正弦波发生器设计与仿真

合集下载

正弦信号发生器的设计实验报告(2013070619)

正弦信号发生器的设计实验报告(2013070619)

正弦信号发生器的设计
一、实验目的
1、进一步熟悉QuartusII软件的使用,掌握可编程器件的开发设计的过程。

2、掌握QuartusII中国宏模块的使用方法,重点是LMP_ROM与FPGA硬件资源的使用方法。

3、进一步熟悉GW48-PK2 EDA实验系统。

二、实验内容
采用图形输入方法完成以下正弦信号发生器的设计。

其中6为二进制加法计数器采用兆功能库的arithmetic中的lpm_counter来实现。

ROM元件采用storage中的lpm_rom实现。

ROM数据表中的正弦信号为64字节。

操作如下:
1、新建工程文件,取名为SIN。

2、创建初始化文件,为SIN.mif。

3、建立LPM_ROM.
4、建立LPM_COUNTER文件
5、绘制电路图及编译
6、仿真波形的建立与存盘
7、仿真波形前的检查、仿真,检查结果
8、波形仿真前的检查,进行仿真,检查结果。

9、绑定管脚,进行仿真
10、下载程序,在实验箱上验证结果。

11、重复前面的步骤,设计多波形的信号发生器。

(老师对不起,由于我实验的照片找不到了,就借用了同学的多波形的图片。

)。

正弦波发生器的设计(完整版)实用资料

正弦波发生器的设计(完整版)实用资料

正弦波发生器的设计(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)电子技术课程设计报告题目:正弦波发生器的设计专业:XXXXXXXXXXXX班级:XXXXXXXXXXX学号:XXXXXXX姓名:XX指导教师:XXXX设计日期:2021年12月3日正弦波发生器设计报告一、设计目的作用1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。

2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。

3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。

4. 培养创新能力二、设计要求1. 用途广泛,能产生10 Hz ~ 400 Hz 的正弦波,要求掌握设计原理,对电路进行分析。

2. 控制便捷,通过调节电位器实现对频率的调节,了解一些元器件的用途。

3. 造价低廉,使用集成芯片,花费都很低,熟悉一些重要芯片的逻辑功能,以及对芯片进行设计连接。

4. 精度较高,通过对振荡器、计数器、加法器等集成电路的使用,使得电路的运行都是很精确的。

所以要对一些逻辑电路的进行运用。

三、设计的具体实现1、系统概述总体设计思路:电路原理:振荡器--- 扭环形计数器----逻辑模拟开关----加法器----滤波器----正弦波一.首先阐述正弦波振荡器起振条件及原理过程:正弦波振荡器起振条件:|AF|>1(略大于)结果产生增幅震荡振荡条件是=1幅度平衡条件||=1相位平衡条件ϕAF = ϕA+ϕF = ±2nπ正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。

(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。

vhdl语言正弦波信号发生器设计

vhdl语言正弦波信号发生器设计

AS正弦波信号发生器设计一、实验内容1.设计一正弦信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生正弦信号。

(ROM:6位地址8位数据;要求使用两种方法:VHDL编程和LPM)2.正弦信号六位地址数据128,140,153,165,177,188,199,209,219,227,235,241,246,250,253,255,255,254,252,248,244,238,231,223,214,204,194,183,171,159,147,134,121,109,96,84,72,61,51,41,32,24,17,11,7, 3,1,0,0,2,5,9,1420,28,36,46,56,67,78,90,102,115,127。

二、实验原理正弦波信号发生器是由地址发生器和正弦波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。

1.地址发生器的原理地址发生器实质上就是计数器,ROM的地址是6位数据,相当于64位循环计数器。

2.只读存储器ROM的设计(1)、VHDL编程的实现①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O相连,然后进行存储数据的读写操作。

②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。

(2)、基于LPM宏功能模块的存储器的设计①LPM:Library of Parameterized Modules,可参数化的宏功能模块库。

②Quartus II提供了丰富的LPM库,这些LPM函数均基于Altera器件的结构做了优化处理。

③在实际的工程中,设计者可以根据实际电路的设计需要,选择LPM库中适当的模块,并为其设置参数,以满足设计的要求,从而在设计中十分方便的调用优秀的电子工程技术人员的硬件设计成果。

三、设计方案1.基于VHDL编程的设计在地址信号的选择下,从指定存储单元中读取相应数据系统框图如下:2.基于LPM宏功能模块的设计LPM宏功能具有丰富的由优秀的电子工程技术人员设计的硬件源代码可供调用,我们只需要调用其设计的模块并为其设计必要的参数即可。

