第一章有理数复习
人教版七年级数学上册总复习知识点汇总打印版
人教版七年级数学上册总复习知识点汇总打印版第一章有理数1.1正数与负数1、正数:大于的数叫正数。
(根据需要,有时在正数前面也加上“+”)2、负数:在以前学过的以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
3、既不是正数也不是负数。
是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
1.2有理数1、有理数的分类整数和分数统称有理数。
1)整数的分类:正整数。
负整数2)分数的分类:正分数和负分数2、数轴1)定义:通常用一条直线上的点表示数,这条直线叫数轴;2)数轴三要素:原点、正方向、单位长度;3)原点:在直线上任取一个点表示数,这个点叫做原点;4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有标记不同的两个数叫做互为相反数。
(例:2的相反数是-2;的相反数是)4、绝对值1)定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
2)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是。
两个负数,绝对值大的反而小。
1.3有理数的加减法1、有理数加法法则1)同号两数相加,取相同的符号,并把绝对值相加。
2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得。
3)一个数同相加,仍得这个数。
2、加法的交换律和联合律1)a+b=b+a2)(a+b)+c=a+(b+c)3、有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法1、有理数乘法法则1)两数相乘,同号得正,异号得负,并把绝对值相乘;2)任何数同相乘,都得;3)乘积是1的两个数互为倒数。
2、乘法交换律/结合律/分配律1)a×b=b×a2)(a×b)×c=a×(b×c)3)(a+b)×c=a×c+b×c3、有理数除法法则1)除以一个不即是的数,即是乘这个数的倒数;2)两数相除,同号得正,异号得负,并把绝对值相除;3)除以任何一个不即是的数,都得。
第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册
6
(4)+(+6)=__________;
12
(5)|-12|=_________;
(6)-|-12|=_________.
-12
9. 填空:
6和-6
(1)到原点的距离等于6的数有2个,分别是__________;
-7或7
(2)若|x|=7,则x=__________;
4或-4
(3)一个数的绝对值是4,则这个数是__________;
正方向
(2)数轴的三要素:①__________;②____________;③
原点
单位长度
____________.
注意:数轴的三要素缺一不可.
原点将数轴(原点除外)分成两部分,其中正方向一侧
的部分叫作数轴的正半轴,另一侧的部分叫作数轴的
负半轴。
知识点 4 相反数
符号
(1)相反数:只有________不同的两个数叫做互为相反数.
+0.04
-0.03
( 表示
圆形零件的直径,单位:mm),抽查了5个零件,超过
规定的记作正数,不足的记作负数,数据如下表(单位:
mm).
(1)哪些产品是符合要求的?
(2)在符合要求的产品中哪个质量最好?请用绝对值的
知识加以说明.
解:(1)1号,3号,4号产品是符合要求的;
(2)因为|+0.018|<|-0.021|<|+0.031|,
(4)若|a-4|+|b-3|=0,则a=_______,b=_______.
