人教版七年级数学上册第二次月考试卷(含答案)

合集下载

人教版七年级数学上册月考测试题(含答案解析)

人教版七年级数学上册月考测试题(含答案解析)

人教版七年级数学上册月考测试题(含答案解析)1、答案:C。

正数和负数互为相反数,正数的相反数是它的负数,任何一个有理数都有相反数,数轴上原点两边的两个点表示的数互为相反数。

2、答案:D。

由题可知点A表示-2,又已知点B和点A 相距5个单位长度,因此点B表示的数可以是-7或3.3、答案:B。

-a表示a的相反数,即负数。

4、答案:C。

|a-+b|表示a-+b的绝对值,即|a-b|,|b-1|表示b-1的绝对值,|a-c|表示a-c的绝对值,|1-c|表示1-c的绝对值,将它们代入式子中,化简得2c-2a-2.5、答案:A。

2m2n和2a2b都是二次单项式,属于同类项。

6、答案:D。

-(-m+n)=m-n。

7、答案:B。

7x+5=6(x-1)是一元一次方程。

8、答案:A。

去分母后得到3x-2(x-1)=1,化简得3x-2x+2=1,解得x=-1.9、答案:670℃。

白天最高温度为+400℃,夜间最低温度为-270℃,因此温差为400-(-270)=670℃。

10、答案:无法确定。

展开图中的四个正方形的大小没有给出,因此无法确定它们内部表示的数。

1.绝对值不大于4的整数有9个。

2.迎迎头上有大约1.5×10^6根头发,用科学记数法表示为1.5×10^6.3.-2xmy^6与x^3y^2n是同类项,则mn=5.4.代数式2x+y的值是-4,则4x+2y+9的值是-1.5.x的三倍减去7,等于它的两倍加上5,用方程表示为3x-7=2x+5.16.1) 3x+56=7x2) -10+2+12-15=-113) x=84) y=2b-517.由题意可知,2a=-2c,cd=1/d=1/-b,代入2a-(cd)得-2c-(-b)=2b,即c=3/4,d=-4/3,代入得2a-(cd)=1/2.18.2A-3B=2(a-2ab+b)-3(-a-3ab-b)=8ab+5a+2b。

19.化简得3b+4=3a+m+1,2b-a+m+1=b-a+m+1,解得m=-3.20.1) 第10个数为-1024.2) 第10个数为-53.3) 三个数的和为-999.21.1) 个体车主的费用为1500×3+1500×2=7500元,国营出租公司的费用为2000+1500×2=5000元,选择国营出租公司更合算。

数学七年级第二次月考试卷(2篇)

数学七年级第二次月考试卷(2篇)

第1篇考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 3/22. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 03. 若a=2,b=-3,则a²+b²的值为()A. 1B. 5C. 9D. 134. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (3,-2)D. (-3,2)5. 如果a、b是方程x²-3x+2=0的两个根,那么a+b的值是()A. 1B. 2C. 3D. 46. 下列图形中,是轴对称图形的是()A. 长方形B. 正方形C. 等边三角形D. 梯形7. 若a、b、c是等差数列的连续三项,且a+b+c=12,a+c=8,则b的值为()A. 2B. 4C. 6D. 88. 下列函数中,是反比例函数的是()A. y=x²B. y=2x+1C. y=1/xD. y=x³9. 若|a|=5,|b|=3,则|a+b|的最大值是()A. 8B. 5C. 3D. 210. 在等腰三角形ABC中,若AB=AC,则底角A的度数是()A. 45°B. 60°C. 90°D. 120°二、填空题(每题3分,共30分)11. 已知a=-5,b=3,则a²-b²的值为__________。

12. 在直角坐标系中,点A(2,3),点B(-1,-2),则AB的长是__________。

13. 若m、n是方程2x²-5x+3=0的两个根,则m+n的值为__________。

14. 下列各数中,最小的是__________。

15. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是__________。

七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。

B.无限小数是无理数。

C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。

2022~2023学年七年级数学上册第二次月考试卷【含答案】

2022~2023学年七年级数学上册第二次月考试卷【含答案】

2022~2023学年七年级数学上册第二次月卷一、选择题(每小题3分,共计30分):1、下列各式中,是关于x ,y 的二元一次方程的是( ).(A)2x -y (B)xy +x -2=0 (C)x -3y =-1 (D)02=-y x2、已知二元一次方程组⎩⎨⎧=+=+②①923,545y x y x 下列说法正确的是( ).(A)适合方程②的x ,y 的值是方程组的解 (B)适合方程①的x ,y 的值是方程组的解(C)同时适合方程①和②的x ,y 的值是方程组的解(D)同时适合方程①和②的x ,y 的值不一定是方程组的解 3、已知二元一次方程x +y =1,下列说法不正确的是( ).(A)它有无数多组解 (B)它有无数多组整数解 (C)它只有一组非负整数解 (D)它没有正整数解 4、若3270x y --=,则696y x --的值为( )(A )15 (B )27- (C )15- (D )无法确定5、已知35x y =⎧⎨=-⎩是方程22mx y +=-的一个解,那么m 为( )(A )83 (B )83- (C )4- (D )856、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4 (B)-3∶4 (C)-1∶4 (D)-1∶127、二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )A .4B .-4C .8D .-88、以方程组⎩⎨⎧-=+-=1,2x y x y 的解为坐标的点(x ,y ) 在平面直角坐标系中的位置是( ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限9、某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246...22222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩10、一个长方形的长减少5 cm ,宽增加2 cm ,所得的是一个正方形,该正方形的面积与原长方形的面积相等,设原长方形长和宽分别为x cm ,y cm ,以下x 、y 之间的等量关系式错误的是( ) (A )52x y -=+ (B )()255x y -= (C )()510x y -= (D )()25x y x ⋅=-二、填空题(每小题3分,共24分)1、已知方程x -2y =8,用含x 的式子表示y ,则y =___________,用含y 的式子表示x ,则x =________________2、若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________.3、已知方程y=kx+b 的两组解是1,2,x y =⎧⎨=⎩1,x y =-⎧⎨=⎩则k=___,b=____. 4、已知25,2 6.x y x y +=⎧⎨+=⎩①②则x -y 的值是 _____.5、若⎩⎨⎧==2,1y x 是方程组⎩⎨⎧=+=-3,0by x y ax 的解,则a =______,b =______.6、已知⎩⎨⎧-==1,2y x 是二元一次方程mx +ny =-2的一个解,则2m -n -6的值等于_______.7、已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____. 8、若(m+1)x+41m y ++z=4是三元一次方程,则m=____. 三、解答题(每小题5分,共20分)1、解下列方程组:(1)12,32(1)11;xyx y+⎧=⎪⎨⎪+-=⎩(2)312,2:2:3.xx yx y-⎧-=⎪⎨⎪=⎩2、已知1,1xy=⎧⎨=⎩和1,2xy=-⎧⎨=-⎩是关于x,y的二元一次方程2ax-by=2的两个解,求a+b的值.3、如果,x my n=-⎧⎨=-⎩满足二元一次方程组25,27.x yx y+=⎧⎨+=⎩求325m nm n+-的值.四、列方程组解应用题(共26分)1、(8分)某玩具厂要生产一批玩具,若每天生产35个,则差10个才能完成任务;若每天生产40个,则可超额生产20个.求预定期限是多少天?计划生产多少个玩具?2、(8分)甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行。

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10厘米,腰长是12厘米,这个三角形的周长是?A. 22厘米B. 34厘米C. 44厘米D. 54厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个数加上6后,再乘以4,结果是60,这个数是?A. 9B. 12C. 15D. 185. 下列哪个比例是正确的?A. 1:2 = 3:6B. 2:3 = 4:5C. 3:4 = 6:8D. 4:5 = 8:10二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。

()2. 一个三角形的两边之和一定大于第三边。

()3. 所有的正方形都是矩形。

()4. 0.5和1/2是同一个数。

()5. 两个负数相乘的结果一定是正数。

()三、填空题(每题1分,共5分)1. 一个等边三角形的周长是36厘米,每条边的长度是____厘米。

2. 4的立方是____。

3. 一个数是9的倍数,这个数最小是____。

4. 下列各数中,最大的质数是____。

5. 一个正方形的面积是81平方厘米,它的边长是____厘米。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 简述等边三角形的性质。

3. 解释比例的意义。

4. 解释负数乘以负数的结果为什么是正数。

5. 解释什么是绝对值。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求这个三角形的周长。

3. 一个数是12的倍数,这个数最小是多少?4. 下列各数中,最大的质数是多少?5. 一个正方形的面积是100平方厘米,求这个正方形的边长。

六、分析题(每题5分,共10分)1. 小明有一些糖,他给了小红一半的糖,然后又给了小红一半的糖,小明还剩下4颗糖,请问小明原来有多少颗糖?2. 一个长方形的长是宽的两倍,面积是120平方厘米,求这个长方形的长和宽。

2023~2024学年度七年级上册学业质量检测(月考二)11.30 数学试卷(含答案)

2023~2024学年度七年级上册学业质量检测(月考二)11.30     数学试卷(含答案)

∴ MN =|-1+3t-7-2t|=|t-8|.
∵ MN = 12AB,

|t-8|=
1 2
×8.
解 得t=12 或t=4. ∴ 它们运动的时间是12秒或4秒.(10分)
=2x +2.(3分) 当x =-3时, 原式=2× (-3)+2
= -6+2 = -4.(5 分 )
四、 解答题(每小题7分,共28分) 19.解 : (1)超 出 的 质 量 为 :
-5×2+ (-2)×4+0×5+1×5+3×1+6×3 = -10+-8+0+5+3+18 =8(克 ).(3 分 ) 总 质 量 为 :350×20+8=7008(克 ).(5 分 ) 答 : 这 批 抽 样 检 测 样 品 总 质 量 是 7008 克 ; (2)因 为 绝 对 值 小 于 或 等 于 2 的 食 品 的 袋 数 为 :4+5+5=14(袋 ), 所以合格率为:1240×100% =70%, 答 : 这 批 样 品 的 合 格 率 为 70% .(7 分 ) 20.解:(1)4x -3 5x +3;(4分) (2)5A -4B =5(4x -3)-4(5x +3)=20x -15-20x -12=-27.(7分) 21.解 : (1)第 一 步 开 始 出 现 了 错 误 , 产 生 错 误 的 原 因 是 等 式 的 右 边 没 乘 6; (2 分 ) (2)第 三 步 变 形 的 依 据 是 等 式 性 质 1; (3 分 )
五Байду номын сангаас 解答题(每小题8分,共16分) 23.解 : (1)答 案 不 唯 一 , 例 如 :

