高分子材料拉伸试验5页
高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。
拉伸性能的测定修改版(优.选)

拉伸性能的测定修改号0页数第 1 页共12 页拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。
2.术语和定义2.1标距()试样中间部分两标线之间的初始距离,以mm为单位。
2.2实验速度()在实验过程中,实验机夹具分离速度,以mm/min为单位。
2.3拉伸应力tensil e stress σ在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。
2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。
2.3.2拉伸断裂应力tensile stress at break σB试样断裂时的拉伸应力(见图1)以MPa为单位。
2.3.3拉伸强度tensile strength σM在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。
2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值x%时的应力以MPa为单位。
适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。
但在任何情况下x 都必须小于拉伸强度所对应的应变。
如土工格栅产品中的2%、5%拉伸力。
此条用于取代92版的“偏置屈服应力”2.4拉伸应变tensile strain ε标距原始单位长度的增量用无量纲的比值或百分数(%)表示。
适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称应变”代替。
2.4.1拉伸屈服应变tensile strain at yield εy屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%拉伸性能的测定修改号0页数第 2 页共12 页表示。
试验1高分子材料拉伸强度及断裂伸长率测定

试验1高分子材料拉伸强度及断裂伸长率测定摘要:本实验旨在测定高分子材料的拉伸强度和断裂伸长率。
通过标准试验方法,采用拉伸试验机对高分子材料进行拉伸变形,测量其断裂前的最大拉伸力和断裂时的伸长率,以评估材料的强度和延展性能。
实验结果显示,高分子材料的拉伸强度和断裂伸长率与其结构和成分密切相关。
关键词:高分子材料、拉伸强度、断裂伸长率、材料性能评估引言:高分子材料具有广泛的应用领域,如塑料、橡胶、纤维等。
对于这些材料而言,其力学性能尤为重要,包括强度和延展性。
拉伸强度和断裂伸长率是评估高分子材料力学性能的重要参数,能够反映材料是否具有足够的强度和延展性。
因此,通过测定高分子材料的拉伸强度和断裂伸长率,可以评估其适用范围和质量。
实验方法:1.实验仪器与试样准备使用标准拉伸试验机,根据国际标准ASTM D638或GB 1040,选择合适的试样尺寸。
将试样制备成矩形条形,宽度为10 mm,厚度为约2 mm。
试样长度根据实际需要确定。
2.实验设定与操作将试样夹持在拉伸试验机上,并调整夹具,使试样处于合适的拉伸状态。
根据试样质量和试验要求,设定拉伸速度,在试验过程中保持恒定。
3.实验数据记录在执行拉伸试验时,使用试验机自带的数据采集系统或外接数据采集设备,记录试验过程中采集到的试样载荷和位移数据。
根据数据计算并记录试验过程中的应力和应变值。
4.数据处理根据试验数据计算最大拉伸力(F_max)和最断裂时的伸长率(ε_rupt)。
拉伸强度(σ_max)= F_max / 初始试样横截面积断裂伸长率(ε_rupt)= (L_rupt - L_0)/ L_0 × 100%其中,L_0为试样的初始长度,L_rupt为试样断裂时的长度。
5.实验重复与数据分析对同一批次的高分子材料进行多次试验,记录多组数据,并计算出平均值和标准差。
根据实验数据进行统计分析,评估材料的拉伸强度和断裂伸长率。
结果与讨论:通过多组实验数据分析,可以得出高分子材料的拉伸强度和断裂伸长率范围。
高分子材料性能测试实验报告

高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料拉伸试验

高分子材料拉伸试验一、实验目的测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线;观察结晶性高聚物的拉伸特征;掌握高聚物的静载拉伸实验方法。
∙∙∙二、实验原理应力—应变曲线本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。
拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。
结晶性高聚物的应力—应变曲线分三个区域,如图1所示。
(1)OA 段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。
即:σ=Eε式中σ——应力,MPa ;ε——应变,%;Ε——弹性模量,MP 。
A 为屈服点,所对应力屈服应力或屈服强度。
(2)BC 段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。
(3)CD 段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而增大,直到断裂点D ,试样被拉断,D 点的应力称为强度极限,即抗拉强度或断裂强度σ断,是材料重要的质量指标,其计算公式为:σ断=P/(b ×d )(MPa) 式中P ——最大破坏载荷,N ; b ——试样宽度,mm ; d ——试样厚度,mm ;断裂伸长率ε断是试样断裂时的相对伸长率,ε断按下式计算:ε断=(F-G )/G×100%式中G ——试样标线间的距离,mm ; F ——试样断裂时标线间的距离,mm 。
实验设备、用具及试样电子式万能材料试验机WDT-20KN 。
游标卡尺一把聚丙烯(PP )标准试样6条,拉伸样条的形状(双铲型)如图2所示。
西安交通大学材料力学性能试验报告——电子拉力机橡胶拉伸试验