4
3
10. 比较大小,用“>”或“<”填空:
<
>
(1)15________0;
(2)-12________5;
<
>
第一章 有理数复习资料
一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
[基础练习] 1☆把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 03下列语句中正确的是( ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的 距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A .-5, B.-4 C.-3 D.-2三、【相反数】的概念像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质:1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024
第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
第一章有理数总复习
8.有理数的乘除法法则
(1)乘法法则:两数相乘,同号得 正,异号得负,并把绝对值相 乘。 (2)除法法则:两数相除,同号得 正,异号得负,并把绝对值相 除。
(3)除以一个数等于乘以这个 数的倒数 例题:求下列各数的倒数
1 1 0.2, , 6, 3 4
9.乘方
定义:求几个相同因数的乘积的运 算叫做乘方
4.相反数 (1)只有符号不同的两 个数互为相反数 (2)互为相反数的两个 数关于原点对称
5.绝对值
(1)数轴上表示数a的点与原点 的距离叫做数a的绝对值, 记做|a| (2)绝对值的求法
例题
若a >0,b <0,c<0 化简 a -b + b +c
6.比较大小
(1)正数大于0,0大于负 数 (2)两个负数比较大小,绝 对值大的反而小
第一章
有理数总复习
1.具有相反意义的量 (1)高于海平面200米记做 +300米 ,则低于海平 面250米记做( ) (2)如果+20米表示上升20 米,则-10米表示( )
2.有理数的分类 (1)有理数的定义 (2)有理数的分类 ①按定义分类 ②按性质分类
3.数轴 规定了原点,正方向和 单位长度的直线
注意:负数和分数乘方时要打括号
10.科学记数法 将一个大于10或小于-10的 数写成:
a 10
n
11.近似数 (1)精确度 (2)四舍五入法 例题:90600000(精确到千位) 640列各数大小 并用<连接起来
(-2), -(+3), -4 , 0 -
7.有理数的加减法法则
(1)加法法则:同号两数相加,取 相同的符号,并把绝对值相加,异 号两数相加,取绝对值较大加数的 符号,并用较大的绝对值减去较小 的绝对值
第一章 有理数复习
自然数
有理数的分类
有理数的另一种分类
有 理 数 0 有理数 有理数 数 分数 数 分数
分类的 的 数 数. 数 数
分类
(1)零既不是正数也不是负数,零 )零既不是正数也不是负数, 大于负数,正数大于零。 大于负数,正数大于零。 (2)零的相反数是它本身,零的绝 )零的相反数是它本身, 对值是它本身, 对值是它本身,零的任何非零次幂是 零。 (3)零是绝对值最小的有理数。 )零是绝对值最小的有理数。 (4)零乘以任何数为零,零除以任 )零乘以任何数为零, 何不为零的数为零。 何不为零的数为零。 (5)零没有倒数,零不能做除数。 )零没有倒数,零不能做除数。
有理数
正数、 正数、负数在实际生活中的应用
外国语学校对七年级女生进行了 仰卧起坐的 测试,以能做36个为标准 个为标准, 测试,以能做 个为标准,超过的次数用正数表 不足的次数用负数表示,其中8名女生的成绩 示,不足的次数用负数表示,其中 名女生的成绩 如下 2 -1 0 3 -2 -4 1 0 名女生的成绩分别是多少? (1)这8名女生的成绩分别是多少? ) 名女生的成绩分别是多少 名女生有百分之几达到标准? (2)这8名女生有百分之几达到标准? ) 名女生有百分之几达到标准 (3)她们共做了多少个仰卧起坐? )她们共做了多少个仰卧起坐?
1.零是整数吗 自然数一定是整数吗 自然数 零是整数吗?自然数一定是整数吗 零是整数吗 自然数一定是整数吗?自然数 一定是正整数吗?整数一定是自然数吗 整数一定是自然数吗? 一定是正整数吗 整数一定是自然数吗
零是整数;自然数一定是整数; 零是整数;自然数一定是整数;自然数不 一定是正整数,因为零也是自然数; 一定是正整数,因为零也是自然数;整数 不一定是自然数, 不一定是自然数,因为负整数不是自然数 。
七年级数学上册期末复习要点
