考研数学线性代数常用公式
考研数学1——线性代数
iT
j
0, i = 1,i
=
j j
则称1
2
......
为标准或单位正交向量组(规范正交基)
n
施密特标准正交化(又称正交规范化)过程
线性无关向量组12......n 的标准正交化公式l
1 = 1
2
=
2
−
(2 , (1,
1 ) 1 )
1
(2 , (1,
1 ) 1 )
1
=
2 1
1 cos 1 1
1
=
2 cos 1
除:逆,A可逆 ⎯充要⎯→ A 0
2、 k 0, (kA)* = k n−1A*
AA−1 = E
3、 ( A* )* = A n−2 A
性质:
( ) 1、
A−1
−1
=
A
4、 ( A* )T = ( AT )* ( A−1)* = ( A* )−1
2、 (kA)−1 = 1 A−1,k 0 k
3、 A−1 = 1 | A|
= n
伴随的雉关系:r(
A*)
=
=
1
= 0
当r(A) = n 当r( A) = n −1 当r( A) n −1
5
第三章 向量组(长方形、正方形)
本章解决问题
1、一个向量组里面有没有多余的人?⎯⎯→ 相关无关 2、有多余的人,怎么表示?⎯⎯→ 线性表示 3、表示完以后,撵走!⎯⎯→ 极大线性无关组 4、等价的向量组
若1、
2、
3、
相关
n
⎯仍⎯然⎯相关⎯→
减少维度仍然相关 增加成员仍然相关
部分相关,则整体相关
整体无关,则部分无关
考研数学线代定理公式汇总
考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。
(2)若存在行(列)线性相关,则行列式为0。
(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。
2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。
(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。
(3)利用矩阵的逆可以求解非齐次线性方程组。
3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。
(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。
(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。
(2)向量组的秩等于向量组的极大线性无关组的向量个数。
(3) rank(A^T) = rank(A),其中A是矩阵。
(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。
5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。
(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。
(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。
当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。
如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。
考研数学线性代数常用公式
考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
(整理)考研必备考研数学公式(高数,线性代数)全收录
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研必备考研数学公式(高数,线性代数)全收录25页
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-co tα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
线性代数考研公式大全
线性代数考研公式大全线性代数考研公式大全(最新整理收集)线性代数部分基本运算①A B B A②A B C A B C③c A B cA cB c d A cA dA④cdA cd A⑤cA 0 c 0或A 0。
ATTAA B T AT BTcA Tc AT。
AB TBTATn n 1 21 C2n n 1 n2D a21A21 a22A22 a2nA2n转置值不变AT A逆值变A 11Acn, 1 2, , 1, , 2,A 1, 2, 3 ,3阶矩阵B 1, 2, 3A B A BA B 1 1, 2 2, 3 3A B 1 1, 2 2, 3 3A 0B A0BABE i,j c 1有关乘法的基本运算线性代数考研公式大全(最新整理收集) Cij ai1b1j ai2b2j ainbnj线性性质A1 A2 B A1B A2B,A B1 B2 AB1 AB2cA B c AB A cB 结合律AB C A BCAB TBTATABAkAl Ak lAklAklAB kAkBk不一定成立!AE A,EA AA kE kA,kE A kAAB E BA E与数的乘法的不同之处AB kAkBk不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如A2 2A 3E A 3E A E无消去律(矩阵和矩阵相乘)当AB 0时A 0或B 0由A 0和AB 0 B 0由A 0时AB AC B C(无左消去律)特别的设A可逆,则A有消去律。
左消去律:AB AC B C。
右消去律:BA CA B C。
如果A列满秩,则A有左消去律,即①AB 0 B 0 ②AB AC B C可逆矩阵的性质i)当A可逆时,AT也可逆,且AT1A 1T。
线性代数考研公式大全(最新整理收集)Ak也可逆,且Ak1A 1k 1数c0,cA也可逆,cA1 1A。
