:设一台甲型自行车利润为x元,一台乙型自行车利润为y元,由题意可得3x+2y=650x+2y=350,解得x=150y=100,∴甲型自行车利润为150元,一台乙型自行车利润为100元;(2)解:设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,则由题意可得500x+800(20−x)≤13000,解得x≥10,∴最少需要购买10台甲型自行车.20.研究发现课堂上进行当堂检测效果很好,每节课40分钟,假设老师用于精讲的时间x(单位:分钟)与学生学习收益y1的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y2的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)老师精讲时的学生学习收益y1与用于精讲的时间x之间的函数关系式为________;(2)求学生当堂检测的学习收益y2与用于当堂检测的时间x的函数关系式;(3)问“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量W最大?(W=y1+y2)【答案】(1)y1=2x(0≤x≤40)(2)y2=−x 2+16x(0≤x≤8) 64(8<x≤20)(3)精讲33分钟,当堂检测7分钟【分析】本题考查了待定系数法求一次函数的解析式的运用,二次函数的运用,顶点式求二次函数的最大值的运用,解答时求出二次函数的解析式是关键.(1)由图设该函数解析式为y1=kx,即可依题意求出y与x的函数关系式.(2)本题涉及分段函数的知识,需要注意的是x的取值范围依照分段函数的解法解出即可.(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟,用配方法的知识解答该题即可.【详解】(1)解:设y1=kx,把(1,2)代入,得k=2,∴y1=2x,自变量的取值范围为0≤x≤40,故答案为:y1=2x(0≤x≤40);(2)解:当0≤x≤8时,设y2=a(x−8)2+64,把(0,0)代入,得64a+64=0,解得a=−1.∴y2=−(x−8)2+64=−x2+16x.当8<x≤20时,y2=64,∴y2=−x 2+16x(0≤x≤8) 64(8<x≤20);(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟.当0≤x≤8时,w=−x2+16x+2(40−x)=−x2+14x+80=−(x−7)2+129.∴当x=7时,W最大=129.当8<x≤20时,W=64+2(40−x)=−2x+144.∵W随x的增大而减小,∴当x=8时,W最大=128,综合所述,当x=7时,W最大=129,此时40−x=33.即老师在课堂用于精讲的时间为33分钟,学生当堂检测的时间为7分钟时,学习收益总量最大.21.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点E.水面截线CD=63cm,MN∥CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C 重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.【分析】本题考查圆的实际应用,涉及垂径定理、勾股定理、全等三角形的判定与性质、勾股定理、弧长公式等知识,熟练掌握圆的性质是解决问题的关键.(1)连结OC ,如图所示,由垂径定理及勾股定理求解即可得到答案;(2)过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示,利用三角形全等的判定与性质,结合勾股定理求解即可得到答案;(3)根据题意可知,滚动过程中圆心O 运动的路径长为AC 的长度,求出弧对的圆心角带入公式求解即可得到答案.【详解】(1) ∴CE =12CD =33cm ,在Rt △OCE 中,由勾股定理可得∴EP =OP−OE =6−3=3cm (2)解:过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示:∵AD ∥BF ,∴∠OAE =∠OBF ,在△AOE 和△BOF 中,∠OAE =∠OBF AO =BO ∠AOE =∠BOF,∴△AOE≌△BOF (ASA),(3)由(1)可知OE=3cm,OC在Rt△COE中,∠COE=60°∵∠BOP=75°,∴∠AOC=180°−60°−75°=由题意可得,圆心O运动的路径长为22.“转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.(1)【问题情景】:如图(1),正方形ABCD中,点E是线段BC上一点(不与点B、C重合),连接EA.将EA绕点E顺时针旋转90°得到EF,连接CF,求∠FCD的度数.以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,①小聪:过点F作BC的延长线的垂线;②小明:在AB上截取BM,使得BM=BE;请你选择其中一名同学的解题思路,写出完整的解答过程.(2)【类比探究】:如图(2)点E是菱形ABCD边BC上一点(不与点B、C重合),∠ABC=α,将EA绕点E顺时针旋转α得到EF,使得∠AEF=∠ABC=α(a≥90°),则∠FCD的度数为______(用含α的代数式表示)(3)【学以致用】:如图(3),在(2)的条件下,连结AF,与CD相交于点G,当α=120°时,若DGCG =12,求BECE的值.【详解】解:(1)任选一个思路求解即可,下面两种思路求解如下:小聪解题思路:过点F作FG⊥BC交BC的延长线于点G,如图1,∵将EA绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∵FG⊥BC,∴∠G=90°=∠B=∠AEF,∴∠BAE+∠AEB=90°=∠AEB+∠FEC,∴∠BAE=∠FEC,∴△ABE≌△EGF(AAS),∴BE=CF,AB=EG,∵AB=BC,∴BC=EG,∴BE=CG,∴CG=FG,∴∠FCG=45°,∴∠FCD=45°;小慧解题思路:在AB上截取BM,使得BM=BE,连接EM,如图所示:∵BM=BE,AB=BC,∴∠BME=∠BEM=45°,AM=EC,∴∠AME=135°,又∵AE=EF,∠BAE=∠FEC,∴△AME≌△ECF(SAS),∴∠AME=∠ECF=135°,∴∠DCF=45°;(2)在AB上截取BM,使得BM=BE,连接EM,如图2,∵四边形ABCD是菱形,∠ABC=α,∴AB=BC,∠BCD=180°−α,∵BM=BE,∴AM=CE,∵将EA绕点E顺时针旋转α得到EF,∴AE=EF,∠AEF=∠B=α,∵∠AEC=∠AEF+∠FEC=∠B+∠BAE,∴∠BAE=∠CEF,∴△AEM≌△EFC(SAS),由(2)可知,△ANE≌△ECF,∴NE=CF,【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形,旋转性质,正方形的性质,菱形的性质,相似三角形的判定和性质,解直角三角形等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.试题21。
2018年广东省中考数学试卷含答案
2018年广东省初中毕业生学业考试数学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B铅笔把对应号码的标号涂黑.b5E2RGbCAP3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试卷上.p1EanqFDPw 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.DXDiTa9E3d 5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题<本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.RTCrpUDGiT1. 2的相反数是A. B. C.-2 D.2答案:C解读:2的相反数为-2,选C,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解读:A、B、C的俯视图分别为五边形、三角形、圆,只有D符合。
3.据报道,2018年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为5PCzVD7HxAA. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元jLBHrnAILg答案:B解读:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.xHAQX74J0X1 260 000 000 000=1.26×1012元4.已知实数、,若>,则下列结论正确的是A. B. C. D.答案:D解读:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,选D。
广东省深圳市2018年中考数学试卷及参考答案
上两点, 为一动点,作
轴,
轴,下列说法正确的是( )
①
;②
A . ①③ B . ②③ C . ②④ D . ③④
;③若
,则 平分
;④若
,则
二、填空题
13. 分解因式:
________.
14. 一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率________.
15. 如图,四边形ACFD是正方形,∠CEA和∠ABF都是直角且点E、A、B三点共线,AB=4,则阴影部分的面积是__
广东省深圳市2018年中考数学试卷
一、选择题
1. 6的相反数是( )
A. B. C. D.6
2. 260000000用科学记数法表示为( )
A.
B.
C.
D.
3. 图中立体图形的主视图是( )
A.
Hale Waihona Puke B.C.D.4. 观察下列图形,是中心对称图形的是( )
A.
B.
C.
D.
5. 下列数据:
,则这组数据的众数和极差是( )
房间有 个.下列方程正确的是( )
个,小
A.
B.
C.
D.
10. 如图,一把直尺, 60°的直角三角板和光盘如图摆放, A为 60°角与直尺交点, AB=3 ,则光盘的直径是( )
A.3B. C. D. 11. 二次函数
的图像如图所示,下列结论正确的是( )
A.
B.
C.
12. 如图, 是函数
D.
有两个不相等的实数根
______.
16. 在Rt△ABC中∠C=90°,AD平分∠CAB,BE平分∠CBA,AD、BE相交于点F,且AF=4,EF= ,则AC=________.
