存储器基础知识
计算机基础知识认识计算机存储器的不同类型和功能
计算机基础知识认识计算机存储器的不同类型和功能计算机基础知识:认识计算机存储器的不同类型和功能计算机存储器是计算机系统中重要的组成部分,它用于存储和读取数据、程序和指令。
不同类型的存储器具有不同的功能和特点。
本文将介绍计算机存储器的主要类型和功能。
一、内存内存是计算机中最重要的存储设备之一,用于存储当前正在被处理的程序和数据。
内存分为主存储器和辅助存储器两大类。
1. 主存储器主存储器是计算机系统中速度最快、容量相对较小的存储器。
它直接与CPU进行数据交换,并且可以快速读写数据。
主存储器一般采用固态存储器,如RAM(随机存取存储器)和ROM(只读存储器)。
- RAM(随机存取存储器):RAM是一种易失性存储器,意味着当计算机断电时,其中的数据将会丢失。
RAM主要用于存储临时数据和程序指令,以供CPU快速访问。
目前常见的RAM类型有SRAM和DRAM,它们在存储速度和稳定性上有所不同。
- ROM(只读存储器):ROM是一种不易改变的存储器,存储的数据通常是固化于芯片中的程序和数据。
计算机启动时,BIOS(基本输入输出系统)就是从ROM中加载的。
ROM的数据无法被修改,可靠性较高。
2. 辅助存储器辅助存储器用于长期存储数据和程序,数据在断电后不会丢失。
常见的辅助存储器包括硬盘驱动器、固态硬盘、光盘和闪存驱动器。
- 硬盘驱动器:硬盘驱动器使用磁性材料记录数据,并且容量较大,适合存储大量数据。
它是计算机系统中最常见的存储设备之一。
- 固态硬盘:固态硬盘(SSD)通过闪存芯片来存储数据,与传统硬盘驱动器相比,它具有更快的读写速度和更高的抗震性。
由于价格的下降,SSD正逐渐取代传统硬盘。
- 光盘:光盘利用激光技术读写数据,主要分为CD、DVD和蓝光光盘。
光盘的容量较小,适合存储音频、视频和软件。
- 闪存驱动器:闪存驱动器(如USB闪存盘)也是一种常见的辅助存储器,具有便携性和可插拔性,适合传输数据和备份文件。
存储器基本知识
非挥发性存储器(TFTM) :关闭电源可以继续保存数据的存储器,原理类似于 TFT,只是在 TFT 的基础上加了层保存电荷的浮栅。存储电荷时会改变器件的阈值电压从而改变器件的逻 辑状态(“0”或”1”)。
栅极 阻挡层 浮栅 源极 IGZO
衬底
栅极
阻挡层 遂穿层
源极
IGZO
遂穿层
漏极
浮栅ቤተ መጻሕፍቲ ባይዱ源极 IGZO 阻挡层 栅极
衬底
遂穿层 漏极
浮栅 阻挡层 栅极
衬底
漏极
a)顶栅结构
b)底栅结构 图一.TFTM 的结构
c)双栅结构
TFTM 的结构及特点:背栅、顶栅和双栅,栅氧化层包括阻挡层,隧穿层和电荷 俘获层,一二两层一般为 SiO2 和高电介质材料,俘获层一般采用纳米晶(Pt,Si 和 Ru)或电荷陷阱材料(SiNx 和 HfAlO) 1. 背栅结构:沟道载流子迁移率高,源漏电流大,阈值电压稳定性好。 (主流) 遂穿层不宜过薄,这样会导致阈值升高,从而增大功耗。还要在 IGZO 上加一 层钝化层,防止光照影响。 2. 顶栅结构:遂穿层淀积在 IGZO 沟道层上,因此可以很薄,可在低压下工作。 此种结构有更好的稳定性,但在驱动显示设备的应用中,很难避免衬底光照 影响。 3. 双栅结构: 可通过调节背栅电压来调整阈值电压, 增加了器件的阈值稳定性。 弥补了 1 和 2 的缺点。 TFTM 的阈值电压及存储窗口:
(������������������������������������ +
������ ������������ ������ ������������ 2 ������ ������������
)
纳米晶的制备工艺: 1. 先淀积金属薄膜,然后通过退火形成纳米晶: 影响因素:薄膜初始厚度,金属材料,退火温度和时间。 2. 直接淀积生长: 1) 在介质上直接淀积金属薄膜, 如果薄膜很薄会自动分离成纳米晶 (ALD) 。 2)介质层和金属共沉积,通过调节介质和金属组分,金属会在介质中分离成纳米晶。 3. 离子注入:将金属离子注入到栅介质层中,使之达到固溶饱和,在通过退火,使金属扩 散凝聚形成纳米晶。工艺较简单。 缺点存在自由扩散凝聚,纳米晶在垂直方向分布控制较难,纳米晶隧穿层厚度不一直。 需要退火时间高温退后,对 MOS 中的杂质再分布产生很大的影响。 4. 纳米模版淀积法:1)生物自组织模版 2)有机聚合物自组织模版。工艺非常复杂。 5. 喷雾淀积:通过高温分解稀释的源得到纳米晶喷雾,用气象沉积生长积聚,用高浓度 N2 冲掉过量的喷雾。缺点,工艺设备要更换。
计算机基础知识认识计算机存储器中的EPROM和EEPROM
计算机基础知识认识计算机存储器中的EPROM和EEPROM计算机基础知识:认识计算机存储器中的EPROM和EEPROM计算机存储器是指计算机系统中用于存储数据和指令的设备,其中EPROM和EEPROM是两种常见的非易失性存储器类型。
本文将介绍EPROM和EEPROM的定义、特点以及它们在计算机系统中的应用。
一、EPROM的定义和特点EPROM (Erasable Programmable Read-Only Memory) 是一种可以被擦除和重新编程的只读存储器。
它的主要特点如下:1. 非易失性:EPROM的数据可以在断电后长期保存,不会因为断电而丢失。
这使得EPROM非常适合存储那些需要长期保留的数据和指令。
2. 可擦除性:EPROM中的数据可以通过使用紫外线照射来擦除,也可以使用专门的擦除器进行擦除。
擦除之后,EPROM可以被重新编程。
擦除和重新编程的过程可以多次进行,但是每个EPROM只能进行有限次数的擦除和重新编程。
3. 只读性:在未擦除和重新编程之前,EPROM中的数据是只读的,无法进行修改。
这使得EPROM更加安全可靠,适用于存储那些需要保护而不希望被修改的数据和指令。
