最小二乘法拟合圆公式推导及matlab实现
最小二乘法曲线拟合的Matlab程序
方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
最小二乘曲线拟合及其MATLAB实现
现代测量数据处理方法学生课题论文论文题目:最小二乘曲线拟合及其MATLAB实现学院:土木工程学院年级专业班:2013级测绘工程一班学生姓名:学生学号:指导老师提交时间:2016年1月成绩教师签名目录0 引言 (3)1 曲线拟合与最小二乘法概述 (4)1.1 曲线拟合简介 (4)1.2 最小二乘法简介 (5)2 曲线拟合的最小二乘法原理 (6)2.1 原理的阐述及理论公式推导 (6)2.2 结合实例分析与理解 (8)2.3 总结归纳求解步骤 (11)3 基于MATLAB的最小二乘曲线拟合 (12)3.1 MATLAB软件介绍 (12)3.2 求解的基本理论阐述 (13)3.3 结合实例进行MATLAB解算 (14)4 最小二乘曲线拟合案例分析与解算 (16)4.1 案例叙述 (16)4.2 数据输入与分析 (17)4.3 进行拟合求解 (18)4.3.1 手工解算 (18)4.3.1 基于MATLAB的解算 (19)4.4 拟合函数的精度检测 (21)4.5拟合函数在实际运用中的优势 (22)5 结论 (23)参考文献 (24)最小二乘曲线拟合及其MATLAB 实现陈涛1(1. 重庆交通大学土木工程学院,重庆400074;)摘 要随着人类认识能力的不断进步以及计算技术的快速发展,对于变量之间的未知关系,应用曲线拟合的方法对揭示其内在规律具有重要的理论与现实意义。
在科学实验数据的处理、分析时,实验数据拟合是经常采用的一种方法。
本文将采用最小二乘法对给定的实验数据进行拟合并得到拟合曲线,加深大家对最小二乘曲线拟合原理的理解。
同时将根据最小二乘拟合理论,并利用MATLAB 数值分析软件进行编程,解决最小二乘曲线拟合在塔机起重量监测系统中的应用问题,实现相应案例数据的曲线拟合,获得了曲线模型对相应数据的拟合曲线,很好地解决了该工程案例的曲线拟合问题。
关键词:曲线拟合,最小二乘法,MATLAB0 引 言在科学实验的统计方法研究中,往往要从一组数据()i i y x ,()m 21,0i ,,,Λ=中,寻找自变量x 与因变量y 之间的函数关系()x y F =。
最小二乘法圆拟合及matlab程序
Q(a,b, c)
a
2( X i2 Yi2 aX i bYi c) X i 0
①
Q(a,b, c)
b
2( X i2 Yi2 aX i bYi c)Yi 0 ②
Q(a,b, c)
c
2( X i2 Yi2 aX i bYi c) 0 ③
最小二乘法圆拟合
1
最小二乘法拟合圆曲线: R2 (x A)2 ( y B)2
R2 x2 2Ax A2 y2 2By B2
令a=-2A,b=-2B, c A2 B2 R2
则:圆的另一形式为:
x2 y2 ax by c 0
2
A a 只需求出参数a,b,c即可以求的圆半径参数: 2
A a 2
B b 2
R 1 a2 b2 4c 2
9
t=0:0.01:pi; a=20;%设定圆心X轴数值 b=30;%设定圆心Y轴数值 r=5;%设定圆半径数值 x=a+r*cos(t)+randn(1,315); y=b+r*sin(t)+randn(1,315); plot(x,y); hold on; x=x(:); y=y(:); m=[x y ones(size(x))]\[-(x.^2+y.^2)]; xc = -.5*m(1)%拟合圆心X轴数值 yc = -.5*m(2)%拟合圆心Y轴数值 R = sqrt((m(1)^2+m(2)^2)/4-m(3))%拟合半径数值 plot(xc,yc,'r-x',(xc+R*cos(t)),(yc+R*sin(t)),'r-'); axis equal;
最小二乘法拟合matlab
最小二乘法拟合matlab
最小二乘法拟合MATLAB
最小二乘法是一种有效地估计未知参数值的统计学方法,它假定误差服从正态分布,然后进行极大似然估计。
下面我们就来介绍一下如何使用MATLAB来拟合最小二乘法。
1.第一步:绘制出要拟合的数据,这里我们绘制出了一个简单的抛物线数据:
x=[-3 -2 -1 0 1 2 3];
y=[6 3 1 0 -2 -4 -7];
plot(x,y);
2.第二步:根据你要拟合的函数,构建出你所要拟合的模型。
这里,我们想拟合一条抛物线:y=ax2+bx+c ;
3.第三步:定义拟合函数:
fun=@(x,xdata)x(1)*xdata.^2+x(2)*xdata+x(3);
4.第四步:调用最小二乘法函数:
[x,resnorm,residual,exitflag,output,lambda,jacobian]=lsqcur vefit(fun,[1 1 1],x,y);
现在你已经可以看到拟合函数的参数了:
x的值为[1.7, 0.3, -1.5],
而拟合函数为: y=1.7x2+0.3x-1.5
因此,使用MATLAB调用最小二乘法可以很方便地拟合出任意复
杂的函数,并且可以得到准确的参数值。
(完整word版)最小二乘法拟合圆公式推导及matlab实现
2009-01-17 |最小二乘法(least squares analysis) 是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