七年级数学上册期末复习要点第一章有理数一、正数和负数1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;2、表示相反意义的量:盈利与亏损,存入与支出,增加与削减,运进与运出,上升与下降等3、正、负数所表示的实际意义:例题:北京冬季里某天的温度为—3°c~3°c,它确实切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最顶峰珠穆朗玛海拔8848.13米二、有理数2.1有理数的分类2.2 数轴1、定义:用一条直线上的点表示数,这条直线就叫做数轴。
2、满意的条件:〔1〕在直线上取一个点表示数0,这个点叫做原点;〔2〕通常规定直线从原点向右〔或上〕为正方向,从原点向左〔或下〕为负方向;〔3〕选取适当的长度为单位长度。
2.3相反数定义:只有符号不一样的两个数叫做相反数一般地:a和互为相反数,0的相反数仍旧是0。
在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。
2.4肯定值1、定义:数轴上表示数a的点与原点的距离叫做数a 的肯定值,记作∣a∣由定义可知:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。
〔1〕当a是正数时,∣a∣= ;〔2〕当a是负数时,∣a∣= ;〔3〕当a=0时,∣a∣= 。
2.5比拟两个数的大小〔1〕正数大于0,0大于负数,正数大于负数;〔2〕两个负数,肯定值大的反而小。
三、有理数的加减法1、加法法那么:〔1〕同号两数相加:取一样的符号,并把肯定值相加;〔2〕异号两数相加:肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0;〔3〕一个数和零相加:任何数和零相加都等于它本身。
2、加法交换律、结合律〔1〕有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a〔2〕有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)3、有理数的减法法那么:减去一个数,等于加上这个数的相反数:a-b=a+(-b)四、有理数的乘除法有理数的乘法法那么:1. 两数相乘,同号得正,异号得负,并把它们的肯定值相乘。
人教版七年级数学上册期末复习大纲【五篇】
关注我谢谢你
人教版七年级数学上册期末复习大纲【五篇】
【篇一】第一章有理数
--------------1.1正数与负数
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表
15。
第一章有理数复习
第一章:有理数复习【一】知识要点 【1】有理数的分类 1.2.按正负分【例题1】(1)把下列各数进行分类 ① 0 ②-5 ③ 1 ④ 1.5 ⑤2 ⑥ 722- ⑦ -(-3)⑧ 312--⑨ -12018 ⑩ (-2)3整数集合( ) 分数集 合( )非负整数集合 ( ) 非负数集合( ) (2)下列说法正确的有( )个①0是最小的数 ②绝对值最小的数是0 ③任何数的绝对值都是正数 ④最大的负整数是-1 ⑤倒数等于它本身的有1,-1,0有理数正有理数负有理数温馨提示: 1.化简结果中含有π或无限不循环的小数都不是有理数 2.正数和零统称非负数,负数和零统称非正数 正整数正分数 负整数 负分数有理数【2】相关概念1.数轴:规定了原点、正方向、单位长度的一条直线2.相反数:3.绝对值①几何定义:一个数a 的绝对值就是数轴上表示这个数a 的点离开原点的距离,绝对值越大离原点越远②代数定义:⎩⎨⎧≤-≥=)0()0(a a a a a (注意0)4.倒数:若两个数的积是1,那么这两个数互为倒数5.科学计数法6.近似数和有效数字7.数的大小比较方法:数轴上从左到右依次递增,数轴上的点与实数..是一一对应 ①代数定义:只有符号不同......的两个数叫做相反数 ②几何定义:数轴上在原点的两旁,到原点距离相等的两个点代表的数互为相反数③求一个数或式子的相反数,就在它的前面加上‘-’④a 的相反数是-a ,a-b 的相反数是-(a-b )=b-a,a+b 的相反数是-(a+b)=-a-b (注意括号),相反数等于它本身的只有0 ⑤性质:若a,b 互为相反数,则a+b=0,或a=-b 1、非负数的绝对值等于它本身,非正数的绝对值是它的相反数 2、绝对值符号去掉规律:非负数各项不变号,非正数各项都变号 3、一个数的绝对值(或者平方)等于正数.............,那么这个数有两个..