4. 容量较小:EPROM的存储容量相对较小,通常在几KB到几MB 的范围内。
这限制了EPROM在存储大量数据方面的应用。
二、EPROM的应用由于EPROM具有非易失性和只读的特点,它在某些应用中得到了广泛的应用。
以下是一些EPROM的常见应用:1. 系统固件:EPROM常用于存储计算机系统的固件,如BIOS (Basic Input Output System)。
这些固件在计算机启动时被加载,负责初始化硬件和提供基本的输入输出功能。
2. 音视频存储:EPROM可以用于存储音频和视频文件,如音乐合成器中的音乐数据、游戏机中的游戏数据等。
3. 电子设备配置:EPROM可以存储电子设备的配置信息和参数,如路由器、交换机等网络设备的配置信息。
存储基础知识培训
存储基础知识培训一、存储概述存储是计算机系统中非常重要的组成部分,用于保持数据和程序的持久性。
在大数据时代的背景下,存储的重要性愈发凸显。
本文将介绍存储的基础知识,以帮助读者全面了解存储的相关概念和技术。
二、存储类型1.主存储器主存储器(Main Memory)是计算机系统中最直接与CPU交互的存储设备,也被称为内存。
主存储器的容量决定了系统同时存储的数据和程序大小。
2.辅助存储器辅助存储器(Secondary Storage)用于长期存储大量的数据和程序,例如硬盘、光盘、固态硬盘等。
辅助存储器的容量一般远大于主存储器,可用于大数据存储和备份。
三、存储技术1.磁盘存储磁盘存储是一种机械存储技术,通过将数据存储在旋转的磁盘上来实现数据的读写。
磁盘以扇区为单位进行数据的存储和访问,随机存取速度较慢,但容量较大。
2.固态存储固态存储(Solid State Storage)采用闪存芯片作为存储介质,相对于传统磁盘存储具有更快的读写速度和较好的耐用性。
固态硬盘(SSD)已逐渐取代传统机械硬盘成为存储系统的主力。
3.网络存储网络存储(Network Storage)指的是通过网络连接远程存储设备的存储技术。
常见的网络存储技术有网络附加存储(NAS)和存储区域网络(SAN),可实现数据的共享和备份。
四、存储管理1.存储器层次结构计算机系统的存储器层次结构由多级存储构成,层次结构越高,存取速度越快,成本越高。
常见的存储器层次结构包括高速缓存、主存储器和辅助存储器。
2.存储系统管理存储系统管理涉及存储资源的分配和管理,包括存储容量的规划、文件系统的设计与管理、数据备份与还原等。
合理的存储系统管理能够提高存储系统的效率和可靠性。
五、存储安全1.数据安全存储安全是指对存储中的数据进行保护和控制,以防止非法访问、损坏或泄露。
常见的数据安全措施包括数据加密、访问权限控制和备份恢复。
2.存储设备安全存储设备安全涉及到存储设备的管理和防护。
存储技术基础知识
存储技术基础知识2023/9/7CONTENTS目录04半导体存储03光学存储02磁性存储01存储基本概念05数据存力存储基本概念01存储的作用·存储系统是计算机最重要的组成部分之一,实现“记忆”的功能·存储系统负责对信息数据进行保存,可以支持写入和读取存储的类型(按类别)· 存储分为多种类型,内存(Memory) 和硬盘(Hard Disk)是最常见的两种· 内存有时候也叫运行内存(运存)。
它是CPU和硬盘之间的桥梁,暂时存放CPU中的运算数据存储的类型(按类别)· 关机或断电后,内存上的数据就没有了,属于易失性(VM)存储器· 硬盘比内存的容量更大,存放了大量的数据文件。
只要执行了保存(写入)操作,即便关机或断电,硬盘上的数据仍会继续存在,属于非易失性(NVM)存储器存储器的层次结构· 不同类型的存储器,根据性能和成本的权衡,应用于不同的位置。
· 性能越强的存储器,价格就越贵,会越离计算芯片 (CPU/GPU等)越近· 性能弱的存储器,可以承担一些对存储时延要求低,写入速度不敏感的需求,降低成本。
数据的类型存储技术分类(按介质)· 现代存储技术,主要分为三大类别,分别是: 磁性存储、光学存储以及半导体存储.磁性存储02磁存储时代磁带机存储器· 以磁带为存储介质,由磁带机及其控制器组成的存储设备,是计算机的一种辅助存储器· 磁带机由磁带传动机构和磁头等组成,能驱动磁带相对磁头运动,用磁头进行电磁转换,在磁带上顺序地记录或读出数据。
· 低成本的存储方式,经常用于冷数据的离线存储硬盘(HDD)的基本知识硬盘(磁性)的组成· 主流的硬盘,扇区密度是一致的,也就是说,越靠外侧,扇区数越多。
每个扇区的大小是4K字节,用一个逻辑块编号寻址 (LBA,Logical Block Addressing)· 以扇区为基础,一个或多个连续的扇区组成一个块,叫做物理块。
存储基本知识梳理
存储基本知识梳理基础概念1. 什么是分布式存储?⾸先了解⼀下存储的发展历史。
DAS:Direct Access Storage,直接连接存储,将存储设备通过SCSI接⼝或光纤通道连接到⼀台计算机上。
特点:直接和存储器连接,扩展性,灵活性⽐较差。
SAN、NAS等。
NAS:network attached storage,SAN:storage area network。
特点:设备类型丰富,可以通过外部IP/FC⽹络互连,具备⼀定的可扩展性;但是受控制器能⼒限制,扩展能⼒有限,PB级;设备到⽣命周期更换,需要进⾏数据迁移,耗时耗⼒。
分布式存储。
结构为:分布式软件+标准服务器。
特点:⾼扩展性,基于标准硬件和分布式架构,千节点/EB级扩展;易运维,块、对象、⽂件等多种类型存储统⼀管理。
分布式指明了⼀种独特的系统架构类型,这种系统架构是由⼀组通过⽹络进⾏通信,为了完成共同的任务⽽协调⼯作的计算机节点组成。
所谓分布式存储,就是存储设备分布在不同的地理位置,数据就近存储,将数据分散在多个存储节点上,各个节点通过⽹络相连,对这些节点的资源进⾏统⼀的管理,从⽽⼤⼤缓解带宽压⼒,同时也解决了传统的本地⽂件系统在⽂件⼤⼩、⽂件数量等⽅⾯的限制。
