第四章 污水的好氧生物处理--活性污泥法2除磷脱氮工艺设计
脱氮除磷活性污泥法
备注
h-缺氧池有效水深,m S1单-单组曝气池有效积,m2
B-缺氧池总宽宽度,m
缺氧池分隔格数 格
单组缺氧池长度,m
水池超高 m 取值0.5-1
缺氧池总高度 m
输入 6
26.20827489
157.2496493 3
52.41654978 60.27903225
备注
1m³废水所需功率,W/m³ 取值一般在5-10W/m³ V2单-单组缺氧池容积,m³
qdn,T-温度T℃反硝化速率。(kgNO3-N)/(kgMLVSS·d) V2=NT×1000/qdn,T×Xv
备注 qdn,T-温度T℃反硝化速率。(kgNO3-N)/(kgMLVSS·d) NT-需要去除(还原)的硝酸氮量,kg(NO3-N)/d (注意:此处为kg/d) Xv-挥发性悬浮固体浓度 MLVSS,kg/m³ V2-缺氧池容积 m
θc=θcm×F
θcm=1/μn
输入
备注
0.655441125 μn-硝化速率,d-1
3.5
F-设计安全系数 此处为城镇污水在1.5-3.0之间,工业废水实验确定
1.525690046 θmc-硝化反应所需最小泥龄。d
5.33991516 θc-设计污泥泥龄。 d V1=YθcQ(S0-Se)/Xv(1+Kdθc)
指标 P-所在地区大气压力。Pa
α-氧总转移系数,α=0.85
ρ-海拔高度差压力修正系数,
β-氧在污水中饱和溶解度修正系数,β=0.95
ρ
ρ-因海拔高度的不同引起的压力修正系数,
C-曝气池内平均溶解氧浓度,mg/l,取C=2mg/l.
设计水温曝气池内溶解氧
Csb(T)-设计水温条件下曝气池内平均溶解氧饱和度,mg/l,最不利温度(取30℃)
第四章 第一节-活性污泥法
活性污泥降解污水中有机物的过程
污水与污泥混合曝气后BOD的变化曲线
对活性污泥法曝气过程中污水中有机物的变化分析得到结论:
废 水 中 的 有 机 物
残留在废 水中的有 机物
微生物不能利用的有机物
微生物能利用的有机物
微生物能利用而尚未 利用的有机物 (吸附量) 从废水中 去除的有 机物 微生物不能利用的 有机物 微生物已利用的有机 物(氧化和合成) 增殖的微生物体
二是废水中的有机物,它是处理对象,也是 微生物的营养食料;
三是溶解氧,没有充足的溶解氧,好氧微生物 既不能生存,也不能发挥氧化分解作用。
城市污水处理工艺基本流程: 污水→格栅→沉砂池→初沉池
→活性污泥曝气池→二沉池→消毒
高碑店污水处理厂的工艺流程图
活性污泥系统
高碑店污水处理厂的工艺流程与平面布置
第一节 活性污泥法
一、基本概念与流程 二、活性污泥形态与微生物 三、活性污泥净化反应过程 四、活性污泥法主要影响因素与控制指标
第二节 生物膜法
一、生物膜法概述 二、生物膜的形成及净化过程 三、生物膜法载体 四、生物膜法特征 五、生物膜反应器
Your site here
二沉池 曝气池 初沉池
初沉池
二期 曝气池 二沉池
活 性 污 泥 法 的 基 本 流 程
活性污泥处理系统的组成
1.曝气池: 2.二沉池:
微生物降解有机物的反应场所 泥水分离
3.污泥回流系统: 确保曝气池内生物量稳定 4.曝气系统: 为微生物提供溶解氧,同时起到 搅拌混合的作用。
活性污泥法处理系统有效运行的基本条件
净化污水的主要的第一的承担者细菌净化污水的第二承担者原生动物指示性生物原生动物通过显微镜镜检是对活性污泥质量评价的重要手段之一原生动物在活性污泥中大约为103个ml01mm原生动物钟虫小口钟虫草履虫盖纤虫肾形虫变形虫后生动物线虫轮虫微生物的生长规律复习适应期对数期平衡期衰老期培养时间微生物生长速率微生物生长速率微生物量的对数微生物量的对数培养时间总菌数活细菌数微生物生长曲线线死细菌数4
第四章 污水的好氧生物处理--活性污泥法2除磷脱氮工艺设计
5)氧化沟工艺
曝气池
进水
厌氧
好氧
缺氧
二沉池
出水
回流活性污泥
剩余污泥
重点:
各种脱氮、除磷工艺的类型和特点。 脱氮/除磷工艺设计计算要点。
污水的好氧生物处理 ——运行、管理
内容
1)活性污泥法启动 2)活性污泥的运行管理 3)常见的问题与对策
1)启动与试运行
(1) 活性污泥的培养与驯化 接种污泥: ①同类污水厂的剩余污泥; ②粪便污水等。 培养方法: ①间歇培养法; ②流量分阶段直接培养法; ③全流量连续直接培养法; 驯化方法: ①异步驯化法(先培养后驯化); ②同步驯化法
• b.好氧区容积计算
根据污泥泥龄计算曝气池体积公式:
QYθ co (S0 Se) V Xv(1 K d θ co )
6) 生物脱氮工艺计算
c.需氧量计算
去除有机物的需氧量加上氨氮硝化需氧量。前置反硝化系 统中,需扣除还原硝酸盐提供的氧当量。
O2 = Q (S0-Se)/0.68-1.42△Xv
直接污泥回流 沉淀池 石灰 含磷 污泥 含 磷 污 水
脱磷水
II 缓速搅拌 含磷污泥 混合池
释 磷 (厌氧) 池
脱磷污泥回流 (用于吸收磷)
含磷污水 生物除磷 化学除磷
3) 生物除磷工艺设计
1)厌氧区计算(水力停留时间法) Vp=Q· tp (tp=1-2h) 2)好氧区容积计算(污泥泥龄法)
QY(S0 Se) θ c V X(1 K d θ c)
微小絮体,出水透明度下降。
• 原因: 曝气过度;负荷下降,活性污泥自身
氧化过度;
• 对策:减少曝气;增大负荷量
3)常见问题与对策
生物处理2(活性污泥法、厌氧、脱氮除磷)
利用聚磷菌在好氧条件下过量摄取磷, 并在缺氧条件下释放磷的原理,通过 排放富磷污泥达到除磷目的。
同步脱氮除磷技术
A2/O工艺
即厌氧-缺氧-好氧工艺,是最典型的同步脱氮除磷工艺。在厌氧区,聚磷菌释放磷并摄取有机物;在 缺氧区,反硝化菌将硝酸盐还原为氮气;在好氧区,聚磷菌过量摄取磷,同时硝化菌将氨氮氧化为硝 酸盐。
脱氮原理及方法
氨化作用
01
将有机氮转化为氨氮。
硝化作用
02
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧
化为亚硝酸盐氮和硝酸盐氮。
反硝化作用
03
在缺氧条件下,反硝化菌将硝酸盐氮和亚硝酸盐氮还原为氮气,
达到脱氮目的。
除磷原理及方法
化学沉淀法
通过投加化学药剂,使磷酸根离子与 钙、镁等离子反应生成难溶性的磷酸 钙、磷酸镁等沉淀物,从而去除磷。
02
生物强化技术
通过投加特效菌种或基因工程菌,提)
结合活性污泥法和生物膜法的优点,具有高效、节能、占地面积小等优
点。
生物处理与膜技术结合
膜生物反应器(MBR)
将膜分离技术与生物处理相结合,实现高效固液分离,提高出水水质。
动态膜生物反应器(DMBR)
采用动态膜代替静态膜,降低膜污染,提高膜通量和使用寿命。
影响因素及优化措施
影响因素
包括污泥浓度、曝气量、污水水质、 温度等。
优化措施
通过合理控制污泥回流量和剩余污泥 排放量,调整曝气量,提高污水水质 稳定性等措施来优化活性污泥法的运 行效果。
应用实例
城市污水处理
活性污泥法广泛应用于城市污水处理中,可有效去除污水中的有机污染物和营 养盐,提高出水水质。
污水生物脱氮除磷原理及工艺
一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
污水的好氧生物处理—活性污泥法
活性污泥法的微生物种群丰富多样, 包括好氧细菌、原生动物和后生动物 等,这些微生物共同作用,使活性污 泥法具有较高的净化效率和稳定性。
去除大颗粒杂质 调节水质和水量 减轻后续处理负荷 提高污泥活性
曝气池中的微 生物通过曝气 设备获得足够
的溶解氧
微生物在曝气 池中降解有机 物,产生二氧
化碳和水
曝气池中的溶 解氧浓度需保 持在一定范围 内,以保证微 生物的正常生 长和降解效率
改进措施:采用 低能耗工艺,提 高设备效率;
应用实例:某城市 污水处理厂采用活 性污泥法处理污水, 取得了良好的效果。
序批式反应器(SBR)工艺:通过间 歇运行方式,实现反应池内混合液的 交替循环流动,提高处理效果和抗冲 击负荷能力。
膜生物反应器(MBR)工艺:结合膜 分离技术,实现悬浮固体和活性污泥 的有效分离,提高出水水质和容积负 荷。
活性污泥法是一种生物处理技术,通 过好氧微生物的代谢作用,将污水中 的有机物转化为稳定的无机物,从而 达到净化污水的目的。
活性污泥法的作用机制还包括沉淀和 固液分离过程,将微生物和污水中的 悬浮物从水中分离出来,使出水水质 得到改善。
添加标题
添加标题
添加标题
添加标题
活性污泥中的微生物通过吸附和降解 有机物,将其转化为二氧化碳和水, 同时释放能量供微生物生长繁殖。
添加标题
添加标题
添加标题
添加标题
氧化沟工艺:通过循环流动的水体 实现有机污染物的降解,具有较好 的脱氮除磷效果和稳定性。
移动床生物膜反应器(MBBR)工艺: 通过在反应器内投加悬浮填料,增加 生物膜附着表面积,提高处理效果和 抗冲击负荷能力。
活性污泥法与A2O工艺的联合应用 活性污泥法与氧化沟工艺的联合应用 活性污泥法与SBR工艺的联合应用 活性污泥法与MBR工艺的联合应用