2022-2023学年全国初中七年级上数学人教版月考试卷(含答案解析)084156

2022-2023学年全国初中七年级上数学人教版月考试卷(含答案解析)084156

2022-2023学年全国初中七年级上数学人教版月考试卷考试总分:134 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列温度比低的是( )A.B.C.D.2. 下列四个实数:,,,,其中有理数的个数有()A.个B.个C.个D.个3. 下列判断正确的是( )A.若,则B.若,则C.若,则D.若,则4. 的倒数是( )A.B.C.D.−2C ∘−3C∘−1C∘1C∘3C∘ 3.142π7–√0.10100100011234|a |=|b |a =b|a |=|b |a =−ba =b |a |=|b |a =−b |a |=−|b |−8818−18−8A.B.C.D.6. 计算 A.B.C.D.7. 如图,已知与的距离是,是−,则与的距离是( )A.B.C.D.8. 比较,, ,的大小,下列正确的是( )A.B.C.D.9. 已知,,,,,,….推测的个位数字是A.B.C.D.0.169×1061.69×1071.69×1061.69×108−3+10=()−30−13−771b 3–√a 2a b +13–√−23–√+23–√+33–√−2.4−0.5−(−2)−3−3>−2.4>−(−2)>−0.5−(−2)>−3>−2.4>−0.5−(−2)>−0.5>−2.4>−3−3>−(−2)>−2.4>−0.5=331=932=2733=8134=24335=7293632016()137910. 已知是绝对值最小的有理数,是 的相反数,是 的倒数.则把,,按从小到大的顺序排列为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 年月日,由我国自主研制的“大国重器”——“奋斗者”号载人潜水器成功坐底马里亚纳海沟,坐底深度米,创造了中国载人深潜新纪录,也是世界上首次同时将人带到海洋最深处.假设以马里亚纳海沟所在海域的海平面为基准,记为米,高于马里亚纳海沟所在海域的海平面米的某地的高度记为米.根据题意,“奋斗者”号坐底深度米处,该处的高度可记为________米.12. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章中,在世界数学史上正式引入负数如果收入元记作元,那么支出元记作________.13. 人类目前发现体积最大的恒星是盾牌座,这是一颗红超巨星,根据测算,盾牌座的直径高达万公里,将数据用科学记数法表示为________ .14. 计算的结果是________.15. 计算:=________.16. 比较大小:________,________(填等号或不等号).17. 已知,则________.18. 已知,则________.三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 )19. 把下列各数在数轴上表示出来,并将它们按照从小到大的顺序用“”连接起来.,,,,,a b −1c −1a b c a <b <ca <c <bc <a <bc <b <a202011101090930100+10010909.800+800600UY UY 238000238000(−9)÷×3223|−2+3|−23(−2)3−|−5|0|a −2|+=0(b +1)2=b a (1+=11x)x−3x =<−|−2|14−30−(−2.5)20. 计算:;. 21. 有个写运算符号的游戏:在“ ”中的每个内,填入,,,中的某一个(可重复使用),然后计算结果.请计算琪琪填入符号后得到的算式:;嘉嘉填入符号后得到的算式是,一不小心擦掉了里的运算符号,但她知道结果是,请推算内的符号. 22. 已知:,互为相反数,,互为倒数,的绝对值是,求的值.23.数轴上表示和的两点之间的距离是________;表示和两点之间的距离是________;一般地,数轴上表示数和数的两点之间的距离等于.如果表示数和的两点之间的距离是,那么________;若此时数轴上有两点,对应的数分别为和,如果点沿线段自点向以每秒个单位长度的速度运动,同时点沿线段自点向以每秒个单位长度的速度运动,,两点相遇的点对应的数是多少?经过多长时间两点相差个单位长度?24. 甲、乙两商场上半年经营情况如下.(表示盈利,表示亏本,以百万为单位)月份一二三四五六甲商场乙商场三月份乙商场比甲商场多亏损多少元?六月份甲商场比乙商场多盈利多少元?甲、乙两商场上半年平均每月分别盈利或亏损多少元?25. 已知,计算 , ,.观察以上各式并猜想: ________;(为正整数)根据你的猜想计算:①________;②________;(为正整数)(1)−−−(−1)−(+)+(−)−493518951825(2)−(−1−×[2−(−3])202016)23□(2□3)□□4322□+−×÷(1)3×(2÷3)−÷4322(2)3÷(2×3)×□4322□−103□a b c d x 3−(a +b +cd)+(a +b +(−cd x 2)2020)2019(1)41−32(2)m n |m−n |a −24a =(3)A B −3020P AB A B 2Q BA B A 3P Q 10“+”“−”+0.8+0.6−0.4−0.1+0.1+0.2+1.3+1.5−0.6−0.1+0.4−0.1(1)(2)(3)x ≠1(1+x)(1−x)=1−x 2(1−x)(1+x+)=1−x 2x 3(1−x)(1+x++)=1−x 2x 3x 4(1)(1−x)(1+x++⋯+)=x 2x n n (2)(1−2)(1+2++++)=22232425+++⋯++=3993983973635n通过以上规律请你进行下面的探索:① ________.②________.③________. 26. 如图,在数轴上点表示的数为,点表示的数为,点到点的距离记为.我们规定:的大小可以用位于右边的点表示的数减去左边的点表示的数表示,即.请用上面的知识解答下面的问题:如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且,满足与互为相反数.________,________,________;若将数轴折叠,使得点与点重合,则点与数________表示的点重合;点,,开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,①请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值;②探究:若点,向右运动,点向左运动,速度保持不变,的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.(3)(a −b)(a +b)=(a −b)(+ab +)=a 2b 2(a −b)(+b +a +)=a 3a 2b 2b 33M m N n M N MN MN MN =n−m 4A a B b C c b a c |a +3|(c −5)2(1)a =b =c =(2)A C B (3)A B C A 2B C 13t 3BC −2AB t A C B 3BC −4AB t参考答案与试题解析2022-2023学年全国初中七年级上数学人教版月考试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】有理数大小比较【解析】先根据正数都大于,负数都小于,可排除、,再根据两个负数,绝对值大的反而小,可得比小的数是.【解答】解:根据两个负数,绝对值大的反而小可知,,所以比低的温度是.故选.2.【答案】B【考点】有理数的概念【解析】此题暂无解析【解答】解:根据有理数的概念可知,有理数为,,所以有个.故选3.00C D −2−3−3<−2−2C ∘−3C ∘A 3.140.10100100012B.【答案】C【考点】绝对值【解析】根据相反数、绝对值的意义判断即可.【解答】解:若,则或,所以,选项错误;若,则,所以选项正确;若,则,所以选项错误.故选.4.【答案】C【考点】倒数【解析】根据倒数的定义作答.【解答】解:若两个数的乘积是,我们就称这两个数互为倒数.的倒数是.故选.5.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析|a |=|b |a =−b a =b A B a =b |a |=|b |C a =−b |a |=|b |D C 1−8−18C【解答】解:.故选.6.【答案】D【考点】有理数的加法【解析】根据有理数的加法法则计算可得.【解答】,7.【答案】D【考点】数轴两点间的距离【解析】根据与的距离是,可得,则与的距离是:.【解答】解:∵与的距离是,是,∴,,则与的距离是:.故选.8.【答案】C【考点】1690000=1.69×106C −3+10=+(10−3)=71b 3–√b =1+3–√a b b −a =1+−(−2)=3+3–√3–√1b 3–√a −2b =1+3–√a =−2a b b −a =1+−(−2)=+33–√3–√D有理数大小比较【解析】分别根据有理数比较大小的法则进行比较即可.【解答】解:,,故.故选9.【答案】A【考点】有理数的乘方【解析】根据给出的规律,的个位数字是,,,,是个循环一次,用去除以,看余数是几,再确定个位数字.【解答】解:设为自然数,∵的个位数字是,与的个位数字相同,的个位数字是,与的个位数字相同,的个位数字是,与的个位数字相同,的个位数字是,与的个位数字相同,∴的个位数字与的个位数字相同,应为.故选.10.【答案】C【考点】倒数有理数大小比较绝对值相反数∵−(−2)=20.5<2.4<3−(−2)>−0.5>−2.4>−3C.3n 3971420164n 34n+133134n+293234n+373334n 134=320163504×4341A此题暂无解析【解答】解:绝对值最小的有理数是,所以,的相反数是,所以,的倒数是,所以,所以.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】正数和负数的识别【解析】根据“”,“”的意义,即可求解.【解答】解:∵以马里亚纳海沟所在海域的海平面为基准,记为米,且高于马里亚纳海沟所在海域的海平面米的某地的高度记为米,∴“奋斗者”号坐底深度米,记为米.故答案为:.12.【答案】元【考点】正数和负数的识别【解析】根据正负数表示一对相反意义的量,即可解答.