⼏个问题:客户端(⽤户侧)是直接和某⼀个节点交互操作(操作包括增删改查),还是和某些节点交互操作?如果是某些,则如何保证数据的准确可靠:数据多重写⼊更改等是否会影响到数据的稳定可靠性?客户端读取数据的时候,是从哪个节点上读取数据的?数据存储备份是放到哪个节点上的?2. Ceph是什么?Ceph是当前⾮常流⾏的开源分布式存储系统,具有⾼扩展性、⾼性能、⾼可靠性等优点,同时提供块存储服务(rbd)、对象存储服务(rgw)以及⽂件系统存储服务(cephfs)。
对于三种基本存储服务的介绍:对象存储(Object Storage),既可以通过使⽤Ceph的库,利⽤C, C++, Java, Python, PHP代码,也可以通过Restful⽹关以对象的形式访问或存储数据,兼容亚马逊的S3和OpenStack的Swift。
计算机体系结构存储器层次结构基础知识详解
计算机体系结构存储器层次结构基础知识详解计算机体系结构存储器层次结构是计算机系统中重要的组成部分,它通过不同层次的存储器来提供有效的数据存取方式,以满足计算机执行指令和运算的需求。
本文将详细介绍计算机体系结构存储器层次结构的基础知识,包括存储器的分类、层次结构和操作原理等方面。
一、存储器的分类存储器是计算机中用于存储数据和程序的设备,根据存储介质的不同可分为内存和外存。
内存存储器又可分为随机存储器(RAM)和只读存储器(ROM)。
RAM是一种易失性存储器,用于存储程序和数据的临时信息,通电时可以读写数据,断电后数据就会丢失;ROM是一种非易失性存储器,用于存储程序和数据的固定信息,通电时只能读取数据。
外存储器包括硬盘、固态硬盘(SSD)和光盘等,主要用于长期存储大量数据和程序。
二、存储器的层次结构计算机体系结构存储器层次结构按照存取速度和成本的不同,可分为若干层次,由快到慢、由贵到廉排列为:寄存器、高速缓存、主存和外存。
寄存器是存储器层次结构中速度最快、容量最小的存储器,通常嵌入在中央处理器(CPU)中,用于存储最常用的数据和指令;高速缓存是位于CPU和主存之间的一层存储器,容量较小但速度快,用于缓存CPU频繁访问的数据块;主存是计算机中容量较大、速度较慢的存储器,用于存储程序和数据;外存是计算机中容量最大、速度最慢的存储器,用于长期存储大量数据和程序。
三、存储器的操作原理计算机体系结构存储器层次结构中的各层次存储器之间通过地址和数据进行交互。
当CPU需要访问某个数据或者指令时,首先会将相应的地址发给内存控制器,内存控制器会根据地址将数据从内存中读取出来并送达给CPU。
在这个过程中,CPU通常会先访问最快的寄存器,若寄存器中没有所需数据,则会在高速缓存中进行查找,如果高速缓存中也没有,则会继续在主存和外存中进行查找。
存储器的操作原理涉及到存储器的访问速度和命中率。
存储器的访问速度是指CPU从发送地址到接收到数据所需的时间,在不同层次存储器中,访问速度逐级变慢;命中率是指CPU在某个层次存储器中找到所需数据的概率,高速缓存的命中率通常较高,而主存和外存的命中率较低。
计算机基础知识认识计算机存储器中的主存和辅存
计算机基础知识认识计算机存储器中的主存和辅存计算机基础知识:认识计算机存储器中的主存和辅存计算机存储器是计算机硬件中的重要组成部分,用于存储和访问数据和指令。
在计算机存储器中,主存和辅存是两个常见的术语。
本文将深入介绍主存和辅存的定义、功能和特点。
一、主存主存又被称为内存,是计算机中的临时存储器。
它是用于存储当前正在执行的程序和数据的地方,数据可以被CPU直接读取和写入。
主存通常由随机访问存储器(RAM)组成,RAM的特点是读写速度快且可以随机访问任意存储单元。
主存的容量相对较小,一般以字节为单位进行衡量。
它的大小决定了计算机能够同时处理的数据量。
主存采用了地址线和数据线进行通信,通过地址线将要访问的特定存储单元的地址传送给内存控制器,然后通过数据线将数据读取或写入内存。
二、主存的特点1. 快速访问:主存储器的速度远高于辅存储器,这使得CPU能够更快地读取和写入数据。
2. 临时存储:主存是临时存储器,当计算机关闭或断电时,其中的数据将会丢失。
因此,用户需要定期将数据保存到辅存储器中以避免数据丢失。
3. 容量限制:主存的容量受限,通常只能存储计算机当前执行的程序和临时数据。
如果主存被占满,计算机性能可能会受到限制。
三、辅存辅存又被称为外存或永久存储器。
辅存是计算机主存的扩展,用于存储大量的数据和程序,其容量通常比主存大得多。
辅存包括硬盘驱动器、光盘、闪存驱动器等各种类型。
辅存的访问速度较慢,因此,数据从辅存读取到主存需要一定的时间,这会影响计算机的速度。
但辅存的好处是可以永久保存数据,即使计算机断电或重新启动,数据也不会丢失。
四、辅存的特点1. 大容量:相对于主存来说,辅存的容量很大,可以存储大量的数据和程序。
2. 慢速访问:辅存的读取速度相对较慢,这是由于其机械部件和接口的限制。
因此,辅存主要用于长期存储和备份数据,而不是频繁读取和写入。
3. 数据持久化:辅存的另一个重要特点是数据的持久性。
即使计算机断电或重新启动,辅存中存储的数据仍将保留下来,不会丢失。
计算机存储器层次结构基础知识详解
计算机存储器层次结构基础知识详解计算机存储器层次结构是指计算机内部存储器的层级结构,主要由寄存器、高速缓存、主存和辅助存储器等组成。
每一层存储器都有其独特的特点和作用,在计算机运行过程中发挥不同的作用。
本文将对计算机存储器层次结构的基础知识进行详解。
一、寄存器寄存器是计算机存储器层次结构中最高速的存储器,位于CPU内部,用于存放指令和数据。
寄存器拥有极快的读写速度,可以在一个CPU周期内完成读写操作。
常用的寄存器有通用寄存器、指令寄存器、程序计数器等。