小二乘法通常用于曲线拟合(least squares fitti ng) 。
这里有拟合圆曲线的公式推导过程和vc实现。
最小二乘法拟會圆曲线;= (x- +R2 = +- 2By4-B2令a=-2J4b = -2Bc = J^ +矿-0可得圆曲线方程的另一个册式Ix2 -\-y3十切十u = 0只要求出参数就可以求得圆心半径的参教;d)样本集(禺<并e (123…N)中点到圆心的距离为a:打=(禺・4)2+(E傢点(耳乙)到圆边嫌的距离的平方与和半径平方的差为:@=£2_衣=(圣.4)2+(込.8)2_氏2=血2+込2+込+&乙+卍令Q(a,b,c)为Q的平方和:Q(aM = Z^2=工【(*/ + §2 + 込+b 齐+C)]2求参数a f b,c使得Q(a,g的值最小值。
解・PTT •平方差Qgg大于0,因此函数存在大于或等于0的极小值,极大值为无穷大.F(a,M)对a,吐求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值.绘仏"疋)=工2窗 +里+込+埒+c)Xjda —=0 迤(a,bQ =匸2阳+貯+込+坷+训=0範仏上疋)=工2(禺2+乙2+込 +空+° = 0 d解这个方程组。
(2)(3)(4)di(诵先消去c(2) W ⑷*工扎得:Ng 代'+Y-+aX +bY + c)X -工莎‘ +严 +aX +bY+c)x^X = 0 N^(X 2 +Y : +bY)X -^(X : +Y : +aX +bY)x^X =0("工禺2_工兀工兀)a + (“Y*占一工禺工齐仏(*+ + M 工*必2 -工牡丁 +去2)工禺=0(3) *N_⑷*工£得:N 工(X’ + y' + oZ +bY+c)Y-^(X 2 +Y- +aX +bY + c)x^Y =Q 吧(/+护 +aX +bY)Y +Y : +aX +dK)xVy =o (N'X 必一工禺工齐归+ (“丫呼一工§工齐)3 +“Y+N 工厅一 g af +严)三齐=o C =〔NgQ -gX 二X)D = (N 工尤F -工龙三卩)E-N^X 、+N^XY -工疔+丫‘)工XG = (NM 旷-三丫工丫)H =NW X'Y 七NT H -工 2’ +K-)YK可解得:|G? + Db + 5 = 0Da+Gb + H = 0HD-EG a = r CG-D 、v HC- ED o =D' _GC 工(疔+齐2)+幺工兀+c ―― ---------------------------------------------- N得A 、B 、R 的估计拟合值:R= - Ja‘ +2?' -牡 2(6)matlab 实现:function [R,A,B]=circ(x,y,N)x1 = 0;x2 = 0;x3 = 0;y1 = 0;y2 = 0;y3 = 0;x1y1 = 0;x1y2 = 0;x2y1 = 0;for i = 1 : Nx1 = x1 + x(i);x2 = x2 + x(i)*x(i);x3 = x3 + x(i)*x(i)*x(i);y1 = y1 + y(i);y2 = y2 + y(i)*y(i);y3 = y3 + y(i)*y(i)*y(i); x1y1 = x1y1 + x(i)*y(i); x1y2 = x1y2 +x(i)*y(i)*y(i); x2y1 = x2y1 + x(i)*x(i)*y(i); endC = N * x2 - x1 * x1;D = N * x1y1 - x1 * y1;E = N * x3 + N * x1y2 - (x2 + y2) * x1;G = N * y2 - y1 * y1;H = N * x2y1 + N * y3 - (x2 + y2) * y1;a = (H * D - E * G)/(C * G - D * D);b = (H * C - E * D)/(D * D - G * C);c = -(a * x1 + b * y1 + x2 + y2)/N;A = a/(-2); %x 坐标B = b/(-2); %y 坐标R = sqrt(a * a + b * b - 4 * c)/2;void CViewActionImageTool::LeastSquaresFitting(){if (m_nNum<3){ return; } int i=0;double X1=0;double Y1=0;double X2=0;double Y2=0;double X3=0;double Y3=0;double X1Y1=0;double X1Y2=0;double X2Y1=0;for (i=0;i<m_nNum;i++){X1 = X1 + m_points[i].x;Y1 = Y1 + m_points[i].y;X2 = X2 + m_points[i].x*m_points[i].x;Y2 = Y2 + m_points[i].y*m_points[i].y;X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x;Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y;X1Y1 = X1Y1 + m_points[i].x*m_points[i].y;X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y;X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G ,H,N;double a,b,c;N = m_nNum;C = N*X2 - X1*X1;D = N*X1Y1 - X1*Y1;E = N*X3 + N*X1Y2 - (X2+Y2)*X1;G = N*Y2 - Y1*Y1;H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1;a = (H*D-E*G)/(C*G-D*D);b = (H*C-E*D)/(D*D-G*C);c = -(a*X1 + b*Y1 + X2 + Y2)/N;double A,B,R;A = a/(-2);B = b/(-2);R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B;m_fRadius = R; return;}。
最小二乘法圆拟合及matlab程序
X i2 Yi2 +aX i bYi c
3
令Q(a,b,c)为
的平方和:
i
Q(a, b, c) i2 [( Xi2 Yi2 aXi bYi c)]2
下面求参数a,b,c使得Q(a,b,c)的值最小即可
4
F(a,b,c)对a,b,c求偏导,令偏导等于0,得到极值点,比较所有极值点的函 数值即可得到最小值。
② × N- ③ × Yi
且令 C (N Xi2 Xi Xi )
D (N XiYi Xi Yi )
E N
X
3 i
N
X iYi2
( X i2 Yi2 )
Xi
G (N Yi2 Yi Yi )
H N Yi3 N Xi2Yi ( X i2 Yi2 ) Yi
最小二乘法拟合圆曲线: R2 (x A)2 ( y B)2
R2 x2 2Ax A2 y2 2By B2
令a=-2A,b=-2B, c A2 B2 R2
则:圆的另一形式为:
x2 y2 ax by c 0
1
只需求出参数a,b,c即可以求的圆半径参数:
a A
2
B a 2
Q(a,b, c)
a
2( X i2 Yi2 aX i bYi c) X i 0
①
Q(a,b, c)
b
2( X i2 Yi2 aX i bYi c)Yi 0 ②
Q(a,b, c)
c
2( X i2 Yi2 aX i bYi c) 0 ③
5
由 ① × N- ③ × Xi
9
6
解得: Ca+Db+E=0
Da+Gb+H=0
a
最小二乘法曲线拟合的Matlab程序
最⼩⼆乘法曲线拟合的Matlab程序⽅便⼤家使⽤的最⼩⼆乘法曲线拟合的Matlab程序⾮常⽅便⽤户使⽤,直接按提⽰操作即可;这⾥我演⽰⼀个例⼦:(红⾊部分为⽤户输⼊部分,其余为程序运⾏的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输⼊x,y.x=[1,2,3,4]y=[3,4,5,6]通过下⾯的交互式图形,你可以事先估计⼀下你要拟合的多项式的阶数,⽅便下⾯的计算.polytool()是交互式函数,在图形上⽅[Degree]框中输⼊阶数,右击左下⾓的[Export]输出图形回车打开polytool交互式界⾯回车继续进⾏拟合输⼊多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平⽅和 Q = 0.000000相关指数 RR = 1.000000请输⼊你所需要拟合的数据点,若没有请按回车键结束程序.输⼊插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig⼀些matlab优化算法代码的分享代码的⽬录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束) minGeneralPF(外点罚函数法解⼀般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘⼦法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.⾮线性最⼩⼆乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平⾯法)ZeroOneprog(枚举法)5.⼆次规划QuadLagR(拉格朗⽇法)ActivedeSet(起作⽤集法)6.辅助函数(在⼀些函数中会调⽤)minNT(⽜顿法求多元函数的极值)minMNT(修正的⽜顿法求多元函数极值)minHJ(黄⾦分割法求⼀维函数的极值)7.