【解答】解:根据正负数的意义,正负数表示一对相反意义的量,支出元记作元.0a =0−11b =1−1−1c =−1c <a <b C −10909+−0100+10010909−10909−10909−600600−60013.【答案】.【考点】科学记数法--表示较大的数【解析】本题考查了科学计数法表示较大的数,熟练掌握科学计数法表示较大的数的方法是解题关键,根据科学计数法表示较大的数的方法,可以表示为.【解答】解:.故答案为:.14.【答案】【考点】有理数的乘除混合运算【解析】根据两个数相乘或相除(除数不能为),同号为正,异号为负,除以一个不为的数等于乘以这个数的倒数来求解.【解答】解:.故答案为:.15.【答案】【考点】2.38×105238000=2.38×105238000=2.38×1052.38×105−400(−9)÷×3223=(−9)××2323=(−6)×23=−4−41有理数的加法绝对值【解析】根据有理数的加法解答即可.【解答】=,16.【答案】=,【考点】有理数大小比较有理数的乘方相反数绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】由,得且,解得,所以.|−2+3|1≠1|a −2|+=0(b +1)2|a −2|=0b +1=0a =2,b =−1==1b a (−1)2解:根据题意可得,,,解得,所以.故答案为:.18.【答案】【考点】有理数的乘方【解析】根据平方根的定义,即可解答.【解答】解:∵,∴或,∴.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 )19.【答案】解:,,即.【考点】在数轴上表示实数有理数大小比较【解析】此题暂无解析|a −2|=0b +1=0a =2,b =−1==1b a (−1)213(1+=11x)x−31+=11x x−3=0x =33−|−2|=−2−(−2.5)=2.5−3<−|−2|<0<<−(−2.5)14解:,,即.20.【答案】解:;原式 .【考点】有理数的乘方有理数的加减混合运算【解析】此题暂无解析【解答】解:;原式 −|−2|=−2−(−2.5)=2.5−3<−|−2|<0<<−(−2.5)14(1)−−−(−1)−(+)+(−)−493518951825=−+[−−(+)−]+[−(−1)+(−)]493595251818=−+(−)+149145=(−)+114645=−21145(2)=−1−×(2−9)16=−1−×(−7)16=−1+76=16(1)−−−(−1)−(+)+(−)−493518951825=−+[−−(+)−]+[−(−1)+(−)]493595251818=−+(−)+149145=(−)+114645=−21145(2)=−1−×(2−9)16−1−×(−7)1.21.【答案】解:.,因为即,所以,所以“”里应是“”号.【考点】有理数的混合运算【解析】【解答】解:.,因为即,所以,所以“”里应是“”号.=−1−×(−7)16=−1+76=16(1)3×(2÷3)−43÷22=3×−×234314=2−13=53(2)3÷(2×3)×43=3÷6×43=×=124323□=−,2322103□4=−23103□=−23123103□−(1)3×(2÷3)−43÷22=3×−×234314=2−13=53(2)3÷(2×3)×43=3÷6×43=×=124323□=−,2322103□4=−23103□=−23123103□−22.【答案】解:∵,互为相反数,∴,∵,互为倒数,∴,由,可得到:,原式.【考点】倒数有理数的加减混合运算相反数【解析】根据题中所给的条件,求出相关字母的值,代入所求代数式求值即可.注意有两种情况.【解答】解:∵,互为相反数,∴,∵,互为倒数,∴,由,可得到:,原式.23.【答案】,或①由题意可得:点,相遇时对应的数是:,所以,两点相遇的点对应的数是;②设相遇前,经过秒时间两点在数轴上相距个单位长度,(秒).设相遇后,经过秒时间两点在数轴上相距个单位长度,(秒),由上可得,经过秒或秒的时间两点在数轴上相距个单位长度.【考点】数轴绝对值有理数的混合运算a b a +b =0c d cd =1|x |=3=9x 2=9−1+0−1=7a b a +b =0c d cd =1|x |=3=9x 2=9−1+0−1=7352−6(3)P Q 20−[20−(−30)]÷(2+3)×3=20−50÷5×3=−10P Q −10m 10[20−(−30)−10]÷(2+3)=40÷5=8n 10[20−(−30)+10]÷(2+3)=60÷5=1281210【解析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:,即可解答;(3)设、两点相遇所花的时间为秒,根据等量关系:速度和时间路程和,列出方程求解即可.【解答】解:数轴上表示和的两点之间的距离是:;表示和两点之间的距离是:;故答案为:,或,或.故答案为:或.①由题意可得:点,相遇时对应的数是:,所以,两点相遇的点对应的数是;②设相遇前,经过秒时间两点在数轴上相距个单位长度,(秒).设相遇后,经过秒时间两点在数轴上相距个单位长度,(秒),由上可得,经过秒或秒的时间两点在数轴上相距个单位长度.24.【答案】解:根据题意得:(百万元),∴三月份乙商场比甲商场多亏损百万元.根据题意得:(百万元),∴六月份甲商场比乙商场多盈利百万元.根据题意得:甲商场:(百万元);乙商场:(百万元),∴甲、乙两商场上半年平均每月分别盈利百万元、百万元.【考点】有理数的混合运算有理数的加减混合运算正数和负数的识别【解析】a +2=±4P Q t ×=(1)414−1=3−322−(−3)=53;5.(2)|a +2|=4a +2=4a +2=−4a =2a =−62−6(3)P Q 20−[20−(−30)]÷(2+3)×3=20−50÷5×3=−10P Q −10m 10[20−(−30)−10]÷(2+3)=40÷5=8n 10[20−(−30)+10]÷(2+3)=60÷5=1281210(1)−0.6−(−0.4)=−0.6+0.4=−0.20.2(2)0.2−(−0.1)=0.2+0.1=0.30.3(3)×(0.8+0.6−0.4−0.1+0.1+0.2)=0.216×(1.3+1.5−0.6−0.1+0.4−0.1)=0.4160.20.4(1)找出三月份甲乙两商场的收益,相减即可得到结果;(2)找出六月份甲乙两商场的收益,相减即可得到结果;(3)求出甲乙两商场平均每月的收益,即可得到结果.【解答】解:根据题意得:(百万元),∴三月份乙商场比甲商场多亏损百万元.根据题意得:(百万元),∴六月份甲商场比乙商场多盈利百万元.(3)根据题意得:(百万元);(百万元),则甲、乙两商场上半年平均每月分别盈利百万元、百万元.25.【答案】,,,,【考点】多项式乘多项式规律型:数字的变化类【解析】直接根据规律,得到关系式,即可得到答案;直接根据的结论,应用即可;根据规律式,作答即可.【解答】解:;;;则.故答案为:.由得:①;②∵,∴,又,∴,(1)−0.6−(−0.4)=−0.6+0.4=−0.20.2(2)0.2−(−0.1)=0.2+0.1=0.30.3×(0.8+0.6−0.4−0.1+0.1+0.2)=0.216×(1.3+1.5−0.6−0.1+0.4−0.1)=0.4160.20.41−x n+1−63−3100352−1x 100−a 2b 2−a 3b 3−a 4b 4(1)(2)(1)(3)(1)(1+x)(1−x)=1−x 2(1−x)(1+x+)=1−x 2x 3(1−x)(1+x++)=1−x 2x 3x 4⋯(1−x)(1+x++⋯+)=1−x 2x n x n+11−x n+1(2)(1)(1−2)(1+2++++)=1−=−632223242526(1−3)(1+3++++⋯+)=1−32333439931001+3++++⋯+=323334399−131002(1−3)(1+3+++)=1−323334351+3+++=323334−1352+++⋯++=99989765∴;③.故答案为:;;.①;②;③.故答案为:;;.26.【答案】;;①,,,故的值不随着时间的变化而改变;②,,,当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【考点】有理数的加减混合运算绝对值数轴【解析】此题暂无解析【解答】解:因为是最大的负整数,所以,因为,所以,,所以,,解得,.故答案为:;;.因为在数轴上点表示数,点表示数,+++⋯++=3993983973635=−−131002−1352=−3100352(x−1)(+++⋯++x+1)x 99x 98x 97x 2=−(1−x)(1+x++⋯+)x 2x 99=−(1−)=−1x 100x 100−63−3100352−1x 100(3)(a −b)(a +b)=−a 2b 2(a −b)(+ab +)=−a 2b 2a 3b 3(a −b)(+b +a +)a 3a 2b 2b 3=−a 4b 4−a 2b 2−a 3b 3−a 4b 4−3−153(3)AB =2t+t+2=3t+2BC =3t−t+6=2t+63BC −2AB =3(2t+6)−2(3t+2)=143BC −2AB t AB =|2t+t−2|=|3t−2|BC =3t+t+6=4t+63BC −4AB =3(4t+6)−4|3t−2|3t−2<0=24t+103BC −4AB t 3t−2>0=263BC −4AB t (1)b b =−1|a +3|+(c −5=0)2|a +3|=0(c −5=0)2a +3=0c −5=0a =−3c =5−3−15(2)A a C c又由得,,,将数轴折叠时,点与点重合,所以,折叠点为,所以,即点与数表示的点重合.故答案为:.①,,,故的值不随着时间的变化而改变;②,,,当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.(1)a =−3c =5b =−1A C AC =5−(−3)=5+3=8−3+4=11−(−1)+1=3B 33(3)AB =2t+t+2=3t+2BC =3t−t+6=2t+63BC −2AB =3(2t+6)−2(3t+2)=143BC −2AB t AB =|2t+t−2|=|3t−2|BC =3t+t+6=4t+63BC −4AB =3(4t+6)−4|3t−2|3t−2<0=24t+103BC −4AB t 3t−2>0=263BC −4AB t。