寄存器的容量有限,通常只能存储少量的数据。
但是由于其速度快、响应时间低,因此经常被用于存放频繁使用的数据和指令,以提高计算机的执行效率。
二、高速缓存高速缓存是位于CPU和主存之间的一层存储器,用于存放最近经常访问的数据和指令。
高速缓存的容量较小,但读取速度非常快,可以减少CPU等待数据的时间,提高计算机的运行速度。
高速缓存采用了一种称为缓存替换算法的方法来管理数据的存储和替换。
常见的缓存替换算法有最近最少使用(LRU)算法和先进先出(FIFO)算法等。
这些算法能够根据数据的访问模式,选择性地保留和替换缓存中的数据,以提高缓存的命中率。
三、主存主存是计算机存储器层次结构中容量最大的存储器,用于存放程序和数据。
主存的容量通常以GB(千兆字节)为单位,可以存储大量的数据和指令。
主存中的数据和指令需要经过CPU的请求来进行读写操作。
由于主存的读写速度较慢,因此常常需要高速缓存来缓解CPU等待数据的时间。
同时,主存采用了一种称为虚拟内存的技术,能够将部分主存的内容存储到磁盘等辅助存储器中,以扩大主存的容量。
四、辅助存储器辅助存储器是计算机存储器层次结构中容量最大,但读写速度较慢的一层存储器。
辅助存储器包括硬盘、固态硬盘(SSD)、光盘、磁带等。
辅助存储器主要用于长期存储计算机的程序和数据,可以存储大量的信息。
但与主存相比,辅助存储器的读写速度较慢,需要较长的时间来读取或写入数据。
存储基础知识培训
专用存储网络 (SAN)
学习如何为服务器提供高速数据传输,其目的是 使数据在多个服务器之间共享。
物件存储
介绍一种现代的思想方式,用于访问不同媒介的 对象存储。
备份与归档技术
备份和归档数据,为业务连续性和数据备份计划 提供更好的打击措施。
存储设备的分类
存储安全和可靠性的重要性
数据丢失
防病毒软件的使用,分层备份, 数据加密和MD5校验文件。
在安全的存储中运行业务 系统
了解业务计划的多个组件,以及 如何为存储设备实现基本SLA。
访问控制和可用性
审查访问控制策略,包括访问控 制列表和用户授权,并了解如何 通过混合系统提高可用性。
性能
介绍RS的性能数据,DPM和IOPS, 以及如何定义有效的SLA。
存储管理的方法份和恢复,以及数据安全性检查。
2
容量规划和分配
管理存储设备容量,例如为每个目的分配容量。
3
性能管理和优化
保持高效性能,保证SLA的遵守,以及现有环境的诊断。
存储性能优化技巧
• SSD架构的使用 • 闪存缓存技术 • I/O大小和排队算法 • 分层存储技术 • 缓存策略和调度算法
存储基础知识培训
欢迎大家来到存储基础知识培训,今天我们将会学习关于存储技术的全新领 域。
存储基础知识概述
硬盘驱动器
学习数据的物理存储和SLA规划。
固态硬盘
对于读/写操作和空间进行管理, 以及如何使其性能最佳。
云存储
通过数据同步,备份和灾难恢复 进行云平台的管理。
存储技术的种类
网络附加存储器 (NAS)
直接附加 网络附加 存储区域网络
计算机基础知识认识计算机存储器的不同类型
计算机基础知识认识计算机存储器的不同类型计算机存储器是计算机系统中重要的组成部分,它用于存储和读取数据和指令。
计算机存储器根据不同的特性和功能可以被分为主存储器(主存)和辅助存储器(辅存)。
本文将重点介绍计算机存储器的不同类型。
一、主存储器主存储器(主存)是计算机中的一种高速随机存取存储器,也是CPU可以直接访问的内部存储器。
主存分为RAM(Random Access Memory 随机访问存储器)和ROM(Read Only Memory 只读存储器)两种类型。
1. RAM:随机访问存储器RAM是计算机主存中重要的组成部分,它具有随机读取和写入数据的能力。
RAM可根据数据的读写方式、访问速度和易失性等特性来进行分类。
其中,静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)是两种常见的RAM类型。
- SRAM:静态随机存取存储器SRAM的读写速度快,数据可保持稳定,不需要周期性刷新。
SRAM的存储单元由触发器构成,每个存储单元需要使用6个晶体管来实现。
由于SRAM的构造复杂,成本相对较高,所以存储容量较小,主要用于CPU的高速缓存。
- DRAM:动态随机存取存储器DRAM的存储单元由电容器构成,数据需要定期刷新来保持稳定。
相较于SRAM,DRAM的构造简单、成本低廉,但读写速度相对较慢。
DRAM被广泛应用于主存储器,能够提供大容量的存储空间。
2. ROM:只读存储器ROM是一种只能读取而不能写入数据的存储器,主要用于存储计算机的启动程序和固化数据。
ROM可按照数据存储的方式来划分为多个类型,如PROM(Programmable Read Only Memory 可编程只读存储器)、EPROM(Erasable Programmable Read Only Memory 可擦写只读存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory 电可擦写只读存储器)等。
存储基础知识试题及答案
存储基础知识试题及答案1. 什么是存储器?存储器是计算机系统中用于存储数据和程序的硬件设备。
它允许计算机在执行过程中快速访问和修改数据。
2. 存储器有哪些主要类型?存储器主要分为两类:易失性存储器和非易失性存储器。
易失性存储器如RAM,在断电后会丢失数据;非易失性存储器如硬盘和固态硬盘,即使断电也能保持数据。
3. 什么是随机存取存储器(RAM)?随机存取存储器是一种易失性存储器,它允许计算机在任何时间随机访问存储单元。
RAM通常用于存储当前正在运行的程序和数据。
4. 什么是只读存储器(ROM)?只读存储器是一种非易失性存储器,它用于存储计算机启动时需要的固件或系统软件。