cii)A,B是两个n阶可逆矩阵AB也可逆,且AB 1 B 1A 1。
考研数学公式大全
考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。
以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。
一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。
考研数学-线性代数公式
( ) = r ( A)
T
② c ≠ 0 时, r (cA) = r ( A) ③ r ( A ± B ) ≤ r ( A) + r (B ) ④ r ( AB ) ≤ min{r ( A), r (B )} ⑤ A 可逆时, r ( AB ) = r (B ) 弱化条件:如果 A 列满秩,则 γ ( AB ) = γ (B ) 证:下面证 ABx = 0 与 Bx = 0 同解。
c c1 α1 − − s α s 。 c c
④当 β → α 1 , , α s 时,表示方式唯一 ⇔ α 1 α s 无关 (表示方式不唯一 ⇔ α 1 α s 相关) ⑤若 β 1 , , β t → α 1 , , α s ,并且 t > s ,则 β 1 , , β t 一定线性相关。
等 价 关 系 : 如 果
α 1 ,α 2 ,,α s 与 β1 , β 2 ,, β t 互 相 可 表 示
α 1 ,α 2 ,,α s → ← β1 , β 2 ,, β t
记作 α 1 , α 2 , , α s ≅ 线性相关
β1 , β 2 ,, β t 。
s = 1 ,单个向量 α , xα = 0
证明:记 A = (α 1 , , α s ) , B = (β 1 , , β t ) , 则存在 s × t 矩阵 C ,使得
B = AC 。
Cx = 0 有 s 个方程, t 个未知数, s < t ,有非零解 η , Cη = 0 。
则 Bη = ACη = 0 ,即 η 也是 Bx = 0 的非零解,从而 β 1 , , β t 线性相关。 各性质的逆否形式 ①如果 α 1 , α 2 , , α s 无关,则 s ≤ n 。 ②如果 α 1 , α 2 , , α s 有相关的部分组,则它自己一定也相关。 ③如果 α 1 α s 无关,而 β → / α 1 , , α s ,则 α 1 , , α s β 无关。 ⑤如果 β 1 β t → α 1 α s , β 1 β t 无关,则 t ≤ s 。 推论:若两个无关向量组 α 1 α s 与 β 1 β t 等价,则 s = t 。 极大无关组 一个线性无关部分组 (I ) ,若 # (I ) 等于秩 α 1 , α 2 , α 4 , α 6 → (I ) , (I ) 就一定是极大无关组 ① α 1 , α 2 , , α s 无关 ⇔
数学考研必备公式总结
数学考研必备公式总结一. 线性代数公式1. 行列式相关公式:- 二阶行列式的计算公式:$D = ad - bc$- 三阶行列式的计算公式:$D = a(ei - fh) - b(di - fg) + c(dh - eg)$ - 全排列定义的多元函数行列式:$|A| = \sum_{p \in S_n} (1 - \delta(p)) a_{1p_1}a_{2p_2} \cdots a_{np_n}$2. 矩阵运算相关公式:- 矩阵相加的运算规则:$A + B = B + A$- 矩阵相乘的运算规则:$(AB)C = A(BC)$- 矩阵的逆的性质:$(AB)^{-1} = B^{-1}A^{-1}$3. 特殊矩阵相关公式:- 对称矩阵的性质:若 $A$ 为对称矩阵,则 $A^T = A$- 正交矩阵的性质:若 $A$ 为正交矩阵,则 $A^T = A^{-1}$二. 高等数学公式1. 极限相关公式:- 函数极限的定义:$\lim_{x \to x_0}f(x) = A$ 表示对于任意给定的正数 $\varepsilon$,存在正数 $\delta$,使得当 $|x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$ 成立- 常见极限公式:$\lim_{n \to \infty}(1 + \frac{1}{n})^n = e$2. 导数相关公式:- 可导函数的导数定义:$f'(x) = \lim_{h \to 0} \frac{f(x+h) -f(x)}{h}$- 常见导数公式:$(x^n)' = nx^{n-1}$3. 积分相关公式:- 不定积分的定义:$\int{f(x)dx} = F(x) + C$,其中 $F(x)$ 是$f(x)$ 的一个原函数,$C$ 是常数- 常见积分公式:$\int{x^n dx} = \frac{1}{n+1} x^{n+1} + C$三. 概率论与数理统计公式1. 随机变量相关公式:- 期望的定义:$E(X) = \sum_{x} x P(X=x)$,其中 $X$ 是一个离散型随机变量- 方差的定义:$Var(X) = E((X - E(X))^2)$,其中 $X$ 是一个随机变量2. 概率分布相关公式:- 二项分布的概率质量函数:$P(X = k) = C_n^k p^k (1-p)^{n-k}$,其中 $X$ 服从二项分布,$C_n^k$ 表示组合数3. 统计量相关公式:- 样本均值的性质:$E(\overline{X}) = \mu$,其中$\overline{X}$ 是样本均值,$\mu$ 是总体均值- 样本方差的性质:$E(S^2) = \sigma^2$,其中 $S^2$ 是样本方差,$\sigma^2$ 是总体方差结语:本文对数学考研中常用的公式进行了总结和归纳,涵盖了线性代数、高等数学以及概率论与数理统计等方面的重要公式。
线性代数重要-公式-定理-概念
A ij = (−1)i +j det S ij .