西安交通⼤学材料⼒学性能试验报告——电⼦拉⼒机橡胶拉伸试验西安交通⼤学实验报告成绩第页(共页)课程:⾼分⼦物理实验⽇期:年⽉⽇专业班号材料94 组别交报告⽇期:年⽉⽇姓名李尧学号09021089 报告退发:(订正、重做)同组者教师审批签字:实验名称:电⼦拉⼒机测定聚合物的应⼒-应变曲线⼀.实验⽬的1.掌握拉伸强度的测试原理和测试⽅法,掌握电⼦拉⼒机的使⽤⽅法及共⼯作原理;2.了解橡胶在拉伸应⼒作⽤下的形变⾏为,测试橡胶的应⼒-应变曲线;3.通过应⼒-应变曲线评价材料的⼒学性能(初始模量、拉伸强度、断裂伸长率);4.了解测试条件对测试结果的影响;5.熟悉⾼分⼦材料拉伸性能测试标准条件。
⼆.实验原理随着⾼分⼦材料的⼤量使⽤,⼈们迫切需要了解它的性能。
⽽拉伸性能是⾼分⼦聚合物材料的⼀种基本的⼒学性能指标。
拉伸试验是⼒学性能中⼀种常⽤的测试⽅法,它是在规定的试验温度、湿度和拉伸速度下,试样上沿纵向施加拉伸载荷⾄断裂。
在材料试验机上可以测定材料的屈服强度、断裂强度、拉伸强度、断裂伸长率。
影响⾼聚物实际强度的因素有:1)化学结构。
链刚性增加的因素都有助于增加强度,极性基团过密或取代基过⼤,阻碍链段运动,不能实现强迫⾼弹形变,使材料变脆。
2)相对分⼦质量。
在临界相对分⼦质量之前,相对分⼦质量增加,强度增加,越过后拉伸强度变化不⼤,冲击强度随相对分⼦质量增加⽽增加,没有临界值。
3)⽀化和交联。
交联可以有效增强分⼦链间的联系,使强度提⾼。
分⼦链⽀化程度增加,分⼦间作⽤⼒⼩,拉伸强度降低,⽽冲击强度增加。
4)应⼒集中。
应⼒集中处会成为材料破坏的薄弱环节,断裂⾸先在此发⽣,严重降低材料的强度。
5)添加剂。
增塑剂、填料。
增强剂和增韧剂都可能改变材料的强度。
增塑剂使⼤分⼦间作⽤⼒减少,降低了强度。
⼜由于链段运动能⼒增强,材料的冲击强度增加。
惰性填料只降低成本,强度也随之降低,⽽活性填料有增强作⽤。
6)结晶和取向。
结晶度增加,对提⾼拉伸强度、弯曲强度和弹性模量有好处。
高分子材料静拉伸力学性能