EDA实验-正弦波信号发生器设计

EDA实验-正弦波信号发生器设计

实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。

2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。

二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。

•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。

当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。

波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。

相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。

输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。

DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。

其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。

•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。

•XFER(PIN 17):数据传送控制信号,低电平有效。

•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。

正弦波信号发生器设计(课设)

正弦波信号发生器设计(课设)

课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。

本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。

以op07和555定时器构成正弦波和方波的发生系统。

Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。

正弦波方波可以通过示波器检验所产生的信号。

测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。

关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。

本文简单介绍正弦波和方波产生的一种方式。

在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。

1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。

1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。

2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。

/Xid; F=Xf/X。

;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。

基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。

反馈网络中两个反向二极管起到稳压的作用。

振荡电路的振荡频率f0是由相位平衡条件决定的。

一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。

基于Multisim的数字合成正弦波发生器的设计与仿真

基于Multisim的数字合成正弦波发生器的设计与仿真
Il e= mn0一 2 e= . 4 m = 6 V s 9。 e一 3 01 V e i 3










Ij
给 出一 种 以移位 寄存 器和D/ 转换 电路 构 成 , A 实现数 字波 形合 成 方法得 到 三相 正 弦波信 号 。 并结 合Muti 1* ls iml4 真软 件 平 台进 行 了仿 真研 究 。 实 验 结 果表 明 , 电路 具 有 控 制 简 单 , 出波 形精 度较 高 、 定 性 好 等 特 点 。 该 输 稳
只要将对应的m0 m 。 弦值 的状 态代码通过正弦加权的 - 的正 D/ A电路 变换成相应 的模 拟 电压值 , / D A电路 的输出即为所 求的 阶梯正弦波信号。 这里的所指正弦加权D A电路就是用计数器的输 / 出状态去控制一个 电阻网络 , 使之产生 一个与输人数字量对应 的输 出模 拟 量 。 产 生 的阶 梯 正 弦 波 信 号 经 过滤 波 电路 滤 波 生 成标 准正 将 弦波信号 。
关键 词 : ls 波 形合 成 权 电 阻 Mu i m ti 中图 分类 号 : N7 献 标 识 码 : T 文 A
文章编 号 :0 79 1(0 0 —0 60 10 —4 62 1)70 5 —3 1
1、 引 言
数字波形合成 技术广泛应用于信号源 、 函数发生器和数字 电桥 等测量或控制设备 中。 用数字波形合成 正弦波的实现 电路可用RC 振荡 电路 , 可采用函数波发生器专用集成 电路 等 , 也 这些 电路无论 从元器件 的选择和输 出波形参数 的控制都 比较困难 , 出波形的稳 输 定性 也比较差 近年 来 , DS D 技术也应用在 各种信号 源 电路 中, 但 D S D 技术 的电路复杂【 I。 l 本文给 出一种 以移位寄存器和D A I / 转换 电路 构成 , 实现数 字波形 合成 方法得 到三相 正弦 波信号 。 并结合

EDA课程报告-正弦波信号发生器的设计

EDA课程报告-正弦波信号发生器的设计

《EDA》课程设计报告——正弦波信号发生器的设计一、设计目的:进一步熟悉QuartusII及其LPM_ROM与FPGA 硬件资源的使用方法。

培养动手能力以及合作能力。

二、设计要求:1、clk为12MHz。

2、通过DAC0832输出正弦波电压信号,电压范围0~-5V。

3、通过示波器观察波形。

三、设计内容:在QUARTUSII上完成正弦波信号发生器的设计,包括仿真和资源利用情况了解(假设利用Cyclone器件)。

最后在实验系统上实测,包括FPGA中ROM的在系统数据读写测试和利用示波器测试。

信号输出的D/A使用实验系统上的ADC0832。

四、设计原理:图1所示的正弦波信号发生器的结构由四部分组成:1、计数器或地址发生器(这里选择10位)。

2、正弦信号数据ROM(10位地址线,8位数据线),含有1024个8位数据(一个周期)。

3、VHDL顶层设计。

4、8位D/A(实验中可用ADC0832代替)。

图1所示的信号发生器结构图中,顶层文件singt.vhd在FPGA中实现,包含两个部分:ROM的地址信号发生器,由10位计数器担任;一个正弦数据ROM,由LPM_ROM模块构成。

LPM_ROM底层是FPGA 中的EAB、ESB或M4K等模块。

地址发生器的时钟clk的输入频率fo与每周期的波形数据点数(在此选择1024点),以及D/A输出的频率f的关系是:f=fo/1024图1 正弦信号发生器结构框图图2 正弦波信号发生器的设计图五、设计步骤:1、建立.mif格式文件首先,mif文件可用C语言程序生成,产生正弦波数值的C程序如下:#include<stdio.h>#include<math.h>main(){int i;float s;for(i=0;i<1024;i++){s=sin(atan(1)*8*i/256);printf("%d :%d;\n",i,(int)((s+1)*255/2)) }}其次,把上述程序编译后,在DOS命令行下执行命令:romgen > sdata.mif;将生成的sdata.mif 文件,再加上.mif文件的头部说明即可。

仿真信号发生器实训报告

仿真信号发生器实训报告

一、实训目的本次实训旨在通过使用仿真软件Proteus和Keil uVision,学习并掌握信号发生器的设计与仿真方法,加深对信号发生器原理和电路设计的理解,提高实际操作能力。

二、实训内容1. 信号发生器原理信号发生器是一种产生各种标准信号的设备,广泛应用于通信、测量、科研等领域。

本次实训主要设计以下四种波形发生器:正弦波、方波、三角波和锯齿波。

2. 信号发生器电路设计(1)正弦波发生器:采用STM32F103单片机作为核心控制单元,通过查找正弦波查表法生成正弦波数据,经DAC0832数模转换芯片转换为模拟信号输出。

(2)方波发生器:利用STM32F103单片机的定时器产生方波信号,通过改变定时器的计数值来调整方波频率。

(3)三角波发生器:通过STM32F103单片机的定时器产生方波信号,再经过积分电路转换为三角波信号。

(4)锯齿波发生器:利用STM32F103单片机的定时器产生方波信号,再经过微分电路转换为锯齿波信号。

3. 信号发生器仿真(1)使用Proteus软件搭建信号发生器电路,并进行仿真测试。

(2)通过调整电路参数,观察输出波形的变化,验证电路设计的正确性。

(3)将仿真结果与理论分析进行对比,分析仿真结果与理论分析的一致性。

三、实训步骤1. 设计信号发生器电路原理图根据信号发生器原理,设计电路原理图,包括单片机、DAC0832数模转换芯片、矩阵键盘、LCD12864液晶屏幕等元件。

2. 编写程序使用C语言编写信号发生器程序,包括初始化配置、按键扫描、波形生成、LCD显示等功能。

3. 仿真测试(1)在Proteus软件中搭建电路,将程序编译生成的hex文件烧录到STM32F103单片机中。

(2)运行仿真,观察输出波形,验证电路设计及程序的正确性。

(3)根据仿真结果,调整电路参数,优化波形输出。

四、实训结果与分析1. 仿真结果通过仿真测试,成功实现了正弦波、方波、三角波和锯齿波的产生,波形输出稳定,符合设计要求。

正弦波信号发生器的设计及电路图

正弦波信号发生器的设计及电路图

正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。

分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。

很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。

电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。

1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。

在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。

2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。

图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。

由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。

模拟电子正弦波发生器课程设计报告

模拟电子正弦波发生器课程设计报告

课程设计任务书课程设计说明书N O.11 课程设计的目的《电子技术基础课程设计》是学习理论课程之后的实践教学环节。

目的是通过解决比较简单的实际问题,巩固和加深在《电子技术基础》课程中所学的理论知识和实验技能。

训练学生综合运用学过的电子技术基础知识,在教师指导下完成查找资料,选择、论证方案,设计电路并仿真,分析结果,撰写报告等工作。

使学生初步掌握电子电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力,为后续课程的学习、毕业设计和毕业后的工作打下一定的基础。

2 设计方案论证2.1设计思路正弦波发生电路采用RC串并联式正弦波振荡电路,电路结构如图1所示,图中,为变阻器,其最大阻值为。

该电路由两部分组成,即放大电路和选频网络。

为由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。

而则由组成,她们对放大电路形成正反馈,并具有选频作用。

图1中、和、正好形成一个四臂电桥,电桥由放大电路的输出电压供电,另外两个对角顶点分别接到放大电路的同相和反相输入端,故RC串并联式正弦波振荡电路又称桥式正弦波振荡电路。

图1 RC串并联式正弦波振荡电路2.1.1 RC串并联选频网络课程设计说明书N O.2选频网络的输入电压为,输出电压为,则整理可得令,代入上式,得于是有根据以上两个式子画出的幅频特性和相频特性如图2所示(a)幅频特性(b)相频特性图2 RC串并联网络的频率特性课程设计说明书N O.3由图2可以看出,当或者时,幅频相应的幅值最大,即而相频响应的相位角为零,即所以,只有频率为的信号被选通,且的幅值最大,是的幅值的,同时和同相位,呈纯阻性。

而对于其它频率信号迅速衰减,说明RC串并联网络确实具有选频特性。

2.1.2 RC串并联式正弦波振荡电路分析如图1所示RC串并联式正弦波振荡电路,在a点断开,并加入输入信号,因为放大电路为同相比例运算电路,输出电压与输入电压是同相位,即;而RC串并联网络作为正反馈网络和选频网络,当满足时,有,且。

正弦波信号发生器制作

正弦波信号发生器制作

正弦波信号发生器制作一、原理及工作方式1.参照信号源:可以使用晶体振荡器作为参照信号源,晶体振荡器的频率非常稳定,精度高,可以提供准确的参照频率。

2.振荡器:振荡器可以根据参照信号源产生一个与之匹配的频率信号,一般使用的是集成电路中的RC振荡器或LC振荡器。

3.滤波器:在振荡器输出的信号中含有很多谐波成分,需要通过滤波器去掉非基波的频率成分,使输出信号更接近理想的正弦波。

4.放大器:滤波器输出的信号还需要一定的放大才能达到输出阻抗。

正弦波信号发生器的工作方式一般分为模拟和数字两种。

模拟方式主要是通过电路实现信号的生成和放大,传统的信号发生器属于这种方式。

数字方式则是采用数字电路和数字信号处理器来实现信号的生成,这种方式可以实现更高精度和更多功能的信号发生器。

二、制作过程下面是一种基于模拟方式的正弦波信号发生器的制作过程。

1.选择元件:根据所需的频率范围选择适当的振荡器和滤波器,通常可以选择集成电路中的RC振荡器和LC滤波器。

同时还需要选择一款合适的放大器来放大滤波器输出的信号。

2.连接电路:按照电路原理图将选定的元件连接起来,根据元件的引脚和功能进行正确的连线。

3.调试:连接完成后,对电路进行调试。

首先需要确认参照信号源是否正常工作,然后调节振荡器的频率,观察信号的变化。

接下来调整滤波器的频率,使输出信号更接近理想正弦波。

最后调整放大器的放大倍数,使输出信号达到所需的幅度。

三、功能扩展除了基本的频率、幅度和相位调节之外,正弦波信号发生器还可以通过增加其他功能模块来实现更多的功能。

比如:1.频率计:增加频率计模块,可以实时测量输出信号的频率。

2.相位偏移:增加相位调节模块,可以实现对输出信号的相位进行调整。

3.数字控制:使用数字信号处理器来实现对信号发生器的数字控制,可以通过软件界面实现更加便捷的操作和参数调节。

4.波形选择:增加多种波形输出的功能,可以输出正弦波、方波、三角波等多种波形,满足不同实验的需求。

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。

正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。

它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。

(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。

(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。

(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。

(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。

(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。

(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。

(2)数字电路
采用数字电路设计的正弦信号发生器。

基于fpga的dds正弦信号发生器的设计和实现

基于fpga的dds正弦信号发生器的设计和实现

基于fpga的dds正弦信号发生器的设计和实现
基于FPGA的DDS正弦信号发生器可以使用两种常见的实现
方法:Look-Up Table (LUT) 方法和相位累积器方法。