ROM中的数据在断电后仍然保持不变。
5. 硬盘驱动器(HDD)和固态硬盘(SSD)有什么区别?硬盘驱动器使用旋转的磁盘和移动的读写头来存储数据,而固态硬盘使用闪存技术,没有移动部件。
SSD通常比HDD更快、更耐用,但成本更高。
6. 什么是缓存?缓存是一种高速存储器,用于暂时存储频繁访问的数据。
它位于CPU和主存储器之间,以减少CPU访问主存储器所需的时间。
7. 什么是虚拟内存?虚拟内存是一种技术,它允许计算机使用硬盘空间作为额外的RAM。
当物理RAM不足以存储当前运行的所有程序和数据时,操作系统会将部分数据从RAM移动到硬盘上的虚拟内存区域。
8. 什么是RAID?RAID(独立磁盘冗余阵列)是一种将多个硬盘组合成一个逻辑单元的技术,以提高性能、增加容量或提供数据冗余。
常见的RAID级别包括RAID 0(条带化)、RAID 1(镜像)和RAID 5(带奇偶校验的条带化)。
9. 什么是存储区域网络(SAN)?存储区域网络是一种高速网络,连接服务器和存储设备。
SAN允许服务器共享存储资源,提高数据访问速度和灵活性。
10. 什么是网络附加存储(NAS)?网络附加存储是一种连接到网络的存储设备,允许多个计算机和用户共享文件和数据。
NAS设备通常运行专用的操作系统,提供文件服务和管理功能。
计算机存储技术基础知识试题及
计算机存储技术基础知识试题及答案解析计算机存储技术基础知识试题及答案解析一、单项选择题1. 在计算机存储器中,RAM 指的是:A. 随机访问存储器B. 只读存储器C. 缓存存储器D. 数据存储器答案:A. 随机访问存储器解析:RAM(Random Access Memory)是指计算机中用于临时存储数据的一种随机访问存储器。
它可以按照任意顺序存取数据,且可读写。
因为其读写操作的快速和随机访问特性,RAM通常作为计算机主存储器使用。
2. 下列关于硬盘的说法中,正确的是:A. 硬盘属于主存储器B. 硬盘属于辅助存储器C. 硬盘属于高速缓存D. 硬盘属于内存储器答案:B. 硬盘属于辅助存储器解析:硬盘是一种常见的计算机辅助存储器,用于长期存储和读取数据。
与主存储器(主存)相比,硬盘的容量更大,但读写速度较慢。
硬盘通常用于存储操作系统、应用程序和用户数据等。
3. 下列存储器中,读写速度最快的是:A. 硬盘B. 光盘C. 固态硬盘D. U盘答案:C. 固态硬盘解析:固态硬盘(Solid State Drive,SSD)是一种基于闪存技术的存储设备,具有非常高的读写速度。
相比传统的硬盘和光盘,固态硬盘具有更低的访问延迟和更快的数据传输速度。
4. 下列关于缓存技术的说法中,错误的是:A. 缓存可以提高数据访问速度B. 缓存一般位于存储器和CPU之间C. 缓存的容量一般比主存小D. 缓存的读写速度与主存相同答案:D. 缓存的读写速度与主存相同解析:缓存是一种用于提高数据访问速度的技术,通过临时存储常用的数据项,减少对主存储器的访问次数。
缓存一般位于存储器和CPU之间,容量较小,但读写速度比主存快,可以加速数据的读取和写入。
5. 下列存储器中,可以被电脑直接访问的是:A. 光盘B. 硬盘C. 内存D. U盘答案:C. 内存解析:内存(Memory)是计算机中用于临时存储数据的一种存储器。
CPU可以直接访问内存中的数据,随时进行读写操作。
存储器基础与类型
存储器基础与类型在计算机系统中,存储器扮演着至关重要的角色。
它被用于存储和检索数据,以及执行计算机程序。
存储器可以按照不同的标准进行分类,比如存储介质的类型和存储方式等。
本文将介绍存储器的基础知识和常见的存储器类型。
一、存储器基础知识存储器是计算机中用于存储和检索数据的设备。
计算机存储器按照存储介质的物理性质可以分为两类:主存储器和辅助存储器。
1. 主存储器:主存储器(也称为内存)是计算机系统中用于临时存储数据和程序的设备。
它通常由半导体材料组成,如动态随机存取存储器(DRAM)或静态随机存取存储器(SRAM)。
主存储器的容量直接决定了计算机可以同时处理的数据量和程序的大小。
2. 辅助存储器:辅助存储器(也称为外存)用于持久性地存储数据和程序。
与主存不同,辅助存储器的存储介质通常是磁性或光学介质,如硬盘驱动器(HDD)、固态硬盘(SSD)和光盘等。
辅助存储器的容量一般比主存储器大得多,用于长期保留大量的数据和文件。
二、主存储器类型主存储器可以进一步分类为以下几种类型,每种类型根据其特点和用途有不同的应用场景。
1. 随机存取存储器(RAM):RAM是主存储器最常见的类型之一,它根据存取数据的方式可分为动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。
DRAM的存储单元由电容和晶体管构成,电容的充放电过程表示数据的存储与读取。
SRAM的存储单元由两个稳态电路构成,不需要周期性刷新。
由于DRAM的容量大、造价低,因此更常用于计算机的主存储器。
2. 只读存储器(ROM):ROM是一种只能读取数据而不能写入或修改的存储器。
它的内容在制造过程中被永久烧写,因此具有持久性存储特性。
常见的ROM类型包括只读存储器(ROM)和可编程只读存储器(PROM)。
PROM 的内容可以用户编程,而擦除之后则不能再次编程。
这些存储器常用于存储计算机的固化程序和系统配置信息等。
3. 快取存储器(Cache):Cache是位于处理器和主存储器之间的一层存储器,用于加速数据访问。
存储器的基础知识第四组1 (1)
计算机存储信息的大小,最基本的单位是字节,一个汉 字由两个字节组成,字母和数字由一个字节组成. 容量的单位从小到大依次是:字节(B)、KB、MB、 GB、TB.它们之间的关系是: 1TB=1024GB 1GB=1024MB 1MB=1024KB 1KB=1024字节 通常人们都使用简便的叫法,把后面的“B”去掉.