深圳市2018年中考一模数学试题
深圳2018年中考第一次模拟考试试题一、选择题(本大题共12小题,每小题3分,共36分) 1、2018的相反数是( )A 、-2018B 、2018C 、20181 D 、20181- 2、下列各图中,可以是一个正方体平面展开图的是( )3、下列计算结果正确的是( )A 、632a a a =⋅ B 、5322a a a =+ C 、()2222b ab a b a ++=+ D 、()232ab ab ab b a =÷+ 4、据报道,我国自行研发的第一艘001A 型航空母舰吨位达到6.5万吨,造价30亿美元,用科学记数法表示6.5万吨为( )A 、4105.6⨯吨 B 、41065.0⨯吨 C 、31065.0⨯吨 D 、3105.6⨯吨 5、下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个6、如图,一只蚂蚁以均匀的速度爬台阶54321A A A A A →→→→爬行,那么蚂蚁爬行的高度h 随时间t 的变化的图像大致是( )7、我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材。
全班50名同学筹款情况如下表。
则该班同学筹款金额的众数和中位数分别是( )A 、11,13B 、13,11C 、20,25D 、25,208、如图,在ACB Rt ∆中,∠ACB=90°,AC=32,以点B 为圆心,BC 长为半径做弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积为( )A 、π3232-B 、π3234-C 、π3432-D 、π32 9、如图所示,在ACB Rt ∆中,∠ACB=90°,BC=21AC ,以点B 为圆心,BC 长为半径做弧,交AB 于点D ,再以点A 为圆心,AD 长为半径画弧,交AC 于点E ,下列结论错误的是( ) A 、55=AB BC B 、215-=AC AE C 、253+=AC EC D 、552=AB AC第8题图第9题图第11题图第12题图10、下列说法正确的是()A、真命题的逆命题都是真命题B、在同圆或等圆中,同弦或等弦所对的圆周角相等C、等腰三角形的高线、中线、角平分线互相重合D、对角线相等且互相平分的四边形是矩形11、已知二次函数cbxaxy++=2的图像如图所示,它与x轴的两个交点分别是(-1,0),(3,0),对于下列命题:①02=-ab;②0<abc;③0<++cba;④08>+ca.其中正确的有()A、3个B、2个C、1个D、0个12、如图,在矩形ABCD中,E是AD的中点,BE⊥AC,垂足为F,连接DF,下列四个结论:①AEF∆∽CAB∆;②5.0tan=∠CAD;③DF=CD;④若AF=1,则BF=2。
2018年广东省深圳市南山区中考数学一模试卷-学生用卷
2018年广东省深圳市南山区中考数学一模试卷-学生用卷2018年广东省深圳市南山区中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是()C. 0D. 1A. −1B. −122.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A. B. C.D.3.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.地球绕太阳公转的速度约为110000km/ℎ,则110000用科学记数法可表示为()A. 0.11×106B. 1.1×105C. 0.11×105D. 1.1×1065.如图,已知a//b,∠1=120∘,∠2=90∘,则∠3的度数是()A. 120∘B. 130∘C. 140∘D. 150∘6.下列运算正确的是()A. 5a2+3a2=8a4B. a3⋅a4=a12C. (a+2b)2=a2+4b2D. (a−b)(−a−b)=b2−a27.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是( )A. 484(1−2x)=210B. 484x2=210C. 484(1−x)2=210D. 484(1−x)+484(1−x)2=210(x>0)8.如图,在平面直角坐标系中,点P是反比例函数y=2x图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反(k≠0)于点M,若PQ=4MQ,则k的值为(比例函数y=kx)A. ±2B. 12 C. −12 D. ±129. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )个黑子.A. 37B. 42C. 73D. 12110. 二次函数y =ax 2+bx +c(a ≠0)的部分图象如图,图象过点(−1,0),对称轴为直线x =2,下列结论 ①abc >0; ②4a +b =0; ③9a +c >3b ;④当x >−1时,y 的值随x 值的增大而增大,其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个11. 如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN 的A 处测得∠DAN =45∘,然后沿河岸走了130米到达B 处,测得∠CBN =60∘.则河流的宽度CE 为( )A. 80B. 40(3−√3)C. 40(3+√3)D. 40√212. 若a 使关于x 的不等式组{x−a 2<0x −4<3(x +2)至少有三个整数解,且关于x 的分式方程a+x3−x +2x−3=2有正整数解,a 可能是( )A. −3B. 3C. 5D. 8二、填空题(本大题共4小题,共12.0分) 13. 因式分解:y 3−4x 2y =______.14. 一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15. 定义新运算:对于任意有理数a 、b 都有a ⊗b =a(a −b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2−5)+1=2×(3)+1=6+1=5.则4⊗x =13,则x =______.16. 正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH ,将△FBH 沿FH 翻折,使点B 的对应点E2018年广东省深圳市南山区中考数学一模试卷-学生用卷落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM= 2√26,AE=8,则ED=______.三、计算题(本大题共1小题,共6.0分)17.先化简,再求值:xx2+2x+1÷(2x2−1x+1+1−x),其中x=2.四、解答题(本大题共6小题,共46.0分)18.(13)−2−4+√64+(3.14−x)0×cos60∘19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩拜单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=2√10,EB=4CE,求⊙O的直径22.如图1,在等腰Rt△ABC中,∠BAC=90∘,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90∘,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=√2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2√5,CE=2,求线段AE的长.2018年广东省深圳市南山区中考数学一模试卷-学生用卷23.如图1,二次函数y=ax2+bx的图象过点A(−1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN//y轴交OC于点N.若在点T运动的过程中,ON2为常数,试确定k的值.OM。
18深圳南山一模
18深圳南山一模一.选择题(共36分)1.下列各数中,最小的数是( )A. −1 B. −12 C. 0 D. 12.如图的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是( )A B C D3.下列图形既是轴对称图形,又是中心对称图形的是( ) A B C D4.地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为( )A.0.11×106 B.1.1×105 C.0.11×105 D.1.1×1065.如图,已知a ∥b,∠1=120o ,∠2=90o ,则∠3的度数是( )A.120o B.130o C.140o D.150o6.下列运算正确的是( )A.5a 2+3a 2=8a 4 B.a 3·a 4=a 12 C.(a+2b)2=a 2+4b 2 D.(a-b)(-a-b)=b 2-a 27.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x ,则下列方程正确的是( )A.484(1-2x)=210B.484x 2=210C.484(1-x)2=210D.484(1-x)+484(1-x)2=2108.如图,在平面直角坐标系中,点P 是反比例函数y=x 2(x>0)图象上一点,过点P 作垂线,与x 轴交于点Q ,直线PQ 交 反比例函数y=x k(k ≠0)于点M ,若PQ=4MQ,则k 的值为( )A.±2 B.12 C.−12 D.±129.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )个黑子.A.37 B.42 C.73 D.12110.二次函数y=ax 2+bx+c(a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>-1时,y 的值随x 值的增大而增大,其中正确的结论有( )A.1个 B.2个 C.3个D.4个 11.如图,河流的两岸PQ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树CD 之间的距离为50米,某人在河岸MN 的A 处测得∠DAN=45o ,然后沿河岸走了130米到达B 处,测得∠CBN=60O ,则河流的宽度CE 为( )A.80 B.40(3-3) C.40(3+3) D.40212.若a 使关于x 的不等式组{x−a 2<0x −4<3(x +2)至少有三个整数解,且关于x 的分式方程 a+x 3−x +2x−3=2有正整数解,a 可能是( )A.-3 B.3 C.5 D.8 二.填空题(共12分)13.因式分解:y 3-4x 2y=______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为__15.定义新运算:对于任意有理数a 、b 都有a ⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2-5)+1=2×3+1=6+1=7.则4⊕x=13,则x=______.16.正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH ,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G,连接BG 交FH 于点M,当GB 平分∠CGE 时,BM=226,AE=8,则ED=______.三.解答题17.(6分)先化简,再求值:x x 2+2x+1÷(2x 2−1x+1+1−x),其中x =2. 18.(5分)计算:(13)−2−4+√64+(3.14−x)0×cos60∘19.(7分)“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo 单车;C:HelloBike)请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.(7分)随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x 的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.(8分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=210,EB=4CE,求⊙O的直径.22.(9分)如图1,在等腰Rt△ABC中,∠BAC=90O,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90O,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,求线段AE的长.23.(9分)如图1,二次函数y=ax2+bx的图象过点A(-1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q 在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y为常数,试确定k的值.轴交OC于点N.若在点T运动的过程中,ON2OM答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13. y(y+2x)(y−2x)14. 2515. 116. 417. 解:xx2+2x+1÷(2x2−1x+1+1−x)=x(x+1)2÷2x2−1+(1−x)(x+1)x+1=x(x+1)2⋅x+1x2=1x(x+1),当x=2时,原式=12×(2+1)=16.18. 解:原式=9+8+1×12=1712.19. 解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A品牌人数为200×30%=60(人),D品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:(1)根据题意:y=20000+x100×10000=100x+20000;(2)设所获的利润w(元),则W=(2200−1200−x)(100x+20000)=−100(x−400)2+36000000;所以当降价400元,即定价为2200−400=1800元时,所获利润最大;(2)根据题意每天最多接受50000(1−0.05)=47500台,此时47500=100x+20000,解得:x=275.所以最大量接受预订时,每台定价2200−275=1925元.21. (1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90∘,∴∠DAB+∠ABD=90∘.∵AF是⊙O的切线,∴∠FAB=90∘,即∠DAB+∠CAF=90∘.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90∘,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90∘,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2√10)2=x2+(3x)2,∴x=2.∴BA=10.22. 解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90∘,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB//DF,∴∠DKE=∠ABC=45∘,∴∠EKF=180∘−∠DKE=135∘,EK=ED,∵∠ADE=180∘−∠EDC=180∘−45∘=135∘,∴∠EKF=∠ADE,∵∠DKC =∠C ,∴DK =DC ,∵DF =AB =AC ,∴KF =AD ,在△EKF 和△EDA 中,{EK =ED∠EKF =∠ADE KF =AD,∴△EKF ≌△EDA(SAS),∴EF =EA ,∠KEF =∠AED ,∴∠FEA =∠BED =90∘,∴△AEF 是等腰直角三角形,∴AF =√2AE . (3)如图3,当AD =AC =AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD =AC ,ED =EC ,可得AE 垂直平分CD ,而CE =2,∴EH =DH =CH =√2,Rt △ACH 中,AH =√(2√5)2+(√2)2=3√2,∴AE =AH +EH =4√2.23. 解:(1)∵二次函数y =ax2+bx 的图象过点A(−1,3),顶点B 的横坐标为1,则有{3=a −b −b 2a=1解得{a =1b =−2 ∴二次函数y =x 2−2x ,(2)由(1)得,B(1,−1),∵A(−1,3),∴直线AB 解析式为y =−2x +1,AB =2√5,设点Q(m ,0),P(n ,n 2−2n)∵以A 、B 、P 、Q 为顶点的四边形是平行四边形,①当AB 为对角线时,根据中点坐标公式得,则有{m+n2=0n 2−2n2=1,解得{m =−1−√3n =1+√3或{m =−1+√3n =1−√3 ∴P(1+√3,2)和(1−√3,2)②当AB 为边时,根据中点坐标公式得{n+12=m−12n 2−2n−12=32解得{m =3+√5n =1+√5或{m =3−√5n =1−√5 ∴P(1+√5,4)或(1−√5,4).