第三章 课后习题及答案

合集下载

财务管理习题及答案

财务管理习题及答案

第三章资金时间价值与风险价值课堂习题1.某矿业公司决定将其一处矿产开采权公开拍卖,因此向世界各国煤炭企业招标开矿。

已知A公司和B公司的投标书最最有竞争力。

A公司的投标书显示,如果该公司取得开采权,从获得开采权的第1年开始,每年末向矿业公司交纳10亿美元的开采费,直到10年后开采结束。

B公司的投标书表示,该公司在取得开采权时,直接付给矿业公司40亿美元,在8年后开采结束时再付给矿业公司60亿美元。

假如该矿业公司要求的最低年投资回报率为15%,问它应接受哪个公司的投标?(时间不一样)重做2. 钱小姐最近准备买房。

看了好几家开发商的售房方案,其中一个方案是A开发商出售的一套100平方米的住房,要求首付10万元,然后分6年每年年初支付3万元。

已知这套商品房的市场价格为2000元/平方米,请问钱小姐是否应该接受A开发商的方案?(利率6%)10万的资金时间价值3. 某公司拟购置一处房产,房主提出两种付款方案(1)从现在起,每年年初支付20万元,连续支付10年;(2)从第5年起,每年年初支付25万元,连续支付10年。

假设该公司要求的最低投资报酬率为10%,你认为该公司应选择哪一个方案?课后习题1.某研究所计划存入银行一笔基金,年复利利率为10%,希望在今后10年中每年年末获得1000元用于支付奖金,要求计算该研究所现在应存入银行多少资金?2.某人采用分期付款方式购买一套住房,货款共计为100000元,在20年内等额偿还,年利率为8%,按复利计息,计算每年应偿还的金额为多少?3.甲公司年初存入银行一笔现金,从第3年年末起,每年取出10000元,第6年年末取完,若存款利率为10%,则甲公司现存入了多少钱?(现值与终值公式的区分)4.某项投资的资产利润率概率估计情况如下表:要求:(1)计算资产利润率的期望值。

(2)计算资产利润率的标准离差。

(3)计算资产利润率的标准离差率。

=标准差/预期值5.某人将10000元存入银行,利息率为年利率5%,期限为5年,采用复利计息方式。

《国际贸易实务》(钟昌标 叶劲松)课后习题参考答案第三章

《国际贸易实务》(钟昌标 叶劲松)课后习题参考答案第三章

第三章一、思考题1.交易磋商的方式有哪几种?在实际业务中应如何选用?交易磋商的方式可以分为口头的和书面的两类。

口头磋商主要指进出口双方面对面的谈判。

另外,进出口双方通过国际长途电话进行谈判也属于口头磋商形式。

书面磋商是指通过信函、传真、电子邮件或因特网等通讯方式来进行交易磋商。

通常口头磋商方式用于大宗的、交易条件复杂的商品的交易,以及新产品、对新客户的初次成交当中。

这是因为面对面的口头磋商便于双方充分交流和使用谈判技巧,有利于双方建立信任和发展长远的业务关系。

书面磋商方式则用于交易条件清楚明确或有普通习惯做法的商品、技术交易中。

2.处理询盘时应注意哪些问题?(1)询盘不一定要有“询盘”字样,凡含有探询交易条件或价格方面的意思表示的均可作询盘处理。

(2)询盘人在询价时除询问商品价格外,也应注意询问其他交易条件,如商品的款式、型号、数量、包装以及付款方式、交货时间、估价等。

(3)在选定了询盘的国别或地区后,要选择其中几家交易对象向他们发出询盘,而不是同时向所有的潜在交易对象发出询盘,以免暴露我方销售或购买意图。

(4)因买卖双方处于平等地位,所以询盘不必使用过分客气的词句。

同时,买卖是公司间的交易,而不是私人间交易,因此询盘应寄送给公司,而不应寄给个人,这样也可避免信件被耽搁。

(5)询盘必须简洁、清楚,用词要得体。

询盘是交易磋商的第一步,在法律上对询盘人和被询盘人均无约束力。

3.构成发盘的条件有哪些?根据《公约》,构成发盘应具备以下四个条件。

(1)发盘应向一个或一个以上特定的人提出。

(2)发盘内容必须十分确定。

(3)发盘应表明订约的意旨。

(4)发盘应传达到受盘人。

发盘只有被送达到受盘人时才生效。

4.《公约》对发盘的撤销是如何规定的?根据《公约》第16条第(1)款的规定,在合同订立以前,发盘可以撤销,如果撤销的通知于受盘人发出接受通知之前送达受盘人,也就是说,在发盘已经送达受盘人之后,即发盘已经生效之后,在受盘人发出接受通知以前的这段时间内,发盘原则上仍可以撤销,但撤销的通知必须在受盘人发出接受通知之前送达受盘人。

统计学 第三章练习题答案及解析

统计学 第三章练习题答案及解析

3%1%2%5.1++453025453025++++统计学第三章出题优课后习题答案原多项选择第三题D 选项解释有误,现在已经重新更改。

一、单项选择题1. 某商场某月商品销售额为1200万元,月末商品库存额为400万元,这两个总量指标( )。

A. 是时期指标B. 前者是时期指标,后者是时点指标C. 是时点指标2. 国民总收入与国内生产总值之间相差一个( )。

A. 出口与进口的差额B. 固定资产折旧C. 来自国外的要素收入净额3. 有三批产品,废品率分别为1.5%、2%、1%,相应的废品数量为25件、30件、45件,则这三批产品平均废品率的计算式应为( )。

A. B.C. D.4. 下列各项中,超额完成计划的有( )。

A. 利润计划完成百分数103.5%B. 单位成本计划完成百分数103.5%C. 建筑预算成本计划完成百分数103.5%5. 某厂某种产品生产量1月刚好完成计划,2月超额完成2%,3月超额完成4%,则该厂该年一季度各月平均超额完成计划的计算方法是( )。

A. 2%+4%=6%B. (2%+4%)÷2=3%C. (2%+4%)÷3=2%453025%1%2%5.1++++3%1%2%5.1⨯⨯6. 甲、乙两组工人的平均日产量分别为18件和15件。

若甲乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量( )。

A. 上升B. 下降C. 不变D.可能上升,也可能下降7. 当各个变量值的频数相等时,该变量的()。

A. 众数不存在B. 众数等于均值C. 众数等于中位数8. 如果你的业务是提供足球运动鞋的号码,那么哪一种平均指标对你更有用?( )A. 算术平均数B. 几何平均数9. 某年年末某地区城市和乡村平均每人居住面积分别为30.3和33.5平方米,标准差分别12.8和13.1平方米,则居住面积的差异程度( )。

A. 城市大B. 乡村大10. 下列数列的平均数都是50,在平均数附近散布程度最小的数列是( )。

形式逻辑第三章答案

形式逻辑第三章答案

《形式逻辑》课后习题参考答案第三章简单命题及其推理(上)一、下列语境哪些直接表达判断?为什么?(3)、(5)直接表达判断二、下列命题属于何种性质命题?其主项和谓项的周延情况如何?1.全称肯定命题。