光盘是以光信息做为存储的载体并用来存储数据的一 种物品。 分为: 1.不可擦写光盘,如CD-ROM、DVD-ROM等;2.可擦写光 盘,如CD-RW、DVD-RAM等。 光盘是利用激光原理进行读、写的设备,是迅速发展 的一种辅助存储器,可以存放各种文字、声音、图形、图 像和动画等多媒体数字信息。 光盘定义:即高密度光盘(Compact Disc)是近代发展起 来不同于完全磁性载体的光学存储介质(例如:磁光盘也 是光盘),用聚焦的氢离子激光束处理记录介质的方法存 储和再生信息,又称激光光盘。
在计算机诞生初期并不存在内存条的概念.
最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电 路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能 装下不超过百k字节左右的容量。 后来才出现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供 直接支持。那时的内存芯片容量都特别小,最常见的莫过于256K×1bit、1M×4bit,虽 然如此,但这相对于那时的运算任务来说却已经绰绰有余了。
硬盘是电脑主要的存储媒介之一,由一个或者 多个铝制或者玻璃制的碟片组成。碟片外覆盖有铁 磁性材料。 硬盘有固态硬盘、机械硬盘、混合硬盘,混合 硬盘是把磁性硬盘和闪存集成到一起的一种硬盘。 绝大多数硬盘都是固定硬盘,被永久性地密封固定 在硬盘驱动器中。 磁头复位节能技术:通过在闲时对磁头的复位来节 能。 多磁头技术:通过在同一碟片上增加多个磁头同时 的读或写来为硬盘提速,或同时在多碟片同时利用 磁头来读或写来为磁盘提速,多用于服务器和数据 库中心。
存储基础知识试题及答案
存储基础知识试题及答案一、单项选择题(每题2分,共20分)1. 计算机存储器中,RAM代表什么?A. 随机存取存储器B. 只读存储器C. 可编程只读存储器D. 硬盘存储器答案:A2. 在计算机系统中,哪个部件负责将数据从硬盘传输到RAM?A. CPUB. 内存控制器C. 硬盘控制器D. 输入/输出控制器答案:B3. 以下哪种类型的存储器是易失性的?A. ROMB. EPROMC. SRAMD. 硬盘答案:C4. 计算机启动时,BIOS存储在哪种类型的存储器中?A. RAMB. ROMC. SRAMD. 硬盘5. 计算机中的高速缓存(Cache)位于何处?A. CPU内部B. 主板C. RAM内部D. 硬盘答案:A6. 以下哪种类型的存储器是永久性的?A. RAMB. ROMC. SRAMD. 硬盘答案:B7. 计算机存储器的地址空间是指什么?A. 存储器的物理大小B. 存储器的逻辑大小C. 存储器的访问速度D. 存储器的接口类型答案:B8. 计算机中,字节(Byte)通常由多少位(bit)组成?A. 4B. 8C. 16D. 32答案:B9. 以下哪种类型的存储器通常用于存储操作系统?B. ROMC. SRAMD. 硬盘答案:D10. 计算机中的虚拟内存是指什么?A. 物理内存B. 硬盘上的一部分空间C. 内存条D. 只读存储器答案:B二、多项选择题(每题3分,共15分)1. 以下哪些是计算机存储器的类型?A. RAMB. ROMC. SRAMD. DRAM答案:ABCD2. 计算机存储器的层次结构包括哪些?A. 寄存器B. 缓存C. 主存储器D. 辅助存储器答案:ABCD3. 以下哪些因素会影响计算机存储器的性能?A. 存储器的容量B. 存储器的访问速度C. 存储器的类型D. 存储器的成本答案:ABC4. 计算机存储器的哪些特性是重要的?A. 容量B. 速度C. 可靠性D. 成本答案:ABCD5. 以下哪些是计算机存储器的易失性特点?A. 当电源关闭时,数据会丢失B. 当电源关闭时,数据不会丢失C. 数据可以在没有电源的情况下长期保存D. 数据只能在有电源的情况下保存答案:AD三、判断题(每题1分,共10分)1. 计算机中的RAM是易失性的存储器。
存储器基础知识概览
存储器基础知识概览存储器是计算机中用于存储和提取数据的设备,也被称为内存。
在计算机系统中,存储器扮演着至关重要的角色,对于计算机的性能和效率有着重要影响。
本文将概览存储器的基础知识,包括存储器的分类、工作原理以及主要的存储器类型。
一、存储器的分类按照存储介质的不同,存储器可以分为两大类:主存储器和辅助存储器。
1. 主存储器:主存储器是计算机中直接与CPU进行数据交互的存储器,常见的主存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
RAM具有读写功能,它能快速地存储和提取数据,但是数据存储是临时的,断电后数据会丢失。
而ROM则用于存储固定的数据和程序,内容不会因断电而丢失。
2. 辅助存储器:辅助存储器用于长期存储数据和程序,主要包括硬盘、固态硬盘、光盘和磁带等。
相较于主存储器,辅助存储器的存储容量更大,但是读写速度较慢。
二、存储器的工作原理存储器的工作原理可以简单描述为:数据从CPU传输到存储器,存储器进行存储或提取操作,然后将数据返回给CPU。
1. 写操作:当CPU需要向存储器写入数据时,它会向存储器发送写操作指令和待写入的数据。
存储器接收到指令后,将数据写入指定的地址中,以便后续读取。
2. 读操作:当CPU需要从存储器读取数据时,它会向存储器发送读操作指令和待读取数据的地址。
存储器接收到指令后,将指定地址的数据读取出来,并发送给CPU进行处理。
三、主要的存储器类型存储器的类型包括RAM、ROM以及一些特殊的存储器,如高速缓存(Cache)和虚拟内存(Virtual Memory)等。
1. RAM(随机存取存储器):RAM是计算机系统中最常见的存储器类型,它具备读和写的功能,并且数据可以快速访问。
RAM又可以分为静态RAM(SRAM)和动态RAM(DRAM)两种类型。
SRAM 的读取速度更快,但成本较高;DRAM的存储密度更高,更适合于大容量存储。
2. ROM(只读存储器):ROM用于存储无需修改的数据和程序,内容通常是出厂时被写入的。
计算机基础知识探索计算机存储器的层次结构和工作原理