故答案为P(1+√3,2)或(1−√3,2)或P(1+√5,4)或(1−√5,4).(3)设T(m ,m 2−2m),∵TM ⊥OC ,∴可以设直线TM 为y =−1k x +b ,则m 2−2m =−1k m +b ,b =m 2−2m +mk ,由{y =kx y =−1k x +m 2−2m +m k 解得{x =m 2k−2mk+mk 2+1y =k(m 2k−2mk+m)k 2+1, ∴OM =√x 2+y 2=√k 2+1⋅(m 2k−2mk+m)k 2+1,ON =m ⋅√k 2+1, ∴ON 2OM =m(k 2+1)√k 2+1mk−2k+1, ∴k =12时,ON 2OM =5√54. ∴当k =12时,点T 运动的过程中,ON 2OM 为常数.【解析】1. 解:∵−1<−12<0<1,∴最小的数为−1,故选:A . 根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A 、不是轴对称图形,是中心对称图形,不合题意;B 、不是轴对称图形,不是中心对称图形,不合题意;C 、是轴对称图形,不是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选:D .根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:1.1×105.故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5. 解:如图,延长∠1的边与直线b 相交,∵a//b ,∴∠4=180∘−∠1=180∘−120∘=60∘,由三角形的外角性质,可得∠3=90∘+∠4=90∘+60∘=150∘,故选:D .延长∠1的边与直线b 相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:A.5a 2+3a 2=8a 2,故此题错误;B .a 3⋅a 4=a 7,故此题错误;C .(a +2b)2=a 2+4ab +4b 2,故此题错误;D.(a−b)(−a−b)=b2−a2,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:484(1−x)2=210,故选:C.等量关系为:2015年贫困人口×(1−下降率)2=2017年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接OP,OM,OM′.由题意;S△POQ=1,S△MOQ=14=|k|2,∴k=±12,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:①由图象可得c>0,∵x=−b2a=2,∴ab<0,∴abc<0,故①错误;②∵抛物线的对称轴为直线x=−b2a=2,∴b=−4a,即4a+b=0,故本结论正确;③∵当x=−3时,y<0,∴9a−3b+c<0,即9a+c<3b,故本结论错误;④∵对称轴为直线x=2,∴当−1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误;故选:A.①由图象可得c>0,ab<0,abc<0,②根据抛物线的对称轴为直线x=−b2a=2,则有4a+b=0;③观察函数图象得到当x=−3时,函数值小于0,则9a−3b+c<0,即9a+c<3b;④由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c(a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由△决定,△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.11. 解:过点C 作CF//DA 交AB 于点F .∵MN//PQ ,CF//DA ,∴四边形AFCD 是平行四边形.∴AF =CD =50,∠CFB =∠DAN =45∘,∴FE =CE ,设BE =x ,∵∠CBN =60∘, ∴EC =√3x ,∵FB +BE =EF ,∴130−50+x =√3x ,解得:x =40(√3+1),∴CE =√3x =40(3+√3),故选:C .过点C 作CF//DA 交AB 于点F ,易证四边形AFCD 是平行四边形.再在直角△CFE 中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:{x−a2<0x −4<3(x +2), 不等式组整理得:{x <a x >−5, 由不等式组至少有三个整数解,得到a >−2,a+x3−x +2x−3=2,分式方程去分母得:−a −x +2=2x −6, 解得:x =8−a3,∵分式方程有正整数解,且x ≠3,∴a =2,5,只有选项C 符合.故选:C .将不等式组整理后,由不等式组至少有三个整数解确定出a 的范围,再由分式方程有正整数解确定出满足条件a 的值,进而求出之积. 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:y 3−4x 2y ,=y(y 2−4x 2),=y(y +2x)(y −2x).先提取公因式y ,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为3+16+3+1=25,故答案为:25.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:4(4−x)+1=13,去括号得:16−4x +1=13,移项合并得:4x =4,解得:x =1.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90∘,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90∘,AB=BC,∴∠BCD=∠BPG=90∘,∵GB平分∠CGE∴∠EGB=∠CGB,又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90∘,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=1∠ABC=45∘,2由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=2√26,∴BN=NM=2√13,∴BE=4√13,∵AE=8,∴Rt△ABE中,AB=√BE2−AE2=12,∴AD=12,∴DE=12−8=4,故答案为:4.作辅助线,构建全等三角形,先证明∠EBG=45∘,利用△BNM是等腰直角三角形,即可求得BN,NM的长,Rt△ABE中,依据勾股定理可得AB=√BE2−AE2=12,根据AD=12,即可得到DE=12−8=4.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将x=2代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. (1)根据B品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A、D所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. (1)根据题意列代数式即可;(2)根据利润=单台利润×预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;(3)根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. (1)首先连接BD,由AB为直径,可得∠ADB=90∘,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2√10)2=x2+(3x)2求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. (1)依据AE=EF,∠DEC=∠AEF=90∘,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=√2,Rt△ACH中,AH=3√2,即可得到AE=AH+EH=4√2.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. (1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2−2m),由TM⊥OC,可以设直线TM为y=−1k x+b,则m2−2m=−1km+b,b=m2−2m+mk,求出点M、N坐标,求出OM、ON,根据ON2OM列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.。
广东省深圳市南山区2018-2019学年中考数学一模考试试卷
第1页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省深圳市南山区2018-2019学年中考数学一模考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)) A .B . 49C . ±49D . ±2. 如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A . 大于60°B . 小于60°C . 大于30°D . 小于30°3. 下列尺规作图,能判断AD 是∠ABC 边上的高是( )A .B .C .D .答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 解分式方程+=3时,去分母后变形正确的是( )A . 2+(x+2)=3(x ﹣1)B . 2﹣x+2=3(x ﹣1)C . 2﹣(x+2)=3D . 2﹣(x+2)=3(x ﹣1)5. 风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是( )A .B .C .D .6. 如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A . 8 B . 9 C . 10 D . 117. 某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A . 87B . 87.5C . 87.6D . 888. 已知a =(﹣3)×(﹣4),b =(﹣4)2 , c =(﹣3)3 , 那么a 、b 、c 的大小关系为( ) A . a >b >c B . a >c >b C . c >a >b D . b >a >c9. 如图是边长为10cm 的正方形纸片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )错误的是( )A .B .C .D .第3页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………10. 如图,已知∠OAB 与∠OA ′B ′是相似比为 1:2 的位似图形,点O 为位似中心,若∠OAB 内一点P (x , y )与∠OA ′B ′内一点P ′是一对对应点,则点P ′的坐标为( )A . (﹣x , ﹣y )B . (﹣2x , ﹣2y )C . (﹣2x , 2y )D . (2x , ﹣2y )11. 关于x 的不等式组 只有5个整数解,则a 的取值范围是( )A . ﹣6<aB . ﹣6≤aC . ﹣6<aD . ﹣6≤a12. 如图,延长Rt∠ABC 的斜边AB 到点D , 使BD =AB , 连接CD , 若tan∠BCD ,则tan∠A 的值是( )A . 1B .C . 9D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共4题)1. 港珠澳大桥是世界最长的跨海大桥,整个大桥造价超过720亿元人民币,720亿用科学记数法可表示为 元.2. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 .答案第4页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3. 如图,点A 是反比例函数 图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为 .4. 以边长为4的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于A 、B 两点,则线段AB 的最小值为 .评卷人得分二、计算题(共1题)5. 先化简,再求值: ,且x 为满足﹣2≤x <2的整数.评卷人得分三、解答题(共6题)6. 计算: .7. 小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图第5页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)8. 如图,在Rt∠ABC 中,∠C =90°,∠A =30°.点D 是AB 中点,点E 为边AC 上一点,连接CD , DE , 以DE 为边在DE 的左侧作等边三角形DEF , 连接BF .(1)∠BCD 的形状为 ;(2)随着点E 位置的变化,∠DBF 的度数是否变化?并结合图说明你的理由;(3)当点F 落在边AC 上时,若AC =6,请直接写出DE 的长.9. 某专卖店有A 、B 两种商品,已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.A 、B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,请问A 、B 两种商品打折前各多少钱?打了多少折?10. 如图,已知D , E 分别为∠ABC 的边AB , BC 上两点,点A , C , E 在∠D 上,点B , D 在∠E 上.F 为上一点,连接FE 并延长交AC 的延长线于点N , 交AB 于点M .答案第6页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若∠EBD 为α,请将∠CAD 用含α的代数式表示;(2)若EM =MB , 请说明当∠CAD 为多少度时,直线EF 为∠D 的切线;(3)在(2)的条件下,若AD ,求 的值. 11. 如图,B (2m , 0)、C (3m , 0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD , 使AB =2BC , 画射线OA , 把∠ADC 绕点C 逆时针旋转90°得∠A ′D ′C ′,连接ED ′,抛物线y =ax 2+bx +n (a ≠0)过E 、A ′两点.(1)填空:∠AOB = °,用m 表示点A ′的坐标:A ′ ;(2)当抛物线的顶点为A ′,抛物线与线段AB 交于点P , 且时,∠D ′OE 与∠ABC 是否相似?说明理由;(3)若E 与原点O 重合,抛物线与射线OA 的另一个交点为M , 过M 作MN 垂直y 轴,垂足为N : ①求a 、B 、m 满足的关系式;②当m 为定值,抛物线与四边形ABCD 有公共点,线段MN 的最大值为5,请你探究a 的取值范围.第7页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】: 2.【答案】: 【解释】:答案第8页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:第9页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】: 7.【答案】: 【解释】: 8.【答案】: 【解释】:9.【答案】:答案第10页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:10.【答案】:【解释】:11.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………12.【答案】:【解释】: 【答案】: 【解释】: 【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】: 【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:第21页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:答案第22页,总22页。
广东省深圳市南山区2018年中考数学一模试卷(带答案)
A. 80
B. 4 3 3
ͳ
1 . 若 a 使关于 x 的不等式组 ͳ 4 3ͳ
C. 4 3 3
D. 4
至少有三个整数解,且关于 x 的分式方
程ͳ
t 有正整数解,a 可能是
3ͳ ͳ3
A. 3
B. 3
C. 5
D. 8
二、填空题(本大题共 4 小题,共 12.0 分)
13. 因式分解: 3 4ͳ t______.