主项周延,谓项不周延。

2.全称肯定命题。

主项周延,谓项不周延。

3.全称肯定命题。

主项周延,谓项不周延(“没有一个不是”=“全都是”)。

4.全称否定命题。

主项谓项均周延(“没有一个是”=“全都不是”)。

5.特称否定命题。

主项不周延,谓项周延。

6.特称肯定命题。

主项谓项均不周延。

7.全称肯定命题(更具体地讲,单称肯定命题)。

主项周延,谓项不周延。

8.全称否定命题。

主项谓项均周延。

三、根据性质命题的对当关系,回答下列问题。

解:1.“所有商品都有商标”(属于SAP)与“所有商品没有商标”(属于SEP)是上反对关系,由SAP假不能够推出SEP真;“所有商品都有商标”(属于SAP)与“有些商品没有商标”(属于SOP)是矛盾关系,由SAP假能够推出SOP真。

(注意,在运用对当关系进行推断之前,所有的命题都要先转换为同素材的性质命题。

下同。

)2.“有些零件不是次品”(属于SOP)与“有些商品是次品”(属于SIP)是下反对关系,由SOP假能够断定SIP为真;“有些零件不是次品”(属于SOP)与“所有零件不是次品”(属于SEP)是差等关系,所以由SOP假可推断SEP为假。

3.这三个命题分别属于A、I、O和E命题,由它们为真可以推断它们各自的同素材的性质命题的真假如下:a.SAP真⊢SOP假、SIP真、SEP假b.SIP真⊢SEP假、SAP和SOP真假不定c.SOP真⊢SAP假、SEP和SIP真假不定d.SEP真⊢SAP假、SIP假、SOP真四、将下列命题进行换质,并用公式表示之。

1.S EP⊢S A P2.SIP⊢SO P3.SAP⊢SE P4.SOP⊢SI P五、下列命题能否换位?若能,请用公式表示之。

1.SIP⊢PIS2.SAP⊢PIS3.SOP不能换位4.SEP⊢PES六、下列推理是否正确?若正确,请把省略的推理步骤补充完整。

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。

解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。

同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。

所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。

3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。

证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。

那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。

会计学原理课后习题及答案

会计学原理课后习题及答案

课后习题及答案第二章课后习题及答案习题一:解答收付实现制:5月份的收入=300000+5000+180000=485000元5月份的费用=144000+7000+60000+3800=214800元5月份的利润=485000-214800=270200元权责发生制:5月份的收入=500000+8000+30000=538000元5月份的费用=240000+7000+3000+2000=252000元5月份的利润=538000-252000=286000元习题二解答2016年9月末资产总额=476000 元负债总额=107000 元所有者权益=343000+30000-4000=369000 元第三章课后习题及答案习题一解答A=350000-450000+320000=220000元B=680000+4=730000元D=600000+200000-400000=400000元习题二解答1.登记期初余额贷:银行存款 100000(5)借:应付账款 13000贷:银行存款 13000(6)借:生产成本 25000贷:原材料 25000(7)借:银行存款 3000贷:应收账款 3000(8)借:短期借款 12000应付账款 4000贷:银行存款 16000(9)借:银行存款 20000贷:实收资本 20000(10)借:银行存款 14000贷:应收账款 14000(2)登记账户,计算发生额及期末余额见上述T字账(3)编制总分类账发生额和余额试算平衡表某公司总分类账发生额和余额试算平衡表单位:元解答1.编制会计分录(1)借:原材料——乙48000——丙25000贷:应付账款——红光工厂73000(2)借:应付账款——兴华工厂20000贷:银行存款20000(3)借:原材料——丙1500贷:应付账款——新飞工厂1500(4)借:生产成本179000贷:原材料——甲140000——乙36000——丙30002.用丁字账开设并登记“原材料”和“应付账款”总分类账及所属明细分类账,计算各账户的发生额和期末余额;单位:元“应付账款”总分类账户与明细分类账户发生额及余额表2016年11月30日单位:元。

马原,第三章习题及答案

马原,第三章习题及答案

第三章人类社会及其发展规律(课后练习题)一、单项选择题1 .人类社会历史发展的决定力量是( )A .生产方式B .地理条件C .社会意识D .人口因素2 .社会意识相对独立性的最突出表现是它( )A .同社会存在发展的不同步性B .具有历史的继承性C .对社会存在具有能动的反作用D .同社会经济的发展具有不平衡性3 .在生产关系中起决定作用的是( )A .生产资料所有制B .产品的分配和交换C .在生产中人与人的关系D .管理者和生产者的不同地位4 . “手推磨产生的是封建主的社会,蒸汽磨产生的是工业资本家的社会” , 这句话揭示了( )A .生产工具是衡量生产力水平的重要尺度B .科学技术是第一生产力C .社会形态的更替有其一定的顺序性D .物质生产的发展需要建立相应的生产关系5 .十一届三中全会以来,我党制定的一系列正确的路线、方针、政策促进了我国经济的迅猛发展,这说明( )A .经济基础发展的道路是由上层建筑决定的B .上层建筑的发展决定经济基础的发展方向C .上层建筑对经济基础具有积极的能动作用D .社会主义社会的发展不受经济基础决定上层建筑规律的制约6 .一定社会形态的经济基础是( )A .生产力B .该社会的各种生产关系C .政治制度和法律制度D .与一定生产力发展阶段相适应的生产关系的总和7 .上层建筑是指( )A .社会的经济制度B .科学技术C .社会生产关系D .建立在一定社会经济基础之上的意识形态及相应的制度和设施8 .社会形态是( )A .生产力和生产关系的统一B .同生产力发展一定阶段相适应的经济基础和上层建筑的统一体C .社会存在和社会意识的统一D .物质世界和精神世界的统一9 .人类社会发展的一般规律是( )A .生产方式内部的矛盾规律B .生产力和生产关系、经济基础和上层建筑之间的矛盾运动规律C .社会存在和社会意识的矛盾规律D .物质生产和精神生产的矛盾规律10 .阶级斗争对阶级社会发展的推动作用突出表现在( )A .生产力的发展B .生产关系的变革C .社会形态的更替D .科技的进步11 .社会革命根源于( )A .人口太多B .少数英雄人物组织暴动C .先进思想和革命理论的传播D .社会基本矛盾的尖锐化12 .社会主义改革的根本目的在于( )A .改变社会主义制度B .完善社会主义制度C .解放和发展生产力D .实现社会公平13 . “蒸汽、电力和自动纺织机甚至是比巴尔贝斯、拉斯拜尔和布朗基诸位公民更危险万分的革命家。

【精选】光纤通信课后习题解答第3章习题参考答案

【精选】光纤通信课后习题解答第3章习题参考答案

第三章 光纤的传输特性1.简述石英系光纤损耗产生的原因,光纤损耗的理论极限值是由什么决定的?答:(1)(2)光纤损耗的理论极限值是由紫外吸收损耗、红外吸收损耗和瑞利散射决定的。

