2第二章 缩聚和逐步聚合反应-2010级
第二章 缩聚及其他逐步聚合反应
第二章缩聚及其他逐步聚合反应一、学习要求1、了解线形缩聚的单体种类及类型,掌握官能团及官能度的概念,等物质的量的概念。
2、熟悉线形缩聚的机理和特点,熟悉在密闭体系与开放体系中聚合度与平衡常数和残留小分子的关系,熟悉线形缩聚中出现的副反应。
3、掌握官能团等活性概念,了解线形缩聚动力学,自催化聚酯化动力学及外加酸聚酯化动力学,平衡缩聚动力学。
4、掌握线形缩聚产物聚合度的影响因素及控制方法,了解反应程度和平衡常数对聚合度的影响;了解等物质的量对聚合度的影响;掌握摩尔系数的计算,聚合度与反应程度、摩尔系数的关系,了解线形缩聚物的分子量分布。
5、掌握体型缩聚的形成条件,凝胶化现象与凝胶点,Carothers方程的理论基础及方程式,等物质的量及非等物质的量条件下的体系平均官能度的计算,了解Flory统计法估算体系凝胶点的方法。
6、掌握缩聚反应的实施方法,了解聚酯、聚酰胺的制备原理及过程,了解酚醛树脂、尿醛树脂及三聚氰胺甲醛树脂的制备原理及过程。
二、学时学时聚合反应从机理上可分为逐步聚合反应和连锁聚合反应两大类型。
在高分子化学和高分子合成工业中,逐步聚合反应占有重要地位。
其中包括人们熟知的涤纶、尼龙、酚醛树脂及脲醛树脂等高分子材料。
近年来,逐步聚合反应的研究在理论上和实际应用上都有了新的发展,一些高强度、高模量、耐老化及抗高温等综合性能优异的高分子材料不断问世。
逐步聚合反应中最重要是缩合聚合,简称缩聚。
本章着重讨论缩聚反应,并介绍其他常用的逐步聚合反应。
2.1 聚合反应类型及特点逐步聚合反应包括缩聚反应、逐步加成聚合,一些环状化合物的开环聚合、Diels—Alder 加成反应(狄尔斯-阿尔德反应是一种有机反应(具体而言是一种环加成反应)。
共轭双烯与取代烯烃(一般称为亲双烯体)反应生成取代环己烯。
即使新形成的环之中的一些原子不是碳原子,这个反应也可以继续进行。
一些狄尔斯-阿尔德反应是可逆的,这样的环分解反应叫做逆狄尔斯-阿尔德反应(retro-Diels–Alder)。
第2章缩聚和逐步聚合
56弗洛里小传弗洛里小传((Paul J. Flory )(1910-1985)1910年6月19日生于伊利诺伊州斯特灵日生于伊利诺伊州斯特灵;;1934年在俄亥俄州州立大学获物理化学博士学位博士学位,,后任职于杜邦公司后任职于杜邦公司,,进行高分子基础理论研究分子基础理论研究;;1948年在康奈尔大学任教授年在康奈尔大学任教授;;1953年当选为美国科学院院士年当选为美国科学院院士;;1957年任梅隆科学研究所执行所长年任梅隆科学研究所执行所长;;1961年任斯坦福大学化学系教授年任斯坦福大学化学系教授;;1974年获诺贝尔化学奖年获诺贝尔化学奖。
1975年退休年退休;;1985年9月9日逝世日逝世。
在高分子物理化学方面的贡献,几乎遍及各个领域几乎遍及各个领域。
既是实验家又是理论家是实验家又是理论家,,是高分子科学理论的主要开拓者和奠基人之一和奠基人之一。
著有著有《《高分子化学原理子化学原理》》和《长链分子的统计力学的统计力学》》等。
线形缩聚反应的统计学假设官能团等活性反应程度p,则的百分数,它表示聚合反应到达时刻t 时,参加反应的COOH的百分数1-p就是时刻t 时一个给定的COOH 还没参加反应的几率57聚酰胺化反应的过程分子式存在的结构单元数反应了的COOH数10213243x x-158591、x-聚体的数量分布函数问题:从聚合的混合物中从聚合的混合物中,,随机选择一个分子随机选择一个分子,,恰好含有x 个结构单元(x-聚体聚体))的几率是多少的几率是多少??aAb 型则:x-1个COOH 连续反应掉的几率:p x-11个COOH 未反应掉的几率未反应掉的几率::1-pP(x)=p x-1(1-p)a-A-A-A-A-A-A ┅A-A-bp p p p p p pp x-11-p60共有N 个分子个分子,,x-聚体的数目为N x 反应产生的水被脱除反应产生的水被脱除,,则COOH 的总数总是等于分子总数NP(x)=p x-1(1 -p)N x /N =p x-1(1 -p)N x =Np x-1(1 -p)N(COOH)=N =N 0(1-p )N x =N 0p x-1(1-p)22-4161•此式是线型缩聚反应产物分子量的数量分布函数•在任何反应程度p 时单体时单体((x=1)总是有最大的存在几率•随反应程度的提高随反应程度的提高,,其分布变宽其分布变宽,,平均分子量增大N x =N 0p x-1 (1-p)22-4162N x =N 0p x-1 (1-p)2所示的数量分布曲线关系不同反应程度下线性缩聚物分子量的数量分布曲线1. p=0.9600;2. p=0.9875;3. p=0.995063线形缩聚产物的分子量分布函数可完全参照自由基聚合中推导的函数式来表达函数式来表达。