计算机基础知识探索计算机存储器的层次结构和工作原理计算机基础知识探索:计算机存储器的层次结构和工作原理计算机存储器是计算机重要的组成部分,用于存储和获取数据。
它的层次结构包括寄存器、高速缓存、内存和辅助存储器,每个层级都有不同的特点和功能。
本文将深入探讨计算机存储器的层次结构和工作原理。
一、寄存器寄存器是位于CPU内部的最高层级的存储器,用于存储指令和数据。
寄存器容量较小,速度最快,是计算机执行指令和运算的关键。
寄存器的工作原理是根据指令从内存中读取数据,并对数据进行加工处理。
二、高速缓存高速缓存(Cache)位于CPU和内存之间,用于加速数据的读取和存储。
它的容量比寄存器大,但仍较小,速度快于内存。
高速缓存使用“局部性原理”,即数据在被访问后,可能会在不久的将来被再次访问,因此将其暂时存储在高速缓存中,可以大大提高读取效率。
高速缓存有多级,其中L1缓存最接近CPU,速度最快,L2和L3缓存容量较大,但速度相对较慢。
高速缓存的工作原理是根据内存的地址访问数据,并将访问过的数据复制到高速缓存中,下次再访问相同的数据时,可以直接从高速缓存中获取,而无需再次访问内存。
三、内存内存(主存)是存储器的主要组成部分,用于存储程序和数据。
它的容量比寄存器和高速缓存大,但速度相对较慢。
内存的工作原理是根据计算机指令从硬盘等辅助存储器中将数据读取到内存中,然后CPU再对数据进行处理。
内存按字节进行寻址,每个字节都有唯一的地址。
内存又可分为静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
SRAM速度较快,但容量较小,用于高速缓存;DRAM容量较大,但速度较慢,用于主存。
四、辅助存储器辅助存储器是计算机存储器的最低层级,用于长期存储程序和数据。
它的容量很大,但速度相对较慢。
辅助存储器包括硬盘、固态硬盘和光盘等。
辅助存储器的工作原理是将数据从内存中写入硬盘等存储介质,以便长期保存。
当需要读取存储在辅助存储器中的数据时,先将数据从硬盘等存储介质读取到内存,然后再由CPU进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCA T/S Department Public Training
成熟的Flash存储器
Flash的架构大致上可分为具程序执行能力的NOR架 构以及储存数据的NAND和AND架构,Flash与其它新 兴非挥发性技术相较,最大的优势在于其可以用一般的 半导体制程生产、成本低,但是其读写速度较DRAM慢, 可擦写次数也有极限,加上在进入纳米制程之后,预期 将会碰到物理极限,据业界人士表示Flash在45nm以下 几乎不可能再有发展,所以尽管在短期内Flash依然会是 非挥发性存储器主流,但地位可能不见得稳固。
PCA T/S Department Public Training
OUM存储器
OUM (Ovonic Unified Memory)相变存储器是由Intel所 提出的非挥发性存储器技术,目前发展的状况还停留在 实验室阶段,其原理是利用Ge、Sb、Te等硫系化合物 为材质的薄膜来存储资料,数据存储方式类似CD-ROM, 利用温度造成的相位变化来存储数据。 OUM的优点在于产品体积较小、成本低、可直接复 写且制程简单,也就是在写入数据的时候不用将旧有数 据擦除,制程与现有半导体制程相近,惟读写速度和次 数不如FRAM和MRAM;另外,如何稳定维持其驱动温 度也是一个技术发的重点。
PCA T/S Department Public Training
五、可靠性和耐用性 采用闪存介质时一个需要重点考虑的问题是可靠性。 对于需要扩展 MTBF 的系统来说,闪存是非常合适 的存储方案。可以从寿命(耐用性)、位交换和坏块 处理三个方面来比较 NOR 和 NAND 的可靠性。 寿命(耐用性) 在 NAND 闪存中每个块的最大擦写次数是一百万 次,而 NOR 的擦写次数是十万次。NAND 内存 除了具有 10:1 的块擦除周期优势,典型的 NAND 块尺寸要比 NOR 器件小 8 倍,每个
PCA T/S Department Public Training
NAND 结构能提供极高的单元密度,可以达到高存储 密度,并且写入和擦除的速度也很快,这也是为何所有 的 U 盘都使用 NAND 闪存做为存储介质的原因。应用 NAND 的困难在于闪存和需要特殊的系统接口。 二、性能比较 闪存是非易失内存,可以对称为块的内存单元块进行 擦写和再编程。任何闪存器件的写入操作只能在空或已 擦除的单元内进行,所以大多数情况下,在进行写入操 作之前必须先执行擦除。NAND 器件执行擦除操作是 十分简单的,而 NOR 则要求在进行擦除前先要将 目标块内所有的位都写为 0。
PCA T/S Department Public Training
FRAM存储器
FRAM (Ferroelectric RAM)铁电存储器的耗电量极低, 可擦写次数也无限大,FRAM的架构为Perovskite结晶, 最能代表铁电存储器的薄膜材料为PZT,位于结晶中心 的锆和钛的原子会随外部的电场变化位臵,即使除去电 性也能维持。 FRAM由于在高密度的发展上不甚顺利,所以目前许 多厂商都先由嵌入式应用切入,例如IC芯片卡,此类产 品需求的存储单元不大,但是FRAM的低耗电特性却可 以与其相得益彰,所以各类嵌入式应用或许会成为 FRAM未来主要的应用市场。
未来的存储器
PCA T/S Department Public Training
不过,存储器的中介性质,从允许断电时挥发或不 挥发、暂存或不暂存,甚至只读或不只读,也更确认 所扮演的中间性角色。存储器的技术和发展本身就是 蕴藏着无限的可能性;以下从五个方面介绍存储器的 特殊性、媒介性与功能作用,同时也希望据此对照出 存储器未来可发展的方向。
PCA T/S Department Public Training