§2.1 引言
§2.2 静拉伸试验
§2.3 弹性变形
§2.4 塑性变形 §2.5 材料的断裂
2.1 前言
1、拉伸性能: 通过拉伸试验可测材料的弹性、强度、延性、应变硬化 和韧度等重要的力学性能指标,它是材料的基本力学性能。 2、拉伸性能的作用、用途: a.在工程应用中,拉伸性能是结构静强度设计的主要依据 之一。 b.提供预测材料的其它力学性能的参量,如抗疲劳、断裂 性能。 (研究新材料,或合理使用现有材料和改善其力学性能时, 都要测定材料的拉伸性能)
对于脆性材料和不形成颈缩的塑性材料,其拉伸 最高载荷就是断裂载荷,因此,其抗拉强度也代表断 裂抗力。 对于形成颈缩的塑性材料,其抗拉强度代表产生 最大均匀变形的抗力,也表示材料在静拉伸条件下的 极限承载能力。
3. 实际断裂强度
拉伸断裂时的载荷除以断口处的真实截面 面积所得的应力值称为实际断裂强度Sk。 在这里采用的时试样断裂时的真实界面面 积,Sk也是真是应力,其意义是表征材料对断 裂的抗力,因此有时也称为断裂真应力。
a.
b. 弹性极限
试样加载后再卸载,以不出现残留的永久变形为 标准,材料能够完全弹性恢复的最高应力值为弹性极 限,用σe表示,超过σe时,即认为材料开始屈服。 上述二定义并非完全相等,有的材料,如高强度 晶须,可以超出应力应变的线性范围,发生较大的弹 性变形。橡胶材料可以超过比例极限发生较大的变形 后仍能完全恢复,而没有任何永久变形。 工程上之所以区分它们,是因为有些设计,如火 炮筒材料,要求有高的比例极限,而弹簧材料则要求 有高的弹性极限。
2.2.5、真应力-真应变曲线
• S=F/A (瞬时真应力) • de =dL/L (应变的微分增量),则试棒自L0伸长 至L后,总的应变量为: e =∫0e de = ∫ L0 L dL/L =InL/ L0 式中的e为真应变。于是,工程应变与真应变之 间的关系为: e =InL/ L0 =In(1+ε) 显然,真应变总小于工程应变,且变形量越大, 二者的差距越大。 假定材料的拉伸变形是等体积变化的,则真应 力与工程应力之间有如下关系:S =σ(1 +ε) 这说明真应力S大于工程应力σ。
拉伸实验

拉伸试件要求 拉伸试件要求
S0=πd2/4
S0=ab
比例试件要求(国家标准规定使用短比例试件)
圆试样
矩形试样
短比例试件: L0=5d 短比例试件: L0=5.65√S0 长比例试件: L0=10d 长比例试件: L0=11.3√S0
σ
力学性能指标 ReH
Rm
强度指标:
上屈服强度
E
R eH
下屈服强度
某种金属拉伸曲线
高分子材料拉伸曲线和力学特性
高分子材料力学性能特性 高分子材料也叫高聚物,具有大分子链结构和特有的热运动。这决定了它的力学特
性——低强度(几十MPa)、高弹性低刚度(1~5GPa),粘弹性(变形与时间有关)、重 量轻、绝缘、耐腐蚀。有热塑性材料(受热软化冷却变硬再受热又软化,成型方便)和 热固性材料(一次成形,不再软化)两种。
实验设备
1、材料试验机
3104教室:WDW-100电子万能试验机 3106教室:CSS2210电子万能试验机
2、标距50mm引伸计 3、 0.02mm游标卡尺
试件:
低碳钢φ10圆试件,铝合金φ10圆试件 ,铸铁 φ12圆试件
实验要求及安排
一.每组完成一根金属塑性材料拉伸实验
1、按要求在试件上画标距线,测量试件原始数据 2、完成拉伸实验。实验分两步进行:
=
F eH S0
抗拉强度
R eL
=
F eL S0
塑性指标:
Rm
=
Fm S0
断后伸长率 A = Lu − L0 ×100%
L0
ReL
P
ε
σ
断面收缩率 Z = S0 − Su ×100%
σ
S0
试验1高分子材料拉伸强度及断裂伸长率测定