《材化高分子化学》第2章 缩聚和逐步聚合
6
第二章 缩聚和逐步聚合
Diels-Alder加成聚合:单体含一对共轭双键,如:
+
与缩聚反应不同,逐步加成聚合反应没有小分 子副产物生成。
7
第二章 缩聚和逐步聚合
逐步聚合还可以按以下方式分类:
逐步聚合
线形逐步聚合 非线形逐步聚合
(1)线形逐步聚合反应 参与反应的每种单体只含两个功能基,聚合产物分子链
19
第二章 缩聚和逐步聚合
★ 浓度很低时,A功能基旁同一分子链上的B功能基浓度较 高,相互反应生成环状高分子。
环化反应经常被用来合成环状低聚物与环状高分子。 环化低聚物可用做开环聚合的单体,具有以下的优点: (1)没有小分子副产物生成; (2)聚合反应速率高; (3)所得聚合物的分子量分布窄。
环状高分子则由于不含未反应的末端功能基,其分子量 和性能不会因末端功能基间的反应而不稳定。
n 聚体 + m 聚体
(n + m) 聚体 + 水
缩聚反应无特定活性种,各步反应速率和活化能基本相等。
23
第二章 缩聚和逐步聚合
在缩聚反应早期,单体之间两两反应,转化率很高,但
分子量很低,因此转化率无实际意义。用基团的反应程度P
来表示聚合深度。
反应程度P定义为参与反应的基团数(N0-N)占起始
基团数的分数,
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
2-高分子化学(第四版)第二章--缩聚和逐步聚合反应
7810 1112如二元酸和二元醇,生成线形缩聚物。
通式如下:许多阶段性的重复反应而生成高聚物的过程,每一阶段都得到稳定的化合物。
实际过程中含有二聚体,三聚体,四聚体等,任何一个缩聚反应的单体转化率、产物聚合度与反应时间关系示意图聚合度与反应程度的关系37凝胶点的预测实验测定时通常以聚合混合物中的气泡不能上升时的反应程度为凝胶点。
凝胶点也可以从理论上进行预测。
多官能团单体参加反应只是体形缩聚反应产生凝胶化过程的一个必要条件,但不是充分条件,只有当反应单体的平均官能度大1.纤维:世界上约l/2的合成纤维是用PET制造的。
2.片材和薄膜PET片材是继PVC片材之后,用于医药品包装的片材,而在欧洲一些国家禁止PVC用于一次性包装之后,PET更成为主要的医药主链含碳酸酯结构的聚合物。
工业化仅限双酚A聚碳酸酯,耐热,强度好的工程塑料。
由于其抗冲性能和透明性特好,是热塑性可用作门窗玻璃,PC层压板广泛用于银行、使馆、拘留所和公共场所的防护窗,用于飞机舱罩,工业安67,前期进行水溶液聚合,达到一定聚合度后转盐,以防胺挥发,并达到等基盐可加少量单官能团醋酸或己二酸微过聚酰胺主链中引入芳环,增加耐热性和刚72以及由亚甲基桥连接的多元酚醇。
酚醛预聚物形成:酚醛缩聚平衡常数极大,可看作为不可逆反应,进行水溶液缩聚并不妨碍低分子预聚物的形成,为无规预聚物。
不碱性酚醛树脂主要用作粘合剂,生产层压板。
醛树脂。
8182其它缩聚产物的例子:89n C=N-R-N=C O O + n HOR'OH C-N-R-N-CO OOR'OH H96残留的羧基和亚胺基继续反应固化。
106107109115116界面缩聚由于需采用高活性单体,且溶剂消耗量大,设备利用率低,因此虽然有许多优点,但工业上实际应用并不型聚碳酸酯。
第二章_缩聚和逐步聚合 教案
Page3.
缩聚反应的特征
四个特征:反应的历程; 每一步反应的速率及活 化能大致相同;反应体系 的组成;聚合产物的分子 量(与连锁聚合的不同) 。 --延长反应时间的目的主 要是为了提高分子量,对 转化率的贡献不大。
Page4.
什么是缩聚反应(缩合与缩聚的不同)
什么是缩聚反应(缩合与 缩聚的不同) ; 对于这两个反应我们如 何描述?需要介绍几个 概念。
Page9.