2.当光在一段长为10km 光纤中传输时,输出端的光功率减小至输入端光功率的一半。

求:光纤的损耗系数α。

解:设输入端光功率为P 1,输出端的光功率为P 2。

则P 1=2P 2光纤的损耗系数()km dB P P km P P L /3.02lg 1010lg 102221===α 3.光纤色散产生的原因有哪些?对数字光纤通信系统有何危害?答:(1)按照色散产生的原因,光纤的色散主要分为:模式(模间)色散、材料色散、波导色散和极化色散。

(2)在数字光纤通信系统中,色散会引起光脉冲展宽,严重时前后脉冲将相互重叠,形成码间干扰,增加误码率,影响了光纤的传输带宽。

因此,色散会限制光纤通信系统的传输容量和中继距离。

4.为什么单模光纤的带宽比多模光纤的带宽大得多?答:光纤的带宽特性是在频域中的表现形式,而色散特性是在时域中的表现形式,即色散越大,带宽越窄。

由于光纤中存在着模式色散、材料色散、波导色散和极化色散四种,并且模式色散>>材料色散>波导色散>极化色散。

由于极化色散很小,一般忽略不计。

在多模光纤中,主要存在模式色散、材料色散和波导色散;单模光纤中不存在模式色散,而只存在材料色散和波导色散。

因此,多模光纤的色散比单模光纤的色散大得多,也就是单模光纤的带宽比多模光纤宽得多。

光纤损耗吸收损耗本征吸收杂质吸收原子缺陷吸收紫外吸收 红外吸收氢氧根(OH -)吸收 过渡金属离子吸收散射损耗弯曲损耗5.均匀光纤纤芯和包层的折射率分别为n 1=1.50,n 2=1.45,光纤的长度L=10km 。

试求:(1)子午光线的最大时延差;(2)若将光纤的包层和涂敷层去掉,求子午光线的最大时延差。

解:(1) 1sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 1.72145.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km (2)若将光纤的包层和涂敷层去掉,则n 2=1.01sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 5210.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km 6.一制造长度为2km 的阶跃型多模光纤,纤芯和包层的折射率分别为n 1=1.47,n 2=1.45,使用工作波长为1.31μm ,光源的谱线宽度Δλ=3nm ,材料色散系数D m =6ps/nm·km ,波导色散τw =0,光纤的带宽距离指数γ=0.8。

李凡长版组合数学课后习题答案习题3

李凡长版组合数学课后习题答案习题3

f(2)=1,f(3)=1,f(4)=2.
6. 求 n 位 0,1 序列中“ 010”只出现一次且在第 n 位出现的序列数 f(n). 解:最后三位是“ 010”的序列共有 2n-3 个。包括以下情况:
f(n) 包含了在最后三位第一次出现 010 的个数,同时排除了从
n-4 到 n-2 位第一次出现 010 的可能;
13. 在一个平面上画一个圆 , 然后一条一条地画 n 条与圆相交的直线 . 当 r 是 大于 1 的奇数时 , 第 r 条直线只与前 r -1 条直线之一在圆内相交 . 当 r 是偶数时 , 第 r 条直线与前 r -1 条直线都在圆内相交 . 如果无 3 条直线在 圆内共点 , 这 n 条直线把圆分割成多少个不重叠的部分?
2) 证明 f r (n, k)
n rk r , n r k( r 1)
k
解:可将本题转换为构造相应的 0-1 串的问题。将这样的 n 位 0-1 串与 1 到 n 的正整数对位,与 1 相应的整数选取,与 0 相应的不取。一个 0-1 串 对应一个选取方案。这也对应将相同的球放入不同的盒子的方案数。
解:设 f(n) 表示 n 个椭圆将平面分割成的部分的个数, 则有: 一个椭圆将平
面分成内、外两个部分,两个椭圆将平面分成 4 个部分。第二个椭圆的周界
被第一个椭圆分成两部分,这恰恰是新增加的域的边界。依此类推,第三个
椭圆曲线被前面两个椭圆分割成 4 部分,将平面分割成 4+4=8 个部分。若
n- 1 个椭圆将平面分割成 f(n-1) 个部分, 第 n 个椭圆和前 n-1 个椭圆两两
f (n) (n 2) f (n 1) ( n 1)
(6)

f (0) 1
解: f(n)=(n+2)f(n-1)=(n+2)(n+1)f(n-2)=

【免费下载】李凡长版 组合数学课后习题答案 习题3

【免费下载】李凡长版 组合数学课后习题答案 习题3

第三章递推关系1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限区域数记为f(n),求f(n)满足的递推关系.解: f(n)=f(n-1)+2f(1)=2,f(2)=4解得f(n)=2n.2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求f(n)满足的递推关系.解:设a n-1a n-2…a1是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1)表示。

a n可以有两种情况:1)不管上述序列中是否有2,因为a n的位置在最左边,因此0和1均可选;2)当上述序列中没有1时,2可选;故满足条件的序列数为f(n)=2f(n-1)+2n-1 n 1,f(1)=3解得f(n)=2n-1(2+n).3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足的递推关系.解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。

则有h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1)f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2)将(1)得到的h(n)=(2n+4n)/2代入(2),可得f(n+1)= (2n+4n)/2-2f(n),f(1)=2.4.求满足相邻位不同为0的n位二进制序列中0的个数f(n).解:这种序列有两种情况:1)最后一位为0,这种情况有f(n-3)个;2)最后一位为1,这种情况有2f(n-2)个;所以f(n)=f(n-3)+2f(n-2)f(1)=2,f(2)=3,f(3)=5.5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n).解:最后两位是“00”的序列共有2n-2个。

f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能;f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能;依此类推,有f(n)+f(n-1)+f(n-2)+…+f(2)=2n-2f(2)=1,f(3)=1,f(4)=2.6.求n 位0,1序列中“010”只出现一次且在第n 位出现的序列数f(n).解:最后三位是“010”的序列共有2n-3个。

成本会计 习题及答案

成本会计 习题及答案

第三章原材料分配练习(第一次)1、某企业生产甲、乙两种产品,耗用直接材料共计62400元.本月投产甲产品220件,乙产品256件。

单件直接材料费用定额:甲产品120元,乙产品100元.(直接材料定额费用比例分配)2、某企业生产甲、乙两种产品,共同耗用某种直接材料10 500元。

单件产品直接材料消耗定额为:甲产品15千克,乙产品12千克.产量分别为:甲产品100件,乙产品50件。

(直接材料定额消耗量比例分配)3、P80 课后习题1答案如下:(第二次)P80 课后习题2要求:采用交互分配法,计算分配辅助生产费用(列式计算过程);填制辅助生产费用分配表和编制有关会计分录。

注意:自己练习一下顺序分配法(答案如下)(4)会计分录P80课后习题3解析如下:第五章产品成本计算方法概述判断√ 1.生产特点和管理要求对产品成本计算的影响,主要表现在成本计算对象的确定上。

×2.成本计算对象是区分产品成本计算各种方法的主要标志。

√ 3.成本计算对象是区分产品成本计算各种基本方法的主要标志.√ 4.单步骤生产由于工艺过程不能间断.因而只能按照产品的品种计算成本。

×5.在多步骤生产中,为了加强各生产步骤的成本管理,都应当按照生产步骤计算产品成本。

√ 6.在不同生产类型中,完工产品成本计算的日期也不同,这主要取决于生产组织的特点。

√ 7.在单件和小批生产中,产品成本有可能在某批产品完工后计算,因而成本计算是不定期的,而与生产周期相一致。

×8.产品成本计算方法,按其对成本管理作用的大小,分为基本方法和辅助方法。

√9.受企业生产类型特点以及相应的管理要求的影响,产品成本讣算对象不外乎就是分品种、分批、分步三种,因而以成本计算对象为主要标志的成本计算基本方法也只有三种,即品种法、分批法和分步法。

×10。

由于按照产品品种计算成本是产品成本计算的最一般、最起码的要求,因而只有品种法才是计算产品成本的基本方法.×11。

数据挖掘概念与技术习题答案-第3章

数据挖掘概念与技术习题答案-第3章

数据挖掘概念与技术(原书第3版)第三章课后习题及解答3.7习题3.1数据质量可以从多方面评估,包括准确性、完整性和一致性问题。

对于以上每个问题,讨论数据质量的评估如何依赖于数据的应用目的,给出例子。

提出数据质量的两个其他尺度。

答:数据的质量依赖于数据的应用。

准确性和完整性:如对于顾客的地址信息数据,有部分缺失或错误,对于市场分析部门,这部分数据有80%是可以用的,就是质量比较好的数据,而对于需要一家家拜访的销售而言,有错误地址的数据,质量就很差了。

一致性:在不涉及多个数据库的数据时,商品的编码是否一致并不影响数据的质量,但涉及多个数据库时,就会影响。

数据质量的另外三个尺度是时效性,可解释性,可信性。

3.2在现实世界的数据中,某些属性上缺失值得到元组是比较常见的。

讨论处理这一问题的方法。

答:对于有缺失值的元组,当前有6种处理的方法:(1)忽略元组:当缺少类标号时通常这么做(假定挖掘任务涉及分类)。

除非元组有多个属性缺少值,否则该方法不是很有效。

当每个属性缺失值的百分比变化很大时,它的性能特别差。

采用忽略元组,你不能使用该元组的剩余属性值。

这些数据可能对手头的任务是有利的。

(2)人工填写缺失值:一般来说,该方法很费时,并且当数据集很大、缺失值很多时,该方法可能行不通。

(3)使用一个全局常量填充缺失值:将缺失的属性值用同一个常量(如“u nknown”或-)替换。

如果缺失值都用“u nknown”替换,则挖掘程序可能误以为它们形成了一个有趣的概念,因为它们都具有相同的值——“u nknown”。

因此,尽管该方法简单,但是并不十分可靠。

(4)使用属性的中心度量(如均值或中位数)填充缺失值:第2章讨论了中心趋势度量,它们指示数据分布的“中间”值。

对于正常的(对称的)数据分布,可以使用均值,而倾斜分布的数据则应使用中位数。

(5)使用与给定元组属同一类的所有样本的属性均值或中位数(6)使用最可能的值填充缺水值:可以用回归、使用贝叶斯形式化方法的基于推理的工具或决策树归纳确定。

(完整版)机械设计基础课后习题答案.

(完整版)机械设计基础课后习题答案.

第三章部分题解参考3-5 图3-37所示为一冲床传动机构的设计方案。

设计者的意图是通过齿轮1带动凸轮2旋转后,经过摆杆3带动导杆4来实现冲头上下冲压的动作。

试分析此方案有无结构组成原理上的错误。

若有,应如何修改?习题3-5图习题3-5解图(a) 习题3-5解图(b) 习题3-5解图(c) 解 画出该方案的机动示意图如习题3-5解图(a),其自由度为:14233 2345=-⨯-⨯=--=P P n F 其中:滚子为局部自由度计算可知:自由度为零,故该方案无法实现所要求的运动,即结构组成原理上有错误。

解决方法:①增加一个构件和一个低副,如习题3-5解图(b)所示。

其自由度为:115243 2345=-⨯-⨯=--=P P n F ②将一个低副改为高副,如习题3-5解图(c)所示。

其自由度为:123233 2345=-⨯-⨯=--=P P n F 3-6 画出图3-38所示机构的运动简图(运动尺寸由图上量取),并计算其自由度。

习题3-6(a)图 习题3-6(d)图解(a) 习题3-6(a)图所示机构的运动简图可画成习题3-6(a)解图(a)或习题3-6(a)解图(b)的两种形式。

自由度计算:1042332345=-⨯-⨯=--=P P n F习题3-6(a)解图(a)习题3-6(a)解图(b)解(d) 习题3-6(d)图所示机构的运动简图可画成习题3-6(d)解图(a)或习题3-6(d)解图(b)的两种形式。

自由度计算:1042332345=-⨯-⨯=--=P P n F习题3-6(d)解图(a) 习题3-6(d)解图(b)3-7 计算图3-39所示机构的自由度,并说明各机构应有的原动件数目。

解(a) 10102732345=-⨯-⨯=--=P P n FA 、B 、C 、D 为复合铰链原动件数目应为1说明:该机构为精确直线机构。

当满足BE =BC =CD =DE ,AB =AD ,AF =CF 条件时,E 点轨迹是精确直线,其轨迹垂直于机架连心线AF解(b) 1072532345=-⨯-⨯=--=P P n FB 为复合铰链,移动副E 、F 中有一个是虚约束 原动件数目应为1说明:该机构为飞剪机构,即在物体的运动过程中将其剪切。

机电传动与控制(第四版)第3章课后习题参考答案

机电传动与控制(第四版)第3章课后习题参考答案

第三章3.1 为什么直流电记得转子要用表面有绝缘层的硅钢片叠压而成?直流电机的转子要用表面有绝缘层的硅钢片叠加而成是因为要防止电涡流对电能的损耗..3.2 并励直流发电机正传时可以自励,反转时能否自励?不能,因为反转起始励磁电流所产生的磁场的方向与剩余磁场方向相反,这样磁场被消除,所以不能自励.3.3 一台他励直流电动机所拖动的负载转矩TL=常数,当电枢电压附加电阻改变时,能否改变其稳定运行状态下电枢电流的大小?为什么?这是拖动系统中那些要发生变化?T=KtφIa u=E+IaRa当电枢电压或电枢附加电阻改变时,电枢电流大小不变.转速n与电动机的电动势都发生改变.3.4 一台他励直流电动机在稳态下运行时,电枢反电势E= E1,如负载转矩TL=常数,外加电压和电枢电路中的电阻均不变,问减弱励磁使转速上升到新的稳态值后,电枢反电势将如何变化? 是大于,小于还是等于E1?T=IaKtφ, φ减弱,T是常数,Ia增大.根据EN=UN-IaRa ,所以EN减小.,小于E1.3.5 一台直流发电机,其部分铭牌数据如下:PN=180kW, U N=230V,n N=1450r/min,ηN=89.5%,试求:①该发电机的额定电流;②电流保持为额定值而电压下降为100V时,原动机的输出功率(设此时η=ηN)PN=UNIN180KW=230*ININ=782.6A该发电机的额定电流为782.6AP= IN100/ηNP=87.4KW3.6 已知某他励直流电动机的铭牌数据如下:PN=7.5KW, U N=220V, n N=1500r/min, ηN=88.5%, 试求该电机的额定电流和转矩。

PN=UNINηN7500W=220V*IN*0.885IN=38.5ATN=9.55PN/nN=47.75Nm3.7一台他励直流电动机:PN=15KW, U N=220V, I N=63.5A, n N=2850r/min,Ra =0.25Ω,其空载特性为:U 0/ V 115 184 230 253 265I f/A 0.442 0.802 1.2 1.686 2.10今需在额定电流下得到150V 和220 V的端电压,问其励磁电流分别应为多少?由空载特性其空载特性曲线.当U=150V时If=0.71A当U=220V时If=1.08A3.8 一台他励直流电动机的铭牌数据为:PN=5.5KW, U N=110V, I N=62A, nN=1000r/min,试绘出它的固有机械特性曲线。

3采购管理习题答案[4页]

3采购管理习题答案[4页]

第三章采购管理课后习题答案一、单选题1.一般情况下,企业产品的成本中采购部分占的比例为( A )A.. 60%-70% B.10%-20% C.80%-90% D.30%-40%2.下面不属于集中制采购制度优点的是( D )A.可以使企业获得规模效益B.能降低采购和物流成本C.易于稳定和供应商的关系,实现有效的长期合作D.手续简单,过程短,直接快速3.下面对分散制采购制度缺点解释错误的是( C )A.权利分散,不利于采购成本的有效降低B.决策层次低,易于产生暗箱操作C.难以适应零星.地域性及紧急采购状况D.管理不善将会造成供应中断,影响生产活动的正常进行4.在进行大型设备的采购中,主要适用的采购方式是(A)A.招标B.议价C.比价D.三种都可以5.当采购大宗或批量货物,价值高或总价多的物品时,或各经营单位共用材料的情况下适合采用的采购组织形式是(B )。

A.分散型B.集中型C.混合型D.矩阵型6.订货点采购方法适合哪类货物的采购?( A )A.独立需求的货物B.相关需求C.提前期固定的货物D.提前期变化较大的货物7.MRP采购适适合哪类货物的采购?( B )A.独立需求的货物B.相关需求C.提前期固定的货物D.提前期变化较大的货物8.对于现货采购的特点描述错误的是( B )A.即时交割B.价格稳定C.无信誉风险D.对现货市场依赖性大9.在招标失败的或是无人投标,或是投标由不符合参加条件的供应商时一般采用的招标方式是( A )。

A.单一来源采购B.招标采购C.现货采购D.远期合同采购10.关于议价采购以下描述错误的是( A )A.议价采购是政府机关与企业采购所采取的基本方式之一。

B.议价采购,是指由买卖双方直接计价还价实现交易的一种采购行为。

C.议价采购是一种缺乏公开性,信息不对称的采购方式。

D.议价采购是采购人员与厂商经过讨价还价,议定价格进行采购。

二.多选题1.下面对集中制采购制度的缺点描述正确的是(ABCD )A.采购流程过长.时效性差B.难以适应零星.地域性及紧急采购状况C.非共同性物料集中采购,企业难以得到数量折扣利益D.采购与使用单位分离,缺乏激励,采购绩效比较差E.易产生暗箱操作2.使用议价采购的方式进采购过程是存在的缺点有(ABCE )A.价格偏高B.缺乏公开性,信息不对称C.容易形成不公平竞争D.采购物品规格不一E.易滋生弊端3.商品采购按其用途可分为(AB )A.工业采购B.消费采购C.有形采购D.无形采购4.采购按范围不同可分为( AB )A.国内采购B.国外采购 C .有形采购D.无形采购5.下列采购属于无形采购的有(ABCD )A.采购管理系统软件B.技术服务C.人身保险D.工程发包E.计算机磁盘6.采购作业流程设计中应该注意下面的那几点(ABCDE )A.应注意先后顺序及实效控制B.避免作业过程发生摩擦.重复与混乱C.处理程序应适合现实环境,同时应配合作业方式的改善D.注意划分权责或任务E.注意关键点的设置7.采购管理应达到的目标有(ABCD )A.保障供应B.费用最省C.供应链管理好D.信息管理好8.采购的作用有(ABCDE )A.保证供应.降低缺货风险B.保证产品质量C.降低企业成本,提升市场竞争力。

概率论与数理统计(茆诗松)第二版第三章课后习题3.2-3.3(部分)参考答案

概率论与数理统计(茆诗松)第二版第三章课后习题3.2-3.3(部分)参考答案

习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫,故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p 试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X 当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y 并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y 故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p b aY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n n n n X X X E X X X E X X X E L L L L 11211,因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z z x z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−, 当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2当z ≤ 0或z ≥ 2时,p Z (z ) = 0, 当0 < z < 1时,z dy z p zZ ==∫01)(,当1 ≤ z < 2时,z dy z p z Z −==∫−21)(11,故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0,21,2,10,)(其他z z z z z p Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z ≤ 0时,p Z (z ) = 0,当0 < z < 1时,z zy z y Z dy z p −−−−=−==∫e 1)e (e )(0,当z ≥ 1时,zz z z z yzz yZ dy z p −+−−−−−−−=+−=−==∫e )1(e ee )e (e)(111,故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=−−.0,0,1,e )1(e ,10,e 1)(z z z z p z z Z10.设随机变量X 与Y 相互独立,试在以下情况下求Z = X /Y 的密度函数:(1)X ~ U (0, 1),Y ~ Exp (1); (2)X ~ Exp (λ1),Y ~ Exp (λ2). 解:方法一:分布函数法(1)作曲线簇z yx=,即直线簇z x y =,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0, 当z > 0时,)e 1(e)(e)e (e)(111011zz x zx zx yz x yZ z z dx dx dy dx z F −−−∞+−∞+−−=−==−⋅==∫∫∫∫,因分布函数F Z (z ) 连续,有Z = X /Y 为连续随机变量, 故Z = X /Y 的密度函数为⎪⎩⎪⎨⎧≤>−−=′=−−.0,0;0,e 1e 1)()(11z z z z F z p z z Z Z(2)作曲线簇z yx =,即直线簇z xy =,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫∫∞+−−∞+∞+−−∞+∞+−−⋅=−⋅⋅=⋅=0101021212121ee)e(eee)(dx dx dy dx z F zx xzx yxzx yxZ λλλλλλλλλλ2110)(2110)(12121eeλλλλλλλλλλλ+=+−==+∞+−∞++−∫z z zdx xzxz,因分布函数F Z (z ) 连续,有Z = X /Y 为连续随机变量,zz故Z = X /Y 的密度函数为⎪⎩⎪⎨⎧≤>+=′=.0,0;0,)()()(22121z z z z F z p Z Z λλλλ方法二:增补变量法(1)函数z = x / y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧==,,/y v y x z 有反函数⎩⎨⎧==,,v y zv x 且v z v y y x x J vz vz==′′′′=10, 则∫+∞∞−⋅=dv v v zv p z p Z ||),()(,作曲线簇x / y = z ,得z 的分段点为0,当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z z v z vZ z z v vdv z p 1111010e 1e 11e 11e )1(e )(−−−−−−−=+⎟⎠⎞⎜⎝⎛+−=+−=⋅=∫,故Z = X /Y 的密度函数为⎪⎩⎪⎨⎧≤>−−=−−.0,0;0,e 1e 1)(11z z z z p z z Z(2)作曲线簇x / y = z ,得z 的分段点为0,当z ≤ 0时,p Z (z ) = 0,当z > 0时,+∞+−∞+−−⎥⎦⎤⎢⎣⎡+++−=⋅⋅=∫)(22121210212121e )(1e e )(v z v zv Z z z v vdv z p λλλλλλλλλλλλ 22121)(λλλλ+=z , 故Z = X /Y 的密度函数为⎪⎩⎪⎨⎧≤>+=.0,0;0,)()(22121z z z z p Z λλλλ 11.设X 1 , X 2 , X 3为相互独立的随机变量,且都服从(0, 1)上的均匀分布,求三者中最大者大于其他两者之和的概率.解:设A i 分别表示X i 大于其他两者之和,i = 1, 2, 3,显然A 1 , A 2 , A 3两两互不相容,且P (A 1) = P (A 2) = P (A 3), 则P (A 1∪A 2∪A 3) = P (A 1) + P (A 2) + P (A 3) = 3P (A 3) = 3P {X 3 > X 1 + X 2} 因X 1 , X 2 , X 3相互独立且都服从(0, 1)上的均匀分布,则由几何概型知61121131}{213=××=+>X X X P , 故21}{3)(213321=+>=X X X P A A A P U U . 12.设随机变量X 1与X 2相互独立同分布,其密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p1试求Z = max {X 1, X 2} − min {X 1, X 2}的分布. 解:分布函数法,二维随机变量(X 1, X 2) 的联合密度函数为⎩⎨⎧<<<<=.,0;10,10,4),(212121其他x x x x x x p 因Z = max {X 1, X 2} − min {X 1, X 2} = | X 1 − X 2 |,作曲线簇 | x 1 − x 2 | = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,∫∫∫∫+−−=⋅−=−=−−111221311221112211)2(41221421)(11zzz x zzx Z dx x z zx x x x dx dx x x dx z F323823244232414123244142444212123141z z z z z z z z x z zx x z +−=⎟⎟⎠⎞⎜⎜⎝⎛+−+⎟⎟⎠⎞⎜⎜⎝⎛+−−=⎟⎟⎠⎞⎜⎜⎝⎛+−−=,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = max {X 1, X 2} − min {X 1, X 2}为连续随机变量, 故Z = max {X 1, X 2} − min {X 1, X 2}的密度函数为⎪⎩⎪⎨⎧<<+−=′=.,0;10,34438)()(3其他z z z z F z p Z Z13.设某一个设备装有3个同类的电器元件,元件工作相互独立,且工作时间都服从参数为λ 的指数分布.当3个元件都正常工作时,设备才正常工作.试求设备正常工作时间T 的概率分布. 解:设T i 表示“第i 个元件正常工作”,有T i 服从指数分布Exp (λ),分布函数为3,2,1.0,0,0,e 1)(=⎩⎨⎧≤>−=−i t t t F t i λ,则设备正常工作时间T = min {T 1, T 2, T 3},分布函数为F (t ) = P {T = min {T 1, T 2, T 3} ≤ t } = 1 − P {min {T 1, T 2, T 3} > t } = 1 − P {T 1 > t }P {T 2 > t }P {T 3 > t }= 1 − [1 − F 1 (t )][1 − F 2 (t )][1 − F 3 (t )]当t ≤ 0时,F (t ) = 0,当t > 0时,F (t ) = 1 − (e − λ t )3 = 1 − e − 3λ t ,故设备正常工作时间T 服从参数为3λ 的指数分布Exp (3λ),密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 3)()(3t t t F t p t λλ14.设二维随机变量(X , Y ) 在矩形G = {(x , y ) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}上服从均匀分布,试求边长分别为X 和Y的矩形面积Z 的密度函数.解:二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤=.,0,10,20,21),(其他y x y x p 方法一:分布函数法矩形面积Z = XY ,作曲线族xy = z ,得z 的分段点为0, 2, 当z ≤ 0时,F Z (z ) = 0,1当0 < z < 2时,∫∫∫∫∫∫+=+=20020102212121)(z z z z Z dx x z dx dy dx dy dx z F x z)ln 2(ln 22ln 222z z z x z z z −+=+=, 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = XY 为连续随机变量, 故矩形面积Z = XY 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,20),ln 2(ln 21)()(其它z z z F z p Z Z 方法二:增补变量法矩形面积Z = XY ,函数z = xy 对任意固定的y ≠ 0关于x 严格单调增加,增补变量v = y , 可得⎩⎨⎧==,,y v xy z 有反函数⎪⎩⎪⎨⎧==,,v y v z x 且v vzv y y x x J vz vz1112=−=′′′′=, 则∫+∞∞−⋅⎟⎠⎞⎜⎝⎛=dv vv v z p z p Z 1,)(, 作曲线族xy = z ,得z 的分段点为0, 2, 当z ≤ 0或z ≥ 2时,p Z (z ) = 0, 当0 < z < 2时,)ln 2(ln 212ln 210ln 2121)(1212z z v dy v z p z zZ −=−===∫, 故矩形面积Z = XY 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,20),ln 2(ln 21)(其它z z z p Zz。

人工智能 (马少平 朱小燕 著) 清华大学出版社 课后答案 - 完整版(习题部分+答案部分)

人工智能 (马少平 朱小燕 著) 清华大学出版社 课后答案 - 完整版(习题部分+答案部分)

人工智能(马少平朱小燕著) 清华大学出版社课后答案习题部分第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

有机化学第3章课后习题答案

有机化学第3章课后习题答案

第三章烯烃二、写出下列各基团或化合物的结构式:①乙烯基 CH2=CH- ②丙烯基 CH3CH=CH- ③烯丙基 CH2=CHCH2-CH3C=CH2C=CCH3CHCH3CH3H HCH3CH2CH3CH3C CCH2CH3CH3CH2C=CCH3CH(CH3)2CH2CH2CH3三、命名下列化合物,如有顺反异构现象,写出顺反(或)Z-E名称:1.CH3CH2CH2C=CH2CH3CH22.CH3CH2 CH2CH3C=CCH2CH3CH33.ClC=CCH3CH2CH3CH3CHCH34.ClIBr5.6.C=C CH 3CH 2CH 3C 2H 5CH 3HHH 7.nPr i PrC=CEtMeCH38MeC=CBtEt Me五、2,4-庚二烯有否顺反异构现象,如有,写出它们的所有顺反异构体,并以顺反和Z,E 两种命名法命名之。

解:CH 3C=CHH2CH 33C=C HC=CCHCH 3HHCH 3C=C CH 2CH3CH3HCH 2CH 3HH六、3-甲基-2-戊烯分别在下列条件下发生反应,写出各反应式的主要产物:CH 3CH=CCH 2CH 3CH 3H 2/Pd -CCH 33CH 2CHCH 2CH 33CH CCH 2CH 3Br OHCH 33CHCCH 2CH 3CH 3Cl Cl3CH CCH 2CH 3CH 3OHOH 3CHO+CH 3CCH 2CH 3O3CH OHCHCH 2CH 3CH 33CHCH 3CHCH 2CH 3Br七、乙烯、丙烯、异丁烯在酸催化下与水加成生成的活性中间体分别为: 稳定性顺序 及反应速度顺序是CH 3CH 2+CH 3CH +CH 3CH 3CH 3CCH 3+CH 3CH 2+CH 3CH +CH 3CH 3CH 3CCH 3+<<八、试以反应历程解释下列反应结果:(CH 3)3CCH=CH 2+H 2O H +(CH 3)3CCHCH 3OH +(CH 3)2CCH(CH 3)2OH(CH 3)3CCH=CH 2+H +CH 3CCH 3CH 3CH +CH 3CH 3CCH 33CH +CH 3+H 2OCH 3CCH 3CH 3CH CH 3CH 3CCH 3CH 3CH CH 3OH 2+H+CH 3CCH 3CH 3CHCH3+CH 3COH 2CH 3CH 3CHCH 3CH 3COHCH 3CH 3CHCH 3H 2O+OH九、试给出经臭氧化,锌纷水解后生成下列产物的烯烃的结构:1.CH 3CH 2CHOHCHO CH 3CH 2CH=CH 22.CH 3CH 2CCH 3CH 3CHOOCH 3CH 2CH 3C=CHCH 33.CH 3CHO,CH 3CH 3C O,CH2CHO CHOCH 3CH=CH -CH 2CH 3-CH=CCH 3十、化合物:CH 2OCHClCH 2Ca(OH)OHCH 2ClCH ClCH 2HOClClCH 2CH=CH 2Cl 2+CH 3CH=CH 2nCN[CH ]-CH 2CH 2=CHCNC470NH 3+CH 3CH=CH 2Cl Cl CH 2CHCH 2Cl Cl ClCH 2CH=CH 2C500Cl 2+CH 3CH=CH 2CH 3CH 2CH 2OHB 2H 6+CH 3CH=CH 2CH 3CHCH 3OHH +H 2O +CH 3CH=CH 2CH 3CH 2CH 2BrROOR HBr +CH 3CH=CH 2BrCH 3CHCH 3HBr+CH 3CH=CH 2NaOH,H O十一、某烯烃催化加氢得2-甲基丁烷,加氯化氢可得2-甲基-2-氯丁烷,如果经臭氧化并在锌粉存在下水解只得丙酮和乙醛,写出给烯烃的结构式以及各步反应式:CH 3C CH 3=CHCH 3CH 3C CH 3=CHCH 3CH 3C CH 3=CHCH 3+H 2CH 3CH 3CHCH 2CH 3+HClCH 3CHCH 2CH 3CH 3Cl +O 3CH 3CH 3C O CHCH 3OOZn/CH 3COOH/H 2OCH 3C CH 3O+CH 3CHO十二、某化合物分子式为C 8H 16,它可以使溴水褪色,也可以溶于浓硫酸,经臭氧化,锌粉存在下水解只得一种产物丁酮,写出该烯烃可能的结构式。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章自我意识课后习题及答案一、理论测试题(一)不定项项选择题1.自我意识是对自己身心活动的觉察,即自己对自己的认识,具体包括()。

A.生理状况B.心理特征C.自己与他人关系D.他人2.()是自我意识在情感方面的表现,主要包括自尊心、自信心。

A.自我认识B.自我体验C.自我调节D.自我控制3.对于自卑感很强的学生,教师可以从()两方面来给予必要的指导。

A.系统脱敏B.认知矫正C.行为训练D.森田疗法4.中学生出现自负、自卑、逆反、自我中心等问题,归根结底是()需要发展。

A.自我观察B.自我体验C.自我评价D.自我意识(二)简答题1.中学生自我意识的特点有哪些?2.简答自我意识的结构。

3.影响个体自我意识发展的因素有哪些?4.对于自负的中学生,我们可以从哪些方面进行调节?5.对于自我中心的学生,我们可以从哪些方面进行调节?二、实践操作题(一)材料分析题1.刚上初中,贾珍就发生了很大的变化,变得妈妈都有点不认识她了。

她不像以前那样活泼外向了,有的时候,她好像郁郁寡欢,心事重重。

小的时候,不论学校里发生了什么,贾珍总像“实况转播”似的在家叙述一遍。

吃饭的时候,爸爸妈妈就听她不停地说呀说,连插话的机会都没有。

可现在,贾珍不在饭桌上讲学校的事了,即使有时妈妈问起来,她也只是敷衍几句,一幅爱理不理的样子。

吃完饭,就把自己锁在她的小屋子里,在一个小本子上写啊写的。

那个本子可是贾珍的宝贝,她还特意买了一把小锁把它锁在自己的抽屉里,爸爸妈妈是难得一见的。

贾珍有时写着写着,还会莫名其妙地流出几滴眼泪;有时又什么也不做,就那么望着窗外待一下午。

别看贾珍在家里的话越来越少,和朋友在一起的时候可不是这样,有一次妈妈在下班路上看到她和几个要好的“姐妹”在一起,那眉飞色舞的样子绝对是家里见不到的……贾珍的妈妈真搞不懂女儿,她这是怎么了?2.俞敏洪是北京地区最大的出国留学培训机构——新东方教育集团的董事长,他被众多高校学子称为“留学教父”。

新东方学校累计培训学员30多万,在出国留学培训领域取得了极大的成功。

就是这样的一个人,他也曾深深的自卑过。

他出生在江苏农村,参加过1978、1979、1980年三次高考才考上北大。

上大学后,他性格内向、不善言谈、而且不会说普通话,甚至连开口和别人讲话都不敢。

开学的时候,他看到同学在看小说《约翰·克里斯朵夫》,由于之前没看过,就问同学:“你看的是什么呀?”当时,同学睁大眼睛,仿佛是在看外星人,半天才说:“这本书你都不知道?”话语中充满了惊讶和鄙夷。

大三的时候,他得了肺结核,休学一年治病,他又把自己贴上了“肺结核病人”的标签,更加自卑。

俞敏洪在感觉自己的不足后,刻苦读书,经常去北大图书馆看书,后来他们宿舍的同学开始向他询问问题了。

再后来,俞敏洪获得了极大的成功。

(二)心理辅导设计请为初中生设计一个30分钟左右的心理辅导方案,有助于提升初中生的自我了解及相互了解。

本章答案要点一、理论测试题(一)不定项项选择题1.ABC【解析】自我意识是对自己身心活动的觉察,即自己对自己的认识,具体包括认识自己的生理状况(如身高、体重、体态等)、心理特征(如兴趣、能力、气质、性格等)以及自己与他人的关系(如自己与周围人们相处的关系,自己在集体中的位置与作用等)。