1 . 正方形 ABCD 中,F 是 AB 上一点,H 是 BC 延长线上
一点,连接 FH,将 th 沿 FH 翻折,使点 B 的对应
点 E 落在 AD 上,EH 与 CD 交于点 G,连接 BG 交 FH
于点 M,当 GB 平分
时,t数 t
,ᦙ t ,
则 t______.
三、解答题(共 52 分) 17. 先化简,再求值: ͳ
14. 一个不透明的盒子中装有 6 个红球,3 个黄球和 1 个绿球,这些球除了颜色外无其
他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______
1 . 定义新运算:对于任意有理数 a、b 都有
t
1,等式右边是通常的
加法、减法及乘法运算.比如:
t
1t 3 1t 1t .
则 4 ͳ t 13,则 ͳ t______.
B、不是轴对称图形,不是中心对称图形,不合题意;
C、是轴对称图形,不是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,符合题意.
故选:D.
根据轴对称图形与中心对称图形的概念求解.
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,
图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.
2018年广东省深圳市南山区中考一模数学试卷(解析版)
2018年广东省深圳市南山区中考数学一模试卷一、选择题(共12小题,每题2分,满分36分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣C.0D.12.(3分)如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A.B.C.D.3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×106 5.(3分)如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是()A.120°B.130°C.140°D.150°6.(3分)下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.(a﹣b)(﹣a﹣b)=b2﹣a2 7.(3分)十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设这两年全省贫困人口的年平均下降率为x,则下列方程正确的是()A.484(1﹣2x)=210B.484x2=210C.484(1﹣x)2=210D.484(1﹣x)+484(1﹣x)2=2108.(3分)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数y=(k ≠0)于点M,若PQ=4MQ,则k的值为()A.±2B.C.﹣D.±9.(3分)如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37B.42C.73D.12110.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有()A.1个B.2个C.3个D.4个11.(3分)如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A.80B.40(3﹣)C.40(3+)D.4012.(3分)若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,a可能是()A.﹣3B.3C.5D.8二、填空题(共4小题,每题3分,满分12分)13.(3分)因式分解:y3﹣4x2y=.14.(3分)一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为15.(3分)定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=6+1=5.则4⊗x=13,则x=.16.(3分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=.三、简答题(共7小题,17题5分,18题6分,19题7分,20题8分,21题8分,22题9分,共52分)17.(5分)()﹣2﹣4++(3.14﹣x)0×cos60°18.(6分)先化简,再求值:÷(+1﹣x),其中x=2.19.(7分)“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.(8分)随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.(8分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC 于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=2,EB=4CE,求⊙O的直径22.(9分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.23.(9分)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.2018年广东省深圳市南山区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每题2分,满分36分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣C.0D.1【解答】解:∵﹣1<﹣<0<1,∴最小的数为﹣1,故选:A.2.(3分)如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A.B.C.D.【解答】解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×106【解答】解:将110000用科学记数法表示为:1.1×105.故选:B.5.(3分)如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是()A.120°B.130°C.140°D.150°【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣120°=60°,由三角形的外角性质,可得∠3=90°+∠4=90°+60°=150°,故选:D.6.(3分)下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.(a﹣b)(﹣a﹣b)=b2﹣a2【解答】解:A.5a2+3a2=8a2,故此题错误;B.a3•a4=a7,故此题错误;C.(a+2b)2=a2+4ab+4b2,故此题错误;D.(a﹣b)(﹣a﹣b)=b2﹣a2,正确.故选:D.7.(3分)十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设这两年全省贫困人口的年平均下降率为x,则下列方程正确的是()A.484(1﹣2x)=210B .484x 2=210C .484(1﹣x )2=210D .484(1﹣x )+484(1﹣x )2=210【解答】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得: 484(1﹣x )2=210,故选:C .8.(3分)如图,在平面直角坐标系中,点P 是反比例函数y =(x >0)图象上一点,过点P 作垂线,与x 轴交于点Q ,直线PQ 交反比例函数y =(k ≠0)于点M ,若PQ =4MQ ,则k 的值为( )A .±2B .C .﹣D .±【解答】解:如图,连接OP ,OM ,OM ′.由题意;S △POQ =1,S △MOQ ==,∴k =, 故选:D .9.(3分)如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )个黑子.A.37B.42C.73D.121【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:①由图象可得c>0,∵x=﹣=2,∴ab<0,∴abc<0,故①错误;②∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,故本结论正确;③∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故本结论错误;④∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误;故选:A.11.(3分)如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A.80B.40(3﹣)C.40(3+)D.40【解答】解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45°,∴FE=CE,设BE=x,∵∠CBN=60°,∴EC=x,∵FB+BE=EF,∴130﹣50+x=x,解得:x=40(+1),∴CE=x=40(3+),故选:C.12.(3分)若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,a可能是()A.﹣3B.3C.5D.8【解答】解:,不等式组整理得:,由不等式组至少有三个整数解,得到a>﹣2,+=2,分式方程去分母得:﹣a﹣x+2=2x﹣6,解得:x=,∵分式方程有正整数解,且x≠3,∴a=2,5,只有选项C符合.故选:C.二、填空题(共4小题,每题3分,满分12分)13.(3分)因式分解:y3﹣4x2y=y(y+2x)(y﹣2x).【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).14.(3分)一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为【解答】解:根据题意,摸到的不是红球的概率为=,故答案为:.15.(3分)定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=6+1=5.则4⊗x=13,则x=1.【解答】解:根据题意得:4(4﹣x)+1=13,去括号得:16﹣4x+1=13,移项合并得:4x=4,解得:x=1.故答案为:1.16.(3分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED =4.【解答】解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵GB平分∠CGE∴∠EGB=∠CGB,又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=2,∴BN=NM=2,∴BE=4,∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=4,故答案为:4.三、简答题(共7小题,17题5分,18题6分,19题7分,20题8分,21题8分,22题9分,共52分)17.(5分)()﹣2﹣4++(3.14﹣x)0×cos60°【解答】解:原式=9﹣4+8+1×=13.18.(6分)先化简,再求值:÷(+1﹣x),其中x=2.【解答】解:÷(+1﹣x)===,当x=2时,原式=.19.(7分)“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?【解答】解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A品牌人数为200×30%=60(人),D品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.20.(8分)随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?【解答】解:(1)根据题意:y=20000+×10000=100x+20000;(2)设所获的利润w(元),则W=(2200﹣1200﹣x)(100x+20000)=﹣100(x﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大;(2)根据题意每天最多接受50000(1﹣0.05)=47500台,此时47500=100x+20000,解得:x=275.所以最大量接受预订时,每台定价2200﹣275=1925元.21.(8分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC 于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=2,EB=4CE,求⊙O的直径【解答】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠F AB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2)2=x2+(3x)2,∴x=2.22.(9分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.23.(9分)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.。
【精品】2018年广东省深圳市中考数学突破一模试卷带答案
2018年广东省深圳市中考数学突破模拟试卷(一)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.(3分)已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.302.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.3.(3分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米4.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对5.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期 1日 2日 3日 4日 5日 6日 7日 8日电表显示度数 (度) 115 118 122 127133136 140 143这个家庭六月份用电度数为( )A .105度B .108.5度C .120度D .124度6.(3分)二次函数y=﹣2x 2+4x +1的图象如何移动就得到y=﹣2x 2的图象( )A .向左移动1个单位,向上移动3个单位B .向右移动1个单位,向上移动3个单位C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位7.(3分)如图所示,在平行四边形ABCD 中,CE 是∠DCB 的平分线,且交AB 于E ,DB 与CE 相交于O ,已知AB=6,BC=4,则等于( )A .B .C .D .不一定8.(3分)如图:二次函数y=ax 2+bx +2的图象与x 轴交于A 、B 两点,与y 轴交于C 点,若AC ⊥BC ,则a 的值为( )A .﹣B .﹣C .﹣1D .﹣29.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=103510.(3分)如图,下列各坐标对应点正好在图中直线l上的是()A.(0,2) B.(0,4) C.(1,2) D.(2,0)11.(3分)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和点B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④若AB>2,则m<﹣1.其中正确判断的序号是()A.①B.②C.③D.④12.(3分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为二、填空题(共4小题)13.(3分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是.14.(3分)如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n C n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n C n D n的面积为.15.(3分)如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=.16.(3分)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.三、解答题(共7小题)17.计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.18.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.19.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?22.如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.23.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2018年广东省深圳市中考数学突破模拟试卷(一)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.(3分)已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.30【解答】解:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8(α+β)+14=30,故选:D.2.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.3.(3分)某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.4.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选:C.5.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期 1日 2日 3日 4日 5日 6日 7日 8日电表显示度数 (度) 115 118 122 127133136 140 143 这个家庭六月份用电度数为( )A .105度B .108.5度C .120度D .124度【解答】解:这七天一共用电的度数=(143﹣115)÷7=4,月份用电度数=4×30=120(度),故选C .6.(3分)二次函数y=﹣2x 2+4x +1的图象如何移动就得到y=﹣2x 2的图象( )A .向左移动1个单位,向上移动3个单位B .向右移动1个单位,向上移动3个单位C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位【解答】解:二次函数y=﹣2x 2+4x +1的顶点坐标为(1,3),y=﹣2x 2的顶点坐标为(0,0),∴向左移动1个单位,向下移动3个单位.故选:C .7.(3分)如图所示,在平行四边形ABCD 中,CE 是∠DCB 的平分线,且交AB 于E ,DB 与CE 相交于O ,已知AB=6,BC=4,则等于( )A .B .C .D .不一定【解答】解:∵CE 是∠DCB 的平分线,DC ∥AB∴∠DCO=∠BCE ,∠DCO=∠BEC∴∠BEC=∠BCE∴BE=BC=4∵DC∥AB∴△DOC∽△BOE∴OB:OD=BE:CD=2:3∴=故选:B.8.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣ C.﹣1 D.﹣2【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.10.(3分)如图,下列各坐标对应点正好在图中直线l上的是()A.(0,2) B.(0,4) C.(1,2) D.(2,0)【解答】解:设直线l解析式为y=kx+b,将点(2,1)(4,0)代入,得,解得,∴y=﹣x+2令x=0,得y=2;令x=1,得y=1;令x=2,得y=1.故选:A.11.(3分)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和点B(b,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④若AB>2,则m<﹣1.其中正确判断的序号是()A.①B.②C.③D.④【解答】解:当a<x<b时,y>0,所以①错误;抛物线的对称轴为直线x=﹣=1,而A(﹣1,0),所以B点坐标为(3,0),所以②错误;因为x1<1<x2,且x1+x2>2,则点Q到直线x=1的距离比点P到直线x=1的距离大,所以y1>y2,所以③正确;因为a+b=2,ab=﹣(m+1),所以AB===>2,解得m>﹣1,所以④错误.故选:C.12.(3分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是()A.DE=1 B.tan∠AFO=C.AF= D.四边形AFCE的面积为【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,=•AC•EF=××=,故D错误,∴S四边形AECF故选:C.二、填空题(共4小题)13.(3分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正确的是①②④.【解答】解:①由a=b,得5﹣2a=5﹣2b,正确;②由a=b,得ac=bc,正确;③由a=b(c≠0),得=,不正确;④由,得3a=2b,正确;⑤由a2=b2,得a=b或a=﹣b,不正确.故答案为:①②④14.(3分)如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n C n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n C n D n的面积为.【解答】解:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为矩形A1B1C1D1面积的一半,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,故新四边形与原四边形的面积的一半,则四边形A n B n C n D n面积为矩形A1B1C1D1面积的,∴四边形A n B n C n D n面积=的×24=,故答案为.15.(3分)如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=2.【解答】解:在BC上取一点F,使BF=CD=3,连接AF,∴CF=BC﹣BF=5﹣3=2,过F作FG⊥AB于G,∵tanB==,设FG=x,BG=2x,则BF=x,∴x=3,x=,即FG=,延长AC至E,连接BD,∵∠BCA=90°﹣∠BCD,∴2∠BCA+∠BCD=180°,∵∠BCA+∠BCD+∠DCE=180°,∴∠BCA=∠DCE,∵∠ABC=∠ADC,∴A、B、D、C四点共圆,∴∠DCE=∠ABD,∠BCA=∠ADB,∴∠ABD=∠ADB,∴AB=AD,在△ABF和△ADC中,∵,∴△ABF≌△ADC(SAS),∴AF=AC,过A作AH⊥BC于H,∴FH=HC=FC=1,由勾股定理得:AB2=BH2+AH2=42+AH2①,S△ABF=AB•GF=BF•AH,∴AB•=3AH,∴AH=,∴AH2=②,把②代入①得:AB2=16+,解得:AB=,∵AB>0,∴AD=AB=2,故答案为:2.16.(3分)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为17.【解答】解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.三、解答题(共7小题)17.计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.【解答】解:原式=+1﹣2×+=.18.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.19.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.【解答】解:(1)过P作PC⊥y轴于C,∵P(,n),∴OC=n,PC=,∵tan∠BOP=,∴n=4,∴P(,4),设反比例函数的解析式为y=,∴a=4,∴反比例函数的解析式为y=,∴Q(4,),把P(,4),Q(4,)代入y=kx+b中得,,∴,∴直线的函数表达式为y=﹣x+;(2)过Q作QD⊥y轴于D,=S四边形PCDQ=×(+4)×(4﹣)=;则S△POQ(3)由图象知,当﹣x+>时,或x<020.如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?【解答】解:过P作PB⊥AM于B,在Rt△APB中,∵∠PAB=30°,∴PB=AP=×32=16海里,∵16<16,故轮船有触礁危险.为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,设安全航向为AC,作PD⊥AC于点D,由题意得,AP=32海里,PD=16海里,∵sin∠PAC===,∴在Rt△PAD中,∠PAC=45°,∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)22.如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,∵△EAC是等边三角形,∴EA=EC,∴EO⊥AC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,AC=8,∴AO=CO=4,DO=BO,在Rt△ABO中,BO==3,∴DO=BO=3,在Rt△EAO中,EO==4,∴ED=EO﹣DO=4﹣3.23.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。
广东省深圳市南山区2018年中考数学一模试卷(解析版)
2018年广东省深圳市南山区中考数学一模试卷一、选择题(共12小题,每题2分,满分36分)1. 下列各数中,最小的数是()A. ﹣1B. ﹣C. 0D. 1【答案】A【解析】解:∵﹣1<﹣<0<1,∴最小的数为﹣1.故选A.2. 如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A. B. C. D.【答案】C【解析】由几何体可得最底层几何体的个数,而最后一个几何体放在第二层中的任意一个位置,判断俯视图即可.解:从上面看可得到从上往下两行小正方形的个数依次为3,1.故选C.“点睛”本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3. 下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A.不是轴对称图形,是中心对称图形,不合题意;B.不是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,不是中心对称图形,不合题意;D.是轴对称图形,也是中心对称图形,符合题意.故选D.4. 地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A. 0.11×106B. 1.1×105C. 0.11×105D. 1.1×106【答案】B【解析】试题分析:将110000用科学记数法表示为:1.1×105.故选B.考点:科学记数法—表示较大的数.5. 如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是()A. 120°B. 130°C. 140°D. 150°【答案】D【解析】解:如图,延长∠1的边与直线b相交.∵a∥b,∴∠4=180°﹣∠1=180°﹣120°=60°,由三角形的外角性质,可得∠3=90°+∠4=90°+60°=150°.故选D.6. 下列运算正确的是()A. 5a2+3a2=8a4B. a3a4=a12C. (a+2b)2=a2+4b2D. (a﹣b)(﹣a﹣b)=b2﹣a2【答案】D【解析】试题分析:根据合并同类项法则,可知5a2+3a2=8a2,故A不正确;根据同底数幂相乘,底数不变,指数相加,可知a3•a4=a7,故B不正确;根据完全平方公式,可知(a+2b)2=a2+4b2+4ab,故C不正确;根据立方根的性质,可得﹣=﹣4,故D正确.故选:D7. 十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是()A. 484(1﹣2x)=210B. 484x2=210C. 484(1﹣x)2=210D. 484(1﹣x)+484(1﹣x)2=210【答案】C【解析】解:设过两年全省贫困人口的年平均下降率为x,根据题意得:484(1﹣x)2=210.故选C.8. 如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数y=(k≠0)于点M,若PQ=4MQ,则k的值为()A. ±2B.C. ﹣D. ±【答案】D【解析】试题解析:设点P的坐标为(x,)分两种情况:(1)当k>0时,∵PQ=4MQ,∴MQ=∴点M的坐标为(x,).故k=;(2)当k>0时,∵PQ=4MQ,∴MQ=∴点M的坐标为(x,-).故k=-.9. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A. 37B. 42C. 73D. 121【答案】C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①由图象可得c>0.