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。

人教版初中数学七年级上第二次月考试卷--数学(含答案)

人教版初中数学七年级上第二次月考试卷--数学(含答案)

七年级(上)第二次月考数学试卷一、选择题:(每题2分,共12分)1.巴黎与北京的时间差为﹣7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A.7月2日21时B.7月2日7时C.7月1日7时D.7月2日5时2.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2 B.m=﹣1,n=2 C.m=﹣2,n=2 D.m=2,n=﹣13.下列各式结果为正数的是()A.﹣(﹣2)B.﹣(﹣2)2C.﹣|﹣2|D.(﹣2)34.如果abcd<0,则a+b=0,cd>0,那么这四个数中负因数的个数至少有()A.1个B.2个C.3个D.4个5.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.36.如果ma m b3﹣n与nab m是同类项,那么(m﹣n)2001的值是()A.0 B.1 C.﹣1 D.﹣32001二、填空题(每题3分,共24分)7.某地某天的最高气温为﹣2℃,最低气温为﹣8℃,这天的温差是℃.8.在1993.4与它的负倒数之间共有a个整数、在1993.4与它的相反数之间共有b个整数,在﹣与它的绝对值之间共有c个整数,则a+b+c=.9.代数式的系数是.10.2017年端午节全国景区接待游客总人数8260万人,这个数用科学记数法可表示为人.11.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.12.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是号.13.如图,折叠纸面上一数轴,使得表示数5与数﹣1的两点重合,若此时,数轴上的A、B两点也重合,且A、B两点之间的距离为32,则A表示的数为.14.当x=1时,代数式px2+qx+1的值为2015,则当x=﹣1时,代数式﹣px2+qx+1的值为.若3x+2与﹣2x+1互为相反数,则x﹣2的值是.三、解答题(每小题5分,共20分)15.(5分)计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].16.(5分)计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)17.(5分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.18.(5分)将﹣|﹣3|,2,﹣(﹣4),﹣12这些数在数轴上表示出来,并用“<”将它们连接起来.四、解答题(每小题7分,共28分)19.(7分)已知A=6﹣12m+7m2减去一个多项式B等于14m2﹣3m+12求:(1)多项式B;(2)当m=﹣1时,求B的值.20.(7分)先化简,再求值:,其中a=﹣6,b=﹣.21.(7分)计算:4a2+2(3ab﹣2a2)﹣(7ab﹣1).解:原式=4a2+6ab﹣4a2﹣7ab﹣1…①=(4a2﹣4a2)+(6ab﹣7ab)﹣1…②=﹣ab﹣1…③上述计算过程是否有错误?若有,则从第步开始出现错误,请在下面写出正确的计算过程.22.(7分)计算图中阴影部分的面积.(1)用含a、b的代数式表示图中阴影部分的面积.(2)当a=3,b=4时,计算阴影部分的面积.五、解答题(每小题8分,共16分)23.(8分)计算:(1)5﹣(﹣2)+(﹣3)﹣(+4)(2)(﹣﹣+)×(﹣24)(3)(﹣3)÷××(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.24.(8分)先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.六、解答题:(每题10分,共计20分)25.(10分)意大利著名数学家斐波那契发现有这样一组数:1,1,2,3,5,8,13,….其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值分别构造正方形,再从左到右分别取前2个、前3个、前4个、前5个正方形拼成如图所示的若干个长方形并按序依次记为①、②、③、④、….每个长方形的周长如表所示:序号①②③④…周长610x y…(1)仔细观察图形,表中的x=,y=.(2)若按此规律继续拼长方形,则序号为⑩的长方形周长是.26.(10分)如图是一个数值转换机,输入数值后按三个方框中的程序运算,若第一次运算结果大于2,可以输出结果,则称该数只要“算一遍”;若第一次运算无法输出结果,且第二次运算结果大于2,可以输出结果,则称该数需要“算两遍”,以此类推:(1)当输入数为2时,输出的结果为;(2)当输入数为﹣1时,求输出的结果;(3)当输入数为x时,该数需要算两遍,直接写出x的取值范围.参考答案一、选择题:(每题2分,共12分)1.B;2.B;3.A;4.A;5.A;6.C;二、填空题(每题3分,共24分)7.6;8.5982;9.﹣;10.8.26×107;11.(m+2n);12.13;13.18或﹣14;14.﹣2013;﹣5;三、解答题(每小题5分,共20分)15--18.略;四、解答题(每小题7分,共28分)19.略;20.略;21.①;22.略;五、解答题(每小题8分,共16分)23.略;24.略;六、解答题:(每题10分,共计20分)25.16;26;466;26.4;。

人教版七年级数学上学期第二次月考测试卷含答案

人教版七年级数学上学期第二次月考测试卷含答案

人教版七年级数学上学期第二次月考测试卷含答案一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.下列各数是无理数的为( )A .-5B .πC .4.12112D .0 5.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 7.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 8.27 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间 9.下列说法中不正确的是( ) A .2-是2的平方根B 22的平方根C .22D .22 10.下列运算中,正确的是( )A 93=±B 382=C |4|2-=-D 2(8)8-=- 二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.若()2320m n ++-=,则m n 的值为 ____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.15.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.16.已知72m =-,则m 的相反数是________. 17.116的算术平方根为_______. 18.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 24.对于实数a ,我们规定:用符号⎡⎣a a ⎡⎣a 为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.25.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.26.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.3.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.4.B解析:B【分析】根据无理数与有理数的概念进行判断即可得.【详解】解:A. -5是有理数,该选项错误;B. π是无理数,该选项正确;C. 4.12112是有理数,该选项错误;D. 0是有理数,该选项错误.故选:B【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等. 5.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a ,2*a=2+a-2a ,成立;②(-2)*a=-2+a+2a ,a*(-2)=a-2+2a ,成立;③(2*a )*3=(2-a )*3=2-a+3-3(2-a )=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a )=2+a+3-3a-2(a+3-3a )=2a-1,成立;④0*a=0+a-0=a ,成立.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.7.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….8.D解析:D【分析】用平方法进行比较,看27在哪两个整数平方之间即可.【详解】∵252527=<,263627=>∴5<6故选:D【点睛】本题考查比较二次根式的大小,常见方法有2种:(1)将数字平方,转化为不含二次根号的数字比较;(2)将数字都转化到二次根式中,然后进行比较.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C .10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误,故选:B .【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.18.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339. 故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.19.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x=10时,第2次输出的结果为1105 2⨯=,x=5时,第3次输出的结果为5+3=8,x=8时,第4次输出的结果为184 2⨯=,x=4时,第5次输出的结果为142 2⨯=,x=2时,第6次输出的结果为121 2⨯=,x=1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12(12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.26.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.。

七年级数学上册第二次月考试卷附答案

七年级数学上册第二次月考试卷附答案

2013年七年级数学上册第二次月考试卷
(附答案)
选择题(每小题5分,共20分,将选择题答案填入括号中)
1下列是一元一次方程的是()
ABCD
2下列哪个一元一次方程的解是()
ABCD
3下列方程变形错误的是()
A方程移项得B方程两边同时除以-2,得
C方程移项得D方程两边同时除以x得到3=1
4某地举行报告会,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()
A.30x-8=31x+26B.30x+8=31x+26
C.30x-8=31x-26D.30x+8=31x-26
二填空题(每空5分共35分)
5关于x的方程的解满足,则
6一份数学试卷共计25道选择题,作对一道得4分,做错一道倒扣一分,某同学做了所有题,得70分,他一共
作对了道题
7图中平面展开图折叠成正方体后,相对面上的两数之
和为10,求x=,y=
8定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如:
1⊕5=(-2)×1+3×5=13,则方程x⊕2=0的解为
9若(m+3)x|m|-2+2=1是关于x的一元一次方程,则m
的值为
10若
三解答题(共45分)
11(本题5分)上面的平面图形绕轴旋转一周,可得下面的立体图形,请把有对应关系的平面图形与立体图形用
直线连起来。

七年级数学(上册)第二次月考试卷(含答案)

七年级数学(上册)第二次月考试卷(含答案)

A BC A B C A B C A B C A B CA B C D(1)(2)(3)…七年级数学(上册)第二次月考试卷(含答案)一、选择题(30分)1、-3的绝对值是( )A. 31 ;B. -3;C. 31-; D. 3; 2、下列说法:①经过两点有一条直线,并且只有一条直线;②两点之间,线段最短;③到线段两端点距离相等的点叫线段的中点;④线段的中点到线段两端点距离相等;其中正确的有( )A. 4个;B. 3个;C.2个;D. 1个;3、第六次全国人口普查公布的数据表明:登记的全国人口约1340000000人,这个数据用科学记数法表示为( )A. 134×107;B. 13.4×108;C. 1.34×109;D. 1.34×1010;4、下列各题合并同类项,结果正确的是( )A. 13ab -4ab=9;B. -5a 2b -2a 2b=-7a 2b ;C.-12a 2+5a 2=7a 2;D. 2x 3+3x 3=5x 6;5、数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动6个单位长度到达点C ,若点C 表示的数是1,则点A 表示的数为( )A. 7;B. 3;C.-3;D. -2;6、已知∠AOB=50°,OC 是∠AOB 的平分线,则∠AOC 的余角是( )A. 40°;B. 50°;C. 65°;D. 75°;7、下列语句正确的是( )A. 画直线AB=10厘米;B. 角平分线是一条线段;C. 画射线OB=3厘米;D. 延长线段AB 到C ,使得BC=AB ;8、下列四个图形能折叠成右边正方体的是( ) 9、计算)2(91)2131()32(-÷÷-⨯-的结果是( ) A. 2; B. 21-; C. 23-; D. 以上答案都不对; 10、如图,数轴上A 、B a 、b ,则下列结论不正确的是( )A. a+b >0;B. ab <0;C.a -b <0;D. ∣a ∣-∣b ∣>0;二、填空题(24分)11、线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一直线上,则AC= 。