1. LUT方法:
- 首先,定义一个存储正弦波样本值的LUT (Look-Up Table),LUT的大小取决于所需的精度和波形频率范围。

- 使用一个计数器来生成一个相位值,该相位值是一个0到LUT大小之间的数字。

- 将该相位值作为索引,通过查找LUT来获取对应的正弦波
样本值。

- 将该正弦波样本值通过数字-模拟转换器(DAC)转换为模拟
信号输出。

2. 相位累积器方法:
- 使用一个固定频率的时钟作为参考信号输入,例如50 MHz。

- 使用一个相位累积器累积每个时钟周期的相位值。

- 计算相位值对应的正弦波样本值,并通过DAC转换为模拟信号输出。

- 相位累积器的更新频率由所需的输出频率确定,可以通过
增加或减小相位值的增量来调节输出频率。

需要注意的是,FPGA上实现DDS正弦信号发生器时,需要
一个高速的DAC来将数字信号转换为模拟信号输出。

同时,
为了提高性能和减少功耗,可以采用流水线技术,通过并行处理来提高输出频率的精度和速度。

此外,还可以通过添加相位调制、振幅调制等功能来进一步扩展DDS正弦信号发生器的
功能。

要设计和实现基于FPGA的DDS正弦信号发生器,可以使用硬件描述语言如Verilog或VHDL编写相应的代码,并使用FPGA开发工具进行综合、布局以及生成比特流文件。

最后,将比特流文件加载到目标FPGA芯片上,就可以实现DDS正弦信号发生器的功能。

正弦波发生器的设计与仿真

正弦波发生器的设计与仿真

正弦波发生器的设计与仿真1.课程设计目的(1)学会利用Protel2004,实现电路绘制以及PCB的生成以及学会设计方法和设计规则的设置,从而对信号发生器有进一步的了解。

并能够对设计结果加以分析。

(2)掌握利用Multisim10的基本操作,完成对电路的仿真和波形的测试分析。

(3)通过对正弦波发发生器的设计和实现,掌握基本信号发生电路的工作原理及设计方法。

2.设计方案论证本实验使用的一个软件是Multisim,它是一款电子电路仿真的虚拟电子工作台软件,采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件,电路仿真需要的测试仪器均可以直接从屏幕上选取;软件仪器控制面板外形和操作方式都与实物相似,可以实时显示测量结果;Multisim软件带有丰富的电路元件库,提供多种电路分析方法;作为设计工具,它可以同其它流行的电路分析,设计和制版软件交换数据;Multisim还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

Multisim工作环境如图1所示图1 Multisim工作环境Protel DXP包含电路原理图设计,电路原理图仿真测试,印制电路板设计,自动布线器和FPGA/CPLD设计,覆盖了以PCB为核心的整个物理设计。

它提供了进行层次原理图设计的环境,支持“自上而下”和“自下而上”的层次电路设计,能够完成更加大型,更为复杂的电路设计。

Protel DXP 提供了丰富的原件原理图库和PCB封装库,并且库的管理和编辑功能更加完善,草组更加简便。

电路设计人员通过Protel DXP提供的编辑工具,可以方便的实现库中没有包含的原件原理图以及PCB封装的设计制作。

它提供了原件集成库的概念。

在它的元件集成库中集成了元件的原理图符号,本次设计重要通过 Protel DXP 绘图软件完成正弦波发生器原理图的绘制及PCB图的绘制,并利用Multisim软件进行编译、仿真出正弦波波形,并对其进行比较。

正弦波发生器实验报告

正弦波发生器实验报告

正弦波发生器实验报告正弦波发生器实验报告一、引言正弦波发生器是电子实验中常用的一种信号发生器,用于产生稳定的正弦波信号。

在本实验中,我们将通过搭建一个简单的正弦波发生器电路,来探究其工作原理和性能。

二、实验目的1. 了解正弦波发生器的基本原理;2. 掌握正弦波发生器的搭建方法;3. 分析正弦波发生器的输出特性。

三、实验器材与原理本实验所需器材有:函数发生器、示波器、电阻、电容、集成电路等。

正弦波发生器的基本原理是利用反馈电路使放大器的输出信号与输入信号具有相同的幅度和相位,从而实现正弦波的产生。

四、实验步骤1. 搭建正弦波发生器电路:将函数发生器的输出信号接入放大器的输入端,通过反馈电路将放大器的输出信号再次输入到放大器的输入端,形成闭环反馈;2. 调节函数发生器的频率和幅度,观察放大器输出信号的变化;3. 使用示波器测量放大器输出信号的频率和幅度,并记录数据;4. 改变电路中的电阻和电容数值,观察输出信号的变化,并记录数据;5. 分析实验结果,总结正弦波发生器的性能。

五、实验结果与分析通过实验观察和测量,我们得到了一系列正弦波信号的输出结果。

实验中我们发现,正弦波发生器的输出频率与函数发生器的输入频率基本一致,但是幅度会有一定的衰减。

这是因为反馈电路中的电阻和电容会引入一定的阻尼,导致输出信号的幅度减小。

在改变电路中的电阻和电容数值时,我们发现输出信号的频率和幅度也会相应改变。

增加电容的数值会使输出信号的频率降低,而增加电阻的数值会使输出信号的幅度降低。

这是因为电容和电阻对信号的传递和衰减起到了重要作用。

六、实验总结通过本次实验,我们了解了正弦波发生器的基本原理和搭建方法。

实验结果表明,正弦波发生器可以产生稳定的正弦波信号,但是在输出过程中会有一定的衰减。

同时,电路中的电阻和电容数值的改变也会对输出信号的频率和幅度产生影响。

在实际应用中,正弦波发生器广泛用于各种电子设备和实验中,如音频设备、通信设备等。

正弦波信号发生器的设计与实现

正弦波信号发生器的设计与实现
方案三:利用集成芯片做函数发生器:产生各种波形,可以实现更高的频率,调试方便,成本低。鉴于此,美国制开发了一个ICMAX038生成函数信号发生器,它克服了方案二芯片解决方案的不足,是上述芯片不能相比的,可以达到一个较高的技术指标。MAX038精度高,所以称为精密函数发生器IC。在频率合成器,压控振荡器,锁相环,,如脉冲宽度调制器电路的设计,设备实现的首选[2]。
在此设计中的基于DDS技术的信号发生器,是通过用单片机编程将控制字并行送入DDS芯片AD9850,然后由AD9850产生波形输出,即采用基于相位累加器的数字频率合成法,利用直接数字合成芯片AD9850产生波形。
在上世纪70年代,随着微处理器的出现,可以使生更复杂的波形。这一时期比基于软件的波形发生器,在本质上,该DAC采用一个微处理器的程序控制,就可以得到各种简单的波形。
二十一世纪,随着集成电路技术的飞速发展,已经有工作频率超过千兆赫的DDS芯片,而且还促进的函数波形发生器的发展,2003年,安捷伦33220A能够产生17种波形的产品,最高频率可达20M,2005年的产品N6030A能够产生了500MHz的频率,采样频率为1.25GHz。
直接数字频率合成器DDS组件后,DDS组件限制速度和数字噪声引起的这两个主要的缺点阻碍了DDS技术的发展与应用。近年来,超高速数字电路的发展以及对DDS的深入研究,DDS的最大工作频率和噪声性能接近的锁相环率合成器,并达到了相当的水平。随着微电子技术的迅速发展,直接数字频率合成技术得到了迅速的发展,它不同于人其他现代频率合成技术的频率合成,具有优越的性能和特点。反映在较宽的带宽,频率转换时间短,频率分辨率高,输出相位连续,可生产各种其他宽带正交信号和调制信号,可编程数字,控制灵活,具有很高的价格。现在广泛的应用在通信,导航,遥测,雷达,电子战和现代仪器仪表行业等领域[1]。

标准125kHz正弦波发生器的设计实现

标准125kHz正弦波发生器的设计实现

标准125kHz正弦波发生器的设计实现姓名:刘星宇班级:20100434学号:20100434082013年4月12日摘要:在标准的RFID(无线射频识别卡)中,按频率可分为几个等级,其中125kHz 是一个比较常用的频率,由于制作方便、通信可靠,因此得到了广泛的应用,其中最重要的一部分就是产生一个125KHz的正弦波信号加载到调制线圈中,但是常规的方法产生正弦波造价较高。

本实验采用方案为:用石英晶体振荡器和计数器(CD4060)实现十六进制分频器,将2MHz分频为125kHz;再通过施密特触发器(CD4049)进行整波;利用电阻、电容和电感设计振荡频率为125kHz的RLC串联谐振电路;利用OTL 缓冲器提高电路的带负载能力;利用比较器(74LS85)改变矩形波形信号的占空比来实现正弦波幅度可控。

本方案可以实现一个精确地125KHz正弦波发生器,稳定度<0.5*10^-2,精度<0.5*10^-6,且幅值大于1V可调;而且成本较低。

一、设计选题及设计任务要求:1、设计题目:标准125kHZ 正弦波发生器的设计实现 2、任务与要求:实现一个精确的125kHz 正弦波发生器,稳定度<0.5*10^-2,精度<0.5*10^-6,且幅度大于1v 可调二、正文1、方案设计与论证① 号方案:基于89C51单片机的正弦波发生器② 号方案:基于CD4060和分频器电路的正弦波发生器2MHz 自激振荡器十六进制分频器RLC 串联电路OTL 缓冲器(1)(2)(3)(4)(5)正弦波正弦波正弦波产生频率为2MHz 的矩形波分频并实现占空比可调整形保留125KHz 正弦波提高带负载能力方案论证比较:方案一是利用89C51单片机编程实现125KHZ矩形波的输出,并利用单片机的外部中断来实现占空比可调,输出的矩形波经过整形后,送入RLC串联谐振电路产生125KHZ的正弦波,最后经过OTL功放电路提高负载能力。

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。

256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。

首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。

完成实验报告。

(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。

(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。

二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。

ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。

(2)正弦信号数据ROM,含64个8位数据。

(3)原理图顶层设计。

(4)8位D/A。

DAC的输出接示波器。

三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。

File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。

然后以romd.mif的名字保存至新建的文件夹中。

2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。

并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。

4.3.正弦波发生器——modelsim仿真验证

4.3.正弦波发生器——modelsim仿真验证

正弦信号发生器——Modelsim仿真验证本节主要内容正弦信号发生器的原理组成结构工作原理改变频率的方法硬件描述语言实现方法片上ROM 的IP 核配置与使用验证方法测试代码编写软件具体操作Modelsim 仿真验证module singt(iCLK_50, dataout,f_set,rst) ;input iCLK_50,rst;input [1:0] f_set;output [7:0] dataout;reg [7:0] addr;always @ (posedge iCLK_50 or negedge rst)begin if (!rst) addr = 0;else addr=addr+ f_set;end正弦波发生器程序代码定义顶层模块singt 定义电路的输入输出端口,其中f_set为相位累加字,用于设置输出信号的频率。

ROM表中的正弦数据地址always模块实现地址累加功能ROM表中的正弦数表相位累加DATAROM U1(.address(addr),.q(dataout),.clock(iCLK_50)); endmodule例化ROM,ROM是采用IP核的方式实现的,端口引用方式连接相应端口。

`timescale 10ns/10nsmodule singt_tb;reg [1:0] f_set ;reg iCLK_50;reg rst ;wire [7:0] dataout ;initialbeginiCLK_50 =0;f_set = 1;rst = 0;测试代码TestBench定义仿真时间单位/时间精度例如:`timescale 10ns/1ns `timescale 100ps/1ns 如果定义:`timescale 10ns/100ps 则:#2.1 表示延时210*100ps=21ns #2.11表示延时211*100ps= 21.1ns`timescale 10ns/10nsmodule singt_tb;reg [1:0] f_set ;reg iCLK_50;reg rst ;wire [7:0] dataout ;initialbeginiCLK_50 =0;f_set = 1;rst = 0;测试代码TestBench测试模块的名字测试激励变量可观察的输出数据波形initialbeginiCLK_50 =0;f_set = 1;rst = 0;#1 rst =1;#1000 f_set = 2;#1000 f_set = 3;#1000 f_set = 0;#2 $stop;end 测试代码TestBenchinitial块从仿真0时刻开始执行,在整个仿真过程中只执行一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1 RC 正弦振荡电路原理图 图1的仿真结果如图2所示,可以验证1
1021C R f π=。

其中,112C R T π==0.0942s , 从仿真结果中也可以看到。

如图2所示:
图2 RC 正弦波振荡电路仿真结果
图3 图4 图5
(8)将反向并联的二极管重新与电路连接,电阻2R 改为20Ωk ,运行瞬时分析再将电阻2R 的值改为25 Ωk ,运行瞬时分析
(9)将电阻3R 和4R 均改为20Ωk ,运行瞬时分析和交流小信号分析,观察电阻3R 和4R 保持为10Ωk ,电容1C 和2C 均改为0.02f μ,运行瞬时分析和交流小信号分析。

输出波形及分析结果如表2:
表2 稳幅环节、放大倍数和选频网络参数对振荡的影响
稳幅环节对振荡的影响
放大倍数对振荡的影响 选频网络对振荡频率的影响 稳幅
环节 有 无 R2值 20K 25K 选频 参数 R=20K C=0.01u R=20K
C=0.02u
Vo 波

见图3 见图5 Vo 波形 如图6 如图7 振荡 频率 731Hz 365Hz
图6 图7
3.设计制作PCB操作流程
运行Protel2004,直接选择File->New->PCB命令,则系统生成一张没有定义的边界的PCB图纸,然后对其参数做修改,如图8所示:
图8 PCB的工作界面图
对图8所示的PCB图纸,选择Design->Board Shape->Redefine Board Shape 命令进行重定义板型。