11
12121222111
1
1
1
111(1)de de |t t |.
n n
n
n k k k k n n nn
k k k a a a a a a A A a a S a a a A +====
==-∑∑
对换行列式的两行(列),行列式的值变号. 对 n 阶矩阵 A ,有
det()det .n
A A λλ=
11121321222331
32
33
a a a a a a a a a 132132a a a +112233a a a =122331a a a +132231a a a -122133a a a -112332
a a a -
克拉默法则
某矩阵的行列式的值不等于零,则次矩阵可逆!
N阶齐次线性方程组存在非凡解,则其行列式的值必为零;N阶齐次线性方程组的行列式的值为零,则该方程组存在非零解!
结论:梯矩阵的秩就等于非零行的行数.
B=(A,b)的含义:
如果向量集构成的矩阵的秩小于向量的个数,则该向量集线性相关!
向量集的秩等于向量集的最大线性无关子集中的向量的个数,将向量集所组成的矩阵化为梯矩阵,梯矩阵中非零行的首非零元所在的列的所有列向量组成向量集的一个最大线性无关子集!
剩余向量:
属于不同特征值的特征向量线性无关
齐次方程组有非凡解,则齐次方程组的系数行列式的值为0.
对角阵的对角线元都是它的特征值!。
线性代数重要公式定理大全
线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。
在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。
在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。
下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。
一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。
2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。
(2)行列式相邻行(列)对换,行列式的值不变。
(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。
(4)互换行列式的两行(列),行列式的值不变。
(5)若行列式的行(列)的元素都是0,那么行列式的值为0。
(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。
3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。
(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。
(3)行列式的转置等于行列式的值不变。
二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。
考研线性代数公式
考研线性代数公式线性代数是理工类学科中的一门重要课程,也是考研中的必考科目之一、在考研中,线性代数的公式是非常重要的,因为公式是解题的基础和关键。
下面我将就线性代数中常见的公式进行总结,希望对考研学子有所帮助。
一、矩阵相关公式1.矩阵的转置:如果A是一个m×n的矩阵,则其转置记作A^T,即矩阵A的列变成A^T的行,矩阵A^T的行变成A的列。
2.单位矩阵:对于一个n×n的矩阵,其对角线上的元素均为1,其余元素均为0,则称其为单位矩阵,记作E。
3.矩阵的乘法:如果A是一个m×n的矩阵,B是一个n×p的矩阵,那么它们的乘积AB是一个m×p的矩阵。
4.矩阵的逆:如果一个n×n矩阵A存在一个矩阵B,使得AB=BA=E,那么称B为A 的逆矩阵,记作A^(-1)。
5.克拉默法则:对于一个由n个线性方程组成的线性方程组Ax=b,如果系数矩阵A 的行列式不为0,那么方程组有唯一解,且解为x=A^(-1)b。
6.矩阵的迹:对于一个n×n的方阵A,其主对角线上的元素之和称为矩阵A的迹,记作tr(A)。
二、向量相关公式1.向量的模:对于一个n维向量x=(x1,x2,…,xn),其模记作,x,即,x,=sqrt(x1^2+x2^2+…+xn^2)。
2.向量的内积:对于两个n维向量x=(x1,x2,…,xn)和y=(y1,y2,…,yn),它们的内积记作x·y,即x·y=x1y1+x2y2+…+xnyn。
3.向量的外积:对于二维向量x=(x1,x2)和y=(y1,y2),它们的外积记作x×y,即x×y=x1y2-x2y14.向量的投影:如果向量x在向量y上的投影记作proj_y(x),那么它可以通过公式proj_y(x)=(x·y)/,y,^2计算得到。
5.两个向量的夹角:对于两个非零向量x和y,它们之间的夹角记作θ,可以通过余弦公式cosθ=(x·y)/,x,y,计算得到。
考研数学公式大全
考研数学公式大全考研数学对于许多考生来说是一座难以逾越的大山,而熟练掌握各类公式则是攻克这座大山的重要武器。
以下为大家整理了一份较为全面的考研数学公式,希望能助大家一臂之力。
一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 limf(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · limg(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)。
(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 + 1 / x)^x = e (x → ∞)。
(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界函数的乘积是无穷小量。
(4)函数连续的定义:设函数 y = f(x) 在点 x₀的某一邻域内有定义,如果 lim (x → x₀) f(x) = f(x₀),则称函数 f(x) 在点 x₀处连续。
2、一元函数微分学(1)导数的定义:f'(x₀) = lim (Δx → 0) f(x₀+Δx) f(x₀) /Δx。
(2)基本导数公式:(x^n)'= nx^(n 1);(sin x)'= cos x;(cos x)'= sin x;(e^x)'= e^x;(ln x)'= 1 / x。
(3)导数的四则运算法则:f(x) ± g(x)'= f'(x) ± g'(x);f(x) · g(x)'= f'(x)g(x) + f(x)g'(x);f(x) / g(x)'= f'(x)g(x)f(x)g'(x) / g(x)^2 (g(x) ≠ 0)。
考研数学常用公式整理与记忆方法
考研数学常用公式整理与记忆方法考研数学是许多考生备战考研的一大难点,其中最重要的就是掌握数学公式。
本文将对考研数学常用公式进行整理,并分享记忆方法,帮助考生们更好地掌握这些公式。
一、线性代数1. 行列式公式:- 二阶行列式:$\begin{vmatrix}a&b\\c&d\end{vmatrix} = ad - bc$- 三阶行列式:$\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$2. 矩阵公式:- 矩阵乘法:$AB = [a_{ij}]_{m×n} \cdot [b_{ij}]_{n×p} = [c_{ij}]_{m×p}$,其中$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$3. 特征值与特征向量:- 矩阵特征方程:$|A - λI| = 0$,其中$A$为矩阵,$λ$为特征值,$I$为单位矩阵4. 向量与空间:- 内积:$\vec{a} · \vec{b} = |\vec{a}| |\vec{b}| \cosθ$,其中$\vec{a}$和$\vec{b}$为向量,$θ$为夹角- 外积:$\vec{a} ×\vec{b} = |\vec{a}| |\vec{b}| \sinθ \vec{n}$,其中$\vec{n}$为法向量二、高等数学1. 极限公式:- 常用极限:$\lim_{x→∞} (1 + \frac{1}{x})^x = e$,$\lim_{x→0} \frac{\sin x}{x} = 1$2. 导数与微分:- 导数定义:$f'(x) = \lim_{\Delta x→0} \frac{f(x+\Delta x) -f(x)}{\Delta x}$- 常见导数:$(x^n)' = nx^{n-1}$,$(e^x)' = e^x$,$(\ln x)' = \frac{1}{x}$3. 积分公式:- 不定积分:$\int f(x) dx = F(x) + C$,其中$F'(x) = f(x)$- 定积分:$\int_a^b f(x) dx = F(b) - F(a)$,其中$F'(x) = f(x)$4. 泰勒展开:- 函数$f(x)$在$x=a$处的$n$次泰勒展开式:$f(x) = f(a) +f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$三、概率统计1. 概率公式:- 事件发生的概率:$P(A) = \frac{n(A)}{n(S)}$,其中$A$为事件,$n(A)$为事件$A$发生的次数,$n(S)$为样本空间的大小 - 条件概率:$P(A|B) = \frac{P(A∩B)}{P(B)}$,其中$A$与$B$为两个事件,$P(A∩B)$为事件$A$与事件$B$同时发生的概率2. 随机变量:- 离散型随机变量期望:$E(X) = \sum_{i} x_i P(X=x_i)$,其中$X$为随机变量,$x_i$为取值,$P(X=x_i)$为对应取值的概率 - 连续型随机变量期望:$E(X) = \int_{-\infty}^{\infty} xf(x) dx$,其中$X$为随机变量,$f(x)$为概率密度函数3. 分布定律:- 二项分布:$P(X=k) = C_n^k p^k (1-p)^{n-k}$,其中$X$为二项分布随机变量,$n$为试验次数,$p$为每次试验成功的概率 - 正态分布:$P(a ≤ X ≤ b) = \int_{a}^{b}\frac{1}{\sqrt{2π}\sigma} e^{-\frac{(x-μ)^2}{2σ^2}} dx$,其中$X$为正态分布随机变量,$μ$为均值,$σ$为标准差四、数学分析1. 一元函数极值:- 极值判定条件:若$f'(x_0) = 0$,且$f''(x_0)≠0$,则$f(x)$在$x=x_0$处取极值- 极值判定定理:若$f'(x_0) = 0$,且$f''(x)$在$x=x_0$的某一领域内恒为正(负),则$f(x)$在$x=x_0$处取极小(大)值2. 多元函数极值:- 极值判定条件:若所有一阶偏导数为0,且海森矩阵$H(x_0)$正定(负定),则$f(x)$在$x=x_0$处取极小(大)值以上仅为一部分考研数学常用公式,考生还需对更多公式进行系统学习与记忆。
考研数学一公式大全
考研数学涉及多个领域,而每个领域都有大量的公式和概念。
以下是一些考研数学中常见的公式:### 高等数学1. 微积分- 极限定义:$$\lim_{x \to a} f(x) = L$$- 求导法则:$\frac{d}{dx}(u \pm v) = u' \pm v'$,$\frac{d}{dx}(uv) = uv' + vu'$,$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v -uv'}{v^2}$- 不定积分:$\int f(x) \,dx$- 定积分:$\int_a^b f(x) \,dx$2. 微分方程- 一阶线性微分方程:$y' + P(x)y = Q(x)$- 二阶线性常系数齐次微分方程:$ay'' + by' + cy = 0$### 线性代数1. 矩阵- 矩阵乘法:$C = A \cdot B$- 逆矩阵:$A^{-1}$- 行列式:$|A|$2. 向量- 向量点积:$ \mathbf{a} \cdot \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \cos{\theta}$- 向量叉积:$ \mathbf{a} \times \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \sin{\theta}$### 概率论与数理统计1. 概率- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 贝叶斯定理:$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$2. 统计- 样本均值:$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$- 样本方差:$s^2 = \frac{\sum_{i=1}^{n} (x_i -\bar{x})^2}{n-1}$这只是一小部分的公式。
考研数学《线性代数》考点知识点总结
第一章行列式二元线性方程组:a x11ax21a12a22yyb1b2aa1112D,aa2122ba112D,1ba222ab111D2ab212xD1D,yD2D排列的逆序数:ttn1ti〔t为排列p1p2p n中大于p i且排于p i前的元素个数〕it为奇数奇排列,t为偶数偶排列,t0标准排列。
a 11 a12a1nn阶行列式:Daaa21222ndet(a)=ij(1)t为列标排列的逆序数.t aaa1p12p np2na n1 an2ann定理1:排列中任意两个元素对换,排列改变奇偶性推论:奇〔偶〕排列变为标准排列的对换次数为奇〔偶〕数定理2:n阶行列式可定义为tD(1)a1a2a=pppn12n (1).t aaat aaa1p12p np2nT 1.D=DT,D为D转置行列式.(沿副对角线翻转,行列式同样不变)推论:两行(列)完全一样的行列式等于零.2.互换行列式的两行(列),行列式变号.记作:r i r〔c i c j〕DD.j 记作:r i r〔c i c j〕DD0.j推论:某一行(列)所有元素公因子可提到行列式的外面.3.行列式乘以k等于某行(列)所有元素都乘以k.记作:kDr i k〔kDc i k〕.记作:kDrki〔kDc i k〕.4.两行(列)元素成比例的行列式为零.记作:r j r i k〔c j c i k〕D0.行列式的性质:a11a12(a1ia1i) a1na11a12a1ia1na11a12a1ia1n5.D a21a22(a2ia2i) a2n Da21a22a2ia2na21a22a2ia2na n1 an2(aniani) annan1an2aniannan1an2aniann上式为列变换,行变换同样成立.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.记作:c i ckc(r i r i kr j),D不变.ij注:任何n阶行列式总能利用行运算r i+kr j化为上(下)三角行列式.对角行列式上D〔下DT〕三角形行列式00a11011212nn(n1)2 2,n(1)12aa2122Da11a22ann00nn an1an2anna 11 a1ka11a1kabD1det(aij)假设对Dak1c11akkc1kb11b1k设ak1bakkb,假设2nabD2,n11 1n 阶行列式cdc k1 ckkbk1bkkD2det(bij)bn1bnncd2n那么有D=D1D2.有D2n=(ad-bc)n.n.ij余子式:n 阶行列式中把a ij 所在的第i 行和第j 列去掉后,余下n-1阶行列式.代数余子式:ijA ij (1)M引理:n 阶行列式D 中,假设第i 行所有元素除a ij 外都为零,那么有Da ij A ij .行列式等于它的任一行(列)的各元素与其对应的代数余子式乘机之和.定理3:推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘机之和等于零. (代数余子式性质) D,ij,当n aAD ki 当kjijk10,ij;或 D,当j i naAD ikjkij 当 k 10,ij, ; 其中 ij1, 0, 当 当 i ij , j.1111X 德蒙德 行列式:xxxx123n2222Dxxxx =n123nnij ( 1x i x).证明用数学归纳法.jn x11n x21n x 31n nx1设方程组a x111ax211a12a22x2x2a xnxn1na2nb,1b,2aa111n,假设0D ,那么方程组有惟一解:克拉默法ax n11a n2 x 2a nnx nbna n1 ann那么:DDD12nx,x,,x1,其中2nDDDD ja 11 a n1 a 1,a n ,j j 1 1 b 1 b n a 1,a n,j j 1 1a 1nann(j1,2,,n).定理4:假设上线性方程组的系数行列式D0,那么方程组一定有惟一解;假设无解或有两个不同解,那么D0.定理5:假设齐次线性方程组(b n =0)的系数行列式D0,那么齐次线性方程组无非零解;假设有非零解,那么D0.第二章矩阵及其运算对角矩阵(对角阵):n 阶单位矩阵(单位阵):纯量阵:100 λ000λ1E0100Λλ00 λ2E00100 λ0n0 λEAAEA.另可记作diag(,,,)Λ.12n(E)AA,A(E)A.矩阵与矩假设(a)Α是一个ms矩阵,B(b ij)是一个sn矩阵,且CAB,那么C(c ij)是一个mn矩阵,ij阵相乘:且cabababimij1122(1,2,,;j1,2,,n).假设ABBA ,称A与B是可交换的.ijijissjT矩阵转置:假设Α(a ij),那么(a)ΑjiTTTTTT(AB)AB,(AB)BA假设TA,A为对称阵A方阵的行列式:n阶方阵A元素构成的行列式,记A或det A.方阵行列式的运算规律:A 11 A21An1A为行列式A中对应元素的ijT;1.AA伴随矩阵:A* A12A22An2代数余子式.n;2.AAA 1n A2nAnnAA**A A A E 13.ABAB,1AA.逆矩阵:假设ABBAE,那么A可逆,且称B为A的逆矩阵,记B=A-1,A的逆阵是唯一的.定理1:假设矩阵A可逆,那么A0.定理2:假设A0,那么矩阵A可逆,且A1 1.*AA奇异矩阵:当A0时,A称为奇异矩阵.矩阵A可逆的充要条件:A0,即矩阵A是非奇异矩阵。
考研线性代数公式
考研线性代数公式线性代数是数学的一个重要分支,是研究向量空间、线性映射等概念和性质的数学学科。
在考研中,线性代数作为一个重要的科目之一,公式的掌握是非常关键的。
下面将为大家介绍一些考研线性代数中常用的公式。
1.向量的长度公式:向量a的长度(或者说模)可以表示为:,a,=√(a1^2+a2^2+...+an^2)2.向量的点积公式:向量a和向量b的点积可以表示为:a·b=a1*b1+a2*b2+...+an*bn3.向量的叉积公式:向量a和向量b的叉积可以表示为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)4.向量的内积公式(柯西-施瓦茨不等式):对于向量空间V中任意两个向量a和b,有,a·b,≤,a,*,b,当且仅当a和b共线时等号成立。
5.矩阵的转置公式:矩阵A的转置可以表示为:A^T=(a_ij)^T=(a_ji)6.矩阵的行列式公式:对于n阶矩阵A,其行列式可以表示为:det(A)=,A,=∑(-1)^i*a_i1*M_i1,其中a_i1是A的第i行第1列的元素,M_i1是a_i1的余子式。
7.矩阵的逆矩阵公式:对于n阶可逆矩阵A,其逆矩阵可以表示为:A^(-1)=1/det(A)*adj(A),其中adj(A)是A的伴随矩阵,det(A)是A的行列式。
8.矩阵的秩公式:矩阵A的秩可以表示为:rank(A)=n-l,其中n是A的行数或列数,l 是A的列或行向量组的极大线性无关组的向量个数。
9.矩阵的特征值和特征向量公式:对于n阶矩阵A,如果存在一个数λ和非零向量x,使得Ax=λx,则称λ是A的特征值,x是对应于特征值λ的特征向量。
10.矩阵的特征多项式和特征方程公式:对于n阶矩阵A,其特征多项式可以表示为:det(A-λI)=0,其中I 是n阶单位矩阵。
11.相似矩阵的公式:如果有可逆矩阵P,使得P^(-1)AP=B,则称矩阵B是矩阵A的相似矩阵,P是A到B的相似变换。
考研数学线代定理公式总结
考研数学线代定理公式总结√ 关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示、行列式的定义√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和、推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零、②若都是方阵(不必同阶),则(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积、④关于副对角线:(即:所有取自不同行不同列的个元素的乘积的代数和)⑤范德蒙德行列式:矩阵的定义由个数排成的行列的表称为矩阵、记作:或伴随矩阵,为中各个元素的代数余子式、√ 逆矩阵的求法:① :②③ √ 方阵的幂的性质:√ 设的列向量为,的列向量为,则,为的解可由线性表示、即:的列向量能由的列向量线性表示,为系数矩阵、同理:的行向量能由的行向量线性表示,为系数矩阵、即:√ 用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量、√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘、√分块矩阵的转置矩阵:分块矩阵的逆矩阵:分块对角阵相乘:,分块对角阵的伴随矩阵:√ 矩阵方程的解法():设法化成① 零向量是任何向量的线性组合,零向量与任何同维实向量正交、② 单个零向量线性相关;单个非零向量线性无关、③ 部分相关,整体必相关;整体无关,部分必无关、(向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关、(向量维数变动)⑤ 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关、⑥ 向量组中任一向量≤≤都是此向量组的线性组合、⑦ 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示、向量组线性无关向量组中每一个向量都不能由其余个向量线性表示、⑧ 维列向量组线性相关;维列向量组线性无关、⑨ 若线性无关,而线性相关,则可由线性表示,且表示法唯一、⑩ 矩阵的行向量组的秩列向量组的秩矩阵的秩、行阶梯形矩阵的秩等于它的非零行的个数、行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零、当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵⑪矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系、即:矩阵的初等变换不改变矩阵的秩、√ 矩阵的初等变换和初等矩阵的关系:对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘、矩阵的秩如果矩阵存在不为零的阶子式,且任意阶子式均为零,则称矩阵的秩为、记作向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩、记作矩阵等价经过有限次初等变换化为、记作:向量组等价和可以相互线性表示、记作:⑫矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价、矩阵与作为向量组等价矩阵与等价、⑬向量组可由向量组线性表示有解≤、⑭向量组可由向量组线性表示,且,则线性相关、向量组线性无关,且可由线性表示,则≤、⑮向量组可由向量组线性表示,且,则两向量组等价;⑯任一向量组和它的极大无关组等价、向量组的任意两个极大无关组等价、⑰向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定、⑱若两个线性无关的向量组等价,则它们包含的向量个数相等、⑲设是矩阵,若,的行向量线性无关;若,的列向量线性无关,即:线性无关、√ 