2.B【解析】自我体验是自我意识在情感方面的表现,自尊心、自信心是自我体验的具体内容。

3.BC【解析】对于自卑感很强的学生,教师可以从认知矫正和行为训练两方面来给予必要的指导。

4.D【解析】中学生出现自负、自卑、逆反、自我中心等问题,归根结底是个体的自我意识需要发展。

(二)简答题1.【参考答案】自我意识的特点为(1)矛盾性(2)形象性(3)独特性。

2.【参考答案】自我意识有三个成分(1)自我认识是自我意识的认知成分。

(2)自我体验是自我意识在情感方面的表现。

(3)自我调节是自我意识的意志成分。

3.【参考答案】个体的自我意识不是一蹴而就的,也不是一成不变的,影响自我意识发展的因素是多方面的。

目前此方面的有关研究多数集中于以下几个方面:(1)年龄(2)性别(3)学业成绩。

4.【参考答案】(1)引导学生正确认识自我。

(2)帮助学生客观看待他人。

(3)引导学生正确归因。

(4)适当安排自负学生受挫。

(5)强化合作意识。

5.【参考答案】(1)提升中学生自我评价能力。

(2)培养学生社会视角转换技能。

(3)鼓励学生积极参与社会实践活动,在活动中培养良好品德。

二、实践操作题(一)材料分析题1.【参考答案】情绪是中小学生心理活动的一个重要方面,中小学生在日常生活总总要对所接触的人和事物抱有一定的态度,以获得某种主观体验,这就是中小学生的情绪。

随着中学生身体的迅速发展,他们在心理上也经历了急剧的变化,这种急剧变化尤其反映在情绪情感方面,表现为情绪起伏波动大,情感体验深刻、丰富和复杂,容易陷入情绪困扰,表现出明显的矛盾性特点,可以用以下几个方面来概括:(1)爆发性与冲动性(2)不稳定性与两极性(3)表露性与掩饰性(4)深刻性与延续性其实,贾珍的妈妈不必过分担心和忧虑,贾珍的表现是中学生情绪特征的正常表现。

中学时代是人生发展的一个关键时期,这个时期人的生理、心理发展都日渐成熟。

其中生理上最明显的特点是形的发育和成熟;在心理上,表现为独立意识和自我意识的不断增强。

正式由于这两方面的显著变化,中学生才表现出与儿童和成人时期不同的独特的情绪状态。

他们既令家长操心,也让老师担心,同时中学生自己也时时刻刻体验着“让我欢喜让我忧”。

2.【参考答案】心理学家阿德勒认为,我们每个人生下来都是自卑的。

自卑并不可怕,正是由于自卑的存在,我们才会意识到自己的不足和无知,才有可能不断超越自身取得进步。

但是在生活中,大家似乎很不愿意承认自己的自卑,自卑也会给人们带来巨大的压力,使个人失去心理平衡。

但也会激发人们产生克服自卑的勇气,从而使自己在某方面变得杰出。

自卑并不可怕,只要掌握了一些方法,那么完全可以克服你的自卑心理。

(1)正确认识自己学会从多角度看问题,全面辩证地看待和评价自己,不仅要如实地看到自己的短处,也要恰如其分地看到自己的长处,切不可因自己的某些不如人之处而看不到自己的如人之处和过人之处。

要多去发现自己的长处,树立自信心。

要用理性的态度面对失败和挫折,做到大志不改,不因挫折而放弃追求。

善于挖掘自己的潜能、利用自身的特点,大胆尝试,勇于拼搏。

一个人只有客观地评价自己和他人,与他们进行正确的社会比较,才有助于肯定自己,才可能克服自卑感。

(2)正确地归因不能因一次失败,就认为自己能力不行。

殊不知这次失败的原因很可能是多方面的,不一定是能力不足造成的。

(3)自我鼓励当你在干一件事之前,首先应有勇气,坚信自己能干好。

但在具体施行时,应考虑可能遇到的困难。

这样即使你失败了,也会由于事先在心理上做了准备而不致造成心理上的大起大落,导致心理失调。

善于运用表扬与肯定的方法树立自己的自信心。

在工作、学习、思想方面的积极表现、正确做法和细微的进步,要采取一定的方式给予及时的、恰当的评价和鼓励,并对自己提出新的要求,从而使自己受到鼓舞,增强自信心。

在批评其缺点或错误时,也要适当的肯定其积极因素,做到批评中有鼓励。

自卑的人一般都比较敏感脆弱,经不起挫折的打击。

因此应当注意,要善于自我满足,知足常乐。

在学习上,目标不要定得太高。

适宜的目标,可以使你获得成功,这对自己来说是一种最好的激励,有利于提高自己的自信心。

之后,可以适当调整目标,争取第二次、第三次成功。

在不断成功的激励中,不断增强自信心。

(4)运用积极的自我暗示当遇到某些情况感到信心不足时,不妨运用语言暗示:"别人行,我也能行。

""别人能成功,我也能成功。

"从而增强自己改变现状的信心。

经常回忆因自己努力而成功了的事,或合理想象将要取得的成功,以此激发自信心。

(5)学会对比在与别人比较时,为了避免自卑心理的产生,应该选择与自己各方面相类似的人、事比较。

否则与自己悬殊太大,或者拿自己的弱点与别人的优点相比,总免不了自卑感。

与人比较时要讲究"可比性"--选择适当的参照系,否则只有"人比人,气死人"。

扬长避短。

例如苏格拉底其貌不扬,于是在思想上痛下功夫,最后在哲学领域大放异彩。

(二)心理辅导设计【参考答案】活动目的:(1)让学生学习用有趣的方式,向别人介绍自己。

(2)让学生更好地了解自己。

(3)让学生之间能够有更深刻的了解。

活动道具:(1)根据学生人数准备若干张A4纸。

(2)将四个桌子拼成一组,教师布置成U字形。

适宜场所:室内活动时间:20--30分钟适宜群体:初中生活动过程:请学生画一种动物来代表自己,并思考这只动物的特点,以及自己选择这种动物的原因,然后在小组和全班分享。

游戏步骤:(1)游戏领导者随机将全班学生分成若干小组,每组4--5人。

发给每位学生一张A4纸,把纸对折,在纸上方,请大家画一种最能代表自己特点的动物,如果不会画,就把动物名称写出来,并想想自己为什么会选择这种动物。

(2)请学生在小组内分享自己的作品,可以从以下三个方面进行介绍:自己画的什么动物?这只动物的特点是什么?为什么要画这只动物?(3)游戏领导者请每组派一名代表在全班进行分享。

(4)游戏领导者总结并点评本次活动。

(5)问题讨论:班上是否有画相同动物的同学,谈谈选择相同动物的不同理由;通过“美丽动物园”这个游戏,你对自己有了什么新的认识?注意事项:(1)为了保证活动有序、有效地进行,随机分好小组后,请每组推选出1名组长来组织组内活动。

(2)游戏领导者要有意识地关注各小组中比较内向,以及不太容易引起他人关注的学生,为他们创造更多的发言机会。

(3)游戏领导者要用心听取各组学生的分享,及时介入处理一些突发状况,如某些同学描述的动物遭到其他学生的取笑等。

相关文档
最新文档