部编数学七年级上册【第二次月考】综合能力提升卷(考试范围:第一~三章)(解析版)含答案

部编数学七年级上册【第二次月考】综合能力提升卷(考试范围:第一~三章)(解析版)含答案

绝密★启用前|【冲刺高分】2021—2022学年人教版七年级数学上册培优拔高必刷卷【第二次月考】综合能力提升卷(考试范围:第一~三章 考试时间:120分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________考卷说明:本卷试题共25题,单选10题,填空8题,解答7题,限时120分钟,满分100分,本卷题型精选核心常考易错典题,具备举一反三之效,覆盖面积广,可充分彰显学生双基综合能力的具体情况!一、选择题:本题共10个小题,每小题2分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2021·达州市第一中学校七年级月考)万源市元月份某一天早晨的气温是3C °-,中午上升了2C °,则中午的气温是( ).A .5C-o B .5C o C .1C -o D .1Co 【答案】C【分析】根据题意,将早上的气温加上2即可求得中午的气温【详解】解:早晨的气温是3C °-,中午上升了2C °,则中午的气温是321C -+=-°故选C【点睛】本题考查了有理数加法的实际应用,理解题意是解题的关键.2.(2021·辽宁瓦房店·七年级月考)在﹣43,1,0,﹣34这四个数中,最小数是( )A .﹣43B .1C .0D .﹣34【答案】A【分析】根据有理数的大小比较法则进行判断即可,正数大于0,负数小于0,两个负数比较,绝对值大的反而小.【详解】解:由有理数的大小比较法则可得:430134-<-<<最小的数为43-故选A【点睛】此题考查了有理数的大小比较,熟练掌握有理数的大小比较法则是解题的关键.3.(2021·渝中·重庆巴蜀中学七年级月考)在()2--,()32-,()2+-,()22-中,正数的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】根据题意,将些数进行乘方运算,求一个数的绝对值以及求相反数,进而即可求得答案.【详解】解:Q ()22--=,()328-=-,()22+-=,()22=4-.\正数的个数为3个.故选C .【点睛】本题考查了乘方运算,求一个数的绝对值以及求相反数,掌握以上运算方法是解题的关键.4.(2020·南安市南光中学七年级月考)若202x y ++=-,则20x y --的值为( )A .-42B .42C .-2D .22【答案】B【分析】先算出x+y=-22,再整体代入即可求解.【详解】解:∵202x y ++=-,∴x+y=-22,∴20x y --=20-(x+y )=20-(-22)=42,故选B .【点睛】本题主要考查代数式求值,掌握整体代入思想方法,是解题的关键.5.(2021·咸阳市秦都区双照中学七年级月考)规定3a b a b =-+-△,则28△的值为( )A .3-B .7-C .3D .7【答案】C【分析】题中定义了一种新运算,依照新运算法则,将2a =,8b =代入即可求出答案.【详解】解:已知:3a b a b D =-+-,将2a =,8b =代入即为:282833D =-+-=,故选:C .【点睛】题目主要考查对新定义运算的理解,转化为学过的求代数式的值是解题关键.6.(2021·山东枣庄东方国际学校七年级月考)若|x+1|+|3﹣y|=0,则x ﹣y 的值是( )A .2B .3C .﹣2D .﹣4【答案】D【分析】根据绝对值的非负性,确定,x y 的值,进而代入代数式求解即可.【详解】解:Q |x+1|+|3﹣y|=0,|10,3|0x y +³-³,则10,30x y +=-=,解得1,3x y =-=,134x y \-=--=-,故选D【点睛】本题考查了绝对值的非负性,代数式求值,根据绝对值的非负性求得,x y 的值是解题的关键.7.(2021·哈尔滨德强学校七年级月考)把x的系数化为1,正确的是()A.135x=得35x=B.31x=得3x=C.0.23x=得32x=D.443x=得3x=【答案】D【分析】根据每个选项的未知数的项除以系数即可得到结论.【详解】解:A,方程两边同除以15可得15x=,故选项A错误,不符合题意;B. 方程两边同除以3可得13x=,故选项B错误,不符合题意;C. 方程两边同除以0.2可得15x=,故选项C错误,不符合题意;D. 方程两边同除以43可得3x=,故选项D正确,符合题意;故选:D【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;此题是形式简单的一元一次方程.同时考查了等式的性质2:等式两边同时乘(或除)相等的非零的数或式子,两边依然相等.8.(2021·福建厦门双十中学思明分校七年级月考)已知某校学生总人数为a人,其中女生b人,若女生的2倍比男生多80人,则可以列方为( )A.2b=a+80B.2b=a﹣80C.2b=a﹣b+80D.2b=a﹣b﹣80【答案】C【分析】由该校总人数及女生人数,可得出男生人数为(a-b)人,由女生的2倍比男生多80人,即可得出结论.【详解】解:∵某校学生总人数为a人,其中女生b人,∴男生人数为(a-b)人.∵女生的2倍比男生多80人,∴2b=a-b+80.【点睛】本题考查了由实际问题抽象出二元一次方程,找准等量关系,正确列出二元一次方程是解题的关键.9.(2020·江苏姑苏·苏州草桥中学七年级月考)关于x 的方程22x m x -=-得解为3x =,则m 的值为( )A .5-B .5C .7-D .7【答案】B【分析】把x 的值代入方程计算即可求出m 的值.【详解】解:把x=3代入方程得:6-m=3-2,解得:m=5,故选:B .【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(2021·四川省德阳市第二中学校七年级月考)如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,-a ,-b 的大小关系是( )A .b<-a<-b<aB .b<-b<-a<aC .b<-a<a<-bD .-a<-b<b<a【答案】C 【分析】根据相反数的意义,把﹣a 、﹣b 先表示在数轴上,然后再比较它们的大小关系即可.【详解】解:根据相反数的意义,把﹣a 、﹣b 表示在数轴上,如下图:所以b <﹣a <a <﹣b .【点睛】本题考查了数轴和有理数的大小比较,把﹣a 、﹣b 表示在数轴上,利用数形结合是解决本题比较简单的方法.二、填空题:本题共8个小题,每题2分,共16分。

(人教版)2019-2020学年七年级上第二次月考数学试卷(12月份)(有答案)

(人教版)2019-2020学年七年级上第二次月考数学试卷(12月份)(有答案)

2019-2020学年福建省漳州市七年级(上)第二次月考数学试卷(12月份)一、选择题(共12小题,每小题3分,满分36分)1.的相反数是()A.B.﹣C.3 D.﹣32.下列运算正确的是()A.5a2﹣3a2=2 B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab3.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.多项式1﹣x3+x2是()A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式5.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106 C.2.1×107D.2.1×1066.近似数2.30表示的准确数a的范围是()A.2.295≤a<2.305 B.2.25≤a<2.35C.2.295≤a≤2.305 D.2.25<a≤2.357.已知与ab y的和是,则x﹣y等于()A.2 B.1 C.﹣2 D.﹣18.现规定一种新型的运算“*”:a*b=a b,如3*2=32=9,则等于()A.B. C. D.9.下列变形中错误的是()A.m2﹣(2m﹣n﹣p)=m2﹣2m+n+p B.m﹣n+p﹣q=m﹣(n+q﹣p)C.3m﹣5n﹣1+2p=﹣(﹣3m)﹣[5n﹣(2p﹣1)] D.m+1﹣(﹣n+p)=﹣(﹣1+n﹣m+p)10.如果m是有理数,下列命题正确的是()①|m|是正数;②|m|是非负数;③|m|≥m;④m的倒数是.A.①和②B.②和④C.②和③D.②、③和④11.某服装专卖店为了促销,在元旦期间将一批服装按原价打8折出售,若现价为a元,则这批服装的原价是()A.元B.8a元C.8%a元D.元12.当代数式x3+3x+1的值为0时,代数式2x3+6x﹣3的值为()A.﹣7 B.﹣5 C.﹣4 D.﹣1二、填空题(每题4分,共计32分)13.﹣3的倒数是.14.用“<”号或“>”号填横线:﹣3 ﹣4.15.将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2= .17.若(1﹣m)2与|n+2|互为相反数,则m﹣n= .18.若|x﹣2|=3,则x= .19.张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元.20.观察下列各正方形图案,每条边上有n(n≥2)个圆点,每个图案中圆点的总数是s,按此规律推断出s与n的关系为.三、解答题21.计算题:(1)﹣1﹣(﹣)+3+(﹣2);(2)﹣3.5÷(﹣)×(﹣);(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(4)﹣14﹣×[2﹣(﹣3)2];(5)3a2﹣2a+4a2﹣7a;(6)2(2a2+9b)+(﹣3a2﹣4b).22.先化简,再求值. x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.23.若m2+3mn=10,求5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+5]的值.24.数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a3b3﹣a2b+b﹣(4a3b3﹣a2b﹣b2)+(a3b3+a2b)﹣2b2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢?25.决心试一试,请阅读下列材料:计算:解法一:原式===解法二:原式=]===解法三:原式的倒数为(=﹣20+3﹣5+12=﹣10故原式=上述得出的结果不同,肯定有错误的解法,你认为解法是错误的,在正确的解法中,你认为解法最简捷.然后请解答下列问题计算:.26.某市出租车收费标准是:起步价6元,2千米后每千米1.6元,且每趟另加燃油附加费1元.某乘客乘坐了x千米(x>3)(1)请用含x的代数式表示出他应该支付的车费;(2)若该乘客乘坐了7千米,那他应该支付多少钱?(3)如果他一趟支付了33元,你能算出他最多乘坐的里程吗?27.如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.(1)你认为图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含a、b的代数式表示)(2)仔细观察图2,请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证.(3)已知a+b=7,ab=6.求代数式(a﹣b)的值.2019-2020学年福建省漳州市七年级(上)第二次月考数学试卷(12月份)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.的相反数是()A.B.﹣C.3 D.﹣3【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.2.下列运算正确的是()A.5a2﹣3a2=2 B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab【考点】35:合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.3.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是3【考点】42:单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是:﹣,次数是3.故选D.4.多项式1﹣x3+x2是()A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式【考点】43:多项式.【分析】根据多项式的次数和项数的概念解答.多项式中次数最高项的次数是这个多项式的次数,每个单项式叫做多项式的项.【解答】解:多项式1﹣x3+x2的次数是3,且是3个单项式的和,所以这个多项式是三次三项式.故选B.5.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106 C.2.1×107D.2.1×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2100000=2.1×106,故选D.6.近似数2.30表示的准确数a的范围是()A.2.295≤a<2.305 B.2.25≤a<2.35C.2.295≤a≤2.305 D.2.25<a≤2.35【考点】1H:近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数2.30所表示的准确数a的范围为2.295≤a<2.305.故选A.7.已知与ab y的和是,则x﹣y等于()A.2 B.1 C.﹣2 D.﹣1【考点】35:合并同类项.【分析】根据同类项的概念先求出x,y的值,再求出x﹣y的值.【解答】解:∵+ab y=,则x=1,y=2.则x﹣y=﹣1.故选D.8.现规定一种新型的运算“*”:a*b=a b,如3*2=32=9,则等于()A.B. C. D.【考点】1E:有理数的乘方.【分析】根据“*”的运算方法列式,再根据有理数的乘方进行计算即可得解.【解答】解:(﹣)*3=(﹣)3=﹣.故选B.9.下列变形中错误的是()A.m2﹣(2m﹣n﹣p)=m2﹣2m+n+p B.m﹣n+p﹣q=m﹣(n+q﹣p)C.3m﹣5n﹣1+2p=﹣(﹣3m)﹣[5n﹣(2p﹣1)] D.m+1﹣(﹣n+p)=﹣(﹣1+n﹣m+p)【考点】36:去括号与添括号.【分析】根据去括号与添括号法则即可求出答案.【解答】解:原式=m+1+n﹣p=﹣(﹣1﹣n﹣m+p),故D不正确故选(D)10.如果m是有理数,下列命题正确的是()①|m|是正数;②|m|是非负数;③|m|≥m;④m的倒数是.A.①和②B.②和④C.②和③D.②、③和④【考点】17:倒数;15:绝对值.【分析】根据绝对值的性质及倒数的概念对各选项进行逐一分析即可.【解答】解:①错误,m=0时不成立;②正确,符合绝对值的意义;③正确,符合绝对值的意义;④错误,m=0时不成立.故选C.11.某服装专卖店为了促销,在元旦期间将一批服装按原价打8折出售,若现价为a元,则这批服装的原价是()A.元B.8a元C.8%a元D.元【考点】32:列代数式.【分析】由“按原价打8折出售”可知:原价×0.8=现价a元,由此表示出原价即可.【解答】解:a÷0.8=a(元).故选:D.12.当代数式x3+3x+1的值为0时,代数式2x3+6x﹣3的值为()A.﹣7 B.﹣5 C.﹣4 D.﹣1【考点】33:代数式求值.【分析】把x3+3x看作一个整体并代入代数式进行计算即可得解.【解答】解:∵x3+3x+1=0,∴x3+3x=﹣1,∴2x3+6x﹣3=2(x3+3x)﹣3=2×(﹣1)﹣3=﹣2﹣3=﹣5.故选B.二、填空题(每题4分,共计32分)13.﹣3的倒数是﹣.【考点】17:倒数.【分析】根据倒数的定义直接求解.【解答】解:﹣3的倒数是﹣.14.用“<”号或“>”号填横线:﹣3 >﹣4.【考点】18:有理数大小比较.【分析】求出两数的绝对值,再判断即可.【解答】解:∵|﹣3|=3,|﹣4|=4,∴﹣3>﹣4,故答案为:>.15.将多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3.【考点】43:多项式.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式2xy2﹣3x2+5x3y3﹣6y按y的升幂排列:﹣3x2﹣6y+2xy2+5x3y3;故答案为:﹣3x2﹣6y+2xy2+5x3y3.16.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2= 6 .【考点】44:整式的加减.【分析】由a2+4ab+b2=(a2+2ab)+(b2+2ab),将已知条件代入即可求出所要求的代数式的值.【解答】解:∵a2+2ab=﹣8,b2+2ab=14,∴a2+4ab+b2=(a2+2ab)+(b2+2ab)=﹣8+14=6.故答案为6.17.若(1﹣m)2与|n+2|互为相反数,则m﹣n= 3 .【考点】1F:非负数的性质:偶次方;14:相反数;16:非负数的性质:绝对值.【分析】若两个数互为相反数,则它们的和为0;然后根据非负数的性质,可求得m、n的值,进而可求出m﹣n的值.【解答】解:由题意,得:(1﹣m)2+|n+2|=0;∴1﹣m=0,n+2=0,即m=1,n=﹣2;故m﹣n=3.18.若|x﹣2|=3,则x= 5或﹣1 .【考点】15:绝对值.【分析】根据绝对值的性质把原方程去掉绝对值符号,再求出x的值即可.【解答】解:当x﹣2>0时,x﹣2=3,解得,x=5;当x﹣2<0时,x﹣2=﹣3,解得,x=﹣1.故x=5或﹣1.19.张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入(0.3b﹣0.2a)元.【考点】32:列代数式.【分析】注意利用:卖报收入=总收入﹣总成本.【解答】解:依题意得,张大伯卖报收入为:0.5b+0.2(a﹣b)﹣0.4a=0.3b﹣0.2a.20.观察下列各正方形图案,每条边上有n(n≥2)个圆点,每个图案中圆点的总数是s,按此规律推断出s与n的关系为S=4(n﹣1).【考点】38:规律型:图形的变化类.【分析】可以按照正方形的周长的计算方法,即边长的4倍,但4个顶点重复了一次,所以共有4n﹣4=4(n﹣1).【解答】解:n=2时,S=4;n=3时,S=4+1×4=8;n=4时,S=4+2×4=12,∴S=4+(n﹣2)×4=4n﹣4=4(n﹣1),故答案为:S=4(n﹣1).三、解答题21.计算题:(1)﹣1﹣(﹣)+3+(﹣2);(2)﹣3.5÷(﹣)×(﹣);(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(4)﹣14﹣×[2﹣(﹣3)2];(5)3a2﹣2a+4a2﹣7a;(6)2(2a2+9b)+(﹣3a2﹣4b).【考点】44:整式的加减;1G:有理数的混合运算.【分析】根据有理数混合运算与整式加减运算法则即可求出答案.【解答】解:(1)原式=﹣++﹣=﹣+=﹣(2)原式=﹣×(﹣)×(﹣)=﹣3(3)原式=﹣10+8÷4﹣12=﹣10+2﹣12=﹣20;(4)原式=﹣1﹣×(2﹣9)=;(5)原式=7a2﹣9a;(6)原式=4a2+18b﹣3a2﹣4b=a2+14b22.先化简,再求值. x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【考点】45:整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.23.若m2+3mn=10,求5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+5]的值.【考点】45:整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=5m2﹣5m2+2m2﹣mn+7mn﹣5=2(m2+3mn)﹣5,把m2+3mn=10代入得:原式=20﹣5=15.24.数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a3b3﹣a2b+b﹣(4a3b3﹣a2b﹣b2)+(a3b3+a2b)﹣2b2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢?【考点】45:整式的加减—化简求值.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2+a3b3+a2b﹣2b2+3=b﹣b2+3,结果与a的值无关,故做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样.25.决心试一试,请阅读下列材料:计算:解法一:原式===解法二:原式=]===解法三:原式的倒数为(=﹣20+3﹣5+12=﹣10故原式=上述得出的结果不同,肯定有错误的解法,你认为解法一是错误的,在正确的解法中,你认为解法二最简捷.然后请解答下列问题计算:.【考点】4H:整式的除法;1D:有理数的除法.【分析】根据整式除法的运算法则,解法一是多项式除以单项式的计算方法,单项式除以多项式,用多项式先除以单项式的每一项,再将所得的商相加,合并同类项后取倒数.注意:是整个多项式取倒数,而不是每一项分别取倒数后合并.可以判断出上述解法的对错,计算解法(二)把括号内化简,可提高解题的效率.【解答】=(﹣)÷[()﹣()]=(﹣)÷(﹣)=﹣.26.某市出租车收费标准是:起步价6元,2千米后每千米1.6元,且每趟另加燃油附加费1元.某乘客乘坐了x千米(x>3)(1)请用含x的代数式表示出他应该支付的车费;(2)若该乘客乘坐了7千米,那他应该支付多少钱?(3)如果他一趟支付了33元,你能算出他最多乘坐的里程吗?【考点】8A:一元一次方程的应用.【分析】(1)计算出两千米后的车费加上起步价即可;(2)代入(1)的关系式即可求出y的值;(3)直接代入(1)的关系式即可求出x的值.【解答】解:(1)y=1.6(x﹣2)+7=1.6x+3.8;(2)把x=7,代入y=1.6x+3.8,解得:y=15;(3)1.6x+3.8=33,解得:x=18.25(千米).27.如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.(1)你认为图2中大正方形的边长为a+b ;小正方形(阴影部分)的边长为a﹣b .(用含a、b的代数式表示)(2)仔细观察图2,请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证.(3)已知a+b=7,ab=6.求代数式(a﹣b)的值.【考点】32:列代数式;33:代数式求值.【分析】(1)观察图形很容易得出图2中大小正方形的边长;(2)观察图形可知大正方形的面积(a+b)2,减去阴影部分的正方形的面积(a﹣b)2等于四块小长方形的面积4ab,即(a+b)2=(a﹣b)2+4ab;(3)由(2)很快可求出(a﹣b)2=(a+b)2﹣4ab=49﹣4×6=25,进一步开方得出答案即可.【解答】解:(1)大正方形的边长为a+b;小正方形(阴影部分)的边长为a﹣b;(2)(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,所以(a+b)2=(a﹣b)2+4ab.(3)因为a+b=7,所以(a+b)2=49.因为(a+b)2=(a﹣b)2+4ab,且ab=6所以(a﹣b)2=(a+b)2﹣4ab=49﹣4×6=25所以a﹣b=5或a﹣b=﹣5因为a>b,所以只能取a﹣b=5.。