∵x=﹣=2,∴ab<0,∴abc<0,故①错误;②∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,故本结论正确;③∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故本结论错误;④∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误.故选A.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.11. 如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A. 80B. 40(3﹣)C. 40(3+)D. 40【答案】C【解析】解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形,∴AF=CD=50,∠CFB=∠DAN=45°,∴FE=CE,设BE=x.∵∠CBN=60°,∴EC=x.∵FB+BE=EF,∴130﹣50+x=x,解得:x=40(+1),∴CE=x=40(3+).故选C.12. 若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,a可能是()A. ﹣3B. 3C. 5D. 8【答案】C【解析】解:,不等式组整理得:,由不等式组至少有三个整数解,得到a>﹣2,+=2,分式方程去分母得:﹣a﹣x+2=2x﹣6,解得:x=.∵分式方程有正整数解,且x≠3,∴a=2,5,只有选项C符合.故选C.点睛:本题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解答本题的关键.二、填空题(共4小题,每题3分,满分12分)13. 因式分解:y3﹣4x2y=______.【答案】y(y+2x)(y﹣2x).【解析】解:y3﹣4x2y=y(y2﹣4x2)=y(y+2x)(y﹣2x).故答案为:y(y+2x)(y﹣2x).14. 一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______.【答案】.【解析】15. 定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(3)+1=6+1=5.则4⊗x=13,则x=______.【答案】1.【解析】解:根据题意得:4(4﹣x)+1=13,去括号得:16﹣4x+1=13,移项合并得:4x=4,解得:x=1.故答案为:1.16. 正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=______.【答案】4.【解析】解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=4.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=4.故答案为:4.点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.三、解答题(共7小题,17题5分,18题6分,19题7分,20题8分,21题8分,22题9分,共52分)17. ()﹣2﹣4++(3.14﹣x)0×cos60°.【答案】13.【解析】试题分析:直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.试题解析:解:原式=9-4+8+1×=13.18. 先化简,再求值:÷(+1﹣x),其中x=2.【答案】.【解析】试题分析:根据分式的除法和加法可以化简题目中的式子,然后将x=2代入化简后的式子即可解答本题.当x=2时,原式=.19. “共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?【答案】(1)200;(2)答案见解析;(3)3000.【解析】试题分析:(1)根据B品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A、D所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A的百分比即可得.试题解析:解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A品牌人数为200×30%=60(人),D品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人).答:估计该区有3000名市民选择骑摩拜单车出行...................20. 随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?【答案】(1)y=100x+20000;(2)W=(2200﹣1200﹣x)(100x+20000),定价为1800元时,所获利润最大;(3)47500,1925.【解析】试题分析:(1)根据题意列代数式即可;(2)根据利润=单台利润×预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;(3)根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.试题解析:解:(1)根据题意:y=20000+×10000=100x+20000;(2)设所获的利润w(元),则W=(2200﹣1200﹣x)(100x+20000)=﹣100(x﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大;(2)根据题意每天最多接受50000(1﹣0.05)=47500台,此时47500=100x+20000,解得:x=275.所以最大量接受预订时,每台定价2200﹣275=1925元.21. 如图.在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=2,EB=4CE,求⊙O的直径.【答案】(1)答案见解析;(2)10.【解析】试题分析:(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2)2=x2+(3x)2求得答案.试题解析:(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠F AB=90°,即∠DAB+∠CAF=90°,∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD,∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90°,设CE=x.∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x.在Rt△ACE 中,AC2=CE2+AE2,即(2)2=x2+(3x)2,∴x=2,∴BA=10.点睛:本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【答案】(1)答案见解析;(2)答案见解析;(3)4.【解析】试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【答案】(1)y=x2﹣2x;(2)P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4);(3)k=.【解析】试题分析:(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.试题解析:解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有,解得:,∴二次函数y=x2﹣2x;(2)由(1)得:B(1,﹣1).∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n).∵以A、B、P、Q为顶点的四边形是平行四边形,分两种情况讨论:①当AB为对角线时,根据中点坐标公式得,则有,解得:或,∴P(1+,2)和(1﹣,2);②当AB为边时,根据中点坐标公式得,解得或,∴P(1+,4)或(1﹣,4).故答案为:P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m).∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由,解得,∴OM==,ON=m•,∴=,∴k=时,=,∴当k=时,点T运动的过程中,为常数.点睛:本题考查了二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.。
广东省深圳市南山区中考数学一模试卷
广东省深圳市南山区中考数学一模试卷一.选择题(本题共有12小题,每小题3分,共36分.每小题有四个选项,其中只有一项是正确的)1.(3分)﹣2015的倒数是()A.2015B.﹣2015C.﹣D.2.(3分)下列运算正确的是()A.a2+a2=a4B.2a2﹣a2=2C.a2•a3=a6D.(2a)3=8a3 3.(3分)春运第一天,某市海陆空铁共发送旅客228100人次,迎来春运客流量的首次高峰,将这个数据精确到万位,用科学记数法表示为()A.0.23×106B.2.2×104C.22.8×104D.2.3×105 4.(3分)如图,由几个相同的小正方体搭成的一个几何体,它的主视图为()A.B.C.D.5.(3分)已知一组数据:12,5,9,5,14,下列说法不正确的是()A.方差是8.02B.中位数是9C.众数是5D.极差是9 6.(3分)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.120°7.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.(3分)某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为()A.B.C.D.9.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.(3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m100m95m90m线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁11.(3分)下列命题中,正确的有()①平分弦的直径垂直于弦;②三角形的三个顶点确定一个圆;③圆内接四边形的对角相等;④圆的切线垂直于过切点的半径;⑤过圆外一点所画的圆的两条切线长相等.A.1个B.2个C.3个D.4个12.(3分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题.(本题共4题,每小题3分,共12分)13.(3分)分解因式:﹣x2y+2xy﹣y=.14.(3分)若关于x的一元二次方程x2+4x﹣a=0有两个实数根,则a的取值范围是.15.(3分)如图,ABCD为正方形,A,E,F,G在同一条直线上,并且AE=5厘米,EF=3厘米,那么FG=厘米.16.(3分)如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣(x<0)上,点P、Q分别是x轴、y轴上的动点,当四边形P ABQ的周长取最小值时,PQ 所在直线的解析式为.三、解答题(本体共7小题,其中第17小题5分,第18小题6分,第19小题6分,第20小题7分,第21小题9分,第22小题9分,第23小题10分,共52分)17.(5分)计算:()﹣2﹣+(﹣6)0﹣.18.(6分)先化简(﹣)÷,然后在﹣1,0,1,2四个数中选一个合适的代入求值.19.(6分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,(1)求证:四边形AECF是菱形;(2)连接AC,若平行四边形ABCD的面积为8,,求AC•EF的值.20.(7分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A﹣结伴步行、B﹣自行乘车、C﹣家人接送、D﹣其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;(3)请补全扇形统计图,并在图中标出“自行乘车”对应扇形的圆心角的度数;(4)如果该校学生有2080人,请你估计该校“家人接送”上学的学生约有多少人?21.(9分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.22.(9分)如图,已知AB,AC分别是⊙O的直径和弦,D为劣弧AC上的一点,ED为⊙O的一条弦,交AB于点H,交AC于点F,过点C画⊙O的切线交ED的延长线于点P,且PC=PF.(1)求证:AB⊥ED;(2)当点D为劣弧AC的中点时,连接AD,若DF=3、AD=4,求EF的长及sin∠BED的值.23.(10分)已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,(点B在点A的左侧)且A,B两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线L交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)在(2)的结论下,试问抛物线上是否存在点N(不同于点Q),使三角形BCN的面积等于三角形BCQ的面积?若存在,请求出点N的坐标;若不存在,请说明理由.广东省深圳市南山区中考数学一模试卷参考答案一.选择题(本题共有12小题,每小题3分,共36分.每小题有四个选项,其中只有一项是正确的)1.C;2.D;3.D;4.B;5.A;6.C;7.B;8.D;9.B;10.D;11.C;12.B;二、填空题.(本题共4题,每小题3分,共12分)13.﹣y(x﹣1)2;14.a≥﹣4;15.;16.y=x+1;三、解答题(本体共7小题,其中第17小题5分,第18小题6分,第19小题6分,第20小题7分,第21小题9分,第22小题9分,第23小题10分,共52分)17.;18.;19.;20.;21.;22.;23.;。
(完整版)2018年广东省中考数学试题含答案解析(Word版)
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图, ∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S=•OM•NE=×1.5x×x,△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
(汇总3份试卷)2018年深圳市南山区某名校中考数学模拟试题
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为 ”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在 附近
【解析】 用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
故选B.
【点睛】
本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
4.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.
A.6055B.6056C.6057D.6058
【答案】D
【解析】设第n个图形有a 个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
A.( ,0)B.(2,0)C.( ,0)D.(3,0)
【答案】C
【解析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
2018年广东省深圳市中考数学试卷含答案解析
广东省深圳市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 6的相反数是( )A.B.C.D. 6【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵6的相反数为-6,故答案为:A.【分析】相反数:数值相同,符号相反的两个数,由此即可得出答案.2. ( 2分 ) 260000000用科学计数法表示为( )A. B.C.D.【答案】B【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:∵260 000 000=2.6×108.故答案为:B.【分析】科学计数法:将一个数字表示成 a ×10的n 次幂的形式,其中1≤|a|<10,n 为整数,由此即可得出答案.3. ( 2分 ) 图中立体图形的主视图是( ) A. B.C.D.【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层从右往左有两个小正方形,故答案为:B.【分析】视图:从物体正面观察所得到的图形,由此即可得出答案.4. ( 2分 ) 观察下列图形,是中心对称图形的是( )A. B.C. D.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A.等边三角形为轴对称图形,有三条对称轴,但不是中心对称图形,A不符合题意;B.五角星为轴对称图形,有五条对称轴,但不是中心对称图形,B不符合题意;C.爱心为轴对称图形,有一条对称轴,但不是中心对称图形,C不符合题意;D.平行四边形为中心对称图形,对角线的交点为对称中心,D符合题意;故答案为:D.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,由此即可得出答案。
5. ( 2分 ) 下列数据:,则这组数据的众数和极差是( ) A.B.C.D.【答案】A【考点】极差、标准差,众数【解析】【解答】解:∵85出现了三次,∴众数为:85,又∵最大数为:85,最小数为:75,∴极差为:85-75=10.故答案为:A.【分析】众数:一组数据中出现次数最多数;极差:一组数据中最大数与最小数的差;由此即可得出答案.6. ( 2分 ) 下列运算正确的是( )A. B.C. D.【答案】B【考点】同底数幂的乘法,同底数幂的除法,同类二次根式,同类项【解析】【解答】解:A.∵a .a =a ,故错误,A不符合题意;B.∵3a-a=2a,故正确,B符合题意;C.∵a8÷a4=a4,故错误,C不符合题意;D. 与不是同类二次根式,故不能合并,D不符合题意;故答案为:B.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;C.根据同底数幂相除,底数不变,指数相减即可判断对错;D.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式,由此即可判断对错.7. ( 2分 ) 把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B.C.D.【答案】D【考点】一次函数图象与几何变换【解析】【解答】解:∵函数y=x向上平移3个单位,∴y=x+3,∴当x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出y值,一一判断即可得出答案.8. ( 2分 ) 如图,直线被所截,且,则下列结论中正确的是( )A. B.C. D.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.9. ( 2分 ) 某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A.B.C.D.【答案】A【考点】二元一次方程组的其他应用【解析】【解答】解:依题可得:故答案为:A.【分析】根据一共70个房间得x+y=70;大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满得8x+6y=480,从而得一个二元一次方程组.10. ( 2分 ) 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D【考点】切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),∵∠DAC=60°,∴∠BAC=120°.又∵AB、AC为圆O的切线,∴AC=AB,∠BAO=∠CAO=60°,在Rt△AOB中,∵AB=3,∴tan∠BAO= ,∴OB=AB×tan∠60°=3 ,∴光盘的直径为6 .故答案为:D.【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO= ,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.11. ( 2分 ) 二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:A.∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∵对称轴- 在y轴右侧,∴b>0,∴abc<0,故错误,A不符合题意;B. ∵对称轴- =1,即b=-2a,∴2a+b=0,故错误,B不符合题意;C. ∵当x=-1时,y<0,即a-b+c<0,又∵b=-2a,∴3a+c<0,故正确,C符合题意;D.∵ax2+bx+c-3=0,∴ax2+bx+c=3,即y=3,∴x=1,∴此方程只有一个根,故错误,D不符合题意;故答案为:C.【分析】A.根据抛物线开口向下得a<0;与y轴的正半轴相交得c>0;对称轴在y轴右侧得b>0,从而可知A错误;B.由图像可知对称轴为2,即b=-2a,从而得出B错误;C.由图像可知当x=-1时,a-b+c<0,将b=-2a代入即可知C正确;D.由图像可知当y=3时,x=1,故此方程只有一个根,从而得出D错误.12. ( 2分 ) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③ C. ②④ D. ③④【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,角的平分线判定【解析】【解答】解:设P(a,b),则A(,b),B(a, ),①∴AP= -a,BP= -b,∵a≠b,∴AP≠BP,OA≠OB,∴△AOP和△BOP不一定全等,故①错误;②∵S△AOP= ·AP·y A= ·(-a)·b=6- ab,S△BOP= ·BP·x B= ·(-b)·a=6- ab,∴S△AOP=S△BOP.故②正确;③作PD⊥OB,PE⊥OA,∵OA=OB,S△AOP=S△BOP.∴PD=PE,∴OP平分∠AOB,故③正确;④∵S△BOP=6- ab=4,∴ab=4,∴S△ABP= ·BP·AP= ·(-b)·(-a),=-12+ + ab,=-12+18+2,=8.故④错误;故答案为:B.【分析】设P(a,b),则A(,b),B(a, ),①根据两点间距离公式得AP= -a,BP= -b,因为不知道a和b是否相等,所以不能判断AP与BP,OA与OB,是否相等,所以△AOP和△BOP不一定全等,故①错误;②根据三角形的面积公式可得S△AOP=S△BOP=6- ab,故②正确;③作PD⊥OB,PE⊥OA,根据S△AOP=S△BOP.底相等,从而得高相等,即PD=PE,再由角分线的判定定理可得OP平分∠AOB,故③正确;④根据S△BOP=6- ab=4,求得ab=4,再由三角形面积公式得S△ABP= ·BP·AP,代入计算即可得④错误;二、填空题13. ( 1分 ) 分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。
<合集试卷3套>2018届深圳市南山区某名校中考数学考前验收题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.3.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥【答案】A 【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.4.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7 【答案】C【解析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.5.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定 【答案】A【解析】根据x 1、x 1与对称轴的大小关系,判断y 1、y 1的大小关系.【详解】解:∵y=-1x 1-8x+m ,∴此函数的对称轴为:x=-b 2a=-()-82-2⨯=-1, ∵x 1<x 1<-1,两点都在对称轴左侧,a <0,∴对称轴左侧y 随x 的增大而增大,∴y 1<y 1.故选A .【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.下列关于x的方程中一定没有实数根的是()A.210x x--=B.24690x x-+=C.2x x=-D.220x mx--=【答案】B【解析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x6x90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x=-, 2x x0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.8.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.【答案】C【解析】根据题意先解出12342x x +>⎧⎨-≤⎩的解集是, 把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右; 表示时要注意方向向左,起始的标记为实心圆点,综上所述C 的表示符合这些条件.故应选C.9.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和3 【答案】A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x 2y 和2xy 2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.10.4-的相反数是( )A .4B .4-C .14-D .14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A .【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.二、填空题(本题包括8个小题)11.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 .【答案】. 【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.12.使分式的值为0,这时x=_____.【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法13.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.【答案】3【解析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA =AB•tan60°,∴PC =2×20×3=403(km ),故答案为403.【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB =BC ,推出∠C =30°.14.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是_________.【答案】136°.【解析】由圆周角定理得,∠A=12∠BOD=44°, 由圆内接四边形的性质得,∠BCD=180°-∠A=136°【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).【答案】AE=AD (答案不唯一).【解析】要使△ABE ≌△ACD ,已知AB=AC ,∠A=∠A ,则可以添加AE=AD ,利用SAS 来判定其全等;或添加∠B=∠C ,利用ASA 来判定其全等;或添加∠AEB=∠ADC ,利用AAS 来判定其全等.等(答案不唯一).16.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键. 17.已知代数式2x ﹣y 的值是12,则代数式﹣6x+3y ﹣1的值是_____.【答案】5 2 -【解析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可.【详解】∵2x-y=12,∴-6x+3y=-32.∴原式=-32-1=-52.故答案为-52.【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键.18.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.【答案】75°【解析】试题解析:∵直线l1∥l2,∴130.A∠=∠=,AB AC=75.ACB B∴∠=∠=2180175.ACB∴∠=-∠-∠=故答案为75.三、解答题(本题包括8个小题)19.如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:AD AF BC AC=.【答案】见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BCAE AD=,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DEBC AC=,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AFBC AC=.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.计算:2344 (1)11x xxx x++-+÷++.【答案】22x x -+ 【解析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭ =()()()2x 22112x x x x +-+⨯++ =22x x -+. 【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.21.已知AB 是O 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P 为AB 上一点,CP 延长线与O 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.【答案】(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,223PA +=【解析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,易得∠APC=45°;过点C 作CD ⊥AB 于点D ,易得AD=12AO=12CO ,在Rt △DOC 中易得CD 的长,即可求解【详解】解:(Ⅰ)∵AB 是○O 的直径,∴OA 是○O 的半径.∵∠OAC=60°,OA=OC ,∴△OAC 是等边三角形.∴∠AOC=60°.∵PC 是○O 的切线,OC 为○O 的半径,∴PC ⊥OC ,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=12AO=12CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=23∴PD=CD=23∴AP=AD+DP=2+23【点睛】此题主要考查圆的综合应用22.