实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
材料的拉伸试验报告

材料的拉伸试验报告一、实验目的1.进一步熟悉电子万能实验机操作以及拉伸实验的基本操作过程;2.通过橡胶材料的拉伸实验,理解高分子材料拉伸时的力学性能,观察橡胶拉伸时的变形特点,测定橡胶材料的弹性模量E,强度极限σb,伸长率δ和截面收缩率Ψ二、实验设备1.WDW3050型50kN电子万能实验机;2.游标卡尺;3.橡胶材料试件一件。
三、实验原理拉伸橡胶试件时,实验机可自动绘出橡胶的拉伸应力-应变曲线。
图中曲线的最初阶段会呈曲线,这是由于试样头部在夹具内有滑动及实验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。
橡胶的拉伸只有弹性阶段。
拉伸曲线可以直观而又比较准确地反映出橡胶拉伸时的变形特征及受力和变形间的关系。
橡胶拉伸时,基本满足胡克定律,在应力-应变曲线上大致为一段直线,因此可以用这一段直线的斜率tanα来表示弹性模量E。
为了更准确地计算出弹性模量的值,可以用Matlab对比例极限内的数据进行直线拟合,得到拟合直线的斜率,即为弹性模量的值。
四、实验过程1.用游标卡尺测量橡胶试件实验段的宽度h和厚度b,并标注一个20mm的标距,并做记录;2.打开实验机主机及计算机等实验设备,安装试件;3.打开计算机上的实验软件,进入实验程序界面,选择联机,进行式样录入和参数设置,输入相关数据并保存;4.再认真检查试件安装等实验准备工作,并对实验程序界面上的负荷、轴向变形和位橡胶材料拉伸实验报告移进行清零,确保没有失误;、5.点击程序界面上的实验开始按钮,开始实验;6.试件被拉断后,根据实验程序界面的提示,测量相关数据并输入,点击实验结束;7.从实验程序的数据管理选项中,调出相关实验数据,以备之后处理数据使用。
五、实验注意事项1.在实验开始前,必须检查横梁移动速度设定,严禁设定高速度进行实验。
在实验进行中禁止在▲、▼方向键之间直接切换,需要改变方向时,应先按停止键;2.安装试件时,要注意不能把试件直接放在下侧夹口处,而是应该用手将试件提起,观察夹口下降的高度是否合适,之后再将试件夹紧、固定;3.横梁速度v=10m/s,最大载荷为500N,最大位移400mm;4.实验过程中不能点“停止”,而是“实验结束”,否则将不能保存已经产生的数据;5.安装试件时横梁的速度要调整好,不能太快,试件安装完成后,要确认横梁是否停止运动,以免造成事故。
高分子材料专业实验-高分子材料性能测试

高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。
以百分率表示)。
实验步骤①试样的状态调节和实验环境按GB2918规定进行。
②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。
每个试样测量三点,取算数平均值。
③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。
④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。
⑤选定试验速度,进行实验。
⑥记录屈服时的负荷,或断裂负荷及标距间伸长。
若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。
实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。
答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。
2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。
3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。
(完整版)高分子材料的拉伸性能.doc

《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料拉伸性能。
2、掌握高分子材料的应力—应变曲线的绘制。
4、了解塑料抗张强度的实验操作。
二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力 -应变曲线等。
拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ -- 拉伸强度, MPa;P--- 破坏载荷(或最大载荷),N;b--- 试样宽度, cm;h--- 试样厚度, cm.2. 拉伸破坏 ( 或最大载荷处 ) 的伸长率为:(2)式中ε ---试样拉伸破坏(或最大载荷处)伸长率,%;L0- 破坏时标距内伸长量, cm;L0--- 测量的标距,cm,3.拉伸弹性模量为:(3)式中E t---拉伸弹性模量,MPa;P—荷载-变形曲线上初始直线段部分载荷量,N;L0—与载荷增量对应的标距内变形量,cm。
4. 拉伸应力- 应变曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ= E ε式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。
拉伸试验时因试验条件的不同,其拉伸行为有很大差别。
起始时,应力增加,应变也增加,在 A 点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。
A点叫做比例极限点。
超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。
Y点叫做屈服点。
此时弹性模最近似为零,这是一个重要的材料持征点。
对塑料来说,它是使用的极限。
如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。
西安交通大学材料力学性能实验报告—高分子材料拉伸实验

试样示意图
L=110;C=25± 0.5;b=6.5± 0.1;W=25; R1=14;R2=25;G0=25± 0.2;H=76;
实验初始数据记录及处理结果 1. 实验拉伸图及数据(见附页) 2. 数据处理 对于聚酯薄膜: 屈服强度 Rp0.2=27.1MPa; 屈服点伸长率 δp0.2=4.8%; 断裂强度 Rm=31.9MPa; 断裂点伸长率 δm=771.2%; 定伸率 100%时名义应力 R100%=16.0MPa; 定伸率 300%时名义应力 R300%=16.7MPa。 对于 PVC: 断裂强度 Rm=15.5MPa; 断裂点伸长率 δm=351.2%; 定伸率 100%时名义应力 R100%=7.0MPa; 定伸率 300%时名义应力 R300%=14.1MPa。 实验分析 1. 分析对比不同的高分子材料的拉伸力学性能。 答:从实验结果图上可以明显看出聚酯薄膜和 PVC 两种材料在拉伸力学性 能上是截然不同的。聚酯薄膜在初加载阶段曲线急剧下降,之后继续加载 出现明显的屈服平台。达到屈服极限后应力随加载的增大而增大,处于形 变硬化阶段。比起 PVC 其强度很高,直到断裂强度后断裂。 观察 PVC 拉伸曲线可知,加载一开始应力就随载荷增大而增大,直至断裂 并没有出现屈服现象,其强度较低。总结得出,两种材料相比而言聚酯薄 膜性能较韧,强度高;而 PVC 表现出相对软而韧的力学性质。 2. 分析实验条件对拉伸性能的影响。 答:拉伸试验条件可从以下几个方面分析 1.温度增大,分子内活动加速, 材料宏观性能明显变得软而韧,其拉伸强度降低而伸长率增大。2.拉伸速 度直接影响材料抵抗外载荷的表现,拉伸速度增大,材料来不及发生变化 而表现出相对脆性的断裂。3.湿度对材料的影响类似于温度,断裂强度减 小,伸长率增大。 3. 与金属材料相比较,高分子材料的拉伸性能的基本特征是什么? 答:与金属材料相比,高分子材料的拉伸性能最大的特点就是变形能力较 好,伸长率较大。一般而言高分子材料的拉伸速率都要比金属要大。另外, 对于外在影响而言,高分子材料对温度、湿度等更敏感,而金属不会受太 大影响。
金属材料和高分子材料常温拉伸试验(1)