人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)

人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)

2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共计30分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列计算正确的是()A.2a+3b=5ab B.(﹣a3b4)2=a6b8C.a6÷a2=a3D.(a+b)2=a2+b23.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.方程=的解为()A.x=2B.x=﹣4C.x=4D.x=﹣26.如图,点A,B,C,D都在⊙O上,∠BAC=15°,∠BOD=70°,DE切⊙O于D,则∠CDE的度数是()A.15°B.20°C.25°D.55°7.如图.BC是⊙O的直径,点A、D在⊙O上,P A切⊙O于A,若∠ADC=48°,则∠P AB =()A.42°B.48°C.46°D.50°8.在菱形ABCD中,AB=5,∠BCD=120°,则对角线BD等于()A.20B.C.10D.59.在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.b=a•tan A B.b=c•sin A C.a=c•cos B D.c=a•sin A 10.如图,点D,E,F分别在△ABC的边AB,AC,BC上,连接DE,EF,若DE∥BC,EF∥AB,则下列比例式正确的是()A.=B.=C.=D.=二、填空题(共计30分)11.实数16800000用科学记数法表示为.12.在函数中,自变量x的取值范围是.13.计算:=.14.在实数范围内分解因式:a2m﹣5m=.15.关于x的不等式组的整数解是.16.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.17.在△ABC中,AB=AC=5,BD是高,且cos∠ABD=,则BC=.18.如图,分别过⊙O上A、B、C三点作⊙O切线,切线两两交于P、M、N,P A=9,则△PMN的周长为.19.在△ABC中,∠ACB=90°,CA=CB,点D为AB边上一点,AD=3BD,CD=2,点E在直线AC上,∠CDE=45°,则AE=.20.如图,△ABC中,AB=AC,AD⊥BC于D,DE平分∠ADC,EF⊥AB交AD于G,AG =1,BC=6,则BF=.三、解答题(共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移5个单位长度,同时向下平移4个单位长度得到△A1B1C1;(2)将△ABC绕点A顺时针旋转90°得到△AB2C2,连接A1C2,直接写出A1C2的长.23.为了丰富同学们的课余生活,某中学开展以“我最喜欢的书籍种类”为主题的调查活动,围绕“在文学类、科普类、艺术类、其它类四类书籍中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若该中学共有1200名学生,请你估计该中学最喜欢科普类书籍的学生有多少名.24.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的的四个三角形.25.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?26.如图,四边形ABCD内接于⊙O,AC平分∠BCD.(1)如图1,求证:AB=AD;(2)如图2,点E在弧AD上,弧CE=弧BC,延长CD、AE交于点F,求证:AF=AD.(3)在(2)的条件下,如图3,连接ED并延长ED交AC延长线于点P,连接PF,若PF=AF=4,PE=10,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,直线AC的解析式为:y=﹣x+3,点B在x轴负半轴上,且AB=5.(1)求直线BC的解析式;(2)点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点T在AO上,且BT=CO,连接PT,设点P运动时间为t秒,S△OTP=S,求S与t之间的函数解析式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点T作AB的垂线,交AC于E,连接BE,过点A作CT的平行线AL,将线段BP绕P点顺时针方向旋转得PQ点Q恰好落在直线AL上,若∠BPQ=2∠BET,求t值.参考答案一、选择题(共计30分)1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:A、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣a3b4)2=a6b8,原计算正确,故此选项符合题意;C、a6÷a2=a4,原计算错误,故此选项不符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.3.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.解:这个组合体的左视图为:故选:A.5.解:去分母得:5x=8x﹣12,解得:x=4,检验:把x=4代入得:x(2x﹣3)≠0,∴分式方程的解为x=4.故选:C.6.解:连接OC,∵∠BAC=15°,∴∠BOC=2∠BAC=30°,∵∠BOD=70°,∴∠COD=70°﹣30°=40°,∵OC=OD,∴∠ODC=∠OCD=(180°﹣40°)=70°,∵DE切⊙O于D,∴OD⊥DE,∴∠CDE=90°﹣70°=20°,故选:B.7.解:连接OA,∵P A切⊙O于A,∴∠OP A=90°,∵∠ADC=48°,∴∠ABC=∠ADC=48°,∵OA=OB,∴∠OAB=∠ABC=48°,∴∠P AB=90°﹣∠OAB=42°,故选:A.8.解:∵四边形ABCD是菱形,∴∠ACB=∠BCD=×120°=60°,AC⊥BD,OC=AC=×5=2.5,BD=2OB,∴在Rt△OBC中,OB=OC•tan∠ACB=2.5×=,∴BD=2OB=5.故选:B.9.解:在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,tan A=,则a=b•tan A,A错误;sin A=,则a=c•sin A,B错误;cos B=,则a=c•cos B,C正确;sin A=,则a=c•sin A,D错误;故选:C.10.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴≠,故A错误;∵EF∥AB,∴∠CEF=∠A,∵∠C=∠AED,∴△CEF∽△EAD,∴=,∵△ADE∽△ABC,∴=,∵四边形BDEF是平行四边形,∴DE=BF,∴=,∵≠,∴≠,故B错误;∵EF∥AB,∴=,故C正确;∵△CEF∽△CAB,∴=,∵DE=BF,∴=,∵≠,∴≠,故D错误,综上所述,C正确,故选:C.二、填空题(共计30分)11.解:16800000=1.68×107.故答案为:1.68×107.12.解:由题意得:x+2>0,解得:x>﹣2,故答案为:x>﹣2.13.解:原式=4×2﹣2=8﹣2=6.故答案为:6.14.解:a2m﹣5m=m(a2﹣5)=m(a+)(a﹣),故答案为:m(a+)(a﹣).15.解:,由①得:x≤2,由②得:x>,∴不等式组的解集为<x≤2,则不等式组的整数解为1,2.故答案为:1,2.16.解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.17.解:分两种情况:①如图一,当△ABC是锐角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC﹣AD=5﹣4=1,在Rt△BDC中,BC=;②如图二,当△ABC是钝角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC+AD=5+4=9,在Rt△BDC中,BC==3.故答案为:或3.18.解:∵P A、PB、MN分别与⊙O切于A、B、C,∴P A=PB,MA=MC,NB=NC,∴△PMN的周长=PM+MN+PN=PM+MC+CN+PN=PM+MA+NB+PN=P A+PB=9+9=18,故答案为:18.19.解:①如图,点E在AC上时,在△ABC,∠ACB=90°,CA=CB,∴∠EAD=∠CBA=45°,∵∠CDE=45°,∠CDA=∠CDE+∠ADE=∠B+∠BCD,∴∠ADE=∠BCD,∴△ADE∽△BCD,∴,∴AD=,BD=,∴,∴AE=,∵∠CDE=∠A=45°,∴△CED∽△CDA,∴,∵CD=2,∴AC•CE=40,∴,即AE•CE=15,∵AE+CE=AC,即AE+CE=,∴CE=,∴AE,∴AE=3;②如图,点E在AC的延长线上,∵∠CDE=45°,∠DCM=∠BCD,∴△CDE∽△BCD,∴,∵CD=2,CB=AC,∴BC•CM=40,即AC•CM=40,∵∠EDB=∠A+∠E,∠DCA=∠E+∠CDE,∠A=∠CDE=45°,∴∠EDB=∠DCA,∵∠A=∠B=45°,∴△BDM∽△ACD,∴,∵AC=BC,AB=AC,AD=3BD,∴AD=,BD=,,∴BM=,∵BM+CM=AC,∴CM=,∴AC=8,作DN∥BC,∴,∴DN=BC×=8×=6,AN=AC×=8×=6,∴CN=8﹣6=2,∵CM=,∴,∴,∴CE=10,∴AE=AC+CE=8+10=18,综上,AE=3或18,故答案为:3或18.20.解:如图,连接BG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,BD=CD=BC=3,∵EF⊥AB,∴∠AFG=90°,∵∠AFG=∠ADC=90°,∴∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,∴∠CDE=∠EDG,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=CD=3,∵AG=1,∴AD=AG+DG=1+3=4,由勾股定理得:AB===5,∵S△ABG=•AB•FG=•AG•BD,∴×5FG=×1×3,∴FG=,由勾股定理得:AF===,∴BF=AB﹣AF=5﹣=.故答案为:.三、解答题(共计60分)21.解:原式=÷=﹣•=﹣,当a=tan60°﹣6sin30°=﹣3时,原式=﹣=﹣.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,A1C2==3.23.解:(1)在这次调查中,一共抽取的学生数是:8÷20%=40(名);(2)其它类的人数有:40﹣8﹣14﹣12=6(名),补全统计图如下:(3)根据题意得:1200×=360(名),答:估计该中学最喜欢科普类书籍的学生有360名.24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面积的.25.解:(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得,解得.答:这个文具店购进甲种钢笔50支,乙种钢笔60支.(2)设甲种钢笔每只的最低售价为m元,由题意,得50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.故甲种钢笔每只的最低售价为14元.26.(1)证明:∵四边形ABCD内接于⊙O,AC平分∠BCD,∴∠BCA=∠DCA,∴AB=AD;(2)证明:由(1)知,∠BCA=∠DCA,AB=AD,∵弧CE=弧BC,∴∠BAC=∠CAE,在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴AB=AF,∵AB=AD,∴AF=AD;(3)解:连接BE、BP,过点E作EG⊥BP于点G,∵PF=AF=4,AF=AB=AD,∴AB=PF=4,∠APF=∠P AF,由(2)知,∠BAP=∠P AF,∴∠BAP=∠APF,∴AB∥PF,又∵AB=PF,∴四边形ABPF是平行四边形,又∵AB=AF,∴四边形ABPF是菱形,∴AF∥BP,BP=AB=4,∴∠AEB=∠EBP,∠FEP=∠EPB,∵点A、C、D、E在⊙O上,∴∠FEP=∠ACD,∵∠AEB=∠ACB,∴∠EBP=∠EPB,∴EB=EP=10,∵EG⊥BP,∴PG=BP=2,在Rt△PEG中,PE=10,∴EG===4,∴AB=EG,又∵EG⊥BP,∴∠ABP=90°,∴菱形ABPF是正方形,∴∠BAE=90°,∴EB是⊙O的直径,∴⊙O的半径是5.27.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),C(0,3),∴OA=3,OC=3,∵AB=5,∴OB=2,∵B在x轴负半轴上,∴B(﹣2,0),设直线BC解析式为y=kx+b,将B(﹣2,0),C(0,3)代入得:,解得,∴直线BC解析式为y=x+3;(2)∵OC=3,点T在AO上,且BT=CO,B(﹣2,0),∴T(1,0),OT=1,∵点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点P运动时间为t秒,∴CP=t,当t<3时,如图:∴OP=OC﹣CP=3﹣t,∴S=OT•OP=×1×(3﹣t)=﹣t+,当t>3时,如图:同理可得S=OP•OT=t﹣,∴S=;(3)由(2)知T(1,0),在y=﹣x+3中令x=1得y=2,∴E(1,2),∵B(﹣2,0),∴ET=2,BT=3,由C(0,3),T(1,0)可得直线CT解析式为y=﹣3x+3,由AL∥CT,A(3,0)可得AL解析式为y=﹣3x+9,设Q(m,﹣3m+9),取BQ中点M,∵B(﹣2,0),∴M(,),过M作MN⊥x轴于N,过P作PH⊥MN于H,当P在x轴上方时,如图:∵将线段BP绕P点顺时针方向旋转得PQ,∴BP=PQ,∵M是BQ中点,∴∠BPQ=2∠BPM,∠BMP=90°,∵∠BPQ=2∠BET,∴∠BPM=∠BET,∵∠BMP=∠BTE=90°,∴△BMP∽△BTE,∴==,∵∠PMH=90°﹣∠BMN=∠MBN,∠PHM=∠MNB=90°,∴△PMH∽△MBN,∴===,∴=,解得m=,∴M(,),∴BN=OB+ON=,而=,∴MH=,∴NH=MH+MN=+==OP,∴CP=OC﹣OP=3﹣=,∴t=CP÷1=;当P在x轴下方时,如图:同理可得==,∴=,解得m=4,∴M'(1,﹣),∴BN'=OB+ON'=3,M'H'=2,∴OP=N'H'=M'N'+M'H'=+2=,∴CP=OC+OP=,∴t=CP÷1=,综上所述,t的值为或.。

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。

人教版七年级上册数学第二次月考测试卷 (4)

人教版七年级上册数学第二次月考测试卷 (4)