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=.【解析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.【答案】证明见解析【解析】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.24.为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表成绩x(分)等级人数≥ A 12x90≤< B m75x90≤< C n60x75x60< D 9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B 级以上(包括B 级)的学生人数.【答案】 (1)60人;(2)144°;(3)288人.【解析】()1D 等级人数除以其所占百分比即可得;()2先求出A 等级对应的百分比,再由百分比之和为1得出C 等级的百分比,继而乘以360即可得; ()3总人数乘以A 、B 等级百分比之和即可得.【详解】解:()1本次被抽取参加英语口语测试的学生共有915%60÷=人;()2A 级所占百分比为12100%20%60⨯=, C ∴级对应的百分比为()120%25%15%40%-++=,则扇形统计图中 C 级的圆心角度数为36040%144⨯=;()()364020%25%288(⨯+=人),答:估计英语口语达到 B 级以上(包括B 级)的学生人数为288人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.25.如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.【答案】(1)2y x= (2)﹣1<x <0或x >1.(3)四边形OABC 是平行四边形;理由见解析.【解析】(1)设反比例函数的解析式为k y x=(k >0),然后根据条件求出A 点坐标,再求出k 的值,进而求出反比例函数的解析式. (2)直接由图象得出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)首先求出OA 的长度,结合题意CB ∥OA 且判断出四边形OABC 是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为k y x=(k >0) ∵A (m ,﹣2)在y=2x 上,∴﹣2=2m ,∴解得m=﹣1.∴A (﹣1,﹣2).又∵点A 在k y x=上,∴k 21-=-,解得k=2., ∴反比例函数的解析式为2y x =. (2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为﹣1<x <0或x >1. (3)四边形OABC 是菱形.证明如下:∵A (﹣1,﹣2),∴OA =由题意知:CB ∥OA 且∴CB=OA .∴四边形OABC 是平行四边形.∵C (2,n )在2y x=上,∴2n 12==.∴C (2,1).∴OC ∴OC=OA .∴平行四边形OABC 是菱形.26.观察下列各个等式的规律: 第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【答案】(1)225412--=4;(2)22(1)12n n +--=n . 【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4; (2)第n 个等式是:22(1)12n n +--=n .证明如下:∵22(1)12n n +--=[(1)][(1)]12n n n n +++-- =2112n +- =n ∴第n 个等式是:22(1)12n n +--=n . 点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是()A .53cmB .25cmC .48cm 5D .24cm 5【答案】D 【解析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度.【详解】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO ⊥BO , ∴2222BC CO BO 345+=+=. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形,∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.2.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =8【答案】D【解析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则15(8+9+7+8+x)=8,解得x=8,故本选项正确;故选D.【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为x,则方差()()()()22221232...nx x xx x x x xSn-+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.4.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.5.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.6.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c【答案】A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d ,选项B 不符合题意;C 、∵a+b+14=a+(a+1)+14=2a+15,c+d =a+7+(a+1)=2a+15,∴a+b+14=c+d ,选项C 不符合题意;D 、∵a+d =a+(a+1)=2a+1,b+c =a+1+(a+7)=2a+1,∴a+d =b+c ,选项D 不符合题意.故选:A .【点睛】考查了列代数式,利用含a 的代数式表示出b ,c ,d 是解题的关键.7.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a >0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .12【答案】B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16. 故选B.考点:简单概率计算.9.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH与AC交于G,则OG长度为()A .92B.94C.35D.35【答案】B【解析】试题解析:在菱形ABCD中,6AC=,8BD=,所以4OA=,3OD=,在Rt AOD△中,5AD=,因为11641222ABDS BD OA=⋅⋅=⨯⨯=,所以1122ABDS AB DH=⋅⋅=,则245DH=,在Rt BHD中,由勾股定理得,22222418655BH BD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHB∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.10.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【答案】D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.二、填空题(本题包括8个小题)11.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F ,则EF 的长为__________.【答案】6【解析】利用正方形的性质和勾股定理可得AC 的长,由角平分线的性质和平行线的性质可得∠CAE=∠E ,易得CE=CA ,由FA ⊥AE ,可得∠FAC=∠F ,易得CF=AC ,可得EF 的长. 【详解】解:∵四边形ABCD 为正方形,且边长为3, ∴2∵AE 平分∠CAD , ∴∠CAE=∠DAE ,∵AD ∥CE , ∴∠DAE=∠E , ∴∠CAE=∠E , ∴2, ∵FA ⊥AE ,∴∠FAC+∠CAE=90°,∠F+∠E=90°, ∴∠FAC=∠F , ∴2, ∴222121x -x 的取值范围是_______. 【答案】1x ≥【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解:∵1x -∴x-1≥2, 解得x≥1. 故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.13.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 . 【答案】:k <1.【解析】∵一元二次方程220x x k -+=有两个不相等的实数根, ∴△=24b ac -=4﹣4k >0, 解得:k <1,则k 的取值范围是:k <1. 故答案为k <1.14.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=62,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为_____.【答案】163【解析】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长,根据相似三角形对应边的比可得结论.【详解】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长; Rt △ABC 中,∠BAC=90°,AB=3,2, ∴()22362+,S △ABC =12AB•AC=12BC•AF , ∴2=9AF , 2, ∴2∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE , ∴∠A'=∠C ,∵∠AEA'=∠BAC=90°, ∴△AEA'∽△BAC , ∴''AA BC A E AC=, ∴42'62A E =, ∴A'E=163, 即AD+DE 的最小值是163, 故答案为163.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.15.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.【答案】18 1【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1.故答案为:18;1.【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.16.Rt△ABC中,AD为斜边BC上的高,若, 则ABBC.【答案】12【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题. 【详解】如图,∵∠CAB=90°,且AD ⊥BC , ∴∠ADB=90°,∴∠CAB=∠ADB ,且∠B=∠B , ∴△CAB ∽△ADB ,∴(AB :BC )1=△ADB :△CAB ,又∵S △ABC =4S △ABD ,则S △ABD :S △ABC =1:4, ∴AB :BC=1:1.17.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式, ∴2(m-3)=±8, 解得:m=-1或1, 故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.18.如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 三、解答题(本题包括8个小题)19.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值.【答案】1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--;当a=0时,原式=1. 考点:分式的化简求值.20.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【答案】(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可; (2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得: 50m+30(20-m )≤1. 解得:m≤2. 又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷2018年广东省深圳市南山区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.第2页,共21页8. 如图,在平面直角坐标系中,点P 是反比例函数图象上一点,过点P 作垂线,与x 轴交于点Q ,直线PQ 交反比例函数于点M ,若,则k 的值为A.B.C.D.9. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110. 二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y 的值随x 值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个试卷11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C :请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民第4页,共21页试卷20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:第6页,共21页;如图3,将绕点C 继续逆时针旋转,当平行四边形ABFD 为菱形,且在的下方时,若,求线段AE 的长.23. 如图1,二次函数的图象过点,顶点B 的横坐标为1.求这个二次函数的表达式;点P 在该二次函数的图象上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;如图3,一次函数的图象与该二次函数的图象交于O 、C 两点,点T 为该二次函数图象上位于直线OC 下方的动点,过点T 作直线,垂足为点M ,且M 在线段OC 上不与O 、C 重合,过点T 作直线轴交OC于点试卷若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:第8页,共21页试卷人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,第10页,共21页试卷是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD ,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB 解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,或当AB 为对角线时,根据中点坐标公式得,则有,解得第12页,共21页试卷和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n 是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b 相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B .,故此题错误;C .,故此题错误;D .,正确.故选:D.第14页,共21页试卷按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;第16页,共21页试卷本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A 的概率事件A可能出现的结果数除以所有可能出现的结果数.第18页,共21页试卷15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.第20页,共21页试卷本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.。