有一光园拉伸试样,工作直径d0为10.0mm ,拉伸破裂前最大力Fm=33.5KN,计 算其抗拉强度?
S0=π(d0/2)2=78.5mm2 Rm=Fm/So=426.75 MPa
有一直径d0=10mm,L0=100mm的低碳 钢试样,拉伸试验时测得Fel=21KN, Fm=29KN,d1=5.65mm,L1=138mm, 求此试样的Z、A、Rm、Rel
B
k
S
应
E
力
P
R
Rp Re σs
Rm Rk
O
Ag Agt
A
28
应变ε
三、断面收缩率:
试样拉断后, 缩颈处横截面积(S1)的最大减缩量; 与原始横截面积(S0)的百分比,
符号Z表示,即 Z=(S0-S1)/S0×100%
对于圆形试样,在缩颈最小处两个相互垂
图1-25 断面收缩照片
直方向上测量其直径(需要时,
外加载荷拉力F除以标距 处的原始截面积S0
试样伸长量△L除以原始 标距长度L0
R F S0
L
L0
力—应变曲线与试样无关
7
1. 低碳钢的工程应力-应变曲线
根据曲线可以获
得材料静拉伸条 件下的力学性能 应 指标,如比例极 力
限Rp,非比例 延伸强度Rp0.1, Rp0.01 ,上屈服 强度ReH,下屈 服强度RsL,抗拉 强度Rm等,是 工程设计选材的
OP:比例弹性变 F
形,F∝△L。
PE:过量弹性
变形,PE偏离OP。
OE:弹性变形阶
段
ES:屈服变形,
不均匀塑性变形。
SB:强化阶段。
Bk:局部塑性变
形。 k:断裂。
O
(整理)高分子材料拉伸试验

第二种类型:图一中曲线3,恒速拉伸下载荷随伸长而增加,达到极大值后材料发生脆性断裂。出现这类曲线的材料有聚本乙烯(PS),增强聚碳酸脂(GFPC)。
材料:聚氯乙烯
聚酯薄膜
实验条件:试验环境热塑性材料为25±2℃,热固性材料为25±5℃,相对湿度 为65±5﹪。
实验原理图:
图一: 高分子材料的三种载荷—伸长曲线
试样示意图:
图二:L=110;C=25+0.5; b=6.5+0.1; W=25;
R1=14; R2=25; G0=25+0.2; H=76;
拉伸强度试验是指在规定的试验温度湿度及试验速度下,沿试样纵轴方向上施加静态拉伸载荷,致使试样破损时单位面积上所承受的最大载荷力来衡量的。通过载荷力和试样受载荷作用下对应的标距间见的变化量,即可求出拉伸强度断裂伸长率和弹性模量的值。
实验设备:
PDL系列微控拉力实验机包括:主机、微电脑采集系统和打印机。
3、操作过程:
1)接通主机电源,打开“电源”开关,预热20分钟。
2)拨动上夹持器制动手柄夹紧挂轴,将试样的一端平正垂直地夹在上夹持器中,将移动座上的开合螺母手柄向上提起,使移动座与丝杠脱开,握住移动座操作纵手柄,使其停止上合适位置,将另一断平正地夹在下夹持器中,将伸长自动跟踪夹分别夹在25mm标距线上,再将上夹持器制动手柄恢复原位,使上夹持器能摆动,使其处于自由状态。
实验原理:
相对分子质量大于10000以上的有机化合物称为高分子材料,它是由许多小分子聚合而得到的,故又称为聚合物或高聚物。不同类别的高分子材料在拉伸过程中,其载荷—伸长曲线大致可分为三种类型,见图一。
拉伸实验(材料力学课程实验)2013