①a,b 互为倒数 ab=1②倒数等于它本身只有±1,切记0没有倒数形式:ax10n (a 是整数位数只有一位的数,n 是整数), 当a ≥10时,n=原数整数位数-1 , 当a <1时,n=-(原数第一个非0数字前所有0的个数) ①保留近似数的方法有:四舍五入法、进一法、去尾法 ②近似数可以用计数单位或科学计数法表示 ③有效数字是从左边第一个不是零的数字起以后的所有数字都是这个数的有效数字 ④通过测量得到的数都是近似数 ①差法 ②数轴法 ③两个负的绝对值法 ④平方法 ⑤商法8.非负数性质【例题2】正负数应用(1)如果提高10分表示+10分,那么下降8分表示____,不升不降用___表示. (2)巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A. 7月2日21时B. 7月2日7时C. 7月1日7时D. 7月2日5时 (3)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为【例题3】数轴、相反数、绝对值、倒数、非负数应用(1)已知 a ,b 互为相反数,c ,d 互为倒数,m-1的绝对值是2,则m dccd b a -+-+222=(2)在数轴上到表示-1的点的距离为7个单位长度的点有_____个,它们表示27(4)绝对值不大于2的整数有________,它们的和是 ,积是 ((6)已知|x|=4,|y|=2且y <0,则x+y 的值为(7) ①π-14.3=②20171-2018131-4121-311-21++++。
初中数学第一章_有理数(复习)
考点综述
有理数是初中数学的基础内容,中考试题 中是必考内容之一,主要题型以填空、选 择、计算为主,主要考查有理数及其相关 概念,如:相反数、绝对值、倒数,会用 数轴比较大小,有理数的混合运算,科学 记数法的意义以及表示方法,近似数和有 效数字的意义,还有会按照题目要求取近 似数。
一、 有 理 数
1. 正整数、零、负整数 _____________统称整数,试举例说明。 2. 正分数、负分数 _____________统称分数,试举例说明。 整数、分数 3. _____________统称有理数。
有理数的分类表
有 理 数 整数 正整数 0 负整数 正分数
自然数
分数
负分数
有理数的分类
• 有理数的另一种分类
③用-a表示的数一定是( D )
A .负数 B. 正数 C .正数或负数 D.都不对 ④一个数的相反数是最小的正整数,那么这个数 是(A ) A .–1 B. 1 C .±1 D. 0
3.①互为相反的两个数在数轴上位于原点两旁(×) × ②在一个数前面添上“-”号,它就成了一个负数( ) ③ 只要符号不同,这两个数就是相反数(× )
选择题: 在数轴上,原点及原点左边所表示的数是( D ) A整数 B负数 C非负数 D非正数 下列语句中正确的是( D ) A数轴上的点只能表示整数 B数轴上的点 只能表示分数 C数轴上的点只能表示有理 数 D所有有理数都可以用数轴上的点表示 出来
ቤተ መጻሕፍቲ ባይዱ
三 、 相反数
5 -8 1. -5的相反数是__;-(-8)的相反数是__;a的 -a 相反数是__;0的相反数是__;-1/2的相反数 0 2 ±1 的倒数是__ ;倒数等于它本身的是___。 2. ①的若a和b是互为相反数,则a+b=( ) C A. –2a B .2b C. 0 D. 任意有理数 A 3. ②下列说法正确的是( ) A –1/4的相反数是0.25 ,B 4的相反数是-0.25, C 0.25的倒数是-0.25, D 0.25的相反数的倒数是-0.25
人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)
人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
第一章有理数复习学案
第一章有理数复习学案篇一:第一章有理数复习学案(共三课时)第一章有理数的回顾教学目标:1:识记有理数的基本概念;2:能运用相关基础知识解决简单的数学问题;3:掌握并会运用有理数的运算规则和运算律进行计算。
教学重点和难点:有理数的基本概念和算法。
教学过程:1.它们被称为倒数。
一个与另一个相反。
a的反数是(a是任意有理数);0的对立面是若a、b互为相反数,则.若a+b=0,则2.数字轴上代表数字a点和原点的数字a的绝对值称为数字a。
记住做| a |。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的。
正数的绝对值就是它;如果a>0,则a=a;一个负数的绝对值是它的;若a<0,则a=-a;一0的绝对值是.若a=0,则a=0;1)数字轴比较:在数轴上的两个数,右边的数总比左边的数;正数都大于,负数都小于;正数一切负数;2)两个负数,也就是说,如果a<0,B<0,a聚焦于B,那么a<B3)做差法:∵a-b>0,∴;4)商法:∵ A/b>1,b>0,∵八:科学记数法大于一0的数字以的形式记录,其中A为(1?A<10)。