第四章 污废水处理设施培训-活性污泥法
12. 污泥回流的目的主要是保持曝气池中一定的( ) 浓度。 A.溶解氧 B.MLSS C.微生物 D.COD的浓度 13. 一般衡量污可生化的程度为BOD/COD为 ( )。 A.小于0.1 B.小于0.3 C.大于0.3 D.0.5~0.6 14. 在好氧的条件下,由好氧微生物降解污水中的 有机污染物最后产物主要是( ) A.CO2 B.H2O C.悬浮固体 D.CO2或H2O
4. 刮泥机的运行管理 (1)一般操作 (2)回转式刮泥机的维护保养 (3)链条刮板式刮泥机的维护保养 (4)桁车式刮泥机的维护保养 (5)刮泥板应及时更换新部件。
5. 刮泥设备的运行管理 6. 排水设备(溢流堰)及除渣设备的维护保养 7. 浮渣处理与处置
三、曝气池 (一)活性污泥法处理工艺 1. 活性污泥法的净化机理 ① 活性污泥对有机物的吸附; ② 被吸附有机物的氧化和同化; ③ 活性污泥絮体的沉淀和分离; ④ 生物硝化; ⑤ 生物脱氮; ⑥ 生物除磷。
(二)活性污泥法主要设计和运行参数 ① 生物固体停留时间(SRT); ② 有机物负荷、水力停留时间; ③ 活性污泥微生物浓度; ④ 剩余活性污泥量; ⑤ 混合液溶解氧浓度; ⑥ 污泥沉降比、污泥容积指数和污泥界面沉降 速度; ⑦ 需氧量与供风量。
3. 活性污泥法的分类和设计运行参数 ① 根据曝气池内混合液的流态分类(推 流式、完全混合); ② 根据曝气方式分类(鼓风曝气、机械 曝气;鼓风-机械联合曝气); ③ 根据去除的主要污染物分类(有机物、 脱氮、除磷); ④ 活性污泥法设计和运行参数;
二、选择 1、生物处理方法的主要目的是去除水中( ) A、悬浮状态的固体污染物质 B、溶解或胶体状 态的有机污染物质 C、密度较大的颗粒物质 D、所有污染物质 2.鼓风曝气池的有效水深一般为( ) A.2~3m B.4~6m C.6~8m D.8~9m
活性污泥法脱氮除磷工艺设计计算
一、生物脱氮工艺设计计算(一)设计条件:设计处理水量Q=30000m 3/d=1250.00m 3/h=0.35m 3/s总变化系数Kz= 1.42进水水质:出水水质:进水COD Cr =350mg/L COD Cr =100mg/L BOD 5=S 0=160mg/L BOD 5=S z =20mg/L TN=40mg/L TN=15mg/L NH 4+-N=30mg/L NH 4+-N=8mg/L 碱度S ALK =280mg/L pH=7.2SS=180mg/L SS=C e =20mg/LVSS=126mg/L f=VSS/SS=0.7曝气池出水溶解氧浓度2mg/L 夏季平均温度T1=25℃硝化反应安全系数K=3冬季平均温度T2=14℃活性污泥自身氧化系数Kd=0.05活性污泥产率系数Y=0.6混合液浓度X=4000mgMLSS/L SVI=15020℃时反硝化速率常数q dn,20=0.12kgNO 3--N/kgMLVSS 曝气池池数n=2 若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、好氧区容积V1计算(1)估算出水溶解性BOD 5(Se)6.41mg/L(2)设计污泥龄计算硝化速率低温时μN(14)=0.247d -1硝化反应所需的最小泥龄θcm =4.041d 设计污泥龄θc =12.122d(3)好氧区容积V 1=7451.9m 3好氧区水力停留时间t 1=5.96h=-⨯⨯-=-)1TSS TSSVSS42.1kt z e S S ([][])2.7(833.011047.022)158.105.0()15(098.02pH O k O N N e O T T N --⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=--μ)1()(01c d V c K X S S Q Y V θθ+-=2、缺氧区容积V 2(1)需还原的硝酸盐氮量计算微生物同化作用去除的总氮=7.11mg/L被氧化的氨氮=进水总氮量-出水氨氮量-用于合成的总氮量=24.89mg/L 所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量=17.89mg/L 需还原的硝酸盐氮量N T =536.56kg/d (2)反硝化速率q dn,T =q dn,20θT-20=(θ为温度系数,取1.08)0.076kgNO 3--N/kgMLVSS(3)缺氧区容积V 2=2534.1m 