拉伸新国家标准-GB228-2002
拉伸问题说明(2) -断口位置对断后延伸率影响及修正
实验报告要求(每人一份)
1 按照拉伸试验报告要求独立完成实验报告。 (见实验教材P31,注:第7题改为选作题) 2 实验报告要有低碳钢(或铝合金)和铸铁两种材料的实验数 据、曲线和结果。 3 认真总结几种典型材料力学性能特点,完成分析讨论题。 4 曲线要求每人一份,并做修正和说明。 5 要将实验原始数据记录(有老师和本组同学签名,每组至少一 份 )附在实验报告后面。 6 实验报告下次实验时带来交给老师。 7 实验报告要求手写。
复合材料断裂特点
在纤维增强复合材料中,每平方厘米的 纤维数有几千~几万根。由于有大量独立的 纤维,过载时复合材料中即使有少量纤维断 裂,载荷会迅速重新分配到未被破坏的纤维 上,不至于造成构件在瞬间完全丧失承载能 力而断裂。 问题: 与一般脆性材料断裂过程比较,最大区别?
常用材料性能比较
材料 弹性模量 GPa 屈服强度 MPa 强度极限 MPa 延伸率 % 低碳钢 200 280 380 40 铝合金 70 420 590 14 铸铁 180 / 100~ 300 0 纤维复 合材料 20~50 / 1600 0 高分子 材料 1~5 30~53 / 1~500
增强材料:碳纤维,基体:环氧树脂 碳纤维含量:60% 试件尺寸:12.6x1.5
玻璃纤维增强复合材料 拉伸过程(1)
玻璃纤维增强复合材料 拉伸过程(2)
玻璃纤维增强复合材料 拉伸过程(3)
玻璃纤维增强复合材料 拉伸过程(4)
纤维性能: S型玻璃纤维: 抗拉强度4.6GPa, 弹性模量84GPa T-300型碳纤维: 抗拉强度3.5GPa, 弹性模量230GPa B(W)型硼纤维: 抗拉强度3.6GPa, 弹性模量400GPa
高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告实验序号:实验项目名称:机械性能测试学号姓名专业班级实验地点指导教师实验时间在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲击试验作为介绍。
实验一:高分子材料拉伸实验一、实验目的(1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测试条件对测定结果的影响。
(2)通过应力—应变曲线,判断不同高分子材料的性能特征。
二、实验原理在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的两端沿轴向施加载荷直至拉断为止。
拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。
实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。
玻璃态聚合物在拉伸时典型的应力-应变曲线如下:1)弹性形变。
在Y 点之前,应力随应变正比增加,从直线斜率可以求出氏模量E。
从分子机理看,这阶段的普弹性行为主要是由高分子的键角、键长变化引起。
2)屈服。
应力在Y 点达到极大值,这点称为屈服点,其应力称为屈服应力。
3)强迫高弹形变(大形变):过了Y 点应力反而降低。
这是由于在大的外力帮助下,玻璃态聚合物本来被冻结的链段开始运动,高分子链的伸展提供了材料的大的形变。
运动本质与橡胶的高弹态一样,只不过是在外力作用下发生的,为了与普通高弹形变区分,通常称为强迫高弹形变。
这一阶段加热可恢复。
4)应变硬化。
继续拉伸,分子链取向排列,使硬度提高,需更大的力才能形变。
5)断裂。
达到B 点时,材料断裂,断裂对应的应力B 即抗强度;断裂时的应变又称为断裂伸长率。
直至断裂,整条曲线所包围的面积S 相当于断裂功。
结晶态聚合物拉伸时的应力-应变曲线,也同样经历了五个阶段,除了模量和屈服应力较大外,其主要特点是细颈化和冷拉。
所谓细颈化是指试样在一处或几处薄弱环节首先变细,此后细颈部分逐渐缩短,直至整个试样变细为止。
由于是在较低温度下出现的不均匀拉伸,所以又称为冷拉。
将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。
实验讲义 材料的拉伸实验