山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3 2.如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱3.在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)4.若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较5.科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<106.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg7.将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.8.下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体二、填空题(本题满分24分,共有6道小题,每小题3分)9.单项式﹣的次数是,系数是.10.已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为.11.若与﹣9x b﹣3y2的和应是单项式,则的值是.12.如果3a=﹣3a,那么表示a的点在数轴上的位置.13.正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为.颜色红黄蓝白紫绿对应数字12345614.(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.15.若3x﹣2y=4,则5﹣y=.16.按相同的规律把下面最后一个方格画出.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.2.(3分)如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:A、正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项错误;B、球从上面、正面、左侧三个不同方向看到的形状圆,故此选项错误;C、直三棱柱从上面看是矩形中间有一条竖杠,从左边看是三角形,从正面看是矩形,故此选项错误;D、圆柱从上面和正面看都是矩形,从左边看是圆,故此选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)【分析】本题主要考查绝对值以及去正负号的方法,还要知道π的大小.【解答】解:正数比负数大,所以最大的数是其中的正数,<2,||=,﹣(﹣2)=2;故选D.【点评】解决此类问题首先将绝对值去掉,然后将数化简,最后再比较大小.4.(3分)若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较【分析】利用相反数的定义判断即可.【解答】解:若a、b表示有理数,且a=﹣b,那么在数轴上表示数a与数b的点到原点的距离一样远,故选:C.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的定义是解本题的关键.5.(3分)科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<10【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.【解答】解:科学记数法a×10n中a的取值范围为1≤|a|<10.故选D.【点评】本题考查科学记数法的定义,是需要熟记的内容.6.(3分)某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg【分析】根据题意表示出第二天与第三天卖出的数量,相加即可得到结果.【解答】解:第一天是mkg,第二天是(m+2)kg,第三天是3mkg,则它们的和为m+2+3m+m=(5m+2)kg.故选B.【点评】此题考查了合并同类项,属于应用题,弄清题意是解本题的关键.7.(3分)将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.【分析】结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状.【解答】解:结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状,故选C.【点评】解决此类问题一定要注意结合实际考虑正确的结果.8.(3分)下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体【分析】首先想象三棱柱、圆柱、正方体的平面展开图,然后作出判断.【解答】解:A、三棱柱可以展开成3个矩形和2个三角形,故此选项错误;B、圆柱可以展开成两个圆和一个矩形,故此选项错误;C、球不能展开成平面图形,故此选项符合题意;D、正方体可以展开成一个矩形和两个小正方形,故此选项错误;故选:B.【点评】本题主要考查了图形展开的知识点,注意几何体的形状特点进而分析才行.二、填空题(本题满分24分,共有6道小题,每小题3分)9.(3分)单项式﹣的次数是4,系数是﹣.【分析】利用单项式的次数与系数的定义求解即可.【解答】解:单项式﹣的次数是4,系数是﹣.故答案为:4,﹣.【点评】本题主要考查了单项式,解题的关键是熟记单项式的次数与系数的定义.10.(3分)已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为102﹣101=1.【分析】根据有理数的减法运算法则解答即可.【解答】解:移动个位上的1和2,102﹣101=1.故答案为:102﹣101=1.【点评】本题考查了有理数的减法,是基础题,读懂题目信息并理解题意是解题的关键.11.(3分)若与﹣9x b﹣3y2的和应是单项式,则的值是﹣17.【分析】两个单项式的和为单项式,说明两个单项式是同类项,根据同类项的定义,列方程组求a、b即可.【解答】解:根据题意可知,两个单项式为同类项,∴b﹣3=6,a﹣3=2,解得a=5,b=9,∴=2×5﹣×92=﹣17.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.12.(3分)如果3a=﹣3a,那么表示a的点在数轴上的原点位置.【分析】根据a=﹣a,知2a=0,从而可作出判断.【解答】解:∵3a=﹣3a,∴a=﹣a,∴2a=0,∴表示a的点在数轴上的原点位置.故答案为:原点.【点评】本题考查了相反数与数轴的知识,属于基础题,注意如果一个数的相反数与其本身相等,则这个数为0.13.(3分)正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为17.颜色红黄蓝白紫绿对应数字123456【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由图可知和红相邻的有黄,蓝,白,紫,那么和红相对的就是绿,则绿红相对,同理可知黄紫相对,白蓝相对,∴长方体的下底面数字和为5+2+6+4=17.故答案为:17.【点评】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.14.(3分)(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.【分析】根据题意得到1+=,原式利用此规律变形,约分即可得到结果.【解答】解:由题意得:1+==,则原式=×++…+×=2×=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)若3x﹣2y=4,则5﹣y=.【分析】把3x﹣2y=4,看作一个整体,进一步整理代数式整体代入求得答案即可.【解答】解:∵3x﹣2y=4,∴5﹣y=5﹣(3x﹣2y)=5﹣=.故答案为:.【点评】此题考查代数式求值,掌握整体代入的思想是解决问题的关键.16.(3分)按相同的规律把下面最后一个方格画出.【分析】根据题意在第一个图中,阴影部分为轴对称图形,第二个图中,两个一组,依次循环;可得答案.【解答】解:故答案为.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).【分析】由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,4;从左面看有2列,每列小正方形数目分别为2,4.据此可画出图形.【点评】此题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)【分析】直接将各数在数轴上表示,再用不等号连接即可.【解答】解:如图所示:,﹣(+2)<﹣|﹣1|<0<1<﹣(﹣3.5).【点评】此题主要考查了有理数比较大小,正确在数轴上表示各数是解题关键.19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.【分析】(1)原式第一项表示1四次幂的相反数,第二项先计算括号中及绝对值里边式子的运算,计算即可得到结果;(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1+××7=﹣1+=;(2)原式=5xy﹣x2﹣6xy+y2﹣x2﹣3xy+2y2=﹣2x2﹣4xy+3y2,当x=,y=﹣6时,原式=﹣+12+108=119.【点评】此题考查整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:因为5×3+(﹣1)×3=15﹣3=12(分),所以该队最后共得12分.【点评】注意正负数的运算法则是解题的关键.21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)【分析】首先求出几何体上面部分的体积,进而求出下面部分的体积,进而得出答案.【解答】解:如图所示:此几何体是圆锥和半球的组合体,∵AC=AB=13cm,BC=10cm,∴DC=5cm,∴AD=12cm,∴上面圆锥的体积为:×π×52×12=100π(cm3),下面半球体积为:×π×53=π(cm3),∴该几何体的容积为:100π+π=π(cm3).【点评】此题主要考查了由三视图判断几何体,正确得出几何体的组成是解题关键.22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.【分析】先去掉绝对值符号,再合并即可.【解答】解:∵﹣1<x<4,∴|x+1|+|4﹣x|=1+x+4﹣x=5.【点评】本题考查了整式的混合运算的应用,能正确去掉绝对值符号是解此题的关键.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?【分析】(1)根据“车上的人数+上车的人数﹣下车的人数=车上剩余的人数”解答;(2)代入(1)中所列的代数式求值即可.【解答】解:(1)依题意得:(10a﹣3b)+(5a﹣2b)﹣(5a﹣2b)=a﹣2b;(2)把a=250,b=100代入(a﹣2b),得×250﹣2×100=1675(人).答:在武汉站上车的有1675人.【点评】本题考查了列代数式和代数式求值.解决问题的关键是读懂题意,找到所求的量的等量关系.24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).【分析】解本题可以先去括号,就可以变成与的和.【解答】解:原式=﹣(﹣)﹣(﹣)﹣…﹣(﹣)=﹣+﹣…+=.【点评】正确观察去括号以后各数的关系,变成两数的和,是解决本题的关键.学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册第二次月考试卷(含答案)
第二次月考
测试范围:第一~第三
时间:120分钟
满分:120分
班级:
姓名:
得分:
一、选择题(每小题3分,共30分)
1、下列各式结果是负数的是(
)
A、-(-3)
B、-|-3| 、3
D、(-3)2
2、下列说法正确的是(
)
A、x2+1是二次单项式
B、-a2的次数是2,系数是1
、-23πab的系数是-23
D、数字0也是单项式
3、下列方程:①3x-y=2;②x+1x-2=0;③12x=12;
④x2+3x-2=0、其中属于一元一次方程的有(
)
A、1个
B、2个、3个
D、4个
4、如果a=b,那么下列等式中不一定成立的是(
)
A、a+1=b+1
B、a-3=b-3
、-12a=-12b
D、a=b
5、下列计算正确的是(
)
A、3x2-x2=3
B、-3a2-2a2=-a2
、3(a-1)=3a-1
D、-2(x+1)=-2x-2
6、若x=-1是关于x的方程5x+2-7=0的解,则的值是(
)
A、-1
B、1 、6
D、-6
7、如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为(
)
A、=-2,n=3
B、=2,n=3 、=-3,n=2
D、=3,n=2
8、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时、如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为(
)
A、751+(120-75)x=270
B、751+(120+75)x=270
、120(x-1)+75x=270
D、1201+(120+75)x=270
9、一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是(
)
A、100元
B、105元
、110元
D、115元
10、定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②23=32;③若a=0,则a b=0;④若2 x+x -12=3,则x=-
2、其中正确结论的序号是(
)
A、①②③
B、②③④ 、①③④
D、①②③④
二、填空题(每小题3分,共24分)
11、比较大小:-67

56、
12、“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为个,数据用科学记数法表示为

13、若a+12=0,则a3=

14、若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=

15、若a,b互为相反数,,d互为倒数,的绝对值是2,则2-xx(a+b)-d的值是

16、若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=

17、已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是

18、爷爷快八大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄、”则小明爷爷的生日是
号、
三、解答题(共66分)
19、(12分)计算及解方程:
(1)81(-3)2-19(-3)3; (2)-12-12-2313[-2+(-
3)2];
(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-
1、
20、(6分)先化简,再求值:4(xy2+xy)-13(12xy-6xy2),其中x=1,y=-
1、
21、(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价、
22、(8分)一个正两位数的个位数字是a,位数字比个位数字大
2、
(1)用含a的代数式表示这个两位数;
(2)把这个两位数的位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除、
23、(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a的值,并正确求出方程的解、
24、(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成、硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用)、
A方法:剪6个侧面;B方法:剪4个侧面和5个底面、
现有19张硬纸板,裁剪时x张用A方法,其余用B方法、
(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
25、(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a、请用这个知识解答下面的问题:
已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x、
(1)如图①,若P到A,B两点的距离相等,则P点对应的数为

(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由、参考答案与典题详析
1、B
2、D
3、A
4、D
5、D
6、
7、B
8、B
9、A
10、
11、<
12、4、28106
13、-18
14、-2
15、3或-5
16、-6
17、-17x10
18、20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=
20、
19、解:(1)原式=819+3=9+3=
12、(3分)
(2)原式=-1+1613(-2+9)=-1+127=
52、(6分)
(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x =56,系数化为1,得x=
8、(9分)
(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0、2、(12分)
20、解:原式=4xy2+4xy-4xy+2xy2=6xy
2、(4分)当x=1,y=-1时,原式=
6、(6分)
21、解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=3
20、(7分)
答:这种商品的原价是320元、(8分)
22、解:(1)这个两位数为10(a+2)+a=11a+
20、(3分)
(2)新的两位数为10a+a+2=11a+
2、(5分)因为11a+2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除、(8分)
23、解:由题意得x=3是方程122x-13=12x+a4-1的解,所以4(23-1)=3(3+a)-1,解得a=
4、(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=
45、(10分)
24、解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法、所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个、(4分)
(2)由题意得2(2x+76)=3(95-5x),解得x=
7、(8分)则27+763=30(个)、(9分)
答:能做30个盒子、(10分)
25、解:(1)1(3分)
(2)存在、(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x、由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x、因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P在点B右侧时,PA=x+2,PB=x-
4、由题意得x+2+x-4=10,解得x=
6、(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为
10、(12分)。

相关文档
最新文档