3缺氧区水力停留时间t 2=V 2/Q=2.03h3、曝气池总容积V=V 1+V 2=9986.0m 3系统总污泥龄=好氧污泥龄+缺氧池泥龄=16.24d4、碱度校核每氧化1mgNH 4+-N需消耗7.14mg碱度;去除1mgBOD 5产生0.1mg碱度;每还原1mgNO 3--N产生3.57mg碱度;剩余碱度S ALK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD 5产生碱度=181.53mg/L>100mg/L(以 CaCO 3计)5、污泥回流比及混合液回流比(1)污泥回流比R计算=80001.2混合液悬浮固体浓度X(MLSS)=4000mg/L 污泥回流比R=X/(X R -X)=100%(一般取50~100%)(2)混合液回流比R 内计算总氮率ηN =(进水TN-出水TN)/进水TN=62.50%混合液回流比R 内=η/(1-η)=167%6、剩余污泥量(1)生物污泥产量1525.5kg/d(2)非生物污泥量P SP S =Q(X 1-X e )=1020kg/d (3)剩余污泥量ΔX ΔX=P X +P S =2545.5kg/d 设剩余污泥含水率按99.20%计算mg/L (r为考虑污泥在沉淀池中停留时间、池深、污泥厚度等因素的系数,取VT dn T X q N V ,21000⨯=)1()(124.00c d W K S S Y N θ+-=r SVIX R 610==+-=c d X K S S YQ P θ1)(07、反应池主要尺寸计算(1)好氧反应池设2座曝气池,每座容积V 单=V/n=3725.96m 3曝气池有效水深h=4m 曝气池单座有效面积A 单=V 单/h=931.49m 2采用3廊道,廊道宽b=6m 曝气池长度L=A 单/B=51.7m 校核宽深比b/h= 1.50校核长宽比L/b=8.62曝气池超高取1m,曝气池总高度H=5m (2)缺氧池尺寸设2座缺氧池,每座容积V 单=V/n=1267.05m 3缺氧池有效水深h=4.1m 缺氧池单座有效面积A 单=V 单/h=309.04m 2缺氧池长度L=好氧池宽度=18.0m 缺氧池宽度B=A/L=17.2m8、进出水口设计(1)进水管。
脱氮除磷活性污泥法工艺
第六节脱氮除磷活性污泥法工艺一、生物脱氮技术二、生物除磷技术三、生物脱氮除磷技术城市污水经传统的生物处理以后,虽然绝大部分悬浮固体和有机物被去除了,但还残留微量的悬浮固体和溶解的有害物,如氮和磷等的化合物。
氮、磷为植物营养物质,能助长藻类和水生生物,引起水体的富营养化,影响饮用水水源。
太湖的富营养化第六节脱氮除磷活性污泥法工艺一、生物脱氮技术二、生物除磷技术三、生物脱氮除磷技术生物脱氮技术在自然界,氮化合物是以有机体(动物蛋白、植物蛋白……)、氨态氮、亚硝态氮、硝态氮以及气态氮(氮气)的形式存在。
而在二级处理水中,氮则是以有机氮、氨态氮、亚硝态氮、硝态氮形式存在的。
前述技术对氮的去除率比较低。
N、P只满足微生物生理要求即可(100:5:1),因此对二者去除率低,仅为20-40%、5-20%,故城市污水中,氮是过剩的,这就是一般的二级污水厂对氮去除率较低的原因。
1.概述生物脱氮技术2.生物法脱氮(1)原理生物脱氮是在微生物的作用下,将有机氮和氨氮转化为氮气和氮氧化物气体的过程,包括氨化、硝化和反硝化(氨化)过程。
a.氨化反应322NHRCOHCOOHOHCOOHRCHNH+→+3222NHCORCOCOOHOCOOHRCHNH++→+有氧缺氧生物脱氮技术总反应式为:b.硝化反应好氧亚硝酸菌、硝化菌总反应式为:c.反硝化反应缺氧反硝化菌(异养)反硝化菌在厌氧、好氧交替的环境中生活为宜生物脱氮技术2.生物法脱氮(2)生物脱氮工艺P148①三段生物脱氮工艺②缺氧——好氧(AO)生物脱氮工艺③Bardenpho生物脱氮工艺生物脱氮技术2.生物法脱氮(2)生物脱氮工艺——①三段生物脱氮工艺将有机物氧化、硝化以及反硝化段独立开来,每一部分都有其自己的沉淀池和各自独立的污泥回流系统(传统工艺)。
生物脱氮技术2.生物法脱氮(2)生物脱氮工艺——①三段生物脱氮工艺第一级——曝气池,去除BOD、COD、有机N氨化为氨气或铵离子,经沉淀池后进入硝化曝气池。
污水处理厂处理工艺(3篇)
第1篇一、引言随着我国经济的快速发展,工业、农业、生活污水排放量不断增加,水质污染问题日益严重。
为了保护环境、保障人民健康,污水处理厂应运而生。
污水处理厂通过对污水进行处理,将其中的污染物去除或转化为无害物质,达到国家排放标准,实现污水资源化利用。
本文将详细介绍污水处理厂的处理工艺。
二、污水处理厂处理工艺概述污水处理厂处理工艺主要包括以下步骤:预处理、一级处理、二级处理、三级处理和深度处理。
1. 预处理预处理是指对污水进行初步处理,以去除大块固体物质、调整水质和水量。
预处理工艺包括:(1)格栅:格栅用于拦截污水中的较大固体物质,如垃圾、树枝等,防止其对后续处理工艺造成损害。
(2)沉砂池:沉砂池用于去除污水中的砂粒、石子等无机物,降低后续处理工艺的负荷。
(3)调节池:调节池用于调整污水的水量和水质,为后续处理工艺提供稳定的水质。
2. 一级处理一级处理主要去除污水中的悬浮固体物质,降低BOD5(生化需氧量)和SS(悬浮物)浓度。
一级处理工艺包括:(1)沉淀池:沉淀池通过重力作用,使污水中的悬浮固体物质沉淀下来,形成沉淀污泥。
(2)刮泥机:刮泥机将沉淀池底部的污泥刮出,送至污泥处理系统。
3. 二级处理二级处理是污水处理厂的核心环节,主要去除污水中的有机污染物,降低BOD5和COD(化学需氧量)浓度。
二级处理工艺包括:(1)生物处理:生物处理是利用微生物分解污水中的有机污染物,将其转化为无害物质。
生物处理方法包括:a. 活性污泥法:活性污泥法是一种常见的生物处理方法,通过将微生物与污水充分混合,使微生物吸附、降解污水中的有机污染物。
b. 生物膜法:生物膜法是微生物附着在固体表面形成的生物膜,利用生物膜上的微生物降解污水中的有机污染物。
(2)沉淀池:在生物处理过程中,部分微生物会形成絮体,通过沉淀池分离出来,形成剩余污泥。
4. 三级处理三级处理是针对二级处理后的污水进行深度处理,以提高出水水质。
三级处理工艺包括:(1)过滤:过滤是通过过滤介质拦截污水中的悬浮物、胶体等,提高出水水质。
好氧活性污泥法脱氮除磷技术
调节系统。
⑶反硝化
• 反硝化反应是指在无氧的条件下,反硝化 菌将硝酸盐氮(NO3-)和亚硝酸盐氮(NO2-)还 原为氮气的过程。
反硝化菌
• 属异养兼性厌氧菌,有氧存在时,以O2为电子受 体进行呼吸;在无氧而有NO3-或NO2-时,则以 NO3-或NO2-为电子受体,以有机碳为电子供体和 营养源进行反硝化。
➢温度
➢硝化反应的适宜温度是20-30℃,15℃以下,硝化 反应速度下降,5℃时完全停止。低温对硝酸菌的抑 制作用更为强烈,在低温12~14℃时常出现亚硝酸 盐的积累。在30~35℃较高温度下,亚硝酸菌的最 小倍增时间要小于硝酸菌,因此,通过控制温度和 污泥龄,可控制反应器中亚硝酸菌的绝对优势。 ➢ 温度对硝化菌的影响比反硝化菌大。反硝化反应 的最适宜温度是20-40℃,低于15℃反硝化反应速率 降低。
缺点:处理设备多,造价高,管理麻烦
⑵两级活性污泥法脱氮工艺
• 该工艺是将其中的前两级曝气池合并成一个曝气 池,使废水在其中同时实现氨化和硝化反应,因 此只是在形式上减少了一个曝气池,并无本质上 的改变。
两级生物脱氮工艺: BOD去除和硝化两个反应过程放在一起
⑶缺氧-好氧活性污泥法脱氮系统(A-O工艺)
表2 反硝化反应中氮的转化
–Ⅲ
–Ⅱ
氮 –Ⅰ 的 氧0
化 +Ⅰ
还 原
+Ⅱ
态 +Ⅲ
+Ⅳ
+Ⅴ
氨离子NH4+ 羟胺NH2OH 硝酰基NOH 亚硝酸根NO2— 硝酸根NO3—
–Ⅲ
–Ⅱ
氮 的
–Ⅰ
氧0
化 +Ⅰ
污水脱氮除磷的原理与工艺设计
NO3--N
NO2--N
NO
N2O
N2
反硝化细菌大量存在于污水处理系统中。 反硝化细菌是兼性细菌
通常反硝化菌群优先选择分子氧而不是硝酸盐为电子 受体,但如果无分子态氧存在,则利用硝酸盐进行无 氧呼吸。
2013年7月13日
生物脱氮基本原理
缺氧反硝化过程
2H+OH2O
1molH=0.5molO(以BOD表示)
NO3 NO3 2 H H 2 O
总反应式为:
NH 4 2O2
硝化细菌
1.每氧化1gNH4+-N为NO3−-N需要消耗碱度7.14g(以CaCO3计) (100/14=7.14)
注:每氧化14gNH4+-N为NO3−-N,产生2molH+,需要1mol 的CaCO3(分子量为100)来中和。 2.不计细菌增值,每氧化1gNH4+-N为NO3--N,共需氧4.57g。 》碱度是指水中能够接受H+离子的物质含量,即CO32-、 HCO3-、OH-及弱酸盐类的总和。
有硝化功能的活性污泥法
硝化反应动力学 环境因素对动力学的影响 (1)温度: 1970s,Downing提出:
n nm
Na Kn Na
nm(T ) 0.47 e0.098(T 15)
K n (T ) 10 0.051T 1.158
0.47—15℃时,亚硝酸菌最大比生长速率(d-1)
生物除磷就是利用PAOs,过量地、超出其生理需要地从 外部摄取磷(luxury uptake),并将其以聚合形态贮存在体 内,形成高磷污泥而排出系统,以达到污水除磷的效果。
有硝化功能的活性污泥法
2 NH3 3O2 2 HNO2 2 H 2O 619 kJ 2 HNO2 O2 2 HNO3 201kJ
污水处理生物除磷工艺设计
污水处理生物除磷工艺(一)缺氧好氧活性污泥法(A/O工艺)当以除磷为主时,可采用无循环的厌氧/好氧工艺,基本工艺流程如下图所示。
厌氧/好氧工艺流程1. 设计参数A/O工艺生物除磷设计参数见下表A/O工艺生物除磷设计参数2. 工艺计算缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。
具体计算公式见下表。
A/O工艺生物除磷容积基计算公式(二)弗斯特利普( Phostrip) 除磷工艺Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。
该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。
工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。
Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。
该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。
Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。
总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。
但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。
四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。
A2/O工艺脱氮除磷流程(一)一般规定进入系统的污水应符合下列要求:(1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ;(2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ;(3) 同时脱氮、除磷时,宜同时满足前两款的要求;(4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);(5) 当工业废水进水COD超过1000mg/L 时,前处理可采用升流式厌氧污泥床反应器( UASB) 等厌氧处理措施;(6) 当工业废水进水的BOD5/COD小于0. 3时,前处理需采用水解酸化等预处理措施。
第四章污水生物处理脱氮除磷6课时ppt课件
6N3O 5CH 3OH 厌 氧 菌 5CO 23N27H2O6OH
还原1mg需要2.47mg 甲醇(合3.7mgCOD)
还原1mg硝酸盐氮产 生3.57mg碱度和
0.45mgVSS(新细胞)
适宜温度15~30℃; pH7.0~7.5; BOD5/TKN>3不需要 外加碳源
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
硝化曝气池,投 碱以维持pH 值
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
生物法除氮
处理工艺
利用原水中的有机物为碳源 和第一好氧池中回流的含有 硝态氮的混合液进行反硝化
反应。脱氮已基本完成
进一步提高脱氮效率, 废水进入第二段反硝化 反应器,利用内源呼吸
制约因素:DO>
对硝化影响大一般<3,
0.5mg/L,一般
BOD负荷
1.5~2.0mg/L
≤0.1kgBOD5/kgMLSS Nhomakorabead在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
氮的去除
生物法除氮
• 硝化过程影响因素:
水污染控制工程
第四章 污水生物处理 (脱氮除磷)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
第五节 生物脱氮除磷技术p147
• 随着城市人口的集中和工农业的发展,水体的富 营养化问题日益突出。目前中国的某些湖泊,如 昆明滇池,江苏太湖,安徽巢湖等都已出现不同 程度的富营养化现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
针对污泥膨胀采取的措施
控制曝气量 调整pH值 如氮磷的比例失调,可投加氮化合物和磷化合 物 投加一些化学药剂(如絮凝剂等) 城市污水厂的污水在经过沉砂池后,跨越初沉 池,直接进入曝气池。
3)常见问题与对策
f. 泡沫
• 化学泡沫
• 生物泡沫
(1)化学泡沫
• 成因: 洗涤剂或工业用表面活性物质等引起 呈乳白色
微小絮体,出水透明度下降。
• 原因: 曝气过度;负荷下降,活性污泥自身
氧化过度;
• 对策:减少曝气;增大负荷量
3)常见问题与对策
d. 泥水界面不清
• 现象:污泥可以下沉,但泥水界面不清晰; • 原因:高浓度有机废水的流入,使微生物处于对 数增长期;污泥形成的絮体性能较差; • 对策:降低负荷;增大回流量以提高曝气池中的 MLSS值。
2)缺氧反硝化
C6H12O6 + 4 NO-3 (NO2-)
生物除磷:
1)(聚磷菌)厌氧释磷 2)好氧/缺氧吸磷
脱氮、除磷工艺设计
1 2 3 4 脱氮工艺及设计 除磷工艺及设计 脱氮除磷工艺 生物除磷脱氮的影响因素
1 生物脱氮工艺
1)三段生物脱氮工艺 2)前置缺氧-好氧生物脱氮工艺 3)后置缺氧-好氧脱氮工艺 4)Bardenpho生物脱氮工艺 5)同步硝化反硝化
1)三段生物脱氮工艺
碱
进水 曝气池
沉淀池
I 硝化池
沉淀池 II 反硝 化池
沉淀池 III
出水
回流污泥
剩余污泥
回流污泥 剩余污泥
回流污泥 剩余污泥
投加外碳源两段生物脱氮工艺
硝化 沉淀池
曝气池 除碳、硝化 回流污泥 剩余污泥 II 甲醇 反硝 化池 沉淀池 III
进水 初沉池 I
出水
回流污泥
剩余污泥
3)常见问题与对策
a. b. c. d. e. f. 污泥腐化; 污泥上浮; 污泥解体; 泥水界面不清; 污泥膨胀; 泡沫
3)常见问题与对策
a. 污泥腐化 • 现象:活性污泥呈灰黑色、污泥发生厌氧反应, 污泥中出现硫细菌,出水水质恶化; • 原因: ① 混合液DO不足,负荷量增高; ② 曝气不足; ③ 工业废水的流入等; • 对策: ① 控制负荷量; ② 增大曝气量; ③ 切断或控制工业废水的流入。
• b.好氧区容积计算
根据污泥泥龄计算曝气池体积公式:
QYθ co (S0 Se) V Xv(1 K d θ co )
6) 生物脱氮工艺计算
c.需氧量计算
去除有机物的需氧量加上氨氮硝化需氧量。前置反硝化系 统中,需扣除还原硝酸盐提供的氧当量。
O2 = Q (S0-Se)/0.68-1.42△Xv
2) 运行与管理
(3)二沉池主要监测项目:
①pH值:略低于曝气池出水,一般6.87.2; ②透明度:一般在30度以上,水质较好时可高于50度; ③SS:低于30mg/L; ④BOD5(COD):BOD5<20mg/L,,COD<60mg/L; ⑤DO:略低于2mg/L; ⑥表面水力负荷(q) :1.01.5m3/m2.h ⑦出水堰水力负荷:1.5~2.9L/m.s; ⑧HRT:1.52.5h; ⑨大肠菌值:应小于1000个/ml
二沉池
出水
(Q-Qw), Se,Xe
剩余污泥 Qw,Se,XR
2)运行与管理
(2)曝气池的主要检测项目
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 水温:1530C, 一般要求不高于35C或低于10C; pH值:6.58.5,最佳7.27.4,一般不能>9.5和<4.0; DO:入口处不低于0.5 mg/L,出口处应高于2.0 mg/L; MLSS、MLVSS:2000-4000mg/L Xr:用于确定回流和剩余污泥量,约700012000mg/L; SV:30%左右 SVI:沉降性能,50150; LsrBOD:0.5,0.15(硝化),1.0 (高负荷)。 污泥龄(c):1d(高负荷),3-5d,30d (延时) ; HRT:2-3h(高负荷),4-6h,24h(延时)。
水力负荷 进水水质(碳氮磷比) 有机负荷 微生物浓度(MLSS) 回流污泥浓度/污泥回流比 污泥泥龄 c 曝气时间/氧传递速率/溶解氧浓度 pH和碱度
有机负荷/污泥浓度/回流污泥浓度/回流比/污泥龄
曝气池
进水 Q,S0,X0
V,Se,X 回流活性污泥 RQ,Se,XR (1+R)Q, Se,X
θc:2-3d
3 脱氮除磷工艺
1)A2/0工艺 2)改良Bardenpho工艺 3)UCT及改良UCT工艺 4)SBR工艺 5)氧化沟工艺
(anaerobic-anoxic-oxic)
内循环 污水 厌氧 磷释放 氨化 缺氧 脱氮 N2 好氧 硝化,好 氧吸磷 二沉池 出水
1) A2/0工艺
回流污泥(含磷污泥)
2)前置缺氧-好氧生物脱氮工艺
污水内循环 碱 原污水 反硝 化池 曝气池
沉淀池
出水
回流污泥
剩余污泥
3)后置缺氧-好氧生物脱氮工艺
原污水 曝气池
缺氧
沉淀池 出水
回流污泥
剩余污泥
4)Bardenpho生物脱氮工艺
原污水
曝气池 缺氧 好氧 缺氧 好氧
沉淀池 出水
回流污泥
剩余污泥
5)同步硝化反硝化
机理: a.反应器DO分布不均理论 b.缺氧微环境理论 c.微生物学解释:好氧反硝化菌和异氧硝化菌。
好氧(硝酸盐)回流 回流污泥 剩余污泥
3) UCT及改良UCT工艺
回流1 进水 曝气池 厌氧 缺氧 缺氧 好氧 回流2
沉淀池 出水
回流污泥
剩余污泥
4) SBR工艺
进水
厌氧 好氧 缺氧 (搅拌) (曝气)
沉淀
出水
闲置
好氧 (曝气)
4 生物脱氮除磷工艺设计及影响因素
1)常用生物脱氮除磷工艺设计参数和特点 2)生物脱氮除磷影响因素 环境因素、工艺因素、污水成分。
VX △X θc
按表观产率系数计算:△X v
Yobs (S0 Se)Q
c. 需氧量的计算
耗氧量= 去除的bCOD-合成微生物的COD O2 = Q (S0-Se)/0.68-1.42△Xv
回顾: 脱氮除磷基本理论
生物脱氮:
1)好氧硝化
NH4++2O2 NO3- (NO2-) +2H++H2O 6CO2 + 6H2O+2N2
• 控制: ① 水冲消泡 ② 消泡剂
(2)生物泡沫
• 成因: 诺卡氏菌属的一类丝状菌引起; 呈 褐色 • 问题:可能致病;卫生、环境;影响曝气
• 控制:水冲或消泡剂无效;加氯;排泥,缩短 SRT
• 根本原因:诺卡氏菌在较高温、富油脂类物质 的环境中易于繁殖
本章重点掌握的内容2
• 生物脱氮除磷工艺的设计计算 • 活性污泥工艺运行中的常见问题
2 生物除磷工艺
1)Ap/O工艺 2)Phostrip除磷工艺
1) Ap/O工艺
沉淀池 原污水 厌氧 磷释放 曝气池 好氧吸磷 出水
回流污泥(富含磷污泥) 剩余污泥 (富含磷污泥)
2) Phostrip除磷工艺
脱磷水回流 原污水 (含磷) 好氧吸磷 含磷污泥 +脱磷水 沉淀池 处理水
I 剩余污泥 排放
5)氧化沟工艺
曝气池
进水
厌氧
好氧
缺氧
二沉池
出水
回流活性污泥
剩余污泥
重点:
各种脱氮、除磷工艺的类型和特点。 脱氮/除磷工艺设计计算要点。
污水的好氧生物处理 ——运行、管理
内容
1)活性污泥法启动 2)活性污泥的运行管理 3)常见的问题与对策
1)启动与试运行
(1) 活性污泥的培养与驯化 接种污泥: ①同类污水厂的剩余污泥; ②粪便污水等。 培养方法: ①间歇培养法; ②流量分阶段直接培养法; ③全流量连续直接培养法; 驯化方法: ①异步驯化法(先培养后驯化); ②同步驯化法
剩余污泥
1) 倒置A2/0工艺
回流混合液(0-200%)Q 污水Q 短暂 沉淀池 缺氧 厌氧
二沉池 出水 好氧
回流污泥(25%-100%)Q
剩余污泥
2)改良Bardenpho工艺
回流
进水 厌氧 缺氧 好氧 缺氧 好 氧
Hale Waihona Puke 二沉池 出水回流污泥
剩余污泥
3) UCT及改良UCT工艺
缺氧回流
污水 厌氧 缺氧 好氧 二沉池 出水
活性污泥法设计 ——除磷脱氮
回顾: 活性污泥法设计计算
a. 曝气池体积的设计计算
– 有机物负荷率法
QS0 QS0 V LsX Lv
QY(S0 Se)θ ·c V X(1 K d θ c)
– 污泥泥龄法
– 水力停留时间法
V HRT Q
回顾: 活性污泥法设计计算
b.剩余污泥计算
按污泥泥龄计算:
6) 生物脱氮工艺计算
• b.好氧区容积计算
Na µn µnm( ) Kn Na
θ co
1 F µ n
µ n:硝化菌比生长速率,d-1; µ nm:硝化菌最大比增长速率,d-1; Na:氨氮浓度, g/m3; Kn:硝化作用中半速率常数,g/m3。 θco:好氧区设计污泥泥龄,d。
6) 生物脱氮工艺计算
+4.75[Q(Nk-Nke)-0.12 △Xv]
O2 = Q (S0-Se)/0.68-1.42△Xv 前置反硝化 +4.75[Q(Nk-Nke)-0.12 △Xv] -2.86 [Q(Nt-Nke-Noe)-0.12 △Xv]