实验二材料的拉伸实验概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
一、金属的拉伸实验(一)实验目的1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。
2.测定铸铁的抗拉强度Rm。
3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。
4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
(二)实验原理依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉F a-比例伸长力;F c-弹性伸长力;F su-上屈服力;F sl-下屈服力;F b-最大力;F f-断裂力;-断裂后塑性伸长;-弹性伸长;图1碳钢拉伸曲线,并将横坐标(伸长伸曲线图的纵坐标(力F)除以试样原始横截面面积SΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。
从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。
拉伸试验过程分为四个阶段,如图1、图2所示。
(1)弹性阶段OC。
在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。
高分子材料性能测试

熔体流动速率仪
四,维卡软化温度
维卡软化温度(Vicat Softening Temperature)是将热塑性 塑料放于液体传热介质中,在一定的负荷和一定的等速升温条 件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的 国标是GB1633-79(目前已被GB/T 1633-2000所代替);维 卡软化温度是评价材料耐热性能,反映制品在受热条件下物理 力学性能的指标之一。材料的维卡软化温度虽不能直接用于评 价材料的实际使用温度,但可以用来指导材料的质量控制。维 卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形 越小,即耐热变形能力越好,刚性越大,模量越高 。
维卡软化温度测试仪
五,灰分
灰分是指一种物质中的固体无机物的含量。可以是包含有机物的 无机物也可是不含有机物的无机物,可以是锻烧后的残留物也可 以是烘干后的剩余物。但灰分一定是某种物质中的固体部分而不 是气体或液体部分。
我们通常所说的灰分是指总灰分(即粗灰分)包含以下三类灰分: 1.水溶性灰分 可溶性的钾、钠、钙等的氧化物和盐类的量 2.水不溶性灰分 污染的泥沙和铁、铝、镁等氧化物及碱土金属的
拉伸试验一般是将材料试样两端分别夹在两个 间隔一定距离的夹具上,两夹具以一定的速度 分离并拉伸试样,测定试样上的应力变化,直 到试样破坏为止。
拉伸强度=最大力/(试样宽度×试样厚度)mm
实验数度, 延展性等力学性能
二,冲击强度
高分子材料抗冲击强度是指标准试样受高速冲击作用断 裂时,单位断面面积(或单位缺口长度)所消耗的能量。 它描述了高分子材料在高速冲击作用下抵抗冲击破坏的能 力和材料的抗冲击韧性。
碱式磷酸盐 3.机械杂质 包括加工过程中机械磨损带来的机械物质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 微电脑采集控制系统面板主要按键功能:
1)项选左键和项选右键:左右选择16个输入指示灯,指明当前要修改或查看的对象。
班级:
学号:
成绩:
实验名称:高分子材料拉伸试验
实验目的:
1、熟悉高分子材料在不同的实验条件下拉伸过程中的基本特征。
2、了解影响高分子材料力学性能的主要因素。
3、掌握微控拉力机基本原理及使用方法
实验设备:PDL系列微控拉力实验机
测量最大负荷:0——1000000N
系统精度:小于0.8%
材料:聚氯乙烯
聚酯薄膜
1 主机由电子调速系统,传动机构,测力系统和伸长自动跟踪装置等组成。
1)电子调速系统:本机采用无机调速系统,对应拉伸速度为25~500mm/min.
2)传动系统:电机通过带动蜗杆蜗轮-丝杠传动系统使下夹持器以设定的速度运动。试验结束后,利用开合螺母使下夹持器手动快速返回,以提高工作效率。
3)测力系统:在主机机头上装有拉力传感器,其上端通过关节轴承与主机顶部横梁的连接盘相连接,下端与上夹持器连接,关节轴承只承受垂直拉力,不受扭力或侧向力影响,以保证测力精度。试验过程中试样受力情况通过力传感器变为电信号输入微电脑采集控制系统。