这种计数方法叫做科学计数法,N是一个正整数。
注意:指数n与原数整数位数之间的关系。
同步测试:(1)使用科学符号表示以下数字:230000=134000000000=(2)以下用科学符号表示的数字是什么?364.315×10=1.02×10=九:大致数字接近准确数而不等于准确数的数。
同步测试:如果以下问题中的数据准确,则为()a.今天的气温是28cb.月球与地球的距离大约是38万千米c、小明身高约148厘米。
有800名七年级学生十:有效数字从一个数字来看,所有数字都是这个数字的有效数字。
近似数与准确数的接近程度可用精确度表示。
例如,如果近似数字为20400,则它有一个最接近的有效数字2例2。
在相应的集合中填写以下数字:1,-0.20,31,325,-789,0,-23.13,0.618,-2021.π5?};?};?};?}.整数集:{负集:{分数集:{有理集:{例3、按规律填数:(1)2,7,12,17,(),(),??(2)1,2,4,8,16,(),(),??例4。
七年级上第1章有理数复习教案(5篇材料)
七年级上第1章有理数复习教案(5篇材料)第一章有理数复习教学目标:1:识记有理数的基本概念;2:能够运用相关基础知识,解决简单的数学问题;3.掌握并运用有理数的运算规则和规律进行计算。
教学中的重点和难点:有理数的基本概念和算法。
教学过程:(一)有理数的基本概念一:正数和负数1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。
3、0:既不是正数也不是负数,是正数和负数的分界。
4.同一个问题中,正数和负数分别代表意义相反的量。
二:有理数:可以写成分数的形式,这样的数叫做有理数。
有理数的两种分类三:数轴:定义原点、正方向、单位长度的直线称为数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常直线上的右(或上)方向为正方向,选择合适的长度作为单位长度。
数轴上表示的两个数中,右边的数总是大于左边的数;所有有理数都可以用数轴上的点来表示。
关于有理数和数轴的练习4:倒数绝对值相等,只有符号不同的两个数叫做互为相反数。
其中一个是另一个的相反数。
数a的相反数是-a,(a是任意一个有理数);0的相反数是0.若a、b互为相反数,则a+b=0.相反数的相关练习题五:倒数乘积是1的两个数互为倒数.a的倒数是;0没有倒数;若a与b互为倒数,则ab=1.倒数相关练习题倒数、相反数区别:1:互为倒数的两个数符号相同,互为相反数的两个数符号相反。
2:0没有倒数,0的相反数是0。
3:倒数对于本身的数是1或-1。
4:两个相反数之和为0,两个倒数之积为1。
示例:六:绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
a一个正数的绝对值是它本身;若a>0,则︱a︱= a;一个负数的绝对值是它的相反数;若a<0,则︱a︱=-a;0的绝对值是0.若a =0,则︱a︱= 0;对任何有理数a,总有︱a︱≥0.绝对值知识的相关练习题例题:七:有理数大小的比较:1)数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,较大的绝对值较小。
第一章---有理数复习教学设计
第一章有理数复习教学设计一、学习目标1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2. 掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;3.养成“言必有据、做必有理、答必正确”的良好思维习惯。
增进“应用数学知识解决实际问题的数学思想。
二、知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
三、知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
四、考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
五、学习策略:先通过知识要点的小结与典型例题练习,然后进行检测,找出漏洞,再进行针对性练习,从而达到内容系统化和应用的灵活性。