此时,光标变成十字形没,工作窗口变成绿色,系统进入PCB外形窗口,在PCB图纸的适当位置点击鼠标作为起点,依次完成4个顶点的绘制,这样电路板的卫星轮廓偶就确定下来了,在绘制好的线框边界上双击既可以弹出“线条属性”的对话框,在该对话框中可以对线条宽和颜色等特定进行设置,在线条的属性设置完毕后可以选中Lock后面的复选框,这样可以线条锁定,使其位置、线性等参数固定下来,不会受到移动、删除等所悟操作的影响。

如图9所示:
图9 PCB外形编辑
物理边界的设置包括交表,参考孔位置、外部尺寸等参数。

通常选用一个机械层来设定物理边界,而在其他机械层放置尺寸、对齐标记等。

根据图9所裁出的PCB,选择Edit->Origin->Set命令设置PCB的坐标原点,鼠标这是变成十字形状,一边在PCB的左下角点击以设置坐标原点,为了精确定位,在操作中结合键盘上的Page Up和Page Down键进行放大和缩小操作。

在PCB放置工具栏中单击选择Place->Line命令,此时光标变成十字形。

将光标移动至(0,0)处,单击确定下边界的起点,然后移动鼠标至(2370,0)处,再单击确定下边界的终点,然后单击鼠标右键,此时就确定了下边界的长度和位置。

在图9中,放置如图10所示的电路原理图。

在Protel 2004中先创建一个PCB的项目,向其中添加一个原理图文件和一个PCB文件,并完成原理图的绘制和生成PCB。

如图10所示:
图10 正弦波放大器
在图10中,,在绘制这张电路图的过程中,在选择器件的过程中,就可以有意识的选择合适的封装放置在电路中,例如电阻这个器件,就具有直插和切片两种封装,选择图11的封装形式。

时缓冲放大器如图12所示
图11 DIPS 图12 U1A
在放置完器件后对其封装进行修改,双击已将放置的器件,在弹出的属性对话中进行名称参数的修改如图13所示:
图13 原理图中的器件封装
装入原理图至PCB。

当完成了电路原理图的绘制和电路板形状,大小的确定后,确保电路原理图和电路板在同一个项目中,打开PCB,选择Design->lmpotr changes from Logamp 命令,系统便会自动将原理图载入PCB中。

自动布线。

装入原理图至PCB后,把原件封装放入PCB的内部,这就需要对原件封装进行布局。

Protel2004提供了强大的自动布局功能,用户只需要定义好规则,Protel可以将重叠的原件封装分离开。

然后进行手工布局,系统对原件的自动布局一边以寻找最短布线路径为目标,因此原件的自动布局往往不理想,用户需要进行手工调整,或者直接用手工进行器件的布局。

先选中改元器件,然后进行移动、旋转、翻转等操作。

最终形成最理想的布局效果,此时选Auto Route ->All 命令,对整个PCB 进行布线,根据电路图原理的复杂程度和布线难度的不同,Protel的布线时间也不用。

布线完成后,就得到了如图14所示的PCB图。

图14 正弦波发生电路PCB
4.设计体会
Multisim 10,它不仅可以仿真弱电电子,也可以仿真强电,还可以仿真射频微波和FPGA。

并且仿真的数据也很准确。

Multisim是EWB的升级版,早先的时候,很多电子工程师热衷于使用EWB来辅助设计, Multisim却包含了许多具体的元器件,可以在里面找到相关的型号,然后开始验证自己的设计是否正确合理。

但是有一个问题也会随之而来,就是在设计电路的时候不会从Mulitisim中去查找合适的元件,而是根据要求与指标先查找合适的元件,然后再去验证自己的正确性,这样一来,就会有许多元件可能在Multisim中找不到,查找Multisim中相同参数的元件又很麻烦,幸好Multisim可以创建仿真元件模型,否则的话,我设计出来的东西就只有实际搭出来验证了,这样就会浪费很大的人力物力财力。

PCB的设计,之前没有布板经验,经过这次课程设计之后终于体会到Protel 2004的强大功能了,Protel 2004引入了集成库的概念,这使得在原理图中选择的元器件就已经有了需要的封装,Protel 2004附带了68,000多个元件的设计库,包括原理图FPGA设计的即调即用及预综合元件集成库,并且这些封装都能完全符合您的要求,当然,也可以修改这个元
课程设计说明书NO.11
沈阳大学。

相关文档
最新文档