2)位选左键和位选右键:左右选择“输入参数显示窗口”的某一烁位,用于对其修改。
3)数选左键和数选右键:大小选择闪烁位数字的大小,注意种类选择也是用此两键进行上下移动选择。
4)单消键(按下1秒):对该键按下1秒就可单个取消当前已做次号的数据,成为未做次号。
5)全消键(按下1秒):对该键按下1秒就可全部取消所有已做次号的数据,全部成为未做次号。
实验条件:试验环境热塑性材料为25±2℃,热固性材料为25±5℃,相对湿度 为65±5﹪。
实验原理图:
图一: 高分子材料的三种载荷—伸长曲线
试样示意图:
图二:L=110;C=25+0.5; b=6.5+0.1; W=25;
R1=14; R2=25; G0=25+0.2; H=76;
实验原理:
相对分子质量大于10000以上的有机化合物称为高分子材料,它是由许多小分子聚合而得到的,故又称为聚合物或高聚物。不同类别的高分子材料在拉伸过程中,其载荷—伸长曲线大致可分为三种类型,见图一。
第二种类型:图一中曲线2,恒速拉伸下载荷随伸长而增加,达到极大值后,试样在产生颈缩,载荷降低。随拉伸变形继续进行,颈缩的处的横截面积逐渐减小,试样在伸长不大的情况下断裂。出现这类曲线的材料有ABS塑料,,聚甲醛(POM)和增强尼龙(GFPA)等。
第二种类型:图一中曲线3,恒速拉伸下载荷随伸长而增加,达到极大值后材料发生脆性断裂。出现这类曲线的材料有聚本乙烯(PS),增强聚碳酸脂(GFPC)。
拉伸强度试验是指在规定的试验温度湿度及试验速度下,沿试样纵轴方向上施加静态拉伸载荷,致使试样破损时单位面积上所承受的最大载荷力来衡量的。通过载荷力和试样受载荷作用下对应的标距间见的变化量,即可求出拉伸强度断裂伸长率和弹性模量的值。
实验设备:
PDL系列微控拉力实验机包括:主机、微电脑采集系统和打印机。
3、操作过程:
1)接通主机电源,打开“电源”开关,预热20分钟。
2)拨动上夹持器制动手柄夹紧挂轴,将试样的一端平正垂直地夹在上夹持器中,将移动座上的开合螺母手柄向上提起,使移动座与丝杠脱开,握住移动座操作纵手柄使其停止上合适位置,将另一断平正地夹在下夹持器中,将伸长自动跟踪夹分别夹在25mm标距线上,再将上夹持器制动手柄恢复原位,使上夹持器能摆动,使其处于自由状态。
实验程序及步骤:
1、试验条件:
1)试验环境热塑性材料为25±2℃,热固性材料为25±5℃,相对湿度为65±5﹪。
2)试验速度 :聚氯乙烯:100mm/min;聚酯薄膜:50mm/min。
2、试样的尺寸的测量:测量模塑和板材试样的宽度和厚度准确至0.05mm,薄片材料厚度准确至0.01mm,薄膜或乳胶膜厚度准确至0.001mm,每个试样在标距内测三点,取算术平均值。
3)估计所测材料的最大强度值,选定传感器量程范围,尽量缩小传感器量程范围(分辨率高)。
4)输入1号试样的厚度、宽度、标距、定伸率1、定伸率2 、停止于X。
5)试验开始先按试验键,然后机械动作拉伸;
6)试验结束时先按停止/清零键,然后停止机械动作。
7)同理可做2、3、4号试样。
8)按打印键可单打或全打。
实验数据及计算结果:
已知试样宽度:6.0mm;标距:25mm
表一:拉伸试验结果
材料
名称
试
样
编
号
试样
厚度
mm
最大
力值
N
最大拉伸强度
Mpa
最大伸长率%
伸长值
mm
断裂
强度
Mpa
屈服点
伸长率
%
屈服点强度
Mpa
聚
氯
乙
烯
1-1
2.085
182.5
14.6
354.0
88.5
14.6
第一种类型:为图一中曲线1,恒速拉伸下载荷随伸长而增加,达到极大值后,试样在产生颈缩(或应力白化区),载荷降低。随拉伸变形继续进行,颈缩(或应力白化区)部位的截面尺寸稳定。颈缩(或应力白化区)沿轴向向试样两端扩展,出现冷变形强化现象。一般当颈缩扩展到试样两端后,载荷随伸长增加又出现增大趋势。呈现这类曲线的材料有聚碳酸脂(PC),聚丙烯(PP)和高抗聚本乙烯(HIPS)等。
6)次号键:当次键即按即放时对次号增1或对次号减1。
7)试验键:按下此键自动清“伸长-时间窗口”的数据为零,清力值为零,实验记录开始。
8)停止/清零键:当正在实验时,按此键停止记录数据,实验记录结束。
9)单打/全打键:此键即按即放仅打印当前已做次号的曲线和数据;次键按下1秒,打印所有已做次号的曲线和数据。
实验报告九
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。姓名: