机械原理 连杆机构

合集下载

机械原理(清华) 3连杆机构

机械原理(清华)    3连杆机构

双曲柄机构
以最短杆AB相邻构件AD为机架
曲柄摇杆机构
以最短杆AB相邻构件BC为机架
曲柄摇杆机构
以最短杆AB对面构件CD为机架
双摇杆机构
杆长条件不成立时
双摇杆机构
a+e<b
急回特性:表示回程所用时间小于工作行程所用时间
行程速比系数 K
极位夹角 q(锐角)
t1 1 180 q K t 2 2 180 q
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
低副可逆性
B A
C D
曲柄摇杆机构
双曲柄机构
曲柄摇杆机构
双摇杆机构
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
曲柄摇杆机构
曲柄摇块机构
摆动导杆机构
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
2.5.3 函数生成机构的设计
已知固定铰链点A、D,设计四杆机构,使得两个连 架杆可以实现三组对应关系
函数生成机构

刚体导引机构
d
刚化反转法
以CD杆为机架时看到的四杆机构ABCD的位置相当 于把以AD为机架时观察到的ABCD的位置刚化,以D 轴为中心转过 1 2 得到的。
低副可逆性; 机构在某一瞬时,各构 件相对位置固定不变, 相当于一个刚体,其形 状不会随着参考坐标系 不同而改变。
连杆机构中构件并非一条线,而是代表一个面 刚化反转法一定要理解,熟练使用
机械优化设计方法
设计目标: min [ f( x1, x2,…… ) ] 设计变量: x1, x2,……
约束条件: F1 (x1, x2,…… ) ≤ 0 F2 (x1, x2,…… ) ≤ 0

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。

本文将对平面连杆机构进行介绍,并探讨其设计原理。

平面连杆机构是由至少一个定点和至少三个连杆组成的机构。

定点为固定参考点,连杆是由铰链连接的刚性杆件。

连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。

平面连杆机构的运动由这些连杆的位置和相互连接方式决定。

平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。

运动类型可以是旋转、平移、摆动、滑动等。

通过运动分析,可以确定连杆的长度和相互连接的方式。

2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。

例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。

3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。

静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。

4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。

运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。

5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。

通过运动分解,可以确定每个连杆的运动规律,从而进行设计。

当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。

具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。

2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。

根据机构的运动要求和外力作用,确定连杆的长度。

3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。

4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。

5.结构设计:根据上述分析和计算结果,进行结构设计。

机械原理第三章平面连杆机构及其设计

机械原理第三章平面连杆机构及其设计

b12
C1
B
B2
B1
b. 设计 b12
c12
A
B2
C1
C2
B1
A点所在线
A
D点所在线
D
C C2
D
★ 已知连杆两位置
c23
——无穷解。要唯一解需另加条件 ★ 已知连杆三位置
b23 B3
c23
——唯一解 ★ 已知连杆四位置
——无解 B3
b12 B2 B1
C1 C2
C3
AD
B2 B1
分析图3-20
C2 C1 B4
反平行四边形
车门开闭机构
3)、双摇杆机构
若铰链四杆机构的两连架杆均为摇杆, 则此四杆机构称为双摇杆机构。
双摇杆机构
双摇杆机构的应用 鹤式起重机机构
鹤式起重机
倒置机构:通过更换机架而得到的机构称为原机构的倒置机构。
变化铰链四杆机构的机架
C
B
整转副
2
(<360°)
(0~360°)
3
1
(0~360°)
(1)、取最短构件为机架时,得双曲柄机构。 (2) 、取最短构件的任一相邻构件为机架时,均得曲柄
摇杆机构。 (3)、取最短构件的对面构件为机架时,得双摇杆机构。
判断:所有铰链四杆机构取不同构件为机架时,都能演化成带 曲柄的机构。
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构?
取最短杆相 邻的构件为 机架得曲柄 摇杆机构
最短杆为 机架得双 曲柄机构
取最短杆对 边为机架得 双摇杆机构
特殊情况:
如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。