⾼级优化算法1)粒⼦群优化算法(求解⽆约束优化问题)1>PSO(基本粒⼦群算法)2>YSPSO(待压缩因⼦的粒⼦群算法)3>LinWPSO(线性递减权重粒⼦群优化算法)4>SAPSO(⾃适应权重粒⼦群优化算法)5>RandWSPO(随机权重粒⼦群优化算法)6>LnCPSO(同步变化的学习因⼦)7>AsyLnCPSO(异步变化的学习因⼦)(算法还有bug)8>SecPSO(⽤⼆阶粒⼦群优化算法求解⽆约束优化问题)9>SecVibratPSO(⽤⼆阶振荡粒⼦群优化算法求解五约束优化问题)10>CLSPSO(⽤混沌群粒⼦优化算法求解⽆约束优化问题)11>SelPSO(基于选择的粒⼦群优化算法)12>BreedPSO(基于交叉遗传的粒⼦群优化算法)13>SimuAPSO(基于模拟退⽕的粒⼦群优化算法)2)遗传算法1>myGA(基本遗传算法解决⼀维约束规划问题)2>SBOGA(顺序选择遗传算法求解⼀维⽆约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解⼀维⽆约束优化问题)4>GMGA(⼤变异遗传算法求解⼀维⽆约束优化问题)5>AdapGA(⾃适应遗传算法求解⼀维⽆约束优化问题)6>DblGEGA(双切点遗传算法求解⼀维⽆约束优化问题)7>MMAdapGA(多变异位⾃适应遗传算法求解⼀维⽆约束优化问题)⾃⼰编写的马尔科夫链程序A 代表⼀组数据序列⼀维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独⽴状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;Localization=find(A==E(j)); % 序列“A”中找到其独⽴状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独⽴状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % ⾄此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对⾏求和Total=sum(Row); % 频数总和for i=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total)); uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
最小二乘法matlab
(1)matlab中的lsqcurvefit使用2013-04-04 12:28manaijin|分类:工程技术科学|浏览9318次求讲解[a,Jm]=lsqcurvefit(fun,a0,x,y)(最好举例)各个符号的意思我有更好的答案分享到:按默认排序|按时间排序1条回答2013-04-04 20:39 白肚河蟹不让说|十级非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。
今进行曲线拟合,求x使得输出的如下最小二乘表达式成立:min Σ(F(x,xdatai)-ydatai)^2函数lsqcurvefit格式x = lsqcurvefit(fun,x0,xdata,ydata)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)[x,resnorm] = lsqcurvefit(…)[x,resnorm,residual] = lsqcurvefit(…)[x,resnorm,residual,exitflag] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…) 参数说明:x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;lb、ub为解向量的下界和上界lb≤x≤ub,若没有指定界,则lb=[ ],ub=[ ];options为指定的优化参数;fun为待拟合函数,计算x处拟合函数值,其定义为function F = myfun(x,xdata)resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;residual=fun(x,xdata)-ydata,即在x处的残差;exitflag为终止迭代的条件;output为输出的优化信息;lambda为解x处的Lagrange乘子;jacobian为解x处拟合函数fun的jacobian矩阵。
最小二乘法的基本原理和多项式拟合matlab实现
最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir2的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir2[]∑==-mi iiy x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线 )(x p y =(图6-1)。
函数)(x p 称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类Φ可有不同的选取方法.6—1二 多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
最小二乘法MATLAB程序及结果
最小二乘递推算法的MATLAB仿真针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。
更改a1、a2、b1、b2参数,观察结果。
仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k)程序如下:L=15;y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值for i=1:L; %移位循环x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4; %取出作为输出信号,即M序列if y(i)>0.5,u(i)=-0.03; %输入信号else u(i)=0.03;endy1=x1;y2=x2;y3=x3;y4=x4;endfigure(1);stem(u),grid onz(2)=0;z(1)=0;for k=3:15;z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号endc0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值p0=10^6*eye(4,4); %直接给出初始状态P0E=0.000000005;c=[c0,zeros(4,14)];e=zeros(4,15);for k=3:15; %开始求kh1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]';x=h1'*p0*h1+1;x1=inv(x);k1=p0*h1*x1; %开始求k的值d1=z(k)-h1'*c0;c1=c0+k1*d1;e1=c1-c0;e2=e1./c0; %求参数的相对变化e(:,k)=e2;c0=c1;c(:,k)=c1;p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值p0=p1;if e2<=E break;endendc,e %显示被辨识参数及其误差情况a1=c(1,:);a2=c(2,:);b1=c(3,:);b2=c(4,:);ea1=e(1,:);ea2=e(2,:);eb1=e(3,:);eb2=e(4,:);figure(2);i=1:15;plot(i,a1,'r',i,a2,':',i,b1,'g',i,b2,':')title('Parameter Identification with Recursive Least Squares Method')figure(3);i=1:15;plot(i,ea1,'r',i,ea2,'g',i,eb1,'b',i,eb2,'r:')title('Identification Precision')程序运行结果:p0 =1000000 0 0 00 1000000 0 00 0 1000000 00 0 0 1000000c =Columns 1 through 90.0010 0 0.0010 -0.4984 -1.2325 -1.4951 -1.4962 -1.4991 -1.49980.0001 0 0.0001 0.0001 -0.2358 0.6912 0.6941 0.6990 0.69980.0010 0 0.2509 1.2497 1.0665 1.0017 1.0020 1.0002 0.99990.0010 0 -0.2489 0.7500 0.5668 0.5020 0.5016 0.5008 0.5002Columns 10 through 15-1.4999 -1.5000 -1.5000 -1.5000 -1.4999 -1.49990.6999 0.7000 0.7000 0.7000 0.7000 0.70000.9998 0.9999 0.9999 0.9999 0.9999 0.99990.5002 0.5000 0.5000 0.5000 0.5000 0.5000e =1.0e+003 *Columns 1 through 90 0 0 -0.4994 0.0015 0.0002 0.0000 0.0000 0.00000 0 0 0 -2.3592 -0.0039 0.0000 0.0000 0.00000 0 0.2499 0.0040 -0.0001 -0.0001 0.0000 -0.0000 -0.00000 0 -0.2499 -0.0040 -0.0002 -0.0001 -0.0000 -0.0000 -0.0000Columns 10 through 150.0000 0.0000 0.0000 -0.0000 -0.0000 0.00000.0000 0.0000 -0.0000 0.0000 0.0000 0.0000-0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000-0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000程序运行曲线:图1.输入信号图2.a1,a2,b1,b2辨识仿真结果图3. a1,a2,b1,b2各次辨识结果收敛情况分析:由运行结果可看出,输出观测值没有任何噪声成分时,辨识结果最大相对误差达到3位数。
最小二乘曲线拟合及MATLAB实现_测绘专业论文 精品
内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:最小二乘曲线拟合及MATLAB实现学生姓名:李亚学号:0972143230专业:测绘工程班级:2009测绘2班指导教师:孙同贺讲师最小二乘曲线拟合及MATLAB实现摘要介绍曲线拟合的基本理论,对最小二乘原理进行了全方位的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立。
详细的解答了曲线拟合中的最小二乘法,并介绍了部分的正交最小二乘法理论。
重点讲解多项式拟合的具体步骤,同时也介绍了非线性方程的最小二乘拟合,在建立理论的基础上对最小二乘曲线拟合法的MATLAB实现方法进行研究,利用MATLAB2012b的平台对测量数据进行最小二乘曲线拟合,介绍MATLAB的具体构造和曲线拟合工具。
利用MATLAB中的ployfit函数对实测数据进行多项式曲线拟合,并给出曲线拟合MATLAB实现的源程序,给出拟合曲线,并评定拟合的精度证明该方法是行之有效的。
关键词:最小二乘法,曲线拟合,MATLAB,测量数据Curve Fitting in Least-Square Methodand Its Realization with MatlabAbstractTo introduce the basic theory of curve fitting and discuss the least squares principle in this paper, what’s more, we also discuss the basic principle of curve fitting and the establishment of polynomial curve fitting model. Meanwhile, we also introduce the least-square method of curve fitting in detail and part of the theory of orthogonal least square method. We mainly discuss the specific steps of polynomial fitting, and also introduces the nonlinear equation of the least squares fitting at the same time, which established on the theory of least squares curve fitting in MATLAB in order to realize the method to do research. Using MATLAB2012b platform to achieve the goal of measuring data and introducing the special structure of MATLAB and curve fitting tool. We can use ployfit function in MATLAB to polynomial curve fitting of experimental data, and get the MATLAB source program about curve fitting and the fitting curve. Finally, we need to prove the method of assessing the precision of the fitting is effective.Key words: least square method; curve fitting; MATLAB, metrical data最小二乘曲线拟合及MATLAB实现 (I)摘要 (I)CURVE FITTING IN LEAST-SQUARE METHOD AND ITS REALIZATION WITH MATLAB (II)ABSTRACT (II)第一章引言 (1)1.1研究背景 (1)1.1.1 历史理论原理 (1)1.1.2 现代研究 (1)1.2问题定义 (2)1.2.1 曲线拟合的思想 (2)1.2.2 多项式拟合 (3)1.2.3 利用Matlab的polyfit函数进行多项式拟合 (3)1.3论文结构 (3)第二章数据曲线拟合 (4)2.1测量数据 (4)2.2拟合模型 (4)2.3最小二乘原理 (5)2.3.1最小二乘法 (5)2.3.2最小二乘估计与极大似然估计 (7)2.4.1曲线拟合理论 (9)2.4.2最小二乘法线性拟合原理 (10)2.4.3最小二乘非线性拟合 (12)2.4.4正交多项式 (13)2.4.5正交最小二乘曲线拟合 (15)2.5曲线拟合精度评定 (17)第三章MATLAB (19)3.1MATLAB概述 (19)3.1.1MATLAB简介 (19)3.1.2MATLAB的主要组成部分 (21)3.2MATLAB2012B的运行简介 (23)3.2.1启动和退出MATLAB2012b (23)3.2.2MATLAB2012b桌面系统 (24)3.2.3MATLAB函数调用系统 (26)3.2.4MATLAB2012b的帮助系统 (27)3.2.5附件管理系统 (28)3.2.6数据交换系统 (28)3.2.7MATLAB 中的其他系统 (29)3.3最小二乘曲线拟合法的MATLAB实现 (30)第四章最小二乘法曲线拟合的MATLAB实现 (32)4.1使用POLYFIT函数实现多项式拟合 (32)4.3三次多项式的曲线拟合 (34)4.4四次多项式曲线拟合 (35)4.5数据处理和精度评定 (36)第五章总结 (40)参考文献 (41)附录1: (43)MATLAB语言编程源代码 (43)附录2: (45)各次拟合的拟合曲线方程 (45)致谢 (46)外文翻译 (47)外文部分 (47)翻译部分 (54)第一章 引 言1.1研究背景1.1.1 历史理论原理Weierstrass 第一逼近定理[1]对任意函数()f C[a,b]x ∈和任意给定的0ε>,都存在n 次代数多项式()n p x ,满足()()[,]||<max nx a b f x p x ε∈- (1-1-1) Bernstein 多项式(bernstein polynomial )[1]前苏联数学家Bernstein 曾经给出这样的多项式序列:0(,)(1)n k n k n k n k B f x f x x k n -=⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑ (1-1-2)在整体上一致逼近()f x ,但它的收敛缓慢,要达到一定的精度,则n 要取很大,计算量大,所以研究如何在给定的精度下,对()f x 进行整体逼近,成为逼近论中的一个重要问题。
matlab最小二乘拟合问题
Matlab实现最小二乘拟合一、实验内容1对下列数据,求解最小二乘抛物线C+)(=2BxAxxf+2logistic曲线,具有形式P(t)=L/(1+Ce At)。
对下列数据集求解参数A和C,L是已知的。
(a)(0,200),(1,400),(2,650)(3,850),(4,950); L=1000(b)(0,500),(1,1000),(2,1800)(3,2800),(4,3700); L=5000二、实验原理:求使得偏差平方和最小的多项式三、实验说明:要求输入拟合点,输出拟合函数的系数并在同一坐标系下画出离散点和拟合曲线。
四、实验过程及结果分析第1题:相关输入与输出:>> X=[-3 -1 1 3];>> Y=[15 51 5];>> M=2;>> C=lspoly(X,Y,M)C =0.8750-1.70002.1250(降幂排列)>> x=-3:0.1:3;>> y=polyval(C,x);>> plot(X,Y,'ro',x,y,'b-')图像:-3-2-10123第2题:(1):>> P=[200 400 650 850 950];>> L=1000;>> y=dd(L,P)y =0.6094 -0.0837 -0.5692 -0.8375 -0.9487>> y=[0.6094 -0.0837 -0.5692 -0.8375 -0.9487];>> t=[0 1 2 3 4];>> M=1;>> a=lspoly(t,y,M)a =-0.38700.4081>> A=a(1)A =-0.3870>> C=exp(a(2))C =1.5039>>T=0:0.1:4;>>Y=polyval(a,T);>>plot(t,y,'ro',T,Y,'b-')变换后图像:00.51 1.52 2.53 3.54第2题:(2)>> P=[ 500 1000 1800 2800 3700]; >> L=5000;>> y=dd(L,P)y =1.3026 0.6094 0.0217 -0.4202 -0.6989>> y=[1.3026 0.6094 0.0217 -0.4202 -0.6989];>> t=[0 1 2 3 4];>> M=1;>> a=lspoly(t,y,M)a =-0.50331.1694>> A=a(1)A =-0.5033>> C=exp(a(2))C =3.2202>> T=0:0.1:4;Y=polyval(a,T);plot(t,y,'ro',T,Y,'b-')变换后图像:00.51 1.52 2.53 3.54五、实验总结:1.本实验lspoly意思是最小二乘多项式的英文简写,其程序运行到C=A\B时,C 为升幂排列,最后加上C=flipud(C)表示上下颠倒,使得所求C即为根据x的幂次由高到低排列的2.引用matlab系统函数polyval是求多项式的值3.在第2问中,所求函数模型不是线性的,这就要考虑对其进行相应的变化六、参考程序:1、lspoly.mfunction C=lspoly(X,Y,M)n=length(X);B=zeros(1:M+1);F=zeros(n,M+1);for k=1:M+1F(:,k)=X'.^(k-1);endA=F'*F;B=F'*Y';C=A\B;C=flipud(C);2、计算y与P、L关系的m文件dd.m:function y=dd(L,P);y=zeros(1,5);for i=1:5y(i)=log(L./P(i))-1); y(i)=log(L./P(i))-1; end。
最小二乘拟合matlab
最小二乘拟合matlab最小二乘拟合在数学和统计学领域中非常常见,它的主要作用就是通过找到一条线,能够尽可能的拟合一组数据点。
在Matlab中,最小二乘拟合也是一项非常重要的工作,因为在很多实际中,我们需要通过拟合数据来进行预测或者预测某些变量的变化趋势,最小二乘拟合正是可以达到这样的目的。
1、数据的导入和处理在进行最小二乘拟合之前,我们需要先将数据读入到Matlab中。
这里我们以x、y两个数组来模拟数据的导入,代码如下:x = [1,2,3,4,5]; y =[2.2,3.8,6.8,9.5,12.1];接下来,我们需要判断一下数据点是否已经处理好了,如果发现有数据点不符合实际情况,那么我们需要进行数据的清洗和转换。
数据预处理非常重要,因为这直接影响到拟合的效果。
2、数据可视化在拟合数据之前,我们需要对数据进行可视化,使我们能够更加直观地了解数据的分布情况。
Matlab提供了许多画图的函数,如plot、stem、scatter等,可以根据需要选择不同的函数进行绘图。
这里我们使用最基本的plot 函数来进行绘图,代码如下:plot(x, y, 'o')运行该代码之后,我们可以得到如下所示的数据点的散点图。
![image.png](attachment:image.png)从图中可以看出,数据点在大致呈线性,但是还存在一些离群点,这些点需要进行剔除或让它们对拟合的影响减弱。
3、最小二乘拟合在Matlab中,最小二乘拟合有多种实现方式,其具体实现方式取决于拟合模型的类型和数据的特点。
我们在这里介绍基于多项式的最小二乘拟合,即对数据点进行多项式拟合。
这种方法特别适用于数据点线性不够显著时,例如上文所述的例子。
在使用“polyfit”函数之前,我们需要先指定多项式的次数。
这里,我们选择一个二次多项式进行拟合,代码如下:p = polyfit(x,y,2);在上述代码中,“2”指的是二次多项式,函数会返回一个包含拟合系数的向量p。
最小二乘法拟合圆
最⼩⼆乘法拟合圆有⼀系列的数据点 。
我们知道这些数据点近似的落在⼀个圆上。
依据这些数据预计这个圆的參数就是⼀个⾮常有意义的问题。
今天就来讲讲怎样来做圆的拟合。
圆拟合的⽅法有⾮常多种,最⼩⼆乘法属于⽐較简单的⼀种。
今天就先将这样的。
我们知道圆⽅程能够写为:通常的最⼩⼆乘拟合要求距离的平⽅和最⼩。
也就是最⼩。
这个算起来会⾮常⿇烦。
也得不到解析解。
所以我们退⽽求其次。
这个式⼦要简单的多。
我们定义⼀个辅助函数:那么上⾯的式⼦能够表⽰为:依照最⼩⼆乘法的通常的步骤,可知 取极值时相应以下的条件。
先来化简我们知道半径 是不能为 0 的。
所以必定有:这是个⾮常实⽤的结论。
剩下的两个式⼦:{,}x i y i (x −+(y −=x c )2y c )2R 2f =∑(−R )(−+(−x i x c )2y i y c )2−−−−−−−−−−−−−−−−−−√2f =∑((−+(−−)x i x c )2y i y c )2R 22g (x ,y )=(x −+(y −−x c )2y c )2R 2f =∑g (,x i y i )2f =0∂f ∂x c =0∂f ∂y c =0∂f ∂R=0∂f∂R ∂f ∂R=−2R ×∑((−+(−−)x i x c )2y i y c )2R 2=−2R ×∑g (,)=0x i y i R ∑g (,)=0x i y i ∂f ∂x c=−4∑((−+(−−)(−)x i x c )2y i y c )2R 2x i x c =−4∑g (,)(−)x i y i x i x c =−4∑g (,)=0x i x i y i ∂f ∂y c=−4∑((−+(−−)(−)x i x c )2y i y c )2R 2y i y c =−4∑g (,)(−)x i y i y i y c =−4∑g (,)=0y i x i y i也就是以下两个等式:这⾥设:当中:那么简单的推导⼀下,就会发现:事实上都不须要推导,这个变量替换仅仅只是是改动了坐标原点的位置。
matlab最小二乘拟合代码
matlab最小二乘拟合代码Matlab是一种强大的科学计算软件,广泛应用于工程、科学、金融等领域。
在数据分析和拟合中,最小二乘拟合是一种常见的方法。
本文将介绍如何使用Matlab进行最小二乘拟合,并给出相应的代码示例。
最小二乘拟合是一种寻找最优拟合曲线的方法,通过最小化实际观测值与拟合曲线之间的残差平方和来实现。
在Matlab中,可以使用lsqcurvefit函数来进行最小二乘拟合。
我们需要准备一组实验数据。
假设我们有一组数据(x, y),其中x 为自变量,y为因变量。
我们的目标是找到一个拟合曲线,使得该曲线能够最好地描述观测数据。
接下来,我们需要定义一个拟合函数。
拟合函数是一个与自变量x 和待拟合参数有关的函数。
在Matlab中,拟合函数通常定义为一个函数句柄,即一个指向拟合函数的指针。
假设我们要进行线性拟合,即拟合函数为y = a * x + b,其中a 和b为待拟合参数。
我们可以使用匿名函数来定义拟合函数,代码示例如下:```matlabfitfunc = @(p, x) p(1) * x + p(2);```其中p为待拟合参数,x为自变量。
接下来,我们可以使用lsqcurvefit函数进行最小二乘拟合。
该函数的调用形式为:```matlabpfit = lsqcurvefit(fitfunc, p0, x, y);```其中fitfunc为拟合函数,p0为待拟合参数的初始值,x和y为观测数据。
我们可以绘制拟合曲线并与观测数据进行对比。
代码示例如下:```matlabx_fit = linspace(min(x), max(x), 100); % 生成用于绘制拟合曲线的自变量y_fit = fitfunc(pfit, x_fit); % 计算拟合曲线的因变量figure;plot(x, y, 'ro'); % 绘制观测数据hold on;plot(x_fit, y_fit, 'b-'); % 绘制拟合曲线legend('观测数据', '拟合曲线');xlabel('x');ylabel('y');title('最小二乘拟合');```通过运行上述代码,我们可以得到最小二乘拟合的结果,并绘制出观测数据和拟合曲线的图像。