矩阵的秩的性质:①≥ ≤≤ ② ③ ④ ⑤≤⑥ 即:可逆矩阵不影响矩阵的秩、⑦若;若⑧等价标准型、⑨≤ ≤≤ ⑩ :线性方程组的矩阵式向量式矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)线性方程组解的性质:√ 设为矩阵,若一定有解,当时,一定不是唯一解,则该向量组线性相关、是的上限、√ 判断是的基础解系的条件:① 线性无关;② 都是的解;③ 、√ 一个齐次线性方程组的基础解系不唯一、√ 若是的一个解,是的一个解线性无关√ 与同解(列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系、√ 两个齐次线性线性方程组与同解、√ 两个非齐次线性方程组与都有解,并且同解、√ 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵)、√ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设是(I)的基础解系, 是(II)的基础解系,则 (I)与(II)有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示、即:当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,是(II)的通解,两方程组有公共解可由线性表示、即:③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学线性代数常用公式
数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理
行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即
C 的
3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E .
设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A
4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:
第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也
可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100⎛⎫ ⎪= ⎪ ⎪⎝⎭
E .
第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如
2100(5)050001⎛⎫ ⎪-=- ⎪ ⎪⎝⎭
E .
第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如
3,2100(2)012001⎛⎫ ⎪-=- ⎪ ⎪⎝⎭
E .
注:
1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.
2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错.
5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A .
1)()()(),0r r r k k ==≠T A A A ;
2)()1r ≠⇔≥A O A ;
3)()1r =⇔≠A A O 且A 各行元素成比例;
4)设A 为n 阶矩阵,则()0r n =⇔≠A A .
6、线性表出
设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合.
设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组
12,,...,m ααα的一个线性组合,则称向量β可以由向量组12,,...,m ααα线性表出.
线性相关
设12,,...,m ααα是m 个n 维向量,如果存在不全为零的实数12,,...,m k k k ,使得1122...0m m k k k ααα+++=,则称向量组12,,...,m ααα线性相关.
如果向量组12,,...,m ααα不是线性相关的,则称该向量组线性无关.
与线性表出与线性相关性有关的基本定理
定理1:向量组12,,...m ααα线性相关当且仅当12,,...m ααα中至少有一个是其余1m -个向量的线性组合.
定理2:若向量组12,,...m ααα线性相关,则向量组121,,...,,m m αααα+也线性相关.
注:本定理也可以概括为“部分相关⇒整体相关”
或等价地“整体无关⇒部分无关”.
定理3:若向量组12,,...m ααα线性无关,则向量组12,,...m ααα的延伸组
1212,,...,m m αααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
也线性无关.
定理4:已知向量组12,,...m ααα线性无关,则向量组12,,...,m αααβ线性相关当且仅当β可以由向量组12,,...m ααα线性表出.
定理5:阶梯型向量组线性无关.
定理6:若向量组12,,...,s ααα可以由向量组12,,...,t βββ线性表出,且12,,...,s ααα线性无关,则有s t ≤.
注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组12,,...,s ααα可以由向量组12,,...,t βββ线性表出,且s t >,则12,,...,s ααα线性相关.
对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”
定理7:1n +个n 维向量必然线性相关.
7、线性方程组解的存在性
设()12,,...,n A ααα=,
其中12,,...,n ααα为A 的列向量,则线性方程组Ax b =有解
⇔向量b 能由向量组12,,...,n ααα线性表出;
⇔()()1212,,...,,,...,,n n r r b αααααα=;
⇔()()
,r A r A b =线性方程组解的唯一性
当线性方程组Ax b =有解时,Ax b =的解不唯一(有无穷多解)
⇔线性方程组的导出组0Ax =有非零解;
⇔向量组12,,...,n ααα线性相关;
⇔()12,,...,n r n ααα<;
⇔()r A n <.
注:
1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知()r A n <是不能得到Ax b =有无穷多解的,也有可能无解.
2)定理2是按照Ax b =有无穷多解的等价条件来总结的,请考生据此自行写出Ax b =有唯一解的条件.
8、特征值和特征向量:设A 为n 阶矩阵,λ是一个数,若存在一个n 维的非零列向量α使得关系式A αλα=成立.则称λ是矩阵A 的特征值,α是属于特征值λ的特征向量.
设E 为n 阶单位矩阵,则行列式E A λ-称为矩阵A 的特征多项式.
注:
1)要注意:特征向量必须是非零向量;
2)等式A αλα=也可以写成()0A E λα-=,因此α是齐次线性方程组()0A E x λ-=的解,由于0α≠,可知()0A E x λ-=是有非零解的,故
0A E λ-=;反之,若0A E λ-=,那么齐次线性方程组()0A E x λ-=有非零解,可知存在0α≠使得()0A E λα-=,也即A αλα=.
由上述讨论过程可知:λ是矩阵A 的特征值的充要条件是0A E λ-=(或0E A λ-=),而特征值λ的特征向量都是齐次线性方程组()0A E x λ-=的非零解.3)由于E A λ-是n 次多项式,可知0A E λ-=有n 个根(包括虚根),也即n 阶矩阵有n 个特征值;任一特征值都有无穷多特征向量
9、矩阵的相似对角化
定理1:n 阶矩阵A 可相似对角化的充要条件是矩阵A 存在n 个线性无关的特征向量.同时,在等式1A P P -=Λ中,对角矩阵Λ的元素为A 的n 个特征值,可逆矩阵P 的列向量为矩阵A 的n 个线性无关的特征向量,并且P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.
推论:设矩阵A 有n 个互不相同的特征值,则矩阵A 可相似对角化.
定理2:n 阶矩阵A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.
推论:n 阶矩阵A 可相似对角化的充要条件是对任意特征值λ,()n r E A λ--=λ的重数.
10、设A 为实对称矩阵(T A A =),则关于A 的特征值与特征向量,我们有如下的结论:
定理1:A 的所有特征值均为实数,且A 的的所有特征向量均为实数.定理2:A 属于不同特征值的特征向量必正交.
定理3:A 一定有n 个线性无关的特征向量,即A 可以对角化.且存在正交矩阵Q ,使得112(,,...,)T n Q AQ Q AQ diag λλλ-==,其中12,,...,n λλλ为矩阵A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.
11、如果二次型11n n
ij i j i j a x x ==∑∑中,只含有平方项,所有混合项()i j x x i j ≠的系
数全为零,也即形如2221122...n n
d x d x d x +++,则称该二次型为标准形。
如果二次型T f x Ax =合同于标准形2221122...n n
d x d x d x +++,则称2221122...n n
d x d x d x +++为二次型T f x Ax =的合同标准形。
利用正交变换法求二次型的合同标准形
由于实对称矩阵是可以正交相似对角化的,也即存在正交矩阵Q 及对角矩阵Λ,使得1T Q AQ Q AQ -==Λ。
而求二次型的合同标准形就是求可逆矩阵C 以及对角矩阵1Λ,使得1T C AC =Λ,对比可知,我们可以将可逆矩阵C 取成Q ,此时1Λ就等于Λ。
正交矩阵Q 及对角矩阵Λ的求法我们在上一章有详细的介绍,这里不再赘述。
正交变换法是求二次型合同标准形的主要方法,考生要熟练掌握。
需要注意的是,二次型的合同标准形是不唯一的,但通过正交变换法求得的标准形是唯一的(不考虑排列次序的话),标准形中平方项的系数均为矩阵A 的特征值,同时正交矩阵Q 的列向量都是矩阵A 对应的特征向量。
可见,正交变换法是联系二次型与上一章内容的纽带,结合特征值特征向量的考题是本章的重要考点。
12、设A 为实对称矩阵,n 元实二次型12(,,...,)T n f x x x x Ax =正定
⇔对任意非零的n 维列向量x ,0T x Ax >;
⇔A 的正惯性指数为n ;
⇔A 的特征值全大于零;
⇔A 的合同规范形为E ;
⇔存在可逆矩阵P 使得T A P P
=⇔A 的所有顺序主子式全大于零;。