f:1-1 和 f:1-2
Page10. 线型缩聚:f:2-2 或 f:2
掌握:线型缩聚的条件。
4
Page11. 从热力学的角度,将线型缩聚分为:平衡(可逆)和不平衡
涤纶生产中需要高真空
Page12. 不平衡线型逐步聚合反应
不平衡有两层意思:生成 的聚合物分子间不会发 生交换反应且单体与聚 合产物之间不存在可逆 的平衡。
Page43. 2.9 重要的线性缩聚物:1 涤纶
Page44. 2.9 重要的线性缩聚物:1 涤纶
15
Page45. 2.9 重要的线性缩聚物:2 聚酰胺
Page46. 2.9 重要的线性缩聚物:2 聚酰胺
Page47. 2.9 重要的线性缩聚物:3 全芳聚酰胺
16
Page48. 2.9 重要的线性缩聚物:4 聚碳酸酯
Page31. 分子量的数均及重均分布函数
分子量数均分布函数:
Page32. 分子量的分布指数,反应分子量的多分散性
缩聚产物的分子量分布, 随聚 合反应的进行逐渐增大, 且应 ≤2。
11
Page33. 平衡反应对聚合度的影响:密闭体系(小分子未排除,P28)
Page34. 非密闭体系:小分子被排出。
第二章 缩聚和逐步聚合
第二章 缩聚
聚氨基酸酯,简称聚氨酯
6
开环反应:部分为逐步反应,如水、酸引发己内酰胺的开 环生成尼龙-6。
氧化偶合:单体与氧气的缩合反应。 如2,6-二甲基苯酚和氧气形成聚苯撑氧,也称聚苯醚(PPO)
本章主要研究以缩聚为主的逐步聚合
7
2.2 缩聚反应
1)定义:官能团间经多次缩合形成聚合物的反应,即缩 合聚合的简称。如己二胺和己二酸合成尼龙-66:
11
均缩聚: 只有一种单体进行的缩聚反应,即2-体系(如羟基 酸或氨基酸缩聚),也称自缩聚; 共缩聚: 在一般缩聚体系中加入第三或第四种单体进行的缩聚反 应。如乙二醇与对苯二甲酸缩聚成涤纶聚酯,加入第三单 体丁二醇共缩聚,降低涤纶的结晶度与熔点,增加柔性。 在均缩聚中加入第二种单体进行的缩聚反应。
53
1、卡罗瑟思法(Carothers)凝胶点的预测 理论基础:出现凝胶点时数均聚合度为无穷大,此是 时的反应程度p即为凝胶点pc。Carothers方程关联了凝胶 点pc与平均官能度的关系。 1)等基团数 平均官能度 f :单体混合物中每一个分子平均带有的基团数
例:2mol甘油、3mol邻苯二甲酸酐
48
形成x-聚体的几率从另一角度考虑,应等于聚合产物 混合体系中x-聚体的摩尔分率或数量分数(Nx/N),其中 Nx为x-聚体的分子数,N为大分子总数。 x-聚体的数量分数或数量分布函数为:
N0:起始的单体数(或结构单元数)
x-聚体的质量分数或质量分布函数为:
xN x = xp x −1 (1 − p ) 2 Wx = N0
a.外加酸催化缩聚 为了缩短到达平衡的时间,往往外加无机加强酸作催 化剂,称外加酸催化缩聚。外加酸时聚合速率由酸催化和 自催化组成,但往往忽略自催化速率。
第二章 缩聚和逐步聚合
§2-3 缩聚反应的机理和动力学
§2.3.1 缩聚反应的基本过程 (1 ) 大分子的生长反应
a ABb + a A B + ab a A B + ab
aAa + b B b a A B m
n
m +n
特点:大分子之间可以互相反应产生更大的分子。
17
(2)大分子生长过程的停止
a. 热力学平衡的限制---缩聚反应的逆反应解缩聚
+ HO
O C R' COOH H OROCOR' CO m OH
( ( )
(
HCOORR' CO
OROCOR' CO n OH
)
)
2 H 2N CH 2 n NH2
( )
2 C CH 2 n1
)
NH
+ 2NH 3 + NH 3
H 2N CH 2 n NH CH 2 n NH2
+
21
§2.3.1
线性缩聚反应动力学
13
●单体中官能团的空间分布对产物结构与性能的影响
nH2N- -NH2 + nClOC- -COCl
H-NH-
-NHOC-
-CO-Cl + (2n-1)HCl
n
聚对苯二甲酰对苯二胺
结晶性高聚物,能溶于浓硫酸中,不溶解于有机溶剂
nH2N NH2 H-NH NHOC
聚间苯二酰间苯二胺
+ nClOC COCl + (2n-1)HCl CO- Cl n
脲醛缩聚反应 聚烷基化反应 聚硅醚化反应
脲醛树脂 聚烷烃 有பைடு நூலகம்硅树脂
6
n [CH2]
-Si-O-
第2章缩聚和逐步聚合反应
大部分缩聚属于逐步聚合,缩聚也占了逐步聚 合的大部分。有时候换用,但不是一个概念。 逐步聚合的概念: 逐步聚合反应指随着反应时间的延长,相对分 子质量逐步增大的聚合反应。 聚合初期,单体通过官能团反应变为低聚物, 然后由低聚物转化为高聚物。 单体、低聚物和高聚物之间任何两个分子都可 以反应,相对分子质量逐步增大,聚合物链逐 渐增长。 反应的中间物可以分离出来,并能再进一步反 应。
也称A-A型缩聚,如:
② 混缩聚(或称为杂缩聚) mixing polycondensation 由两种具有不同官能 团(功能基)的单体参加的缩聚反应,这两 种单体自身都不能进行均缩聚。通式为:
如二元酸和二元胺,二元酸和二元醇的缩 聚反应(2-2官能度体系)。
③ 共缩聚 (co-condensation polymerization) 在均缩聚中加入第二种单体进行缩聚, 或在混缩聚中加入第三种甚至第四种单 体进行的缩聚反应。通式分别为:
线形缩聚产物相对分子质量或聚合度与反 应程度之间有怎样的关系?
聚合度:进入大分子链中的平均总单体数 (或结构单元数)。
式(2-3)同样适用于“a-A-a + b-B-b”型(2/2官能度 体系) 缩聚反应。如等量的二元酸和二元醇之间的 反应。
如果设 为平均相对结构单元质量,则 线型缩聚产物的数均相对分子质量为:
如果羧基数和羟基数相等,令其起始浓 度C0=1,时间t的浓度为C,
C= C0*(1-P)=1-P。则酯的浓度为 1-C=P,水全未排除时,水的浓度也是P 。 如果一部分水排出,残留水的浓度为nw
上式表明:总反应速率与反应程度P、低分子副产物含 量nw、平衡常数K有关
2.5 线型缩聚物的聚合度
逐步聚合反应的分类: 缩聚反应、逐步加成聚合反应
02 缩聚和逐步聚合
HO CH2 CH2 OH
+
HOOC
COOH
O H2N R N H2
O R' C OH
+
HO
C
CH3 HO
O OH
C
CH3
+
Cl
C Cl
OH
H
OH
H
+
H C H2O
OH
+
OH
H
C H2
CH2
H
CH3
O OH
n HO
C
CH3
+ (n+2) ClCH2
C CH2 H
3、氧化偶联聚合反应 通过氧化偶联反应生成聚合物的反应。 例如:苯的氧化偶联聚合生成聚苯;酚的氧化偶联 聚合生成聚苯醚。 4、逐步加成聚合反应 通过加成反应逐步生成聚合物的反应。 例如:聚氨酯的合成、D-A聚合等,反应式见p17 表2-1。
一、线形缩聚与成环倾向 1、反应倾向 一般来说,5、6元环比较稳定,因此如果形成的是5、6元 环,则易发生成环反应; 否则,主要发生线形缩聚反应。
2、影响因素 单体浓度,影响着成环反应与线形缩聚的竞争。 成环反应是单分子反应,缩聚则是双分子反应, 因此,低浓度有利于成环反应,高浓度有利于缩聚反应。
有特殊官能团单体 有特殊的活性中心
线形缩聚
烯烃 无特殊的活性中心
有基元反应,各步Ea 无基元反应,各步Ea 不同 相同 分子量随时间不变, 转化率随时间增加 单体 +大分子+微量引 发剂 C% 分子量随时间增加, 转化率随时间不变 聚合度不等的同系物 P
单体及引发剂浓度、 平衡常数、单体比例、 温度、阻聚剂、分子 温度、…… 量调节剂、……
第2章缩聚及其他逐步聚合反应
高分子化学
第2章 缩聚及其他逐步聚合反应
2.1-2.3
2.2.1.2 缩聚反应的类型 按参加反应的单体种类分类 (1)均缩聚:只有一种单体参加的缩聚反应,其重复单元 只含有一种结构单元。单体本身含有能发生缩合反应的两种 官能团。 如由氨基酸单体合成聚酰胺:
(2)混缩聚:由两种单体参与、但所得聚合物只有一种重 复结构单元的缩聚反应,其起始单体通常为对称性双功能基 单体,如aRa和bR ′ b,聚合反应通过X和Y功能基的相互反 应进行。
2.1-2.3
(1)实验依据d: (2)理论分析: 官能团的活性取决于官能团的碰撞频率,而不是大分子的扩散 速率。 碰撞频率:单位时间内一个官能团与其他官能团碰撞的次数。 大分子的整体扩散速率很低,大分子链末端的官能团的活动性 要比整个大分子大很多。
(3)“等活性”理论需满足的条件
缩聚反应体系必须是真溶液、均相体系。 官能团所处的环境——邻近基团效应和空间阻碍在反应过程中 不变。 聚合物的相对分子质量不能太高,反应速率不能太大,体系粘 度不能太高。 第2章 缩聚及其他逐步聚合反应 2.1-2.3 高分子化学
第2章 缩聚及其他逐步聚合反应
2.1 聚合反应类型及特点
在高分子工业中具有重要地位:
1.大多数杂链聚合物都是由逐步聚合而成:聚酯、聚酰胺、聚 氨酯、酚醛树脂、环氧树脂等。
2.许多带芳环的耐高温聚合物如聚酰亚胺由逐步聚合而成。
3.逐步聚合可以合成很多功能高分子,如离子交换树脂。
4.许多天然生物高分子通过逐步聚合而得:蛋白质,多糖等。
n HOOC-R-COOH + n HO-R'-OH
高分子化学
O O HO ( C R C OR'O ) H + (2n-1) H2O n
2缩聚和逐步聚合
2.3.1 线形缩聚与成环倾向
当n=2时,β-羟基失水,可能形成丙烯 酸:
HOCH2 CH2COOH→CH2 =CH2 COOH
2.3.1 线形缩聚与成环倾向
当n=3、4时,分子内缩合成稳定的五、 六元内酯:
2.3.1 线形缩聚与成环倾向
当n≥5时,主要形成线形缩聚。 单体浓度对成环或线性缩聚倾向也有影 响。成环是单分子反应,缩聚则是双分子 反应,因此低浓度有利于成环,高浓度有 利于线性缩聚。
缩聚型逐步聚合——有小分子生成的逐 步聚合反应。例:
HOOC-R-COOH+HO-R,-OH → HO-[R,-OOC-R-CO]n-OH+(2n+1)H2O
2.2缩聚反应
缩聚反应是缩合聚合反应的简称,是缩 合反应多次重复,结果形成聚合物的过程。 缩合和缩聚都是基团间(羟基和羧基,或 者胺基和羧基)的反应。两种基团可以分 属于两个单体分子,如乙二醇和对苯酸; 也可以两种基团在同一种单体分子,如羟 基酸或氨基酸。缩聚反应的特点是由小分 子生成。
2缩聚和逐步聚合
第二章 逐步聚合
2.1引言 按单体—聚合物组成结构的变化将聚合
反应范围缩聚、加聚、开环聚合三大类类。 按聚合机理又将聚合反应分为逐步聚合
和连锁聚合两大类。 在缩聚反应中,聚酯、聚酰胺、聚碳酸
酯、酚醛树脂、脲醛树脂、醇酸树脂等杂 链聚合物(见表1-2)都由缩聚反应合成的, 例如:
缩聚反应 实例
2.1 引言
绝大部分缩聚反应属于逐步机理, 也有非缩聚型或加聚型的逐步聚合, 见表2-1。(P17)
如聚氨酯、聚砜、聚苯醚、聚酰胺 -6、聚苯等。
2.1 引言
逐步聚合有两种: 加聚型逐步聚合—无小分子生成的逐步 聚合反应。例:
第二章 逐步聚合反应
PPO
5)Diels-Alder 反应
共轭双烯烃与另一烯类发生1,4加成,制得梯形聚合 物,即多烯烃的环化聚合。
O H 2C CH2 + H2C CH2 O
O
n O
2.2 缩聚反应
2.2.1 缩聚反应 在众多有机化合物中,有许多种类的化合物都 可以发生两种或相同官能团之间的缩合反应。例如:
ClOC6H4COCl>HOOCC6H4COOH>HO(CH2)2OOCC6H4COO(CH2)2OH
2.单体参加聚合反应的活性还与其功能团的空间环境有关。 对苯二胺+对苯二甲酰氯全芳聚酰胺 间苯二胺+间苯二甲酰氯全芳聚酰胺 单体反应活性不同, 聚合物的性能也不同。
又如:甘油参加一般缩聚反应时两个 伯羟基的反应活性较高而仲羟基的活性 较低。
HO OC6H4COO(CH2)2O
H
m1
+ HO O(CH2)2OOCC6H4CO H
m2
R' OH
O H [ O C R
O C O R' ] n OH + HO R' [ O
O C R
O C O R' ] m OH
原因:单功能团杂质,单体对聚合物的裂解。 结果:大分子变小,平均相对分子质量降低。 措施:提高原料纯度,特别减小单功能团化合物的含量。
2.1 引言
按聚合机理或动力学分类:
※ 连锁聚合(Chain Polymerization)
活性中心(Active Center)引发单体,迅速连锁增长
自由基聚合 活性中心不同 阳离子聚合 阴离子聚合 ※ 逐步聚合(Stepwise Polymerization)
第二章_缩聚和逐步聚合反应-2010(第一讲)
31
2011-2-24
32
2011-2-24
33
2011-2-24
34
2011-2-24
35
2011-2-24
36
2011-2-24
37
2011-2-24
38
2011-2-24
39
2011-2-24
40
2011-2-24
41
2011-2-24
42
2011-2-24
43
2011-2-24
2
产 单 体 转 化 率 物 平 均 聚 合 度
反应时间
反应时间 连锁聚合反应 逐步聚合反应
2011-2-24
3
高 分 子 化 学
第二章 缩聚和逐步聚合
2011-2-24
4
以二元羧酸与二元醇的聚合反应为例:
HOOC-R-COOH + HO-R'-OH
HOOC-R-COOH HOOC-R-COO-R'-OH + HO-R'-OH
2011-2-24
6
2.1
2011-2-24
7
2011-2-24
8
2011-2-24
9
2011-2-24
10
2011-2-24
11
2011-2-24
12
2011-2-24
13
2011-2-24
14
2011-2-24
15
2011-2-24
16
2011-2-24
17
2011-2-24
高分子链的形态
高分子链的化学结构 高分子化学 高分子平均分子量和多分散性 性能
2011-2-24
第2章逐步聚合习题参考答案
第二章 缩聚与逐步聚合反应-习题参考答案1.名词解释:逐步聚合;缩合聚合;官能团等活性;线型缩聚;体型缩聚;凝胶点;转化率;反应程度。
答:逐步聚合——单体转变成高分子是逐步进行的,即单体官能团间相互反应而逐步增长。
缩合聚合——由带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应。
官能团等活性——在一定聚合度范围内,官能团活性与聚合物分子量大小无关。
线型缩聚——参加反应的单体都含有两个官能团,反应中形成的大分子向两个方向增长,得到线型缩聚物的一类反应。
体型缩聚——参加反应的单体中至少有一种单体含有两个以上的官能团,且体系平均官能度大于2,反应中大分子向三个方向增长,得到体型结构的聚合物的这类反应。
凝胶点——开始出现凝胶瞬间的临界反应程度。
转化率——参加反应的单体量占起始单体量的分数反应程度——参与反应的基团数占起始基团的分数。
3.由己二元酸和己二胺等摩尔合成尼龙—6,6。
已知聚合反应的平衡常数K=432,如果要合成聚合度在200的缩聚物,计算反应体系中的水含量应控制为多少?解:n X =n X =200,K=432代入此式可得: 224320.0108200w n K n X === 答:反应体系中的水含量应控制为0.0108 mol/L.4.计算等摩尔的对苯二甲酸与乙二醇反应体系,在下列反应程度时的平均聚合度和分子量。
0.500,0.800,0.900,0.950,0.995。
解: 等物质量条件下,有PX -=11,聚苯二甲酸乙二醇酯结构单元的分子量:M 0=192。
11n X p=-,n o n X M M ⨯=,因此各反应程度时的平均聚合度和分子量见下表:7.氨基己酸进行缩聚反应时,如在体系中加入0.2mol%的醋酸,求当反应程度P 分别达到0.950,0.980,0.990时的平均聚合度和平均分子量。
解: 方法1:2212 1.998'110.002a a ab b f N f N N N ⨯⨯===++++ 当p=0.950时,22202 1.9980.9502n X pf ==≈-⨯- 214010720=⨯=⨯=n o n X M M当p=0.980时,22482 1.9980.9802n X pf ==≈-⨯- 513610748=⨯=⨯=n o n X M M当p=0.990时,22912 1.9980.9902n X pf ==≈-⨯- 937910791=⨯=⨯=n o n X M M方法2:rpr r Xn 211-++=, NcNa Na r 2+==0.996 P=0.95, 20=XnP=0.98, 46=XnP=0.99, 83=Xn8.用Carothers 法计算下列聚合反应的凝胶点:(1)邻苯二甲酸酐+甘油,摩尔比3:2。
高分子化学与物理-2-缩聚及其他逐步聚合反应
1. 逐步聚合反应的一般性特征
1+1=2
1+2=3
。 。 。
。 。 。
2+2=4
逐步聚合反应的基本特征
(1)聚合反应可发生在单体和单体、单体和聚 合中间产物、以及不同的聚合中间产物分子之 间;——逐步聚合反应的判据 (2)每一步反应都是相同功能基之间的反应, 因而每步反应的反应速率常数和活化能大致相同;
(a)封闭体系
聚合反应达到平衡时: 反应程度
[COO] = [H2O] = P [M]0
未反应的羧基浓度与未反应的羟基浓度相等,即
[COOH]=[OH]=[M]0-p[M]0
所以,反应平衡常数为:
K [ C O O ][ H 2 O ] [ C O O H ][ O H ] ( p [ M ]0 )
(ⅱ) 外加催化剂聚合反应 添加强酸(如硫酸等)作为催化剂,则其浓度为常量。
RP = -d[M]/dt = k[COOH][OH][酸催化剂]
= k’[COOH][OH] =k’[M]2 二级反应 积分得:k’t =1/[M] - 1/[M]0 所以 Xn = 1 + [M]0k’t
自催化聚合反应
三级反应
积分得:
2 kt 1 [M ]
2
1 [ M ]0
2
M0 :初始浓度, M:t时刻的浓度
由于M=M0(1-P),
代入得:
X
n 2
X
n
1 /( 1 P )
11 P 2 Nhomakorabea 2 KM
2 0
t 1
可见:Xn的平方根与t成正比,
可知:a. 聚合度随时间而增大,但较缓慢,
高分子化学2 缩聚和逐步聚合
第二章 缩聚和逐步聚合
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。
以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
CH2 O CO
CH2 CH2
HO(CH2)4COOH
CH2
CH2 CH2
O CO
CH2
22
第二章 缩聚和逐步聚合
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与可逆平衡。 1)聚合过程的逐步性
以二元酸和二元醇的缩聚为例。在缩聚反应中,含羟 基的任何聚体与含羧基的任何聚体之间都可以相互缩合。 随着反应的进行,分子量逐步增大,达到高分子量聚酯。 通式如下:
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
HOOC-R-COO-R'-OOC-R-COOH + H2O 三聚体
HO-R'-OOC-R-COO-R'-OH + H2O
如光气法制备聚碳酸酯,合成聚砜等。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
28
第二章 缩聚和逐步聚合
3.3 缩聚过程中的副反应
高分子化学第二章 缩聚和逐步聚合讲解
• 反应程度(P):参加反应的官能团数 占起始投料时官能团数的分率。
P=
已参加反应的功能基数目 起始功能基数目
29
二元酸与二元醇的缩聚为例
• 羟基与羧基等量投料: 1 Xn = 1-P (2—3式)
15
16
一、反应基团的数目与官能度(f)
官能度:单体在聚合反应中能形成新键 的数目
f=2的单体间缩聚,可能得到线形缩聚物 对于f=2,n (n>2)体系可能得到体形缩聚物
注意:f=1的化合物——分子量调节剂、封端
17
二、缩聚反应的类型
按生成聚合物的结构分
(1)线形缩聚 (2)体形缩聚
7
H2N-R-NH2
• 是高分子材料合成的重要方法之一,在 高分子化学和高分子合成工业中占有重 要的地位。
• 例如:涤纶、尼龙、聚氨酯、酚醛树脂等。 近年来,逐步聚合反应的研究无论在理论上, 还是在实际应用中均有新的发展,一些高强 度、高模量及耐高温等综合性能优异的材料 不断问世:聚碳酸酯、聚砜、聚苯醚等。
• 大分子的形成是逐步增长的,即两单体 分子反应生成二聚体,二聚体再和一单 H2N-R-NH-CO-R'-COOH 体反应生成三聚体或二聚体之间反应形 成四聚体……依次逐步进行下去,反应 H2N-R-NH-CO-R'-CO-NH-R-NH2 体系的平均分子量在整个反应过程中逐 步增加。
HOCO-R'-CO-HN-R-NH-CO-R'-CO-NH-R-NH2
1. 逐步的特点
26
单体+单体 二聚体+单体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 概 述(引 言)
c. 聚酰胺反应:二元胺与二元羧酸、二元酯、二元酰氯等反应 n H2N-R-NH2 + n ClOC-R’-COCl H-(HNRNH-OCR’CO)n-Cl + (2n-1) HCl d. 聚硅氧烷化反应:硅醇之间聚合 n HO-SiR1R2-OH + n HO-SiR1’R2’-OH H-(OSiR1’R2’-OSiR1R2)n-OH + (2n-1) H2O 共同特点:在生成聚合物分子的同时,伴随有小分子副产物 的生成,如H2O, HCl, ROH等。
热力学
平衡线型逐步聚合
不平衡线型逐步聚合
(1) 线型逐步聚合反应
参与反应的单体只含两个功能基(即双功能基单体),
聚合产物分子链只会向两个方向增长,生成线形高分子。
2.1 概 述(引 言)
双功能基单体类型: a. 两功能基相同并可相互反应:如二元醇聚合生成聚醚 n HO-R-OH H-(OR)n-OH + (n-1) H2O
聚合产物分子链形态不是线形的,而是支化或交联型的。 聚合体系中必须含有带两个以上功能基的单体。
2.2 平均聚合度与反应程度、功能基摩尔比的关系
2.2.1 逐步聚合反应的数均聚合度 (Xn) 反应程度P: 即 P = 定义为反应时间t时已反应的A或B功能基的分数,
已反应的A (或B) 功能基数 起始的A(或B)功能基数
2 HOOC-R-COO-R'-OH
。 。 。
HOOC-R-COO-R'-OOC-R-COO-R'-OH + H2O 四聚体
。 。 。
n HOOC-R-COOH + n HO-R'-OH
O O HO ( C R C OR'O ) H + (2n-1) H2O n
2.1 概 述(引 言)
基本特征: (1)聚合反应是通过单体功能基之间的反应逐步进行的; (2)每步反应的机理相同,因而反应速率和活化能大致相同; (3)反应体系始终由单体和分子量递增的一系列中间产物组成, 单体以及任何中间产物两分子间都能发生反应; (4)聚合产物的分子量是逐步增大的。 最重要的特征:聚合体系中任何两分子(单体分子或聚合 物分子)间都能相互反应生成聚合度更高的聚合物分子。
A. 双功能基单体的两功能基反应性能相等,且不管其一个是否已 反应,另一个功能基的反应性能保持不变;
B. 功能基的反应性能与其所连接的聚合物链的长短无关。
COOH + K OH COO + H2O
等活性假设依据
• 聚合体系的粘度随分子量的增加而增加,一般认为分 子链的移动减弱,从而使基团活性降低。但实际上端 基的活性并不决定于整个大分子质心的平移,而与端 基链段的活动有关。大分子链构象改变,链段的活动 以及羧基与端基相遇的速率要比质心平移速率高得多。 在聚合度不高、体系粘度不大的情况下,并不影响链 段的运动,两链段一旦靠近,适当的粘度反而不利于 分开,有利于持续碰撞,这给“等活性”提供了条件。 但到聚合后期,粘度过大后,链段活动也受到阻碍甚 至包埋,端基活性才降低下来。
界面缩聚
界面缩聚是将两种单体分别溶于两种不互溶的溶剂中, 再将这两种溶液倒在一起,在两液相的界面上进行缩 聚反应,聚合产物不溶于溶剂,在界面析出。
己二酰氯与己二 胺之界面缩聚
牵引 拉出聚合物膜
己二胺-NaOH水溶液 界面聚合膜 己二酰氯的CHCl3溶液
2.1 概 述(引 言)
(2) 非线型逐步聚合反应
功能基摩尔比 r =
起始的A(或B)功能基数NA(或NB)
起始的B(或A)功能基数NB(或NA)
(规定r≤1即:NA ≤ N B)
2.2 平均聚合度与反应程度、功能基摩尔比的关系
起始单体的A-A和B-B分子总数 生成聚合物的分子总数
数均聚合度 Xn=
线形聚合物的聚合度( Xn )与反应程度( P )及功能基摩尔 比(r)有关,以双功能基单体A-A和B-B体系为例来推导 三者关系: 起始单体分子总数 n = (NA + NB)/2 = [NA(1+ 1/r)]/2 反应程度为P时, 未反应的A功能基数 NA’ = NA-NAP = NA(1-P) 未反应的B功能基数 NB’ = NB - NAP = NB(1-rP) (规定r≤1即:NA ≤ N B)
2.1 概 述(引 言)
(ii) 不平衡线型逐步聚合反应 聚合反应过程中生成的聚合物分子之间不会发生交换反 应(p.22),单体分子与聚合物分子之间不存在可逆平 衡(p.22 ),即不存在化学平衡。 不平衡逐步聚合反应概括起来有三种:
2.1 概 述(引 言)
(a) 热力学不平衡反应:聚合反应的基本化学反应本身 为不可逆反应; (b)聚合方法不平衡反应:即聚合反应本身是平衡反应, 但在实施聚合反应时,人为地使聚合产物从反应体系中迅 速析出或随时除去聚合反应伴生的小分子,使可逆反应失 去条件。 (c)准不平衡反应:平衡常数K≥104
2.2 平均聚合度与反应程度、功能基摩尔比的关系
2.3.5 聚合度的控制与稳定 聚合度的控制:反应程度 P 和功能基摩尔比 r 聚合度的稳定:“封端” 封端途径
A. 调节功能基摩尔比 r ,使其在能获得符合使用要求分 子量聚合物的前提下,适当地偏离等摩尔比 ,使分子链 两端带上相同功能基;
2.2 平均聚合度与反应程度、功能基摩尔比的关系
b. 两功能基相同, 但相互不能反应,聚合反应只能在不同单体 间进行:如二元胺和二元羧酸聚合生成聚酰胺 n H2N-R-NH2 + n HOOC-R’-COOH H-(HNRNH-OCR’CO)n-OH + (2n-1) H2O c. 两功能基不同并可相互反应:如羟基酸聚合生成聚酯 n HO-R-COOH H-(ORCO)n-OH + (n-1) H2O
2.1 概 述(引 言)
单体转化率、产物聚合度与反应时间关系示意图
单 体 转 化 率 反应时间
产 物 聚 合 度
2.1 概 述(引 言)
2.1.2 逐步聚合类型
逐步聚合反应具体反应种类很多,概括起来主 要有两大类: 缩合聚合(Polycondensation) 逐步加成聚合(Polyaddition)
B. 加入少量单功能基化合物,对聚合物链进行封端。 如:HO-(OCRCO-OR’O)n-H + CH3COOH HO-(OCRCO-OR’O)n-OCCH3 + H2O 加入的单功能基化合物不仅能对聚合物链封端,而且还会对聚 合产物的分子量产生影响: 假设在A-A和B-B聚合体系中加入含B功能基的单功能基化合物 B’,那么A的反应程度为P 时:(NB’为加入的单功能基化合 物B’的数目) 未反应的A功能基数= NA(1-P); 未反应的B功能基数= NB+NB’-NAP;
2.1 概 述(引 言)
b. Diels-Alder加成聚合:单体含一对共轭双键 如:
+ O H2C H2C CH2 + CH2 O O n O
与缩聚反应不同,逐步加成聚合反应没有小分子副产物生成。
2.1 概 述(引 言)
2.1.3 逐步聚合反应分类
线型逐步聚合
聚合产物 结构不同 非线型逐步聚合
若r≠1, P 指量少功能基的反应程度 适用于线型逐步聚合反应
2.2 平均聚合度与反应程度、功能基摩尔比的关系
数均聚合度Xn与数均分子量Mn的关系
) Mn = M0Xn = M0 ( 1 + r - 2rP 单体单元的(平均)分子量 M0的计算分两种情况: A. 均缩聚:只有一种单体,所得聚合物分子只含一种单体单 元,M0就等于这一单体单元的分子量; B. 混缩聚:含两种或两种以上单体,所得聚合物分子含两种 或两种以上的单体单元,M0 就为所有单体单元的分子量的平 均值。 1+r
2.3.3 r 对Xn的影响 假设 P = 1,Xn = (1 + r)/(1-r)
r Xn 0.500 3 0.750 7 0.900 19 0.980 99 0.990 199 0.999 1999
2.2 平均聚合度与反应程度、功能基摩尔比的关系
2.3.4 P 的制约因素
(i ) 平衡常数
功能基等反应性假设:在一定聚合度范围内 解释 p.23 表2-4
2 1/2
P [H2O] = Xn2
P[H2O] [M]0 nw =
[H2O] [M0]
] P[H O]
p. 27
2.2 平均聚合度与反应程度、功能基摩尔比的关系
(ii) 动力学因素 催化剂的消耗,粘度增大,功能基浓度变小等。
(iii) 其它因素
原料纯度,称量误差,单体挥发,副反应的功能基损失等。
2.1 概 述(引 言)
(2) 逐步加成聚合
a. 重键加成聚合:
含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化 合物之间的聚合。如:
n O=C=N-R-N=C=O + n HO-R’-OH
( C N R N C O R'O ) n O H H O
聚氨基甲酸酯,简称聚氨酯(Polyurethane,PU) 含活泼氢的功能基:-NH2, -NH, -OH, -SH, -SO2H, -COOH, -SiH等 亲电不饱和功能基:主要为连二双键和三键, 如:-C=C=O, -N=C=O,-N=C=S,-C≡C-,-C≡N等
2.2 平均聚合度与反应程度、功能基摩尔比的关系
COOH + K OH COO + H2O
K=
[COO][H2O] [COOH][OH]
假设r =1, 功能基起始浓度为[M]0=[COOH]0=[OH]0
平衡时,反应程度为P, [COO] = [H2O] = P [M]0
K= ( P[M]0)2 ([M]0 - P[M]0 P= )2 = P2 (1-P)2