机械原理四连杆机构全解

机械原理四连杆机构全解
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。

机械原理平面连杆机构及其设计

机械原理平面连杆机构及其设计

3.3按连杆上任意标志线的三组对应位置设计四杆机构
3.4按给定的行程速比系数K设计四杆机构

南 建
§8-4 平面四杆机构的设计

高 专
一、 连杆机构设计的基本问题


作 机构选型-根据给定的运动要求选择机
者 :
构的类型;

存 云
尺度综合-确定各构件的尺度参数(长度
教 授
尺寸)。
同时要满足其他辅助条件:
K1

南 建
曲柄滑块机构的急回特性





作 者
θ 180°+作者θ:潘存云教授





180°-θ

θ 180°+θ
作者:潘存云教授
180°-θ
思考题: 对心曲柄滑块机构的急回特性如何? 导杆机构的急回特性 应用:节省返程时间,如牛头刨、往复式输送机等。
对于需要有急回运动的机构,常常是根据需要的行程速比系数K, 先求出θ ,然后在设计各构件的尺寸。

专 用
若∠B1C1D≤90°,则
γ1=∠B1C1D
作 者
∠B2C2D=arccos[b2+c2-(d+a)2]/2bc
: 潘 存
若∠B2C2D>90°,

γ2=180°-∠B2C2D
云 教 授
γmin=[∠B1C1D, 180°-∠B2C2D]min
机构的传动角一般在运动链 最终一个从动件上度量。
将以上三式两两相加得:
a≤ b, a≤c, a≤d
AB为最短杆 若设a>d,同理有:
B’
a
b C’ b c

机械原理连杆机构

机械原理连杆机构

• 应定期检查和更换轴承。
• 减少摩擦和提差。
• 修复偏差可保证机构正常 运行。
结论和展望
连杆机构是机械工程中的重要构件,可应用于各种应用领域。随着技术的发展,我们可以期待连杆机构在未来继续 发挥更加重要的作用。
传动装置
连杆机构常常和其他机械装置如齿 轮组合使用,进一步发挥作用。
2 平衡设计
在设计连杆机构时,必须确保连杆组件的总质量分布均匀、平衡,避免不必要的震动和 噪音。
3 润滑设计
对于长时间操作的机构,应添加水平和垂直滑动表面以及内置的润滑系统(如油泵)。
故障排除技巧
处理连杆机构故障时,您需要全面了解其原因并确定问题解决方案。
磨损和裂纹
轴承失效
• 可更换状况严重的部件。 • 材料选择确保强度和耐久性。
连杆长度影响
修改连杆长度可调节机构运行的速度和步幅。
固定连杆导向
涉及在连杆机构中添加轴承等零部件以控制连杆方向。
摩擦和能量耗散
分析连杆机构在运动中会损耗多少能量,以便更好地为机构添加适当的润滑和润滑系统。
应用领域
连杆机构可应用于各种机械领域,如机床、静态结构、动态系统以及齿轮系统。它在制造行业中扮演着重要角色。
1
机床设计
用于切削、磨削、钻孔和铰孔等操作。
2
内燃机
用于定义汽车发动机中的气缸、连杆、曲轴等部分。
3
飞机制造
用于转化燃油能量为飞机飞行的动能。
设计要点
在设计连杆机构时,请务必考虑到以下注意事项,以便获得最佳性能和高效率。
1 材料选择
选择适当的材料来保证连杆机构在长期使用和高强度运动状态下不会疲劳和变形。
滑块曲柄机构
将旋转运动转换为直线运动,广泛 用于内燃机活塞机构中。

机械原理第二章 连杆机构(第二版)

机械原理第二章 连杆机构(第二版)
C2 180º + A B2 180º C1

B1

D
m 2 / t 2 180 K m 1 / t1
180 180 180
问题:急回运动与K有关,K与什么有关?
极位夹角:作往复运动的从动杆在两极限位置时,原动件在两 对应位置间所夹的锐角。
A B2

B1

D
摆动导杆机构
极限位置1:连杆与曲柄拉伸共线 极限位置2:连杆与曲柄重叠共线
l AC 1 a b l AC 2 b a
H

2.急回、极位夹角、行程速比系数
急回运动 :工作行程 、空回行程
工程中将作往复运动(摆动或移动)的从动杆来回运动时间的 比值称为机构从动杆往复行程时间比系数,简称行程速比系数,用 字母K表示,是机构的基本的运动特征参数。
4、压力角、传动角与 传力特性
通过对机构压力角、传动角分析及与之相关的力学与结构特征 来校核和描述机构的传力特性。 1)压力角与传动角
压力角:从动杆受力点处力的方向与受力点速度方向夹的锐角, 称为机构的压力角。
压力角的余角为机构的传动角,用表示。
+=90
B
C


D

F
连杆机构中连杆与从动杆 夹的锐角为机构的传动角 。
平行四边形机构:双曲柄机构中两对边构件长度相等且平行。 特点:主从动曲柄等速同相转动,连杆作平动。 反平行四边形机构
3.双摇杆机构
在铰链四杆机构中,若两连架杆均为摇杆,则称为双摇杆机构。 实例:鹤式起重机 在双摇杆机构中,如果两摇杆长度相等、则称为等腰梯形机构。 实例:汽车前轮转向机构
二.四杆机构具有转动副和曲柄存在的条件

机械原理四连杆机构分析

机械原理四连杆机构分析

图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:

机械原理 第2章-连杆机构

机械原理 第2章-连杆机构

图2-8a
图2-8b
内燃机内的核心构件活塞、连杆、曲轴和缸套就 是曲柄滑块机构。其活塞就是滑块,缸体就相当 于上图的机架,它的制造要求十分精密。
22
2、导杆机构
图2-9(a)就是和图2-8一样的曲柄滑块机构。但如果改AB杆(1杆)为 机架,就变为图(b)所示的导杆机构。在图(b)中,杆4称为导杆,滑 块3相对导杆滑动并一起绕 A点转动,通常把杆2作为原动件。在图(b) 中,由于L1<L 2,两连架杆2 和4 均可相对于机架 1整周回转,称为曲柄转 动导杆机构或转动导杆机构。 但图(b)中如果L1>L2,则图(b)就变成为图2-10了,此时连架杆4 就只能往复摆动,称为曲柄摆动导杆机构或摆动导杆机构。摆动导杆机 构在牛头刨床中应用较多,其简图见右下图。
〖1〗最短杆的对边作为机架,两连架杆就是二个摇杆。 〖2〗这时最短杆与最长杆长度之和不论小于或大于其余两杆长度之和都只 能得到双摇杆机构,且有,如果最短杆和最长杆长度之和大于其余两杆长 度之和,无论哪个构件作机架都只能得到双摇杆机构。
18
(3)双摇杆机构的应用
双摇杆机构有广泛的应用。如下面二图中都是由摇杆机构组成,它们 都是把最短边BC的对边AD作机架。请注意它们的运动轨迹,对左图鹤式 起动机,它能使E点沿水平线EE’移动,这对吊放物体很有利;而对于右 图飞机起落架,放下时ABC成一线,保证了稳定,收起时轮胎成水平,节 约了空间。这些设计十分巧妙,这是我们要学习的。
图2-2e
图2-2e1
图2-2e2 机车车轮联动机构
16
(3)双曲柄机构的应用 双曲柄机构也有一定的应用,如下面惯性筛就是一种, 但用的最多是平行四边形机构,所以又叫平行双曲柄机构。 下面的摄影平台升降机构,就是利用了平行四边形机构运 动中,构件始终保持水平的特点,使人站在上面不觉得倾 斜。

机械原理第8章 连杆机构及其传动特点

机械原理第8章 连杆机构及其传动特点

机械原理第8章连杆机构及其传动特点●考纲●1.铰链四杆机构的基本类型,演化和应用●2.曲柄存在条件、行程速比系数、传动角、压力角、死点●2.图解法设计四杆机构●笔记●8.1连杆机构及其传动特点●连杆机构的共同特点是其主动件的运动都要经过一个不与机架直接相连的称之为连杆(coupler)的中间构件,才能传动至从动件,故而称其为连杆机构(linkage mechanism)。

●连杆机构的传动特点●连杆机构具有以下一些传动特点:●1)连杆机构中的运动副一般均为低副(故又称其为低副机构,lower pairmechanism)。

其运动副元素为面接触,压强较小,承载能力较大,润滑好,磨损小,加工制造容易,且连杆机构中的低副一般是几何封闭,对保证工作的可靠性较为有利。

●2)在连杆机构中,在主动件的运动规律不变的条件下,可用改变各构件的相对长度来使从动件得到不同的运动规律。

●3)在连杆机构中,连杆上各点的轨迹是各种不同形状的曲线(称为连杆曲线,coupler-point curve),其形状随着各构件相对长度的改变而改变,故连杆曲线的形式多样,可用来满足一些特定工作的需要。

●此外连杆机构还可以很方便的达到改变运动的传递方向,扩大行程,实现增力和远距离传动等目的。

●连杆机构也存在如下一些缺点:●1)由于连杆机构的运动必须经过中间构件进行传递,因而传动路线较长,易产生较的误差累积,同时也使机械效率降低。

●2)在连杆机构运动中,连杆及滑块所产生的惯性力难以用一般平衡方法加以消除而连杆机构不宜用于高速运动。

●8.2平面四杆机构的基本类型及应用●1.铰链四杆机构的类型及应用●(1)铰链四杆运动链周转副存在的条件平面饺链四杆机构中曲柄存在的前提是其运动副中必有周转副存在●转动副为周转副的条件是:●1)最短杆长度+最长杆长度≤其他两杆长度之和 (杆长条件)l_{min}+l_{max}≤l_i+l_j●2)组成该周转副的两杆中必有一个为最短杆(最短杆两端最易产生周转副)●此外,为了使四个杆能够装配成封闭的运动链,最长杆长度必须小于其他三个杆长度之和●I_{max} < l _{m in}+l_i+ l_j●(2)较链四杆机构的基本类型●满足杆长条件l_{min}+l_{max}≤l_i+l_j●1).l_{min}+l_{max}<l_i+l_j●①最短杆为连架杆,曲柄摇杆机构●②最短杆为机架,双曲柄机构●③最短杆为连杆,双摇杆机构●2).l_{min}+l_{max}=l_i+l_j●①两两相邻杆长度相等,泛菱形结构●长杆为机架,曲柄摇杆机构●短杆为机架,双曲柄机构●两相邻杆重叠时,一二杆机构●②两两相对杆长度相等时,双曲柄机构●两两相对杆平行,平行四边形结构●平行四边形结构三个特点●①两曲柄以相同角速度同向转动;●②连杆作平动;●③连杆上的任一点的轨迹均是以曲柄长度为半径的圆。

机械原理连杆机构的应用

机械原理连杆机构的应用

机械原理连杆机构的应用1. 引言机械原理是工程学中的一门基础课程,它研究的是机械工程中各种机械部件运动与力学性能的基本原理和方法。

连杆机构是机械原理中的一个重要内容,它由多个刚体连接而成,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。

本文将探讨连杆机构的应用领域及其在一些具体行业中的运用。

2. 连杆机构的基本原理连杆机构由连杆和连杆的连接副构成,常见的连杆有曲柄、摇杆、滑块等。

连杆机构的运动特点主要包括以下几个方面: - 连杆的长度和角度决定了机构的运动轨迹; - 连杆可以传递和转换动力; - 连杆的长度和角度对机构的性能和运动速度有影响; - 通过改变连杆的连接方式和结构,可以实现不同的运动规律和功能。

3. 连杆机构的应用领域连杆机构作为一种基本的运动转换机构,在工程学中有广泛的应用。

以下是一些常见的应用领域:3.1 汽车工业连杆机构在汽车工业中起着关键作用,主要应用于发动机和悬挂系统。

在发动机中,连杆机构将活塞的上下运动转化为曲轴的旋转运动,从而驱动汽车前进。

而在悬挂系统中,连杆机构用于连接车轮和车身,通过调节连杆的长度和角度来实现车身的稳定性和操控性。

3.2 机械制造在机械制造领域,连杆机构常常用于实现复杂的运动转换和工艺操作。

例如,在机床加工中,连杆机构能够将旋转运动转化为直线运动,实现工件的切削加工。

此外,连杆机构还被广泛运用于起重机械、输送设备等工程机械的设计和制造过程中。

3.3 机器人领域机器人是现代工业生产中不可或缺的一部分,而连杆机构在机器人的运动机构中占有很重要的地位。

机器人的各种关节和手臂动作都是通过引入连杆机构实现的,使得机器人能够具备多自由度的灵活运动,从而适应不同的工作环境和任务。

3.4 传输系统连杆机构在传输系统中也有广泛的应用。

比如,在工业生产中,连杆机构可以用来传输物料,实现物料的输送、分拣和定位等功能。

此外,连杆机构还可以应用于流水线装配系统、飞行器起落架等领域。

机械原理——几种著名的连杆机构

机械原理——几种著名的连杆机构

机械原理——⼏种著名的连杆机构
连杆机构机械的组成部分中的⼀类,指由若⼲(两个以上)有确定相对运动的构件⽤低副(转动副或移动副)联接组成的机构。

连杆在是⼏种有哪些应⽤呢,我们⼀起来看以下吧。

1. ⽡特连杆,⽡特连杆是由⽡特发明的,没错就是那个特别流弊改良了蒸汽机的⽡特。

在⽡特连杆中,移动的中点⾃由度被限制,只得做近似直线运动。

最早是⽤在⽡特蒸汽轮机上的,后来也⽤做汽车的悬架结构中了。

2. Jansen 连杆是由Jansen发明的,⽤于模拟平稳⾏⾛,Jansen利⽤这种连杆制造了著名的海滩巨兽,这种连杆兼具美学价值和技术优势,通过简单的旋转输⼊就可模仿⽣物⾏⾛运动,这种连杆已经⽤于⾏⾛机器⼈和步态分析。

3. 切⽐雪夫连杆机构经常被⽤于模拟机器⼈的⾏⾛。

4. 波塞利连杆机构
波塞利连杆是第⼀个真正把旋转运动转化为绝对直线运动的平⾯连杆机构,。

机械原理 平面连杆机构及设计课件

机械原理 平面连杆机构及设计课件

仿真分析
利用计算机仿真软件对机构进行模拟分析, 评估其性能。
实验测试
通过实际测试机构的性能,与理论分析进行 对比验证。
优化算法
采用遗传算法、粒子群算法等智能优化算法 ,对机构参数进行优化。
04
平面连杆机构的运 动分析
机构运动的基本方程
01
平面连杆机构的基本运动方程是 根据机构的运动学和动力学特性 建立的,它描述了机构中各构件 之间的相对运动关系。
刚度对机构性能的影响
刚度不足会导致机构运动失 真、振动等问题,影响其正 常工作。
06
平面连杆机构的实 例分析
曲柄摇杆机构的实例分析
曲柄摇杆机构是一种常见的平面连杆机构,它由曲柄、摇杆、连杆和机架组成。 曲柄旋转,通过连杆传递运动给摇杆,使摇杆在一定范围内摆动。
实例:缝纫机脚踏板机构。缝纫机脚踏板机构就是一个典型的曲柄摇杆机构的应 用。当脚踏板转动时,通过连杆将运动传递给摇杆,使机头上下摆动,完成缝纫 工作。
应力分析
通过计算机构各构件在工作状态下的应力分布,评估其强度是否 满足设计要求。
疲劳强度
考虑机构在循环载荷作用下的疲劳强度,预测其使用寿命。
可靠性分析
基于概率论和统计学方法,评估机构在各种工作条件下的可靠性。
机构的刚度分析
刚度定义
刚度表示机构抵抗变形的能 力。
刚度分析方法
通过有限元分析、实验测试 等方法,评估机构的刚度性 能。
双曲柄机构的实例分析
双曲柄机构由两个曲柄、连杆和机架组成。两个曲柄同时旋 转,通过连杆传递运动,使另一个曲柄产生相对的旋转运动 。
实例:飞机起落架机构。飞机起落架机构中的前轮转向机构 就是一个双曲柄机构的应用。当飞机滑行时,双曲柄机构使 前轮左右摆动,实现飞机的前轮转向。

机械原理与设计平面连杆机构

机械原理与设计平面连杆机构

机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。

平面连杆机构是其中最简单、常见的一种连杆机构。

本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。

一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。

平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。

平面连杆机构由连杆、铰链和主动副组成。

连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。

铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。

主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。

二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。

在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。

这种运动形式常见于内燃机的活塞连杆机构。

2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。

这种运动形式可以用来实现机械手臂等装置的运动。

3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。

这种运动形式常见于一些特殊装置的设计。

平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。

其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。

三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。

2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。

3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。

4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。

机械原理四连杆机构

机械原理四连杆机构

播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。

《机械原理》连杆机构

《机械原理》连杆机构
第八章 平面连杆机构
基本内容: 1)平面连杆机构的定义、类型及应用; 2)四杆机构的基本型式及演化; 3)平面四杆机构的基本特性; 4)平面四杆机构的运动设计(尺寸综合)。
连杆机构的定义: 由若干个刚性构件用低副(转动副、移动副)
连接而成的机构—连杆机构,又称为低副机构。 用四个转动副连接而成的四杆机构—铰链四杆机
图(a) :对心曲柄滑块机构。
偏距 e 等于零。滑块 C 的行程等于2 lAB ;往
返的平均速度也相同。 图(b):偏置曲柄滑块机构。
偏距 e 不等于零。滑块 C 的行程不等2 lAB ;
往返的平均速度也不相同。
3. 取不同的构件为机架
(1)曲柄滑块机构
杆2长度>杆1长度,形
成转动导杆机构;
杆2长度<杆1长度,形
lA DlBC lC D lAB
2)若AB为最长杆
lAD lAB lCD lBC
lAB80mm lAB12m0m
结论: 8m 0 m lAB 12 m0m
(3)若欲成为双摇杆机构,则应分析两种情况: 1)机构各杆件长度满足“杆长之和条件”,但
以最短杆的对边为机架; 2)机构各杆件长度不满足“杆长之和条件”。 *本题只存在第二种情况。
法确定:(1)曲柄和连杆的长度
的 min 。
lAB,lBC
;(2)机构
拟设计一偏置曲柄滑块机构。已知滑块行
程 H50 m,m偏距 e20mm ,k1.5,试用图
解法确定:
((21))曲 曲柄 柄和 为连 原杆 动的 件长时度机构lA 的B, lmBaC,x;m ax;
(3)滑块为原动件时机构的死点位置。
D 时 lAB 的取值范围。
解: lA B lB C lC D lA D 0 lA B 7 m 0m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H (a b) 2 e 2 (b a ) 2 e 2
0
,有急回特性。 1 B
A
1

有急回特性。

B1
2

B2
三.平面四杆机构的传动角与死点
(一)压力角与传动角 在不计摩擦力、重力、惯性力的条件下,机构 压力角: 中驱使输出件运动的力的方向线与输出件上受 力点的速度方向线所夹的锐角。 F F cos 1 F2 传动角:压力角的余角。 F F2 F sin C 越小,受力越好。 2 B F1v 越大,受力越好。 c 1 1 3 C min A vB D 4 B
3 以最短杆的对边构件为机架,则此机构为双摇杆机构。
(2)如果最短杆与最长杆的长度之和大于其它两杆长度之和 (不满足杆长和条件),则不论选哪个构件为机架, 都为双摇杆机构。
2.滑块机构有曲柄的条件
B 1 a
A
4 2 b C3
B2
B2 2 b C 3 4
B1
1
b
a a
1

E
D
A
a
F G
b
B2
A

(<360°) 1
(0~360°)
(0~360°)
A

(<360°) D
4 双曲柄机构
D
4 双摇杆机构
B 1 A
B
2
4
2
C 3 1 A
4
C 3
(a)曲柄滑块机构
B 1 A
(b)曲柄转动导杆机构
B
回转导杆机 构
2 4
C 3 A1
2 4
(c)曲柄摇块机构
B
1 A
3
C
(c’)曲柄摆动导杆机构
A 2
摆角 D

摇杆点C的 平均速度
v1 C1C2 / t1
v2 C2 C1 / t 2
2
2
1
(2)输出件的行程速度变化系数K: 空回行程平均速度v2与工作行程平均速度v1之比。
v2 t1 1 180 K v1 t2 2 180
K 1 180 K 1
连杆机构 由低副(转动副、移动副、球面副、圆柱副、及
螺旋副等)联结而成的机构。或称低副机构。
椭圆规机构3
曲柄摇杆机 构 曲柄滑块机构(对心)
机械手
冲床
牛头刨床
牛头刨床 插齿机构
§2-1 连杆机构的特点
根据其构件间的相对运动分为平面或空间连杆机构。 根据构件数目分为四杆机构、五杆机构…。 广泛应用的是平面四杆机构,而且它是构成和研究平面 多杆机构的基础。 本章主要讨论平面四杆机构。 平面连杆机构的主要优点: (1)能够实现多种运动轨迹 曲线和运动规律, (2)低副不易磨损而又易于加工 以及能由本身几何形状保持接触等。 平面连杆机构的主要缺点: (1)连杆机构作变速运动的构件惯性力及惯性力矩难 以完成平衡; (2)连杆机构较难准确地实现预期的运动规律,设计 方法也较复杂。
max
ae arcsin b
3.AB为主动的导杆机构
1
2 B
F vB3
A
1
2
a
3
1
A
0
3 图1 C
C

4
B

F vB3
d
max ?
图2
e
三.平面四杆机构的传动角与死点
(一)压力角与传动角 (二)平面四杆机构的最小传动角位置 (三)机构的死点位置
死点:当机构处于传动角 0 (或压力角
C B2 c vB
90)的机构位置
A
vB B b FB a 1 A
2 3 d 4 画出压力角

B1 FB 脚
D
D
C2
踏板
C1 缝纫机主运动机构
请思考: 下列机构的死点位置在哪里;怎样使机构通过死点位置。 B 2 b 2 B
a
1
C 3 4
1
vc
A
A
死点的利用:
B2 A C
3
D
C2 B1
C1
一. 刚体位移矩阵
§2-5 平面四杆机构的解析法设计
Si
y 1 . 构件在平面上的位置表示 用构件上某点的坐标及通过该点 Qi xi yi 的某一直线与固定坐标系的x轴 y1 i x1' pi Q1' 之夹角来确定。例如 位置1的位置参数: S1 Xp1 、 yp1、 y1 ' P1' 1 1 Q1 Oi 位置i的位置参数: p1 Xpi 、 ypi、 i x x1 OO 2. 刚体位移矩阵 1 式中xOi、 1Oi为动参考系坐标原点在固定坐标系中的位移, xQi 构件S上任一点的运动看成是:随动坐标系绕固定 cos y i sin 1i x pi x p1 cos1i y p1 sin 1i xQ1 y坐标系原点O的转动;及随动坐标系平动的合成运动。 sin 可用已知点p1、pi的坐标表示。sin y cos y xxOi 1i xx pi x p cos xip1 1 1 p1 cos1i y pi 1 1 Qi Q1 Q1 cos1i1 yQsin yip1i sin 1i 1i Q1 1 yy 0 xy sin y cos1 cos 1 1 QOi Q1pi 0 x1i1 sinQ1 1i y1i1 p p (i=2、3…n) 1i
一.平面四杆机构的功能及应用
1 .刚体导引功能 2.函数生成功能 3.轨迹生成功能 轨迹生成功能 是指连杆上某点通过某一 预先给定轨迹 的功能。 连杆
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 3.轨迹生成功能 2.函数生成功能 4.综合功能 O1 D1 上剪刀 D2 下剪刀
上连杆 O3

下连杆

O4 O2
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用 二.运动设计的基本问题与方法
1 .平面四杆机构设计的主要任务: 在型综合的基础上,根据机构所要完成的功能运动而提出 的设计条件(运动条件、几何条件和传力条件等),确定机构 的运动尺寸(一般又称为尺度综合),画出机构运动简图。 2 .设计中应满足的附加条件: (1)要求某连架杆为曲柄; (2)要求机构的运动具有连续性; (3)要求最小传动角在许用传动角范围内,即 min (4)特殊的运动要求,如要求机构输出件有急回特性; (5)足够的运动空间等。 3 . 平面四杆机构运动设计的问题概括成下述两个基本问题 (1)实现已知运动规律问题;(2)实现已知轨迹问题 4 .设计方法 (1)实验法;(2)几何法(作图法);(3)解析法
(b>c) (2b)
'
B
1
a
A
b
c
d
4
D r 3
C b 3 c
a-d
B2
r2
d c a b (2a )
d b a c (2b')
由(1)及(2a' )(2b')可得
d+a
d a , d b, d c
铰链四杆机构的类型与尺寸之间的关系:
在铰链四杆机构中: (1)如果最短杆与最长杆的长度之和小于或等于其它两杆 长度之和 ——满足杆长和条件 且: 1 以最短杆的相邻构件为机架,则此机构为以最短杆 为曲柄的曲柄摇杆机构; 2 以最短杆为机架,则此机构为双曲柄机构;

平面四杆机构具有急回特性的条件: (1)原动件作等速整周转动;
(2)输出件作往复运动;
(3)
0
B2
2.曲柄滑块机构中,原动件AB以 1等速转动 B 2 b B 1 C2 C3 a b 2 1 1 1 a B1 C2 C 3 C1 B1 H AABiblioteka C144H
B2
偏置曲柄滑块机构
对心曲柄滑块机构 H=2a, 0 ,无急回特性。





D
1
B 2 b C 1 a
A
F
A
3

4
vc
F

F

vc 2 1 3 B C 2 B
C
1
A
1
A
1
2 B
F vB3
0
v F 1
0 ??
3 C
B 2 b C 1 a
A
3
3
4
vc
画出压力角
三.平面四杆机构的传动角与死点
(一)压力角与传动角 (二)平面四杆机构的最小传动角位置 1 .铰链四杆机构中,原动件为AB。 F2 B 2 b f 4 d C
地面
飞机起落架机构
四.运动的连续性
遇到的运动不连续问题有: C1 B2 1 A 2 B3 4 C1 C2 C3 B 1 A 2 3 1
C C 2
B1
3
D
4
D
2
C1
C
C2
1.错序不连续
2.错位不连续
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 刚体导引 是机构能引导刚体(如连杆)通过一系列给 定位置。
双曲柄机构
二、平面四杆机构的演化 1.转动副转化成移动副的演化
C
B
1 A
2 3 4
C
3
C
D
A B 1
2
3
4
B 1 A
D
B 1 A
2 4
2
4
相关文档
最新文档