从多角度来看存储器或存储元件,不难发现它是逻 辑元件与感测元件之间的一种媒介,所以必须具有随机 存取的存储功能才能支持系统间各种运算与处理的作业; 但是当作业完成后还要具有写入存储的功能,以便把结 果记录下来,并作为下一次处理的依据,所以从长远动 态的时间性来看,储存元件仍是另一类型态的随机存取 媒介。如果把存储器分成挥发性和非挥发性两种,显然 运算处理中的系统并不需要太考虑断电时存储是否挥发 掉,而必须以处理的速度和容量为主要考量。当数据量 越来越庞大,越来越复杂时,非挥发性的存储器毋宁更 能发挥关键性的力量。
NOR 闪存带有SRAM接口,有足够的地址引脚来寻址, 可以很容易地存取其内部的每一个字节。 NAND闪存使用复杂的I/O口来串行地存取资料,各个 产品或厂商的方法可能各不相同。8个引脚用来传送控 制、地址和资料信息。
PCA T/S Department Public Training
NAND读和写操作采用512字节的块,这一点有点像 硬盘管理此类操作,很自然地,基于NAND的闪存就可 以取代硬盘或其它块设备。 四、容量和成本 NAND 闪存的单元尺寸几乎是 NOR 闪存的一半, 由于生产过程更为简单,NAND 结构可以在给定的模 具尺寸内提供更高的容量,也就相应地降低了价格。 NOR 闪存容量为 1~11~16MB 闪存市场的大部分, 而 NAND 闪存只是用在 8MB 以上的产品当中, 这也说明 NOR 主要应用在代码存储介质中, NAND 适合于资料存储,NAND 在 CompactFlash、 Secure Digital、PC Cards 和 MMC 存储卡市场上所 占份额最大。
PCA T/S Department Public Training
MRAM存储器
MRAM (Magneto-resistive RAM)磁电阻式存储器的技术 原理简单的说就是利用电阻在磁场下的变化,磁电阻变 化的比例越高,代表存储元件的电子外围发展技术越简 单并更具市场竞争性。 纵观目前记录媒体的物理读写机制可以发现,当记录 密度达1000Gb/in2以上时,只有磁的读写物理极限还存 在,MRAM因为采用磁性材料为记录媒体,理论上有更 高的记录密度,而且读和写是用与DRAM相类似的机构, 因此不像需要读写头的硬盘机来得复杂和精密。
PCA T/S Department Public Training
由于擦除 NOR 器件时是以 64~128KB 的块进 行的,执行一个写入/擦除操作的时间为5s,与此相反, 擦除 NAND 器件是以 8~32KB 的块进行的,执 行相同的操作最多只需要 4ms。 执行擦除时块尺寸的不同进一步拉大了 NOR 和 NAND 之间的性能差距,统计表明,对于给定的一套写 入操作(尤其是更新小文件时),更多的擦除操作必须 在基于 NOR 的单元中进行。这样,当选择存储解决 方案时,设计师必须权衡以下的各项因素。
PCA T/S Department Public Training
所谓挥发与非挥发的差别在于挥发性存储器在电性 消失后,存储的数据便消失,但是非挥发性存储器在 电性消失后,仍然能够将数据保存下来,近年来由于 便携式电子产品的发展,磁式和光电式的存储元件无 法满足轻、薄、短、小的要求,所以半导体存储技术 尤其是非挥发性存储技术的成长相当迅速。 非挥发性、存取速度快、成本低、制程简单、数据 存储密度高、耗电量低和可无限擦写等特性,是未来 存储器技术所必须具备的要点 。
PCA T/S Department Public Training
NAND和AND Flash存储器
以储存数据为主要功能的NAND和AND Flash,是目 前市场上最当红的存储器,近两年来的新兴应用都以此 技术为主,包括小型存储卡、随身电子盘等都是。 在技术方面,数据型Flash为提高数据存储密度,也发 展MLC(多重单元)架构,
PCA T/S Department PubS Department Public Training
Flash Rom基础知识
一、闪存简介 Flash-ROM(闪存)已经成为了目前最成功、流行的 一种固态内存,与 EEPROM 相比具有读写速度快,而 与 SRAM 相比具有非易失、以及价廉等优势。而基于 NOR 和 NAND 结构的闪存是现在市场上两种主要的非 易失闪存技术。 Intel 于 1988 年首先开发出 NOR flash 技术,彻底改变了原先由 EPROM 和 EEPROM 一统天 下的局面。紧接着,1989 年东芝公司发表了 NAND flash 技术(后将该技术无偿转让给韩国 Samsung 公 司),强调降低每比特的成本,更高的性能,并且象磁 盘一样可以通过接口轻松升级。
PCA T/S Department Public Training
NAND 内存块在给定的时间内的删除次数要少一些。 位交换 所有闪存器件都受位交换现象的困扰。在某些情况下 (很少见,NAND 发生的次数要比NOR 多),一个 比特位会发生反转或被报告反转了。 一位的变化可能不很明显,但是如果发生在一个关键文 件上,这个小小的故障可能导致系统停机。如果只是报 告有问题,多读几次就可能解决了。
PCA T/S Department Public Training
目前数字存储技术主要分成三种:磁式、光电式和 半导体式,本文主要探讨的是半导体式的储存技术, 不过半导体存储技术基本上又分为挥发性(Volatile)与非 挥发性(Non-volatile)两种,挥发性存储器技术较为成熟, 也是目前半导体存储技术的主流,包括DRAM、SRAM 等都是;而非挥发性存储器技术包括过去的掩膜ROM、 EPROM、EEPROM、Flash(快闪)、以及新兴的 FRAM(铁电存储器)、MRAM(磁性存储器)与OUM(相变 存储器)等。
PCA T/S Department Public Training
PCA T/S Department Public Training
存储器在最近这几年随着便携式产品的发展,有了 许多不同的面貌与空间,在终端产品轻、薄、短、小的 要求之下,半导体存储技术自然脱颖而出。 高科技产业之所以兴盛,相当重要的原因之一便是数 字技术所具有的存储和拷贝功能,我们在将复杂的模拟 信号转换为简单的数字信号时,由于只有0和1的信息, 因此在存储数据的时候,只要把具有正负两种特性的物 质加以利用就可以了,最明显的就是利用磁性物质的磁 场做成的硬磁盘。