六、知识框架:教学过程:第一课时有理数的基本概念和相关的基础知识(一)具有相反意义的量与正负数1、向东30米记作+30米,那么-50米记作().2、在-0.1,2,-9,-25,+1,0,12中,正数有_________,负数有_________.再向西走了17m,此时,小明在梧桐树的什么方向,距离梧桐树多远?4、一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).A .1个B .2个C .3个D .5个5、有理数“0”的作用:(二)有理数的概念与分类__________________统称有理数。
有理数有两种分类方式,分别是:__________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩有理数 或 ___________________________________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩有理数 1. 将下列各数填入相应的集合中:15、-15、-5、215、 138-、0.1、0、-5.32、-80、123、-2.333.正数集合:{ …} 负数集合:{ …} 整数集合:{ …} 分数集合:{ …} 正整数集{ …}; 负分数集{ …}2. 最大的负整数是 ;最小的正整数是 ;最大的非正数是 ;最大的非负数是 .3.下面说法中正确的是( ).A .正整数和负整数统称整数B .分数不包括整数C .正分数,负分数,负整数统称有理数D .正整数和正分数统称正有理数(三)数轴1、规定了_________、_________和_________的_________叫做数轴2、数轴的画法及常见错误分析①画一条水平的______________;②在这条直线上适当位置取一实心点作为______________: ③确定向右的方向为______________,用______________表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的 要一致. ⑤数轴画法的常见错误举例:不统一没有3、有理数与数轴的关系一切有理数都可以用数轴上的表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数,正数都大于,负数都小于,正数大于一切负数.注意:数轴上的点不都是有理数,如 .4、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
和
负有理数
2、数轴:规定了 原点 正方向 单位长度
的直线称为数轴
(3、1)相只反有数:符号 不同的两个数,叫做互为 相反数 (2)a的相反数是 -a
(3)若a与b互为相反数,则a+b= 0
4、绝对值:一般的,数轴上表示数a的点
与 原点 的距离叫做数a的绝对值,记作
∣a∣
a (a>0)
|a|= 0 (a=0)
7、小明遥控一辆玩具赛车,让它从A地出发,
先向东行驶15m,再向西行驶25m,然后又向 东行驶20m,再向西行驶35m,问玩具赛车最 后停在何处?一共行驶了多少米?
8、把下列各式先写成省略加号的和式并 用两种方法读出 (1)(-5) - (+8) - (-19) + (-3)
(2)(-11) - (+8) + (+4) - (-12)
1-|-1/2|=___; (4-2)/3 -1-|1-1/2|=______。
-1
1/2
-3/2
3. 填空题。
1) 若|a|=3,则a=±_3___; |a+1|=0,则a=___-_1 。
2) 若|a-5|+|b+3|=0,则a=__5 _,b=__-3_。
3) 若|x+2|+|y-2|=0,则x=___,y=___。
经典例题解析
1. 设 a>0,b<0,|a|<|b|,用“<”号
连 接a,-a,b,-b,a-b,b-a.
2 .已知(a+1)2+(2b-3)4+|c–1|=0,
求 ab÷(-3c)+(a-c)÷b 的值.
3.当a= ______时,5-a2有最大值为 ______.
4.(-2)100+(-2)101所得的值是
用科学记数法表示一个n位整数,其中10的 指数是n-1.
二、 数 轴
1. 练习1、在数轴上画出表示下列各数的点,并按从大 到小的顺序排列,用“>”号连接起来。 4, -|-2|, -4.5, 1, 0。
2. ①比-3大的负整数是__-_2,__-1__; ②已知m是整数 且-4<m<3,则m为_-_3_,_-2_,_-_1,__0,__1,__2__。 ③有理数 中,最大的负整数是_-1_,最小的正整数是_1_。最大的 非正数是_0_。 ④与原点的距离为三个单位的点有2__ 个,他们分别表示的有理数是_-3_ 和 +_3_。
5、(1)0.0380有 个有效数字,精确
到 位. (2)8.60 万精确到 位,有效数字是 . (3)8 650保留2个有效数字的近似数为 . (4)3.79×104的有效数字是?精确到哪一位?
6.高度每增加1 000米,气温大约降低6℃, 今测得高空气球的温度为-4 ℃ ,地面温 度为11 ℃ ,求气球的高度是多少米?
-2
2
4) 绝对值小于2的整数有_0_,_±_1____。 5) 绝对值等于它本身的数有_零_和_正__数______。
6) 绝对值不大于3的负整数有__-1_,-_2,_-3_____。
7) 数a和b的绝对值分别为2和5,且在数轴上表示 a的点在表示b的点左侧,则b的值为 5 .
7、有效数字
对于一个近似数,从左边第一个不是0 的数字起,到精确到的数位止,所有的 数字都叫做这个数的有效数字. 如:按四舍五入法取10. 1046的近似数 精确到百分位是10.10,它有四个有效 数字:1,0,1,0.
③用-a表示的数一定是(D) A .负数 B. 正数 C .正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是(A )
A .–1 B. 1 C .±1 D. 0
3.①互为相反的两个数在数轴上位于原点两旁(× ) ②在一个数前面添上“-”号,它就成了一个负数(× )
③ 只要符号不同,这两个数就是相反数(×)
四、绝对值
1. 绝对值的意义是(1)____________________;( 2
______________________________________________( 3 ) __________; (4)|a|___________0.
2. 化简(1)-|-2/3|=___; (2)|-3.3|-|+4.3|=___; (3)
-a (a<0) 一个正数的绝对值是它本身;
零的绝对值是零;
一个负数的绝对值是它的相反数.
5、倒数:
1
(1)a(a≠0)的倒数是 a
(2)若a与b互为倒数,则ab= 1
6、科学计数法
把一个绝对值大于10的数记成a×10n的形式 (其中a是整数数位只有一位的数,n是正整 数),像这样的记数方法叫科学记数法。
一、 有 理 数
1. 正_整__数_、_零__、_负_整__数__统称整数,试举例说明。 2. 正_分__数_、_负__分_数_____统称分数,试举例说明。 3. __整_数__、_分_数______统称有理数。
有理数的分类表
整数 有 理 数
分数
正整数
0 负整数
自然数
正分数 负分数
知识结构图
有理数
的相反数是_-_a;0的相反数是_0_;-1/2的相反
数的倒数是_2_ ;倒数等于它本身的是±__1_。 2. ①的若a和b是互为相反数,则a+b=(C)
A. –2a B .2b C. 0 D. 任意有理数 3. ②下列说法正确的是(A)
A –1/4的相反数是0.25 ,B 4的相反数是0.25,C 0.25的倒数是-0.25, D 0.25的相反数的倒数是-0.25
数轴
减法 加法
乘法 除法
加法 运算律
乘法
乘方
相反数 绝对值 比较大小
科学记数法
近似数 有效数字
1、有理数的分类:
有理数 有理数
整数
正整数 零
负整数
自然数
分数
Байду номын сангаас
正分数 负分数
正有理数
正整数 正分数
零 负整数
负有理数
负分数
知识点回顾:
1、有理数的分类:有理数可分为 整数 与
分数
,也可分为 正有理数 、
9.把下列各数分别填入相应的大括号内.
-5,0.05,-4.2,26,-36,10.8,0,+1,
选择题:
在数轴上,原点及原点左边所表示的数是( D ) A整数 B负数 C非负数 D非正数
下列语句中正确的是( D ) A数轴上的点只能表示整数 B数轴上的点 只能表示分数 C数轴上的点只能表示有理 数 D所有有理数都可以用数轴上的点表示 出来
三 、 相反数
1. -5的相反数是__5;-(-8)的相反数是_-_8;a