2021年广东省初中毕业生学业考试数学科试卷(密)

合集下载

广东省2021年中考数学试题含答案(word版)

广东省2021年中考数学试题含答案(word版)

广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A、47 B 、37 C 、34D 、137、如图7图,□ABCD 中,下列说法一定正确的是( ) A 、AC=BD B 、AC ⊥BDC 、AB=CD D 、AB=BC 题7图8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21AB D题10图C 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。

2021-2022学年广东省广州市白云区九年级(上)期末数学试卷(解析版)

2021-2022学年广东省广州市白云区九年级(上)期末数学试卷(解析版)

2021-2022学年广东省广州市白云区九年级第一学期期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列图案中,是中心对称图形的是()A.B.C.D.2.在如图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个3.如图,PA,PB是⊙O的两条切线,切点分别是A,B,已知∠P=60°,OA=3,则∠AOB所对的弧长为()A.2πB.3πC.5πD.6π4.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m的取值范围是()A.m>B.m<C.m≤D.m≥5.方程x2+8x+17=0的根的情况是()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.点(3,﹣2)在反比例函数y=的图象上,则下列说法正确的是()A.k=6B.函数的图象关于y=x对称C.函数的图象经过点(6,1)D.函数的图象关于原点对称7.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.88.用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A.x(20+x)=64B.x(20﹣x)=64C.x(40+x)=64D.x(40﹣x)=64 9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.2r B.r C.r D.3r10.已知抛物线y=ax2﹣bx+c如图,下列说法正确的有()①a+b+c=0,②a﹣b+c>0,③b>0,④c=﹣1.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,满分18分。

)11.抛物线y=x2﹣2x+3有最点(填写“高”或“低”),这个点的坐标是.12.点A是反比例函数y=(k≠0)在第一象限内的图象上一点,过点A作AB⊥x轴,垂足为点B,△OAB的面积是1,则k=.13.如图是一个可以自由转动的转盘,转盘分成3个大小相同的扇形,标号分别为Ⅰ,Ⅱ,Ⅲ,三个数字.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).指针指向扇形Ⅰ的概率是.14.如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,则∠EBC=°.15.为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞100条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞10条鱼.如果在这10条鱼中有1条鱼是有记号的,那么估计鱼塘中鱼的条数为条.16.如图,在锐角△ABC中,∠BAC=60°,AE是中线,BF和CD是高,则下列结论中,正确的是(填序号).①BC=2DF;②∠CEF=2∠CDF;③△DEF是等边三角形;④(CF+CD):(BD+BF)=(BD﹣BF):(CF﹣CD).三、解答题(本大题共9小题,满分72分。

广东省初中毕业生学业考试数学模拟试卷一及答案

广东省初中毕业生学业考试数学模拟试卷一及答案

广东省初中毕业生学业考试数学模拟试卷一及答案广东省初中毕业生学业考试数学模拟试卷一及答案中考试题对于每个考生来说都是很重要的,它影响着考生的高中去向,下面是店铺整理的最新中考模拟试题,希望能帮到你。

广东省初中毕业生学业考试数学模拟试卷一一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A.|-2|=2B.|+2|=|-2|C.-|+2|=±|-2|D.-|-3|=+(-3)2.下列各实数中,最小的是( )A.-πB.(-1)0C.3-1D.|-2|3.如图M11,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为( )A.120°B.128°C.110°D.100°图M11 图M124.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5.下列计算正确的是( )A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a-b)2=a2-b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图M12是根据某班50名一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A.9,8B.8,9C.8,8.5D.19,178.已知x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( )A.m<-1B.m>1C.m<1,且m≠0D.m>-1,且m≠09.如图M13,在矩形ABCD中,AB=1,AD=2,将AD边绕点A 顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为( )A.πB.π2C.π3D.π4图M13 图M1410.如图M14,已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC 上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x=32x+3的解为________.13.如图M15,自行车的链条每节长为2.5 cm,每两节链条相连接部分重叠的圆的直径为0.8 cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.14.如图M16,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为________.15.如图M17,△ABC与△DEF是位似图形,位似比为2∶3,若AB=6,那么DE=________.16.如图M18,已知S△ABC=8 m2,AD平分∠BAC,且AD⊥BD 于点D,则S△ADC=________ m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2-2x-4=0.18.先化简,再求值:2xx+1-2x+6x2-1÷x+3x2-2x+1.其中x=3.19.如图M19,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M110,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.(1)求证:①△ABG≌△AFG; ②BG=GC;(2)求△FGC的面积.22.“关注校车,关儿童”成为今年全社会热议的焦点之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M111,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于P(n,2),与x轴交于A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B,C,P,D为顶点的四边形是菱形,求出点D的坐标.24.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图M112(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图M112(2),CD与⊙O交于另一点E.BD∶DE∶EC=2∶3∶5,求圆心O到直线CD的距离;(3)若图M112(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的.情况出现几次?25.如图M113(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M113(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.广东省初中毕业生学业考试数学模拟试卷一答案一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2B.2与-2C.-2与12D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1B.0C.1D.54.若m>n,则下列不等式中成立的是( )A.m+ana2 D.a-m5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103B.19.6×104C.1.96×105D.0.196×1066.如图M21是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃B.22.5℃C.23℃D.23.5℃7.如图M22,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60°B.70°C.90°D.110°8.如图M23,下列四个图形中,既是轴对称图形又是中心对称图形的有( )图M23A.1个B.2个C.3个D.4个9.不等式组x-1≥1,2x-5<1的解集在数轴上表示为( )A. B. C. D.10.如图M24,已知直线AB与反比例函数y=-2x和y=4x交于A,B两点,与y轴交于点C,若AC=BC,则S△AOB=()A.6B.7C.4D.3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a3-4a2b+4ab2=________.12.已知|a-1|+2a+b-5=0,则ab的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M25,在△ABC中,D,E分别为AB,AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=________.图M25 图M26 图M2715.如图M26,△ABC的顶点都在正方形网格的格点上,则cosC=________.16.如图M27,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程组x-2y=8,①2x+y=1.②18.先化简,再求值:2x+1x2+6x+9-13+x÷x-2x2+3x,其中x=3-3.19.如图M28,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.①作∠CAM的平分线AN;②作AC的中点O,连接BO,并延长BO交AN于点D,连接CD.(2)在(1)的条件下,判断四边形ABCD的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图M29).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图M210,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M211,二次函数y=12x2+bx+c的图象交x轴于A,D 两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.图M212 图M213 图M214(1)如图M212,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图M213,若点M是OA的中点,求证:AD=4OH;(3)如图M214,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.25.操作:如图M215,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x 之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.图M215广东省初中毕业生学业考试数学模拟试卷一答案1.C2.A3.D4.C5.B6.B7.B8.D9.C 10.D11.8 12.x=3 13.102.8 14.24 15.9 16.417.解:由原方程移项,得x2-2x=4.等式两边同时加上一次项系数一半的平方,得x2-2x+1=5.配方,得(x-1)2=5.∴x=1±5.∴x1=1+5,x2=1-5.18.解:原式=2xx+1-2x+3x+1x-1•x-12x+3=2xx+1-2x-1x+1=2x+1.当x=3时,原式=23+1=3-1.19.(1)解:如图D160,EF即为所求.图D160(2)证明:如图,∵四边形ABCD为矩形,∴AD∥BC.∴∠ADB=∠CBD.∵EF垂直平分线段BD,∴BO=DO.在△DEO和△BFO中,∵∠ADB=∠CBD,BO=DO,∠DOE=∠BOF,∴△DEO≌△BFO(ASA).∴EO=FO.∴四边形DEBF是平行四边形.又∵EF⊥BD,∴四边形DEBF是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P(抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD中,AD=AB,∠D=∠B=∠DCB=90°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,∴∠AFG=∠AFE=∠D=90°,AF=AD.即有∠B=∠AFG=90°,AB=AF,AG=AG.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG.②∵AB=6,点E在边CD上,且CD=3DE,∴DE=FE=2,CE=4.不妨设BG=FG=x,(x>0),则CG=6-x,EG=2+x,在Rt△CEG中,(2+x)2=42+(6-x)2 ,解得x=3,于是BG=GC=3.(2)解:∵GFFE=32,∴GFGE=35.∴S△FGC=35S△EGC=35×12×4×3=185.22.解:(1)设单独租用35座客车需x辆.由题意,得35x=55(x-1)-45.解得x=5.∴35x=35×5=175.答:该幼儿园现有的需接送儿童人数为175人.(2)设租35座客车y辆,则租55座客车(4-y)辆.由题意,得35y+554-y≥175,32y+404-y≤150.解这个不等式组,得114≤y≤214.∵y取正整数,∴y=2.∴4-y=4-2=2.∴购进小车的费用为32×2+40×2=144(万元).答:本次购进小车的费用是144万元.23.解:(1)∵AC=BC,CO⊥AB,A(-4,0),∴O为AB的中点,即OA=OB=4.∴P(4,2),B(4,0).将A(-4,0)与P(4,2)代入y=kx+b,得-4k+b=0,4k+b=2.解得k=14,b=1.∴一次函数解析式为y=14x+1.将P(4,2)代入反比例函数解析式得m=8,即反比例函数解析式为y=8x.(2)如图D162,图D162当PB为菱形的对角线时,∵四边形BCPD为菱形,∴PB垂直且平分CD.∵PB⊥x轴,P(4,2),∴点D(8,1).当PC为菱形的对角线时,PB∥CD,此时点D在y轴上,不可能在反比例函数的图象上,故此种情形不存在.综上所述,点D(8,1).24.(1)证明:如图D163,连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵AB是⊙O的直径,∴∠ACB=90°.又∵∠BCD=∠BAC=∠OCA,∴∠BCD+∠OCB=90°,即OC⊥CD.∴CD是⊙O的切线.图D163 图D164(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,∴△BCD∽△EAD.∴CDAD=BDED.∴CE+EDAB+BD=BDED.又∵BD∶DE∶EC=2∶3∶5,⊙O的半径为5,∴BD=2,DE=3,EC=5.如图D164,连接OC,OE,则△OEC是等边三角形,作OF⊥CE于F,则EF=12CE=52,∴OF=5 32.∴圆心O到直线CD的距离是5 32.(3)解:这样的情形共有出现三次,当点D在⊙O外时,点E是CD中点,有以下两种情形,如图D165、图D166;当点D在⊙O内时,点D是CE中点,有以下一种情形,如图D167.图D165 图D166 图D16725.(1)证明:由矩形和翻折的性质可知AD=CE,DC=EA.在△ADE与△CED中,AD=CE,DE=ED,DC=EA,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE.∴AF=CF.设DF=x,则AF=CF=4-x.在Rt△ADF中,AD2+DF2=AF2,即32+x2=(4-x)2.解得x=78,即DF=78.(3)解:如图D168,由矩形PQMN的性质得PQ∥CA,图D168∴PECE=PQCA.又∵CE=3,AC=AB2+BC2=5.设PE=x(0过点E作EG⊥AC于G,则PN∥EG,∴CPCE=PNEG.又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=125,∴3-x3=PN125,即PN=45(3-x).设矩形PQMN的面积为S,则S=PQ•PN=-43x2+4x=-43x-322+3(0所以当x=32,即PE=32时,矩形PQMN的面积最大,最大面积为3.【广东省初中毕业生学业考试数学模拟试卷一及答案】。

2021-2022学年广东省阳江市江城区、阳西县等七年级(上)期末考试数学试题(解析版)

2021-2022学年广东省阳江市江城区、阳西县等七年级(上)期末考试数学试题(解析版)

2021-2022学年广东省阳江市江城区、阳西县等七年级(上)期末数学试卷一、选择题(每小题3分,共30分).1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)下列各数中,比﹣2小的数是()A.﹣B.﹣C.﹣D.﹣13.(3分)若x=0是方程的解,则k值为()A.0B.2C.3D.44.(3分)下列各式中成立的是()A.﹣3﹣5=﹣2B.3x﹣(2x+1)=3x﹣2x+1C.(﹣3)3=﹣9D.|π﹣3|=π﹣35.(3分)由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是()A.B.C.D.6.(3分)以下问题,不适合普查的是()A.学校招聘教师,对应聘人员的面试B.进入地铁站对旅客携带的包进行的安检C.调查本班同学的身高D.了解全市中小学生每天的零花线7.(3分)如果﹣2x2﹣a y与x3y b﹣1是同类项,那么﹣a﹣b的值是()A.﹣3B.﹣2C.﹣1D.18.(3分)如图,在直线l上依次有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条9.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则10.(3分)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAM=2∠CAM B.∠BAM=∠CAMC.∠BAC=∠BAM D.2∠CAM=∠BAC二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上11.(4分)2021年5月11日,第七次全国人口普查(以下简称“七人普”)主要数据结果公布,七人普数据显示,全国人口共141178万人,比2010年增加7206万人.数据“7206万”用科学记数法表示是.12.(4分)90°﹣32°51′18″=.13.(4分)一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售.14.(4分)如图,若要使图中的平面展开图折叠成正方体后,相对面上两个数相同,则x ﹣y=.15.(4分)如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于.16.(4分)一组按规律排列的式子:a2,,,,….则第n个式子是.17.(4分)用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”个.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣).19.(6分)解方程:.20.(6分)如图,已知A,B,C,D四点,按下列要求画图形:(1)画射线CD;(2)画直线AB;(3)连接DA,并延长至E,使得AE=DA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?22.(8分)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.23.(8分)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.25.(10分)如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.2021-2022学年广东省阳江市江城区、阳西县等七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的1.(3分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2的相反数为2.故选:A.2.(3分)下列各数中,比﹣2小的数是()A.﹣B.﹣C.﹣D.﹣1【分析】根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣2.5.【解答】解:根据两个负数,绝对值大的反而小可知﹣2.5<﹣2.故选:C.3.(3分)若x=0是方程的解,则k值为()A.0B.2C.3D.4【分析】将x=0代入方程即可求得k的值.【解答】解:把x=0代入方程,得1﹣=解得k=3.故选:C.4.(3分)下列各式中成立的是()A.﹣3﹣5=﹣2B.3x﹣(2x+1)=3x﹣2x+1C.(﹣3)3=﹣9D.|π﹣3|=π﹣3【分析】直接利用有理数的混合运算法则以及合并同类项法则分别判断得出答案.【解答】解:A、﹣3﹣5=﹣8,故此选项错误;B、3x﹣(2x+1)=3x﹣2x﹣1,故此选项错误;C、(﹣3)3=﹣27,故此选项错误;D、|π﹣3|=π﹣3,正确.故选:D.5.(3分)由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是()A.B.C.D.【分析】从正面看所得到的图形,进行判断即可.【解答】解:从正面看的图形为,C选项中图形,故选:C.6.(3分)以下问题,不适合普查的是()A.学校招聘教师,对应聘人员的面试B.进入地铁站对旅客携带的包进行的安检C.调查本班同学的身高D.了解全市中小学生每天的零花线【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.学校招聘教师,对应聘人员的面试,适合全面调查,故此选项不合题意;B.进入地铁站对旅客携带的包进行的安检,必须全面调查,故此选项不合题意;C.调查本班同学的身高,人数不多,容易调查,因而适合全面调查,故此选项不合题意;D.了解全市中小学生每天的零花线,不适合普查,故此选项符合题意.故选:D.7.(3分)如果﹣2x2﹣a y与x3y b﹣1是同类项,那么﹣a﹣b的值是()A.﹣3B.﹣2C.﹣1D.1【分析】直接利用同类项的定义得出a,b的值,进而得出答案.【解答】解:∵﹣2x2﹣a y与x3y b﹣1是同类项,∴2﹣a=3,b﹣1=1,解得:a=﹣1,b=2,∴﹣a﹣b=﹣(﹣1)﹣2=1﹣2=﹣1.故选:C.8.(3分)如图,在直线l上依次有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条【分析】根据线段的概念求解.【解答】解:图中线段共有AB、AC、BC三条,故选:B.9.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则【分析】根据等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.即可判断.【解答】解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.10.(3分)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAM=2∠CAM B.∠BAM=∠CAMC.∠BAC=∠BAM D.2∠CAM=∠BAC【分析】根据角平分线定义即可求解.【解答】解:∵AM为∠BAC的平分线,∴∠BAM≠2∠CAM,∠BAM=∠CAM,∠BAC=∠BAM,2∠CAM=∠BAC.故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上11.(4分)2021年5月11日,第七次全国人口普查(以下简称“七人普”)主要数据结果公布,七人普数据显示,全国人口共141178万人,比2010年增加7206万人.数据“7206万”用科学记数法表示是7.206×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:7206万=72060000=7.206×107.故答案为:7.206×107.12.(4分)90°﹣32°51′18″=57°8′42″.【分析】两个度数相减,被减数可借1°转化为60′,借一分转化为60″,再计算.【解答】解:90°﹣32°51′18″=89°59′60″﹣32°51′18″=57°8′42″.故答案为:57°8′42″.13.(4分)一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售160元.【分析】由题意可知,八折后的售价为200×0.8=160元.【解答】解:由题意可知,八折后的售价为200×0.8=160元,故答案为160元.14.(4分)如图,若要使图中的平面展开图折叠成正方体后,相对面上两个数相同,则x ﹣y=﹣2.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“x”是相对面,“3”与“y”是相对面,∵相对面上两个数相同,∴x=1,y=3,∴x﹣y=1﹣3=﹣2.故答案为:﹣2.15.(4分)如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于4.【分析】首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.【解答】解:∵C是线段BD的中点,BC=3,∴CD=BC=3;∵AB+BC+CD=AD,AD=10,∴AB=10﹣3﹣3=4.故答案为:4.16.(4分)一组按规律排列的式子:a2,,,,….则第n个式子是.【分析】分别观察分子、分母的变化规律,然后可总结出第n个式子.【解答】解:分子依次是:a2,a4,a6,a8,a10…a2n;分母依次是:1,3,5,7,9,…2n﹣1;故可得第n个式子为:.故答案为:.17.(4分)用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”5个.【分析】设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣).【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣)=1﹣3÷(﹣3)×=1+3×=1+=.19.(6分)解方程:.【分析】本题方程含有分数,若直接进行通分,书写会比较麻烦,而方程左右两边同时乘以公分母6,则会使方程简单很多.【解答】解:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.20.(6分)如图,已知A,B,C,D四点,按下列要求画图形:(1)画射线CD;(2)画直线AB;(3)连接DA,并延长至E,使得AE=DA.【分析】(1)画射线CD即可;(2)画直线AB即可;(3)连接DA,并延长至E,使得AE=DA即可.【解答】解:如图所示,(1)射线CD即为所求作的图形;(2)直线AB即为所求作的图形;(3)连接DA,并延长至E,使得AE=DA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“□”是a,将a看做常数,去括号、合并同类项后根据结果为6知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.22.(8分)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.【分析】(1)解方程,并计算对应b﹣a的值与方程的解恰好相等,所以是差解方程;(2)解方程,根据差解方程的定义列式,解出即可.【解答】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)5x=m+1,x=,∵关于x的一元一次方程5x=m+1是差解方程,∴m+1﹣5=,解得:m=.23.(8分)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?【分析】设A、B两地间的路程为x千米,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为2小时即可列出方程,求出x的值.【解答】解:设A、B两地间的路程为x千米,根据题意得﹣=2解得x=240答:A、B两地间的路程是240千米.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.【分析】(1)利用角平分线、对顶角的性质,可得结论;(2)根据∠AOC=50°,根据互补、角平分线的意义可求出答案;(3)设未知数,利用角平分线的意义,分别表示∠DOF,∠EOB,∠COB,再根据平角的意义求出结果即可.【解答】解:(1)∵OE平分∠COB,∴∠COE=∠COB,∵∠AOD=∠COB,∴∠AOD=2∠COE;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,∴∠EOC=∠BOC=65°,∴∠DOE=180°﹣∠EOC=180°﹣65°=115°,∵OF平分∠DOE,∴∠EOF=∠DOE=57.5°;(3)设∠AOC=∠BOD=α,则∠DOF=α+15°,∴∠EOF=∠DOF=α+15°,∴∠EOB=∠EOF+∠BOF=α+30°,∴∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.25.(10分)如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)根据P,Q两点间的距离为6,列出方程计算即可求解.【解答】解:(1)∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有|﹣10+t﹣(5﹣0.5t)|=6,解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.。

广东省广州市2021年中考数学真题卷(含答案)

广东省广州市2021年中考数学真题卷(含答案)

广州市2021年初中毕业生学业考试数学试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码贴在答题卡指定位置。

2.答题时,选择题答案,用2B铅笔将答题卡上对应题目的答案标号涂黑;非选择题答案,用0.5毫米黑色墨水签字笔,直接写在答题卡上对应的答题区域内。

答案答在试题卷上无效。

3.考生必须保持答题卡的整洁。

考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10题,每小题3分,满分30分)1.下列四个选项中,为负整数的是()A.0B.﹣0.5C.﹣D.﹣22.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣63.方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=64.下列运算正确的是()A.|﹣(﹣2)|=﹣2B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣45.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.59.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C 在函数y=﹣(x<0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)二、填空题(本大题共6小题,每小题3分,满分18分)11.代数式在实数范围内有意义时,x应满足的条件是.12.方程x2﹣4x=0的实数解是.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1y2(填“<”或“>”或“=”).15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD 的对称点为B′,当B′D∥AC时,则∠BCD的度数为.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=三、解答题(本大题共9小题,满分72分)17.解方程组.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA 到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.参考答案与解析一.选择题(共10小题)1.下列四个选项中,为负整数的是()A.0B.﹣0.5C.﹣D.﹣2【分析】根据整数的概念可以解答本题.【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、﹣是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.2.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【分析】根据相反数的性质,由a+b=0,AB=6得a<0,b>0,b=﹣a,故AB=b+(﹣a)=6.进而推断出a=﹣3.【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.3.方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.4.下列运算正确的是()A.|﹣(﹣2)|=﹣2B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣4【分析】根据绝对值的定义、二次根式的运算法则、幂的乘方和积的乘方的运算法则,完全平方公式等知识进行计算即可.【解答】解:A、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意;B、3与不是同类二次根式,不能合并,原计算错误,故本选项不符合题意;C、(a2b3)2=a4b6,原计算正确,故本选项符合题意;D、(a﹣2)2=a2﹣4a+4,原计算错误,故本选项不符合题意.故选:C.5.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)【分析】利用平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意;(2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;(3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意;(4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意,真命题为(1)(4),故选:B.6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为=,故选:B.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm【分析】首先利用相切的定义得到∠OAC=∠OBC=90°,然后根据∠ACB=60°求得∠AOB=120°,从而利用弧长公式求得答案即可.【解答】解:由题意得:CA和CB分别与⊙O分别相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴=16π(cm),故选:B.8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.5【分析】根据抛物线于x周两交点,及于y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.【分析】在Rt△ABC中,利用勾股定理可求AB,由旋转的性质可得AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,在Rt△BB'C'中,由勾股定理可求BB'的长,即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,∴BC'=4,∴B'B===4,∴sin∠BB′C′===,故选:C.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C 在函数y=﹣(x<0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)【分析】如图,作AD⊥x轴于D,CE⊥x轴于E,通过证得△COE∽△OAD得到=,则OE=2AD,CE=2OD,设A(m,)(m>0),则C(﹣,2m),由OE=0﹣(﹣)=得到m﹣(﹣)=,解分式方程即可求得A的坐标.【解答】解:如图,作AD⊥x轴于D,CE⊥x轴于E,∵四边形OABC是矩形,∴∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠COE=∠OAD,∵∠CEO=∠ODA,∴△COE∽△OAD,∴=()2,,∵S△COE=×|﹣4|=2,S△AOD==,∴=,∴OE=2AD,CE=2OD,设A(m,)(m>0),∴C(﹣,2m),∴OE=0﹣(﹣)=,∵点B的横坐标为﹣,∴m﹣(﹣)=,整理得2m2+7m﹣4=0,∴m1=,m2=﹣4(舍去),∴A(,2),故选:A.二.填空题(共6小题)11.代数式在实数范围内有意义时,x应满足的条件是x≥6.【分析】二次根式中被开方数的取值范围为被开方数是非负数.【解答】解:代数式在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.12.方程x2﹣4x=0的实数解是x1=0,x2=4.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB 于点D、E,连结BD.若CD=1,则AD的长为2.【分析】由线段垂直平分线的性质可得AD=BD,利用含30°角的直角三角形的性质可求解BD的长,进而求解.【解答】解:∵DE垂直平分AB,∴AD=BD,∵∠C=90°,∠A=30°,CD=1,∴BD=2CD=2,∴AD=2.故答案为2.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【分析】由一元二次方程根的情况,求得m的值,确定反比例函数y=图象经过的象限,然后根据反比例函数的性质即可求得结论.【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD 的对称点为B′,当B′D∥AC时,则∠BCD的度数为32°.【分析】先根据等腰三角形的性质得到∠A=∠B=38°,再利用平行线的性质得∠ADB′=∠A=38°,接着根据轴对称的性质得到∠CDB′=∠CDB,则可出∠CDB的度数,然后利用三角形内角和计算出∠BCD的度数.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B关于直线CD的对称点为B′,∴∠CDB′=∠CDB=(38°+180°)=109°,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣39°﹣109°=32°.故答案为32°.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(1)(3)(4)(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=【分析】(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)分别过H分别作HM⊥AD于M,HN⊥BC于N,由余弦三角函数和勾股定理算出了HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)余弦三角函数和勾股定理算出了FK,即可得DK.【解答】解:(1)在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H分别作HM⊥AD于M,HN⊥BC于N,∵AB=4,BE=3,∴AE==5,∵∠BAE=∠HAF=∠AHM,∴cos∠BAE=cos∠HAF=cos∠AHM,∴=,∴AH=,HM=,∴HN=4﹣=,即HM≠HN,∵MN∥CD,∴MD=CN,∵HD=,HC=,∴HC≠HD,∴△HGD≌△HEC是错误的,故(2)不正确;(3)由(2)知,AM==,∴DM=,∵MN∥CD,∴MD=HT=,∴==,故(3)正确;(4)由(2)知,HF==,∴,∴DK=DF﹣FK=,故(4)正确.三.解答题(共9小题)17.解方程组.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将①代入②得,x+(x﹣4)=6,∴x=5,将x=5代入①得,y=1,∴方程组的解为.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.【分析】欲证AE=DF,可证△ABE≌DCF.由AB∥CD,得∠B=∠C.又因为∠A=∠D,BE=CF,所以△ABE≌△DCF.【解答】证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴△ABE≌DCF(AAS).∴AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.【分析】(1)根据分式的减法和除法可以化简A;(2)根据m+n﹣2=0,可以得到m+n=2,然后代入(1)中化简后的A,即可求得A的值.【解答】解:(1)A=(﹣)•===(m+n);(2)∵m+n﹣2=0,∴m+n=2,当m+n=2时,A=×2=6.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=4,b=5;(2)在这次调查中,参加志愿者活动的次数的众数为4,中位数为4;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.【分析】(1)由题中的数据即可求解;(2)根据中位数、众数的定义,即可解答;(3)根据样本估计总体,即可解答.【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,故答案为:4,5;(2)该20名学生参加志愿者活动的次数从小到大排列如下:1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,∵4出现的最多,由6次,∴众数为4,中位数为第10,第11个数的平均数=4,故答案为:4,4;(3)300×=90(人).答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【分析】(1)根据要求作出图形即可.(2)想办法证明EB=EF,∠BEF=60°,可得结论.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAC=45°,∴∠BAE=∠EAF=∠F AD=15°,∵∠ABC=∠AFC=90°,AE=EC,∵BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EF A=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EF A=30°,∴∠BEF=60°,∴△BEF是等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.【分析】(1)根据直线y=x+4分别与x轴,y轴相交于A、B两点,令x=0,则y=4;令y=0,则x=﹣8,即得A,B的坐标;(2)设P(x,),根据三角形面积公式,表示出S关于x的函数解析式,根据P 在线段AB上得出x的取值范围;(3)将S△POQ表示为OP2,从而当△POQ的面积最小时,此时OP最小,而OP⊥AB 时,OP最小,借助三角函数求出此时的直径即可解决问题.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠PQO=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小,则OP最小时,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【分析】(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=5,故点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),而=﹣(m﹣3)2+5,即得m=3时,纵坐标最大,此时顶点移动到了最高处,顶点坐标为:(2,5);(3)求出直线EF的解析式为y=2x+1,由得直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),因(2,5)在线段EF上,由已知可得(m+1,2m+3)不在线段EF上,即是m+1<﹣1或m+1>3,或(2,5)与(m+1,2m+3)重合,可得抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA 到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【分析】(1)利用平行四边形的判定定理:两边平行且相等的四边形是平行四边形,(2)利用三角形相似,求出此时FG的长,再借助直角三角形勾股定理求解,(3)利用图形法,判断G点轨迹为一条线段,在对应点处求解.【解答】解:(1)连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB,∵四边形ABCD是菱形,∴EF∥AB,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=F A=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BC=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF²=CH²+FH²,即(2+2m)²=()²+(3+m)²,整理得:3m²+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)因H点沿线段AB直线运动,F点沿线段BA的延长线直线运动,并且CD∥AB,线段ED与线段CF的交点G点运动轨迹为线段AG,运动刚开始时,A、F、H、G四点重合,当H点与B点重合时,G点运动到极限位置,所以G点轨迹为线段AG,如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG²=()²+()²=,∴AG=.∴G点路径长度为.参考答案一.选择题(共10小题)1.下列四个选项中,为负整数的是()A.0B.﹣0.5C.﹣D.﹣2【分析】根据整数的概念可以解答本题.【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、﹣是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.2.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【分析】根据相反数的性质,由a+b=0,AB=6得a<0,b>0,b=﹣a,故AB=b+(﹣a)=6.进而推断出a=﹣3.【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.3.方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.4.下列运算正确的是()A.|﹣(﹣2)|=﹣2B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣4【分析】根据绝对值的定义、二次根式的运算法则、幂的乘方和积的乘方的运算法则,完全平方公式等知识进行计算即可.【解答】解:A、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意;B、3与不是同类二次根式,不能合并,原计算错误,故本选项不符合题意;C、(a2b3)2=a4b6,原计算正确,故本选项符合题意;D、(a﹣2)2=a2﹣4a+4,原计算错误,故本选项不符合题意.故选:C.5.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)【分析】利用平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意;(2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;(3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意;(4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意,真命题为(1)(4),故选:B.6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为=,故选:B.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm【分析】首先利用相切的定义得到∠OAC=∠OBC=90°,然后根据∠ACB=60°求得∠AOB=120°,从而利用弧长公式求得答案即可.【解答】解:由题意得:CA和CB分别与⊙O分别相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴=16π(cm),故选:B.8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.5【分析】根据抛物线于x周两交点,及于y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.【分析】在Rt△ABC中,利用勾股定理可求AB,由旋转的性质可得AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,在Rt△BB'C'中,由勾股定理可求BB'的长,即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,∴BC'=4,∴B'B===4,∴sin∠BB′C′===,故选:C.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C 在函数y=﹣(x<0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)【分析】如图,作AD⊥x轴于D,CE⊥x轴于E,通过证得△COE∽△OAD得到=,则OE=2AD,CE=2OD,设A(m,)(m>0),则C(﹣,2m),由OE=0﹣(﹣)=得到m﹣(﹣)=,解分式方程即可求得A的坐标.【解答】解:如图,作AD⊥x轴于D,CE⊥x轴于E,∵四边形OABC是矩形,∴∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠COE=∠OAD,∵∠CEO=∠ODA,∴△COE∽△OAD,∴=()2,,∵S△COE=×|﹣4|=2,S△AOD==,∴=,∴OE=2AD,CE=2OD,设A(m,)(m>0),∴C(﹣,2m),∴OE=0﹣(﹣)=,∵点B的横坐标为﹣,∴m﹣(﹣)=,整理得2m2+7m﹣4=0,∴m1=,m2=﹣4(舍去),∴A(,2),故选:A.二.填空题(共6小题)11.代数式在实数范围内有意义时,x应满足的条件是x≥6.【分析】二次根式中被开方数的取值范围为被开方数是非负数.【解答】解:代数式在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.12.方程x2﹣4x=0的实数解是x1=0,x2=4.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB 于点D、E,连结BD.若CD=1,则AD的长为2.【分析】由线段垂直平分线的性质可得AD=BD,利用含30°角的直角三角形的性质可求解BD的长,进而求解.【解答】解:∵DE垂直平分AB,∴AD=BD,∵∠C=90°,∠A=30°,CD=1,∴BD=2CD=2,∴AD=2.故答案为2.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【分析】由一元二次方程根的情况,求得m的值,确定反比例函数y=图象经过的象限,然后根据反比例函数的性质即可求得结论.【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD 的对称点为B′,当B′D∥AC时,则∠BCD的度数为32°.【分析】先根据等腰三角形的性质得到∠A=∠B=38°,再利用平行线的性质得∠ADB′=∠A=38°,接着根据轴对称的性质得到∠CDB′=∠CDB,则可出∠CDB的度数,然后利用三角形内角和计算出∠BCD的度数.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B关于直线CD的对称点为B′,∴∠CDB′=∠CDB=(38°+180°)=109°,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣39°﹣109°=32°.故答案为32°.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(1)(3)(4)(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=【分析】(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)分别过H分别作HM⊥AD于M,HN⊥BC于N,由余弦三角函数和勾股定理算出了HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)余弦三角函数和勾股定理算出了FK,即可得DK.【解答】解:(1)在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H分别作HM⊥AD于M,HN⊥BC于N,∵AB=4,BE=3,。

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。

(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。

(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。

2021年广东省广州市中考数学试卷及解析(真题样卷)

2021年广东省广州市中考数学试卷及解析(真题样卷)

2021年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2021•广州)四个数﹣3。

14,0,1,2中为负数的是()A.﹣3。

14 B.0C.1D.22.(3分)(2021•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()3.(3分)(2021•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2。

5 B.3C.5D.104.(3分)(2021•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对5.(3分)(2021•广州)下列计算正确的是()A.a b•ab=2ab B.(2a)3=2a3C.3﹣=3(a≥0)D.•=(a≥0,b≥0)6.(3分)(2021•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.(3分)(2021•广州)已知a,b 满足方程组,则a+b的值为()A.﹣4 B.4C.﹣2 D.28.(3分)(2021•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.(3分)(2021•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.3610.(3分)(2021•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2021•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为.12.(3分)(2021•广州)根据环保局公布的广州市2021年至2021年PM2。

广东省深圳市2021-2022学年九年级上学期期末数学试题(解析版)

广东省深圳市2021-2022学年九年级上学期期末数学试题(解析版)

2021-2022学年广东省深圳市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )A. B. C. D.【答案】A【解析】【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【详解】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A .【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.2. 若x =1是关于x 的一元二次方程x 2+mx ﹣3=0的一个根,则m 的值是( )A. ﹣2B. ﹣1C. 1D. 2【答案】D【解析】【分析】把x =1代入方程x 2+mx -3=0,得出一个关于m 的方程,解方程即可.【详解】解:把x =1代入方程x 2+mx -3=0得:1+m -3=0,解得:m =2.故选:D .【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m 的方程. 3. 如图,已知△ABC ∽△DEF ,若∠A =35°,∠B =65°,则∠F 的度数是( )A. 30°B. 35°C. 80°D. 100°【答案】C【解析】 【分析】先根据三角形内角和定理求出∠C 的度数,再根据相似三角形对应角相等即可解决问题.【详解】解:∵△ABC 中,∠A =35°,∠B =65°,∴∠C =180°-∠A -∠B =180°-35°-65°=80°,又∵△ABC ∽△DEF ,∴∠F =∠C =80°,故选:C .【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.也考查了三角形内角和定理.4. 一元二次方程x 2+x ﹣1=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根 C 没有实数根D. 无法判断【答案】A【解析】【分析】判断上述方程的根的情况,只要看根的判别式24b ac =− 的值的符号就可以了.【详解】解:1a =,1b =,1c =−, ()224141150b ac ∴=−=−××−=> ,∴方程有两个不相等的实数根.故选A【点睛】本题考查了根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△的关系是解答此题的关键.总结:一元二次方程根的情况与判别式 的关系:()10>⇔ 方程有两个不相等的实数根;.()20=⇔ 方程有两个相等的实数根;()30<⇔ 方程没有实数根.5. 已知菱形两条对角线的长分别为6cm 和8cm ,则菱形的面积为( )A. 202cmB. 242cmC. 262cmD. 248cm 【答案】B【解析】【分析】由菱形的面积公式对角线乘积的一半可求解.【详解】解:菱形的面积=12×6×8=24(cm 2),故选:B .【点睛】本题考查了菱形的性质,掌握菱形的面积公式是本题的关键.6. 为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( ) A. 14 B. 13 C. 12 D. 1【答案】A【解析】【分析】直接根据概率公式求解即可. 【详解】解:由题意得,他恰好选到《新中国史》这本书的概率为14, 故选:A .【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7. 如图,已知△A ′B ′C ′与△ABC 是位似图形,点O 是位似中心,若A ′是OA 的中点,则△A ′B 'C ′与△ABC 的面积比是( )A. 1:4B. 1:2C. 2:1D. 4:1的【答案】A 【解析】【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出A BAB′′,根据相似三角形的性质计算,得到答案.【详解】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴12 A B OAAB OA ′′′==,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8. 下列命题中,是真命题的是()A. 一条线段上只有一个黄金分割点B. 各角分别相等,各边成比例的两个多边形相似C. 两条直线被一组平行线所截,所得的线段成比例D. 若2x=3y,则23 xy=【答案】B【解析】【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【详解】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则32xy=,所以D选项不符合题意.故选:B.【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9. 文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个. 经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A. (38﹣x )(160+3x ×120)=3640 B. (38﹣x ﹣22)(160+120x )=3640C. (38﹣x ﹣22)(160+3x ×120)=3640D. (38﹣x ﹣22)(160+3x ×120)=3640 【答案】D【解析】【分析】由这种工艺品销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这种工艺品的销售价每个降低x 元,∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个. 依题意得:(38-x -22)(160+3x ×120)=3640. 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10. 如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GH HE的值是( ) A. 12 B. 23C.D.的【答案】B【解析】【分析】取BD 的中点M ,连接EM ,交BF 于点N ,则12EM DC =,//EM DC ,由BEN BCF ∆∆∽,得1124EN CF DC ==,由//EM AB ,得EMG ABG ∆∆∽,ENH ABH ∆∆∽,则13EG AE =,15EH AE =,从而解决问题.【详解】解: 矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,12BE BC ∴=,//AB CD ,1122CF DF DC AB ===,取BD 的中点M ,连接EM ,交BF 于点N ,如图,则EM 是BCD ∆的中位线,12EM DC ∴=,//EM DC ,12EM AB ∴=,//EM AB ,BEN BCF ∴∆∆∽, ∴12ENBECF BC ==,1124EN CF DC ∴==,14EN AB ∴=,//EM AB ,EMG ABG ∴∆∆∽,ENH ABH ∆∆∽, ∴12EG EMAG AB ==,14EHENAH AB ==,13EG AE ∴=,15EH AE =,1123515GH EG EH AE AE AE ∴=−=−=,∴2215135AE GHHE AE==,故选:B.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出GH和HE的长是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若12ab=,则a bb+=_______.【答案】3 2.【解析】【分析】先把分式化简成已知的形式,再把已知整体代入即可【详解】根据题意可得:原式=ab+1=13122+=.【点睛】本题考查了分式的化简以及代入求值,解题的关键是运用整体思想代入求值.12. 深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有_____个.【答案】3【解析】【分析】先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.【详解】解:由题意可得:参与该游戏可免费得到吉祥物的频率为1500 5000=310,设纸箱中红球的数量为x个,则3 1010 x=,解得:x=3,所以估计纸箱中红球的数量约为3个,故答案为:3.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13. 如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=_____°.【答案】40【解析】【分析】根据线段垂直平分线的性质得到EC=EA,根据矩形的性质得到∠DCA=∠EAC=20°,结合图形计算,得到答案.【详解】解:∵MN是AC的垂直平分线,∴EC=EA,∴∠ECA=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∠D=90°,∴∠DCA=∠EAC=90°-70°=20°,∴∠DCE=∠DCA+∠ECA=20°+20°=40°,故答案为:40.【点睛】本题考查的是矩形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14. 如图,已知一次函数y=2x+4的图象与反比例函数kyx=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是_____.【答案】12【解析】【分析】由一次函数解析式求得B 的坐标,代入k y x=求得k ,然后两个解析式联立成方程组,解方程组求得A 的坐标,然后根据三角形面积公式求得即可.【详解】解:∵一次函数y =2x +4的图象与反比例函数k y x=的图象交于A ,B 两点,点B 的横坐标是1, ∴把x =1代入y =2x +4得,y =6,∴B (1,6),∴6=1k ,解得k =6, ∴反比例函数的解析式为6y x=, 解624y x y x = =+ 得:16x y = = 或32x y =− =− , ∴A (-3,-2),∵AC ⊥y 轴于点C ,∴AC =3,∴S △ABC =12×3×(6+2)=12. 故答案为:12.【点睛】此题是反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,三角形面积等,数形结合是解本题的关键.15. 如图,已知△ABC 与△ADE 均是等腰直角三角形,∠BAC =∠ADE =90°,AB =AC =1,AD =DE=D在直线BC上,EA的延长线交直线BC于点F,则FB的长是_____.【答案】【解析】【分析】过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH,CD,再证明△ABF∽△DCA,进而对应边成比例即可求出FB的长.【详解】解:如图,过点A作AH⊥BC于点H,∵∠BAC=90°,AB=AC=1,∴BC,∵AH⊥BC,∴BH=CH,∴AH,∵AD=DE∴DH==,∴CD=DH-CH,∵∠ABC=∠ACB=45°,∴∠ABF=∠ACD=135°,∵∠DAE =45°,∴∠DAF =135°,∵∠BAC =90°,∴∠BAF +∠DAC =45°,∵∠BAF +∠F =45°,∴∠F =∠DAC ,∴△ABF ∽△DCA , ∴AB BF CD AC=,1BF =,∴BF ,. 【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF ∽△DA C . 三、解答题(本题共7小题,共55分)16. 解方程:2430x x −+=【答案】11x =,23x =【解析】【分析】利用配方法解答,即可求解.【详解】解:2430x x −+=,配方得∶()221x −=,解得∶21x −=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键.17. 小明为探究反比例函数y =k x的性质,他想先画出它的图象,然后再观察、归纳得到.(1)他列出y与x的几组对应值如表:表格中,a=,b=;(2)结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;(3)①若(6,m),(10,n)在该函数的图象上,则m n(填“>”,“=”或“<”);的②若(x1,y1),(x2,y2)在该函数图象上,且x1<x2<0,则y1y2(填“>”,“=”或“<”).【答案】(1)-2,2(2)见解析(3)①>;②>【解析】【分析】(1)把(-4,-1)代入y=kx解方程得到反比例函数的解析式为y=4x,把x=-2,把y=2时,分别代入反比例函数的解析式即可得到答案;(2)根据题意画出图象即可;(3)根据反比例函数的性质即可得到结论.【小问1详解】解:把(-4,-1)代入y=kx得,-1=4k−,∴k=4,∴反比例函数的解析式为y=4 x,当x=-2时,y=42−=-2,即a=-2;当y=2时,2=4x,则x=2,即b=2;故答案为:-2,2;【小问2详解】如图所示,【小问3详解】∵反比例函数的解析式为y=4 x,∴k=4>0,∴在每个象限内y随x的增大而减小,①若(6,m),(10,n)在该函数的图象上,∵6<10,∴m>n;故答案为:>;②若(x1,y1),(x2,y2)在该函数的图象上,∵x1<x2<0,∴y1>y2,故答案为:>.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,反比例函数的图象,正确的作出图象是解题的关键.18. 深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.【答案】(1)1 3(2)1 3【解析】【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.【18题详解】解:(1)∵有A.B、C三个闸口,∴张红选择A安全检查口通过的概率是1 3,故答案为:1 3;【19题详解】根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是31 93=.【点睛】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.19. 如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB 于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.【答案】(1)见解析(2)4 3【解析】【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【19题详解】解:证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;【20题详解】如图,连接GF,∵四边形CDEF 是菱形,∴CF =CD =5,∵BC =3,∴BF4,∴AF =AB -BF =5-4=1,在△CDG 和△CFG 中, CD CF DCG FCG CG CG = ∠=∠ =, ∴△CDG ≌△CFG (SAS ),∴FG =GD ,∴FG =GD =AD -AG =3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG =43. 【点睛】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.20. 如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m ,另一边减少了5m ,剩余部分面积为650m 2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.【答案】(1)30m(2)1m【解析】【分析】(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.【20题详解】解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,依题意得:(x-4)(x-5)=650,整理得:x2-9x-630=0,解得:x1=30,x2=-21(不合题意,舍去).答:原正方形空地的边长为30m.【21题详解】设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,依题意得:(30-y)(30-1-y)=812,整理得:y2-59y+58=0,解得:y1=1,y2=58(不合题意,舍去).答:小道的宽度为1m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21. 【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM 的高度为米.【答案】(1)见解析(2)9 4(3)5 4【解析】【分析】(1)根据题意画出图形;(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.【小问1详解】解:图①中GH即为所求;【小问2详解】∵CD∥PB,∴△ECD∽△EPB,∴CD EDPB EB=,即3.6446PB=+,解得:PB=9,∵FG∥PB,∴△HFG∽△HPB,∴FG HGPB HB=,即49466FG=++,解得:FG=9 4,答:榕树FG的高度为94米;【小问3详解】∵CD∥EF,∴△BCD∽△BEF,∴CD BDEF BF=,即507030BDBD=+,解得:BD=75,∵CD∥EF,∴△ACD∽△AMF,∴CD ADMF AF=,即5057557530MF+=++,解得:MF=275 4,∴EM=EF-MF=70-2754=54(米),故答案为:5 4.【点睛】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.22. 【探究发现】(1)如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=°.【类比迁移】(2)如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;【拓展应用】(3)如图③,已知四边形ABCD为菱形,AD=AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.【答案】(1)①见解析;②22.5°(2(3【解析】【分析】(1)①延长BE交DF于点G,则由对称可知∠EGD=∠EGD'=90°,结合∠DEG=∠BEC得到∠EBC=∠EDF,由正方形的性质得到∠BCE=∠DCF、BC=DC,从而证明△BCE≌△DCF;②当点D'与点F重合时,由对称可知∠DBG=∠D'BG=22.5°,然后由①得到∠EDF=∠EBC=22.5°;(2)延长BE 交DF 于点G ,由对称可知点G 是DD '的中点、∠EGD =∠EGD '=90°,结合CD '⊥DF 得到CD '∥BG ,从而有EG 是△DCD '的中位线,得到点E 是CD 的中点,从而求得CE =DE =1,再由勾股定理求得BE 的长;由(1)①得∠EBC =∠FDC ,∠ECB =∠EGD =90°得到△ECB ∽△EGD ,进而借助相似三角形的性质求得EG 的长,然后由中位线的性质求得CD '的长;(3)以点A 为圆心,AD 的长为半径作圆弧,与CD 和BC 的交点即为点E ,然后分点E 在CD 上和点E 在BC 上讨论,延长AF 交DE 于点G ,然后借助(1)(2)的思路求解.【小问1详解】解:①证明:如图①,延长由对称可知,∠EGD =∠EGD '=90°,∵∠DEG =∠BEC ,∴∠EBC =∠EDF ,∵四边形ABCD 是正方形,∴∠BCE =∠DCF =90°,BC =DC ,在△BCE 和△DCF 中,EBC EDF BC CD BCE DCF ∠=∠ = ∠=∠, ∴△BCE ≌△DCF (ASA ).②解:如图1,当点D '与点F 重合时,由对称可知∠DBE =∠D 'BE ,∵四边形ABCD 是正方形,∴∠DBC =45°,∴∠DBE =∠D 'BE =22.5°,由①得到∠CDF =∠EBD ',∴∠CDF =22.5°,故答案为:22.5°.【小问2详解】解:如图2,延长BE 交DF 于点G ,由对称可知,点G 是DD '的中点,∠EGD =∠EGD '=90°,∵CD '⊥DF ,∴CD '∥BG ,∴EG 是△DCD '的中位线,∴点E 是CD 的中点,∴CE =DE =12CD =12×2=1,∴BE ,由(1)①得,∠EBC =∠FDC ,∠ECB =∠EGD =90°,∴△ECB ∽△EGD , ∴EC BC BE EG DG ED==,∴13EG DG ==,∴EG∴BG =BE +EG +∵EG 是△DCD '的中位线,∴CD '=2EG 【小问3详解】以点A 为圆心,AD 的长为半径作圆弧,与CD 和BC 的交点即为点E ,①如图3,当点E 在CD 上时,延长AF 交DE 于点G ,由(1)①可得,∠GDF =∠OAF ,∵四边形ABCD 为菱形,∴AC ⊥BD ,AO =CO ,∠ODC =∠ODA ,∴∠OAF =∠ODA ,∵AC =2,∴OA =1,∵AD∴OD,∴tan ∠OAF =tan ∠ODA=OA OD =,∴1OF OF OA ==,∴OF; ②如图4,当点E BC 上时,延长AF 交DE 于点G ,则∠AGD =90°,∠DAG =∠EAG =12∠DAE ,∵AD =AB =AE ,∴∠AEB =∠ABE ,∵四边形ABCD 是菱形,∴∠ABO =12∠ABE ,AD ∥∠BC ,∴∠DAE =∠AEB ,∴∠ABO =∠DAG ,在△AGD 和△BOA 中, AGD BOA DAG ABO AD AB ∠=∠ ∠=∠ =,在∴△AGD≌△BOA(AAS),∴DG=AO=1,AG=BO,∴DG=AO,∵∠F AO=∠FDG,∠FOA=∠FGD,∴△FOA≌△FGD(ASA),∴OF=FG,设OF=FG=x,则DF x,在Rt△DFG中,DF2=GF2+DG2,x)2=x2+12,解得:x,∴OF,综上所述,OF【点睛】本题考查了矩形的性质、轴对称的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、解直角三角形,解题的关键是通过菱形的性质和三角形的内角和定理得到∠EBC=∠EDF,从而得到相似三角形或全等三角形,难度较大,需要学生学会利用前面所学的知识解答后面的题目,具有很强的综合性,是中考常考题型.。

广东省茂名市中考数学试题(WORD版含答案)

广东省茂名市中考数学试题(WORD版含答案)

茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷考生须知:1.全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分,考试时间120分钟.2.请认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己 的座位号.3.考试结束,将第一卷、第二卷和答题卡一并交回.亲爱的同学:你好!数学就是力量,自信决定成绩.请你用心思考,细心答题,努力吧,祝你考出好成绩!第一卷(选择题,共2页,满分40分)一、精心选一选(本大题共10个小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.下列四个数中,其中最小..的数是( ) A .0B .4-C .π-D 22.下列运算正确..的是( ) A .2242x x x =· B .238()x x = C .422x x x ÷=D .428x x x =·3.如图所示的四个立体图形中,左视图是圆的个数是( )A .4B .3C .2D .14.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( ) A .5 B .4 C .3 D .25.已知一个多边形的内角和是540°,则这个多边形是( )圆柱 圆锥 圆台 球 请你用2B 铅笔把每题的正确答案的字母代号对应填涂在答题卡上,填涂要规范哟!答在本...试卷上无效.....。

A .四边形B .五边形C .六边形D .七边形6.杨伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形 7.设从茂名到北京所需的时间是t ,平均速度为v ,则下面刻画v 与t 的函数关系的图象是( )8.分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3 B .2 C .1 D .09.如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是( )A .4π平方米B .2π平方米C .π平方米D .1π2平方米10.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-, A D H G C FE (第6题图) y t O y t O y t O y t O A . B . C . D . 2米 1米(第9题图)Oy1O B1B 1C1A11A -(,) 11C (,)(第10题C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷第二卷(非选择题,共8页,满分110分)二、细心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方). 11.方程1112x x=+的解是x = . 12.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 .13.若实数x y 、满足0xy ≠,则yx m x y=+的最大值是 . 14.如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:32101202121211⨯+⨯+⨯+⨯=.按此方式,则将十进制数6换算成二进制数应为 . 三、用心做一做(本大题共3个小题,每小题8分,共24分).16.化简或解方程组.(1)1323228-··(4分)(第12题(第14题20米乙CB A甲10米 米20米温馨提示:下面所有解答题都应写出文字说明,证明过程或演算步骤!(2)241x y x y +=⎧⎨+=⎩①②(4分)17.如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a b 、,把a b 、作为点A 的横、纵坐标.(1)求点()A a b ,的个数; (4分)(2)求点()A a b ,在函数y x =的图象上的概率.(4分)18.如图,方格中有一个ABC △,请你在方格内,画出满足条件1111A B AB B C BC ==,,1A A ∠=∠的111A B C △,并判断111A B C △与ABC △是否一定全等?1 4 32(第17题BA C(第18题四、沉着冷静,缜密思考(本大题共2个小题,每小题8分,共16分).19.某校在“书香满校园”的读书活动期间,学生会组织了一次捐书活动.如图(1)是学生捐图书给图书馆的条形图,图(2)是该学校学生人数的比例分布图,已知该校学生共有1000人.(1)求该校学生捐图书的总本数; (6分) (2)问该校学生平均每人捐图书多少本? (2分)20.设12x x 、是关于x 的方程2410x x k -++=的两个实数根.试问:是否存在实数k ,使得1212x x x x >+·成立,请说明理由.人均捐款 书数(本) 2年级图七年级八年级35%九年级 30%图(第19题温馨提示:关于x 的一元二次方程()200ax bx c a ++=≠,当240b ac -≥时,则它的两个实数根是21242b b acx a-±-=,.五、满怀信心,再接再厉(本大题共3小题,每小题10分,共30分). 21.(本题满分10分)出厂价 成本价 排污处理费 甲种塑料 2100(元/吨) 800(元/吨) 200(元/吨) 乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);(6分)(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?(4分)22.(本题满分10分)已知:如图,直径为OA 的M ⊙与x 轴交于点O A 、,点B C 、把OA 分为三等份,连接MC 并延长交y 轴于点(03)D ,.(1)求证:OMD BAO △≌△; (6分)(2)若直线l :y kx b =+把M ⊙30k b +=.(4分)价目 品种yxCBA MO42 1 3()03D ,23.(本题满分10分)据茂名市某移动公司统计,该公司年底手机用户的数量为50万部,底手机用户的数量达72万部.请你解答下列问题:(1)求年底至底手机用户数量的年平均增长率; (5分) (2)由于该公司扩大业务,要求到底手机用户的数量不少于103.98万部,据调查,估计从底起,手机用户每年减少的数量是上年底总数量的5%,那么该公司每年新增手机用户的数量至少要多少万部?(假定每年新增手机用户的数量相同).(5分)六、灵动智慧,超越自我(本大题共2小题,每小题10分,共20分). 24.(本题满分10分) 如图,在Rt ABC△中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D .(1)若ABC △与DAP △相似,则APD ∠是多少度? (2分) (2)试问:当PC 等于多少时,APD △的面积最大?最大面积是多少? (4分) (3)若以线段AC 为直径的圆和以线段BP 为直径的圆相外切,求线段BP 的长.(4分)60°A D CB (第24题P参考公式: 函数2y ax bx c =++(a b c 、、为常数,0a ≠)图象的顶点坐标是:2424b ac b a a ⎛⎫-- ⎪⎝⎭,25.(本题满分10分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2分) (2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(4分)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”. 探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值. (4分)(第25题yO M x n l 1 2 3 …1B 2B 3B n B 1A 2A 3A 4A n A 1n A +茂名市初中毕业生学业考试 与高中阶段学校招生考试 数学试题参考答案及评分标准说明:1.如果考生的解与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷.2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数.一、选择题(本大题共10小题,每小题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 答案 B C D D B A A C B D 二、填空题(本大题共5小题,每小题4分,共20分.) 11.1 12.1213.2 14.60 15.110 三、(本大题共3小题,每小题8分,共24分.)16.(1)解:原式128= ······································································ 2 分 4=. ······························································································ 4 分 (2)解:由①-②得:3y =, ······································································ 2 分 ∴把3y =代入①得:2x =-, ········································································· 3分∴方程组的解为23.x y =-⎧⎨=⎩,················································································· 4分17.解:(1)列表(或树状图)得:ab12 3 4 1 (1,1) (2,1)(3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4)(2,4)(3,4)(4,4)因此,点()A a b ,的个数共有16个; ································································· 4分 (2)若点A 在y x =上,则a b =, 由(1)得()41164a b P ===, 因此,点()A a b ,在函数y x =图象上的概率为14. ············································ 8分 18.解:如图所示:每画对一个3分,共6分.ABC △与111A B C △不一定全等. ···································································· 8分四、(本大题共2小题,每小题8分,共16分.) 19、解:(1)九年级捐书数为:1000×30%×4=1200(本) ················································· ·1分 八年级捐书数为:1000×35%×6 = 2100(本) ························································ 2 分 七年级捐书数为:1000×35%×2 =700(本) ·························································· 3 分 ∴捐书总本数为:1200+2100+700=4000(本) ··················································· 5 分 因此,该校学生捐图书的总本数为4000本. ························································ 6 分 (2)4000÷1000=4(本) ················································································· 7分 因此,该校平均每人捐图书4本.······································································ 8分20.解:∵方程有实数根,∴240b ac -≥,∴2(4)4(1)0k --+≥,即3k ≤. ····· 2分解法一:又∵24(4)4(1)23k x k ±--+==-,·········································· 3分 ∴12(23)(23)4x x k k +=-+-=, ······················································· 4分 12(23)(23)1x x k k k =+---=+ ··························································· 5分 若1212x x x x >+,即14k +>,∴3k >. ························································· 7 分 而这与3k ≤相矛盾,因此,不存在实数k ,使得1212x x x x >+成立. ···················· 8分 解法二:又∵12441b x x a -+=-=-=, ···························································· 4分 12111c k x x k a +===+, ··············································································· 5分 (以下同解法一)五、(本大题共3小题,每小题10分,共30分.) 21.解:(1)依题意得:1(2100800200)1100y x x =--=, ··········································· 3分BA CB 1A 1 C 1 C 1B 1 A 12(24001100100)20000120020000y x x =---=-, ····································· 6 分 (2)设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得: 11001200(700)20000100820000W x x x =+--=-+. ································· 7 分∵400700400x x ⎧⎨-⎩≤,≤,解得:300400x ≤≤. ······················································ 8 分∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元). ······· 9 分 此时,700400x -=(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.························· 10 分22.证明:(1)连接BM ,∵B C 、把OA 三等分,∴1560∠=∠=°, ································ 1 分又∵OM BM =,∴125302∠=∠=°, ·························································· 2 分 又∵OA 为M ⊙直径,∴90ABO ∠=°,∴12AB OA OM ==,360∠=°, ·········· 3 分∴13∠=∠,90DOM ABO ∠=∠=°, ···························································· 4 分在OMD △和BAO △中,13.OM AB DOM ABO ∠=∠⎧⎪=⎨⎪∠=∠⎩,, ···················································· 5 分∴OMD BAO △≌△(ASA ) ········································································· 6 分 (2)若直线l 把M ⊙的面积分为二等份,则直线l 必过圆心M , ···································· 7 分∵(03)D ,,160∠=°,∴3tan 603OD OM ===° ∴3M ,, ··············································· 8 分 把 3M ,代入y kx b =+得: 30k b +=. ·············································· 10 分23.解:(1)设年底至底手机用户的数量年平均增长率为x ,依题意得: ····························· 1 分250(1)72x +=, ··························································································· 3 分∴1 1.2x +=±,∴10.2x =,2 2.2x =-(不合题意,舍去), ······························ 4 分yxCBA MO42 13()03D ,5∴年底至底手机用户的数量年平均增长率为 20%. ················································ 5 分 (2)设每年新增手机用户的数量为y 万部,依题意得: ········································· 6分 [72(1 5%)](15%)103.98y y -+-+≥, ·························································· 8分 即(68.4)0.95103.9868.40.950.95103.98y y y y ++⨯++≥,≥,64.98 1.95103.98y +≥,1.9539y ≥,∴20y ≥(万部). ······························ 9分 ∴每年新增手机用户数量至少要 20万部. ························································· 10 分 六、(本大题共 2 小题,每小题 10 分,共 20 分.)24、解:(1)当△ABC 与△DAP 相似时,∠APD 的度数是60°或30°. ···················· 2 分 (2)设PC x =,∵PD BA ∥,90BAC ∠=°,∴90PDC ∠=°, ······················· 3 分 又∵60C ∠=°,∴24cos6012AC ==°,1cos602CD x x ==°, ∴1122AD x =-,而3sin 60PD x ==°, ··················································· 4 分 ∴1131122222APD S PD AD x x ⎛⎫==-⎪⎝⎭△ ························································ 5 分 223324)(12)18388x x x =--=--+ ∴PC 等于12时,APD △的面积最大,最大面积是3··································· 6 分 (3)设以BP 和AC 为直径的圆心分别为1O 、2O ,过 2O 作 2O E BC ⊥于点E , 设1O ⊙的半径为x ,则2BP x =.显然,12AC =,∴26O C =,∴6cos603CE ==°, ∴2226333O E =-=,124321O E x x =--=-, ························· 7 分又∵1O ⊙和2O ⊙外切,∴126O O x =+. ······································· 8分在12Rt O O E △中,有2221221O O O E O E =+, ∴222(6)(21)(33)x x +=-+, ·················· 9 分解得:8x =, ∴216BP x ==. ··································································· 10 分60°ADC BPO 2 O 1E25.解:(1)∵104M ⎛⎫ ⎪⎝⎭,在13y x b =+上,∴11043b =⨯+,∴14b =. ················ 2分 (2)由(1)得:1134y x =+, ∵11(1)B y ,在l 上, ∴当1x =时,111713412y =⨯+=,∴17112B ⎛⎫⎪⎝⎭,. ········································· 3 分 解法一:∴设抛物线表达式为:27(1)(0)12y a x a =-+≠, ··································· 4分 又∵1x d =, ∴1(0)A d ,,∴270(1)12a d =-+,∴2712(1)a d =--, ················· 5 分∴经过点112A B A 、、的抛物线的解析式为:2277(1)12(1)12y x d =--+-. ············· 6 分 解法二:∵1x d =,∴1(0)A d ,,2(20)A d -,, ∴设()(2)(0)y a x d x d a =--+≠, ································································ 4 分把17112B ⎛⎫⎪⎝⎭,代入:7(1)(12)12a d d =--+,得2712(1)a d =--, ························ 5 分 ∴抛物线的解析式为27()(2)12(1)y x d x d d =---+-. ····································· 6 分(3)存在美丽抛物线. ··················································································· 7 分 由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵01d <<,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.∵当1x =时,1117113412y =⨯+=<, 当2x =时,21111213412y =⨯+=<,当3x =时,3111311344y =⨯+=>,yO M xnl12 3…1B2B3Bn B1A2A 3A4A n A1n A +∴美丽抛物线的顶点只有12B B 、. ···································································· 8分 ①若1B 为顶点,由17112B ⎛⎫⎪⎝⎭,,则7511212d =-=; ·············································· 9分 ②若2B 为顶点,由211212B ⎛⎫ ⎪⎝⎭,,则11111211212d ⎡⎤⎛⎫=---= ⎪⎢⎥⎝⎭⎣⎦, 综上所述,d 的值为512或1112时,存在美丽抛物线. ··········································· 10分。

广东省深圳市2021年中考数学真题试卷(含详细解析)

广东省深圳市2021年中考数学真题试卷(含详细解析)
设新矩形长和宽为x、y,则依题意 , ,联立 得 ,再探究根的情况:根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的 倍;如图也可用反比例函数与一次函数证明 : , : ,那么,
①是否存在一个新矩形为原矩形周长和面积的2倍?_______.
②请探究是否有一新矩形周长和面积为原矩形的 ,若存在,用图像表达;
一、单选题
1.如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()
A.跟B.百C.走D.年
2. 的相反数是()
A.2021B. C. D.
3.不等式 的解集在数轴上表示为()
A. B.
C. D.
4.《你好,李焕英》的票房数据是:109,133,120,118,124,那么这组数据的中位数是()
空气质量等级
空气质量指数
( )
频数

m

15

9

n
(1) ____, ______;
(2)求良的占比;
(3)求差的圆心角;
(4)统计表是一个月内的空气污染指数统计,然后根据这个一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.根据折线统计图,一个月(30天)中有_____天AQI为中,估测该城市一年(以365天计)中大约有_____天 为中.
21.探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、 倍、k倍.
(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).
(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?

2021年广东省中考数学试卷及答案解析

2021年广东省中考数学试卷及答案解析

2021年广东省中考数学试卷及答案解析2021年广东省初中毕业生学业考试数学本次考试共4页,考试时间为100分钟,满分为120分。

在答题卡上填写准考证号、姓名、试室号、座位号,并用2B铅笔涂黑对应号码的标号。

选择题用2B铅笔涂黑答案信息点,非选择题必须用黑色字迹钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,改动时先划掉原来的答案再写上新的答案,不准使用铅笔和涂改液。

答案不得写在试题上,否则无效。

考试结束时,将试卷和答题卡一并交回。

一、选择题1.求-5的相反数,答案为A。

A。

5B。

-5C。

0D。

12.地球半径约为6 400 000米,用科学记数法表示为6.4×10^6,答案为B。

A。

0.64×10^7B。

6.4×10^6C。

64×10^5D。

640×10^43.数据8、8、6、5、6、1、6的众数是6,答案为C。

A。

1B。

5C。

6D。

84.如左图所示几何体的主视图是B,答案为B。

图略)5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是11,答案为C。

A。

5B。

6C。

11D。

16二、填空题6.分解因式:2x2—10x=2x(x—5)。

7.不等式3x—9>0的解集是x>3.8.如图,A、B、C是⊙O上的三个点,∠ABC=25,则∠AOC的度数是50.图略)9.若x、y为实数,且满足x-3+(1/2)y=5,则(2x+1)/(y+3)的值是1.10.如图,在□ABCD中,AD=2,AB=4,∠A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连结CE,则阴影部分的面积是3-π(结果保留π)。

图略)三、解答题11.计算:2-2sin45°-1+8.解:原式=1/3+2-1.= -2/3+2.=4/3.2)在图中标出点A(3,0),求直线y=2x-6与反比例函数的交点C的坐标。

解:(1)将y=2x—6代入反比例函数,得y=k/(2x—6)。

2021年广东省数学中考真题含答案解析及答案(word解析版)

2021年广东省数学中考真题含答案解析及答案(word解析版)

2021年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.2答案:C解析:2的相反数为-2,选C,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。

3.据报道,2021年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数。

当原数的绝对值<1时,n 是负数.1 260 000 000 000=1.26×1012元4.已知实数、,若>,则下列结论正确的是A. B. C.D.答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。

2021广东省初中毕业生学业考试数学试卷(及答案)

2021广东省初中毕业生学业考试数学试卷(及答案)

机密★启用前2021年广东省初中学业水平考试数学本试卷共4页,25小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,最大的数是()A .πB C .2-D .32.据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()A .90.51085810⨯B .751.085810⨯C .45.1085810⨯D .85.1085810⨯3.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是()A .112B .16C .13D .124.已知93m =,274n =,则233m n +=()A .1B .6C .7D .125.若0a =,则ab =()A B .92C .D .96.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个7.如题7图,AB 是O e 的直径,点C 为圆上一点,3AC =,ABC ∠的平分线交AC 于点D ,1CD =,则O e 的直径为()A B .C .1D .28.设6的整数部分为a ,小数部分为b ,则(2a b +的值是()A .6B .C .12D .9.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5p =,4c =,则此三角形面积的最大值为()A B .4C .D .510.设O 为坐标原点,点A 、B 为抛物线2y x =上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值()A .21B .22C .32D .1二、填空题:本大题7小题,每小题4分,共28分.11.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为_________.12.把抛物线221y x =+向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_________.13.如题13图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.14.若一元二次方程20x bx c ++=(b ,c 为常数)的两根1x ,2x 满足131x -<<-,213x <<,则符合条件的一个方程为_________.15.若1136x x +=且01x <<,则221x x-=_________.16.如题16图,在ABCD Y 中,5AD =,12AB =,4sin 5A =.过点D 作DE AB ⊥,垂足为E ,则sin BCE ∠=_________.17.在ABC △中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.三、解答题(一):本大题共3小题,每小题6分,共18分.18.解不等式组()2432742x x x x ->-⎧⎪⎨->⎪⎩.19.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如题19图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.如题20图,在Rt ABC △中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD △的周长;(2)若13AD BD =,求tan ABC ∠的值.四、解答题(二):本大题共3小题,每小题8分,共24分.21.在平面直角坐标系xOy 中,一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数4y x=图象的一个交点为()1,P m .(1)求m 的值;(2)若2PA AB =,求k 的值.22.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x 元(5065x ),y 表示该商家每天销售猪肉粽的利润(单位:元),求y 关于x 的函数解析式并求最大利润.23.如题23图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE折叠得到FBE △,BF 交AC 于点G ,求CG 的长.五、解答题(三):本大题共2小题,每小题10分,共20分.24.如题24图,在四边形ABCD 中,AB CD ‖,AB CD ≠,90ABC ∠=︒,点E 、F 分别在线段BC 、AD 上,且EF CD ‖,AB AF =,CD DE =.(1)求证:CF FB ⊥;(2)求证:以AD 为直径的圆与BC 相切;(3)若2EF =,120DFE ∠=︒,求ADE △的面积.25.已知二次函数2y ax bx c =++的图象过点()1,0-,且对任意实数x ,都有22412286x ax bx c x x -≤++≤-+.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.机密★启用前2021年广东省初中学业水平考试数学本试卷共4页,25小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,最大的数是()A.πB C.2-D.3【答案】A.2.据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()A.90.51085810⨯B.751.085810⨯C.45.1085810⨯D.85.1085810⨯【答案】D.3.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是()A.112B.16C.13D.12【答案】B.4.已知93m =,274n =,则233m n +=()A .1B .6C .7D .12【答案】D .5.若0a =,则ab =()A B .92C .D .9【答案】B .6.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个【答案】C .7.如题7图,AB 是O e 的直径,点C 为圆上一点,3AC =,ABC ∠的平分线交AC 于点D ,1CD =,则O e 的直径为()A B .C .1D .2【答案】B .8.设6的整数部分为a ,小数部分为b ,则(2a b +的值是()A .6B .C .12D .【答案】A .9.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5p =,4c =,则此三角形面积的最大值为()A B .4C .D .5【答案】C .10.设O 为坐标原点,点A 、B 为抛物线2y x =上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值()A .21B C D .1【答案】A .二、填空题:本大题7小题,每小题4分,共28分.11.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为_________.【答案】22x y =⎧⎨=-⎩.12.把抛物线221y x =+向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_________.【答案】224y x x =+.13.如题13图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.【答案】4π-.14.若一元二次方程20x bx c ++=(b ,c 为常数)的两根1x ,2x 满足131x -<<-,213x <<,则符合条件的一个方程为_________.【答案】240x -=(答案不唯一).15.若1136x x +=且01x <<,则221x x-=_________.【答案】6536-.16.如题16图,在ABCD 中,5AD =,12AB =,4sin 5A =.过点D 作DE AB ⊥,垂足为E ,则sin BCE ∠=_________.【答案】.17.在ABC △中,90ABC ∠=︒,2AB =,3BC =.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____..三、解答题(一):本大题共3小题,每小题6分,共18分.18.解不等式组()2432742x x x x ->-⎧⎪⎨->⎪⎩.【答案】解:()2432742x x x x ->-⎧⎪⎨->⎪⎩ ② ①.①式得:2436x x ->-移项得:2x ->-2x <.⨯②2得:87x x >-77x >-1x >-.∴原不等式组的解集为12x -<<.19.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如题19图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.【答案】解:(1)众数:90,中位数:90,平均数8028539089551002=20⨯+⨯+⨯+⨯+⨯=90.5.(2)20名中有852=15++人为优秀,∴优秀等级占比:153=204∴该年级优秀等级学生人数为:3600=4504⨯(人)答:该年级优秀等级学生人数为450人.20.如题20图,在Rt ABC △中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD △的周长;(2)若13AD BD =,求tan ABC ∠的值.【答案】解:(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,DF Q 为BC 垂直平分线,BD CD ∴=,ABD C AB AD BD=++△AB AD DC=++AB AC =+,AB CE Q =,1ABD C AC CE AE ∴=+==△.(2)设AD x =,3BD x ∴=,又BD CD Q =,4AC AD CD x ∴=+=,在Rt ABD △中,AB ==.tanAC ABC AB ∴∠===.四、解答题(二):本大题共3小题,每小题8分,共24分.21.在平面直角坐标系xOy 中,一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数4y x=图象的一个交点为()1,P m .(1)求m 的值;(2)若2PA AB =,求k 的值.【答案】解:(1)P Q 为反比例函数4y x=上一点,∴代入得441m ==,4m ∴=.(2)令0y =,即0kx b +=,b x k ∴=-,,0b A k ⎛⎫- ⎪⎝⎭,令0x =,y b =,()0,B b ∴,2PA AB Q =.由图象得,可分为以下两种情况,①B 在y 轴正半轴时,0b >,2PA AB Q =,过P 作PH x ⊥轴交x 轴于点H ,又11B O A H ⊥,111PAO B AO ∠=∠,111A HP A OB ∴∽△△,11111112A B AO B O A P A H PH ===,1114222B O PH ∴==⨯=,2b ∴=,11AO OH ∴==,1b k∴-=,2k =.②B 的y 轴负半轴时,0b <,过P 作PQ y ⊥轴,2PQ B Q Q ⊥,22A O B Q ⊥,222A B O AB Q ∠=∠,222A OB PQB ∴∽△△,22222213A B A O B O PB PQ B Q∴===,21133b A O PQ k -∴===,2211232B O B Q OQ b ====,2b ∴=-,6k ∴=,综上,2k =或6k =.22.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x 元(5065x ),y 表示该商家每天销售猪肉粽的利润(单位:元),求y 关于x 的函数解析式并求最大利润.【答案】解:(1)设猪肉粽每盒进价a 元,则豆沙粽没和进价()10a -元.则8000600010a a =-解得:40a =,经检验40a =是方程的解.∴猪肉粽每盒进价40元,豆沙粽每盒进价30元.答:猪肉粽每盒进价40元,豆沙粽每盒进价30元.(2)由题意得,当50x =时,每天可售100盒.当猪肉粽每盒售x 元时,每天可售()100250x --⎡⎤⎣⎦盒.()5065x()()10025040100250y x x x x ∴=-----⎡⎤⎡⎤⎣⎦⎣⎦222808000x x =-+-配方得:()22701800y x =--+当65x =时,y 取最大值为1750元.()2228080005065y x x x ∴=-+- ,最大利润为1750元.答:y 关于x 的函数解析式为()2228080005065y x x x =-+- ,且最大利润为1750元.23.如题23图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE折叠得到FBE △,BF 交AC 于点G ,求CG 的长.【答案】解:延长BF 交CD 于H 连EH .FBE Q △由ABE △沿BE 折叠得到.EA EF ∴=,90EFB EAB ∠=∠=︒,E Q 为AD 中点,EA ED ∴=,ED EF ∴=,Q 正方形ABCD90D EFB EFH ∴∠=∠=∠=︒,在Rt EDH △和Rt EFH △中,ED EF EH EH=⎧⎨=⎩()Rt Rt HL EDH EFH ≌∴△△DEH FEH∴∠=∠又AEB FEB Q ∠=∠,90HEB ∴∠=︒,90DEH AEB ∴∠+∠=︒,ABE DEH Q ∠=∠,90DEH AEB ∴∠+∠=︒,ABE DEH Q ∠=∠,DHE AEB ∴∽△△,12DH AE DE AB ∴==,14DH ∴=,CH AB Q ∥,HGC BGA∴∽△△34CG CH AG AB ∴==,由勾股定理得:AC =CG ∴=.五、解答题(三):本大题共2小题,每小题10分,共20分.24.如题24图,在四边形ABCD 中,AB CD ‖,AB CD ≠,90ABC ∠=︒,点E 、F 分别在线段BC 、AD 上,且EF CD ‖,AB AF =,CD DE =.(1)求证:CF FB ⊥;(2)求证:以AD 为直径的圆与BC 相切;(3)若2EF =,120DFE ∠=︒,求ADE △的面积.【答案】解:(1)CD DF Q =,设DCF DFC α∠=∠=,1802FDC α∴∠=︒-,CD AB Q ‖,()18018022BAF αα∴∠=︒-︒-=,又AB AF Q =,1802902ABF AFB αα︒-∴∠=∠==︒-,()1801809090CFB CFD BFA αα∴∠=︒-∠-∠=︒--︒-=︒,CF BF ∴⊥.(2)如图,取AD 中点O ,过点O 作OM BC ⊥,AB CD Q ‖,90ABC ∠=︒,90DCB ∴∠=︒,又OM BC Q ⊥,OM AB ∴‖,M ∴为BC 中点,()12OM AB CD ∴=+,AD AF DF Q =+,又AF AB Q =,DF DC =,2AD AB CD OM ∴=+=,又OM BC Q ⊥,∴以AD 为直径的圆与BC 相切.(3)120DFE Q ∠=︒,CD EF ‖,EF AB ‖,60D ∴∠=︒,120A ∠=︒,60AFE ∠=︒,又DC DF Q =,DCF ∴△为等边三角形,60DFC ∠=︒,由(2)得:90CFB ∠=︒,30EFB ∴∠=︒,30BFA FBA ∴∠=∠=︒,2EF Q =,在Rt BFE △中,tan 30BE EF =⋅︒=.在Rt CEF △中,tan 60CE EF =⋅︒=如图,过点D ,点A 分别向EF 作垂线交EF 于点M ,N ,CD EM Q ‖,AB EF ‖,CE DM ∴==,BE AN ==,ADE EFD EFAS S S =+△△△1122EF DM EF AN =⋅⋅+⋅⋅()12EF DN AN =⋅⋅+122⎛=⨯⨯+ ⎝=.25.已知二次函数2y ax bx c =++的图象过点()1,0-,且对任意实数x ,都有22412286x ax bx c x x -++-+ .(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.【答案】解:(1)令2412286x x x -=-+,解得123x x ==,当3x =时,24122860x x x -=-+=,2y ax bx c ∴=++必过()3,0,又2y ax bx c Q =++过()1,0-,029303a b c b a a b c c a -+==-⎧⎧∴⇒⎨⎨++==-⎩⎩,223y ax ax a ∴=--,又2412x ax bx c -++,223412ax ax a x ∴--- ,224123ax ax x a --+- 0,0a ∴>且0∆ ,()()22441230a a a ∴+-- ,()210a ∴- ,1a ∴=,2b ∴=-,3c =-,223y x x ∴=--.(2)由(1)可知:()3,0A ,()0,3C -,设()2,23M m m m --,(),0N n ,①当AC 为对角线时,AC M N A C M Nx x x x y y y y +=+⎧⎨+=+⎩()23003230m n m m +=+⎧⎪∴⎨+-=--+⎪⎩,解得10m =(舍),22m =,1n ∴=,即()11,0N .②当AM 为对角线时,AM C N A M C Nx y x x y y y y +=+⎧⎨+=+⎩23002330m n m m +=+⎧∴⎨+--=-+⎩,解得10m =(舍)22m =,5n ∴=,即()25,0N .③当AN 为对角线时,AN C M A N C Mx x x x y y y y +=+⎧⎨+=+⎩23000323n m m m +=+⎧∴⎨+=-+--⎩,解得11m =+21m =2n ∴=或2n =-,)32,0N ∴-,()42N --.综上所述:N 点坐标为()1,0或()5,0或)2,0-或()2-.。

广东省2021年中考数学试题(含解析)

广东省2021年中考数学试题(含解析)

2021年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣2 6.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2021=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE ⌒上一点,AD=1,BC=2,求tan ∠APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2021年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A.5 B.3.5 C.3 D.2.5 【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3 ,2)B.(﹣2 ,3)C.(2 ,﹣3)D.(3 ,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4 B.5 C.6 D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2 【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF 的周长为2C.16 D.4 A.8 B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2 B.y=(x﹣1)2+1C.y=(x﹣2)2+2 D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2 .【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,∠EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B ’C ’交于点O ,可知∠EOB=∠EOB ’=30°,可得∠BEO=∠B ’EO=60°, ∴∠AEB ’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得①错误;由△>0可得②正确;由x=-2时,y <0可得③正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c >0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得④正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2021=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75°【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.【答案】解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】 解:(1)由题意得24+72+18+x=120,解得x=6 (2)1800×1207224 =1440(人) 答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人. 【解析】统计表的分析 【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,∠ABE=∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形. 【答案】 证明:∵BD=CE ,∠ABE=∠ACD ,∠DFB=∠CFE ∴△BFDF ≌△CFE (AAS ) ∴∠DBF=∠ECF∵∠DBF+∠ABE=∠ECF+∠ACD ∴∠ABC=∠ACB ∴AB=AC∴△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由. 【答案】 解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a (2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得x 2﹣43x+12=0 (x-32)2=0 x 1=x 2=32 ∴该三角形的形状是等腰三角形 ∵(26)2=24,(32)2=12 ∴(26)2=(32)2+(32)2 ∴该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断 【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD ∥BC ,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE ⌒上一点,AD=1,BC=2,求tan ∠APE 的值.【答案】(1)证明:过点O 作OE ⊥CD 交于点E ∵AD ∥BC ,∠DAB=90° ∴∠OBC=90°即OB ⊥BC∵OE ⊥CD ,OB ⊥BC ,CO 平分∠BCD ∴OB=OE∵AB 是⊙O 的直径 ∴OE 是⊙O 的半径 ∴直线CD 与⊙O 相切E(2)连接OD 、OE∵由(1)得,直线CD 、AD 、BC 与⊙O 相切 ∴由切线长定理可得AD=DE=1,BC=CE=3, ∠ADO=∠EDO ,∠BCO=∠ECO ∴∠AOD=∠EOD ,CD=3 ∵AE ⌒=AE ⌒∴∠APE=21∠AOE=∠AOD∵AD ∥BC∴∠ADE+∠BCE=180°∴∠EDO+∠ECO=90°即∠DOC=90° ∵OE ⊥DC ,∠ODE=∠CDO ∴△ODE ∽△CDO ∴CD OD OD DE =即3ODOD 1=∴OD=3∵在Rt △AOD 中,AO=2∴tan ∠AOD=AO AD=22 ∴tan ∠APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数 23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53.(1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用. 【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解 ∴x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5 ∵a 为正整数 ∴a 的最大值为22y=40a+30(90-a )=10a+2700∵10>0∴y 随a 的增大而增大∴当a=22时,y=10×22+2700=2920(元) 答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键 【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分) 24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk(x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG . (1)填空:k=_2_______; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE 由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4 ∴41CB CE =即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE ∴△DEB ∽△FEC∴CF=31BD∵OC=GC ,AB=OC ∴FG=AB-CF=34BD-31BD=BD ∵AB ∥OG ∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关 【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DCBC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n -=1,解得x=332-1②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算。

2021年广东省深圳市数学中考试题(解析版)

2021年广东省深圳市数学中考试题(解析版)

2021年深圳市初中毕业生学业考试数学试卷说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

3、本卷试题,考生必须在答题卡上按规定作答。

凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠。

4、考试结束,请将本试卷和答题卡一并交回第一部分 选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.-3的绝对值是( ) A.3B.-3C.-D.答案:A解析:负数的绝对值是它的相反数,故选A 。

2.下列计算正确的是( ) A. B.C. D.答案:D解析:对于A,因为,对于B :,对于C :,故A,B,C 都错,选D 。

3.某活动中,共募得捐款32000000元,将32000000用科学记数法表示为( ) A. B. C. D.答案:C解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.32000000=4.如下图,是轴对称图形但不是中心对称图形的是( )答案:B解析:A 、C 、D 都既是轴对称图形又是中心对称图形,而B 是轴对称图形,不是中心对称图形。

5.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A.最高分 B.中位数 C.极差 D.平均数答案:B解析:21个数的中位数即为第11名的成绩,对比第11名即知自己是否被录取。

6.分式的值为0,则( )A.=-2B.=C.=2D.=0答案:C解析:分式的值为0,即,所以,x =2,选C 。

3131222)(b a b a +=+22)ab (ab =523)(a a =32a a a =⋅81032.0⨯6102.3⨯7102.3⨯61032⨯7102.3⨯242+-x x x x 2±x x 24020x x ⎧-=⎨+≠⎩7.在平面直角坐标系中,点P (-20,)与点Q (,13)关于原点对称,则的值为( ) A.33 B.-33 C.-7 D.7答案:D解析:因为P 、Q 关于原点对称,所以,a =-13,b =20,a +b =7,选D 。

2021年广东省中考数学试卷(解析版)

2021年广东省中考数学试卷(解析版)

2021年广东省中考数学试卷一.选择题〔共5小题〕1.〔2021河南〕﹣5的绝对值是〔〕A. 5 B.﹣5 C.D.﹣考点:绝对值。

解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.应选A.2.〔2021广东〕地球半径约为6400000米,用科学记数法表示为〔〕A. 0.64×107B. 6.4×106C. 64×105D.640×104考点:科学记数法—表示较大的数。

解答:解:6400000=6.4×106.应选B.3.〔2021广东〕数据8、8、6、5、6、1、6的众数是〔〕A. 1 B. 5 C. 6 D.8考点:众数。

解答:解:6出现的次数最多,故众数是6.应选C.4.〔2021广东〕如下图几何体的主视图是〔〕A.B.C.D.考点:简单组合体的三视图。

解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.应选:B.5.〔2021广东〕三角形两边的长分别是4和10,那么此三角形第三边的长可能是〔〕 A. 5 B. 6 C. 11 D.16考点:三角形三边关系。

解答:解:设此三角形第三边的长为x,那么10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.应选C.二.填空题〔共5小题〕6.〔2021广东〕分解因式:2x2﹣10x=2x〔x﹣5〕.考点:因式分解-提公因式法。

解答:解:原式=2x〔x﹣5〕.故答案是:2x〔x﹣5〕.7.〔2021广东〕不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。

解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.〔2021广东〕如图,A、B、C是⊙O上的三个点,∠ABC=25°,那么∠AOC的度数是50.考点:圆周角定理。

解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,那么∠AOC=50°.故答案为:509.〔2021广东〕假设x,y为实数,且满足|x﹣3|+=0,那么〔〕2021的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。

广东省深圳市龙岗区2021-2022学年八年级(上)期末数学试卷(含答案)

广东省深圳市龙岗区2021-2022学年八年级(上)期末数学试卷(含答案)

2021-2022学年广东省深圳市龙岗区八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.下列格式中正确的是()A.=± B.(﹣)2=﹣0.36 C.=4 D.=32.在(﹣)0,,,﹣0.333,…,,3.14,2.010010001…(相邻两个1之间依次多一个0)中,无理数有()A.1个B.2个C.3个D.4个3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°4.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.5,12,13 B.5,6,7 C.1,4,9 D.5,11,125.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第四象限B.第一象限C.第二象限D.第三象限6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是157.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°8.下列命题中,假命题的是()A.三角形中至少有两个锐角B.如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C.等腰直角三角形一定是轴对称图形D.三角形的一个外角一定大于和它相邻的内角9.已知,则a+b等于()A.3 B.C.2 D.110.如图,∠1+∠2+∠3=232°,AB∥DF,BC∥DE,则∠3﹣∠1的度数为()A.75°B.52°C.76°D.60°11.已知一次函y=﹣2x+2,点A(﹣1,a),B(﹣2,b)在该函数图象上,则a与b的大小关系是()A.a<b B.a>b C.a≥b D.a=b12.如图,一次函数的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(每小题3分,共12分)13.当x时,式子有意义.14.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为.15.一名考生步行前往考场,5分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示,则他到达考场所花的时间比一直步行提前了分钟.16.一个自然数的算术平方根是a,则与它相邻的后一个自然数的算术平方根是.三、解答题(共52分)17.(1)3(2﹣4+3)(2)3﹣﹣.18.(1)解方程组(2)解方程组.19.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.20.2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.867.2910被调查的消费者人数(人)2005002007030②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题:(1)根据①中信息可得,被调查消费者的年收入的众数是万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是%.21.已知:如图,∠ABC=∠CDA,DE平分∠CDA,BF平分∠ABC,且∠AED=∠CDE.求证:DE∥FB.22.学校组织学生乘汽车去自然保护区野营,去时以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返程时汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h,问平路和坡路各有多远?23.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.2021-2022学年广东省深圳市龙岗区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.下列格式中正确的是()A.=± B.(﹣)2=﹣0.36 C.=4 D.=3【考点】立方根;平方根;算术平方根.【分析】根据立方根与平方根的性质即可求出答案.【解答】解:(A)=5,故A错误;(B)(﹣)2=0.36,故B错误;(C)=4,故C错误;故选(D)2.在(﹣)0,,,﹣0.333,…,,3.14,2.010010001…(相邻两个1之间依次多一个0)中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数;零指数幂.【分析】无理数是无限不循环的小数.【解答】解:(﹣)0=1,=2,=3,故无理数有,2.010010001…(相邻两个1之间依次多一个0),故选(B)3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.4.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.5,12,13 B.5,6,7 C.1,4,9 D.5,11,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、52+122=132,能构成直角三角形,故此选项正确;B、52+62≠72,不能构成直角三角形,故此选项错误;C、12+42≠92,不能构成直角三角形,故此选项错误;D、52+112≠122,不能构成直角三角形,故此选项错误;故选:A.5.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第四象限B.第一象限C.第二象限D.第三象限【考点】关于x轴、y轴对称的点的坐标.【分析】应先判断出所求的点的横纵坐标,进而判断所在的象限.【解答】解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故选D.6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15【考点】算术平均数;中位数;众数;极差.【分析】根据平均数,中位数,众数,极差的概念逐项分析.【解答】解:A、80出现的次数最多,所以众数是80,A正确;B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;C、平均数是=80,C正确;D、极差是90﹣75=15,D正确.故选:B7.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.【解答】解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC==50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.8.下列命题中,假命题的是()A.三角形中至少有两个锐角B.如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C.等腰直角三角形一定是轴对称图形D.三角形的一个外角一定大于和它相邻的内角【考点】命题与定理.【分析】利用三角形的性质、三角形的三边关系、等腰直角三角形的性质及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、三角形中至少有两个锐角,正确,是真命题;B、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C、等腰直角三角形一定是轴对称图形,正确,是真命题;D、三角形的一个外角大于和它不相邻的任何一个内角,故错误,是假命题,故选D.9.已知,则a+b等于()A.3 B.C.2 D.1【考点】解二元一次方程组.【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.【解答】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.10.如图,∠1+∠2+∠3=232°,AB∥DF,BC∥DE,则∠3﹣∠1的度数为()A.75°B.52°C.76°D.60°【考点】平行线的性质;对顶角、邻补角.【分析】由平行线的性质得出∠1=∠2=∠BCD,由邻补角关系和已知条件求出∠2、∠1的度数,得出∠3的度数,即可求出∠3﹣∠1的度数.【解答】解:∵AB∥DF,BC∥DE,∴∠1=∠BCD,∠BCD=∠2,∴∠1=∠2=∠BCD,∵∠3+∠BCD=180°,∴∠1+∠3=180°,∵∠1+∠2+∠3=232°,∴∠2=52°,∴∠1=52°,∴∠3=180°﹣52°=128°,∴∠3﹣∠1=128°﹣52°=76°,故选:C.11.已知一次函y=﹣2x+2,点A(﹣1,a),B(﹣2,b)在该函数图象上,则a与b的大小关系是()A.a<b B.a>b C.a≥b D.a=b【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的系数k=﹣2<0知,该函数在定义域内是减函数,即y随x的增大而减小,据此来判断a与b的大小关系并作出选择.【解答】解:∵一次函数y=﹣2x+2中的k=﹣2<0,∴该一次函数是y随x的增大而减小;又∵点A(﹣1,a),B(﹣2,b)是一次函数y=﹣2x+2图象上的两个点,∴x1=﹣1,x2=﹣2,∴x1>x2,∴a<b.故选A12.如图,一次函数的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定【考点】一次函数综合题.【分析】△AOC的面积S1已知,△BOD的面积S2可由关于a的函数表示,求出S2的取值范围,跟S1比较即可.【解答】解:由一次函数图象可得出A(2,1),则S1==1,S2==又0<a<4且a≠2,∴S2<1=S1,故选:A二、填空题(每小题3分,共12分)13.当x≥﹣3时,式子有意义.【考点】二次根式有意义的条件.【分析】跟是有意义的条件是被开方数为非负数,由此可得出答案.【解答】解:由题意得:x+3≥0,解得:x≥﹣3.故填≥﹣3.14.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为y=2x+2.【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+3,即y=2x+2.故答案为:y=2x+2.15.一名考生步行前往考场,5分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示,则他到达考场所花的时间比一直步行提前了20分钟.【考点】一次函数的应用.【分析】由题意可知步行需要30分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,根据“两点法”求这个函数关系式,求当y=1时,x的值,再计算提前的时间.【解答】解:依题意,步行到考场需要时间为30分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,则,解得,y=x﹣,当y=1时,x=10,∴提前时间=30﹣10=20分钟.故答案为:20.16.一个自然数的算术平方根是a,则与它相邻的后一个自然数的算术平方根是.【考点】算术平方根.【分析】根据题意先求出这个自然数为a2,所以相邻的后一个自然数为a2+1【解答】解:这个自然数为:a2,∴相邻后一个的自然数为a2+1,∴a2+1的算术平方根为:,故答案为:,三、解答题(共52分)17.(1)3(2﹣4+3)(2)3﹣﹣.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的乘法运算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式=3(4﹣+12)=3(16﹣)=48﹣6;(2)原式=6﹣3﹣=.18.(1)解方程组(2)解方程组.【考点】解二元一次方程组.【分析】各方程组利用加减消元法求出解即可.【解答】解:(1),①×5﹣②得:2y=6,解得:y=3,把y=3代入①得:x=5,则方程组的解为;(2),①×4﹣②×3得:﹣x=﹣3,解得:x=3,把x=3代入①得:y=2,则方程组的解为.19.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.【考点】勾股定理的应用.【分析】设杯子的高度是xcm,那么筷子的高度是(x+1)cm,因为直径为10cm 的杯子,可根据勾股定理列方程求解.【解答】解:设杯子的高度是xcm,那么筷子的高度是(x+1)cm,x2+52=(x+1)2,x2+25=x2+2x+1x=12,12+1=13cm.答:杯高12cm,筷子长13cm.20.2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.867.2910被调查的消费者人数(人)2005002007030②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题:(1)根据①中信息可得,被调查消费者的年收入的众数是6万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是52%.【考点】频数(率)分布直方图;众数.【分析】(1)找出人数最多的一项的钱数即为众数;(2)求出10﹣12万一组的人数;(3)从频数分布直方图中找到相关信息.【解答】解:(1)年收入为6万元的人数为500人,最多,为众数;(2)10﹣12万一组的人数为:1000﹣(40+120+360+200+40)=240人;(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比=×100%=52%.21.已知:如图,∠ABC=∠CDA,DE平分∠CDA,BF平分∠ABC,且∠AED=∠CDE.求证:DE∥FB.【考点】全等三角形的判定与性质.【分析】由于DE平分∠CDA,BF平分∠ABC,那么有∠1=∠2,∠4=∠5,而∠ABC=∠CDA,易得∠2=∠4,而∠2=∠3,于是∠3=∠4,从而可证DE∥BF.【解答】证明:如右图所示,∵DE平分∠CDA,BF平分∠ABC,∴∠1=∠2,∠4=∠5,又∵∠ABC=∠CDA,∴∠2=∠4,∵∠2=∠3,∴∠3=∠4,∴DE∥BF.22.学校组织学生乘汽车去自然保护区野营,去时以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返程时汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h,问平路和坡路各有多远?【考点】二元一次方程组的应用.【分析】首先设平路有xkm,坡路有ykm,由题意可得等量关系:①平路所用时间+爬坡所用时间=6.5h,②下坡所用时间+平路所用时间=6h,可得方程组,求出即可.【解答】解:设平路有xkm,坡路有ykm,由题意得:,解得:,答:平路和坡路分别有150km和120km.23.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.【考点】一次函数综合题;待定系数法求一次函数解析式;三角形的面积.【分析】(1)将B点坐标代入y=kx+6中,可求k的值;(2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x 的函数关系式;(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.【解答】解:(1)将B(﹣8,0)代入y=kx+6中,得﹣8k+6=0,解得k=;(2)由(1)得y=x+6,又OA=6,∴S=×6×y=x+18,(﹣8<x<0);(3)当S=9时,x+18=9,解得x=﹣4,此时y=x+6=3,∴P(﹣4,3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=2.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°3.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④4. 5的相反数是( )A.15B.5C.-15D.-55.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 6.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 7.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-28.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 9.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 10.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)题7图17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中错误!未找到引用源。

.19.学校团委组织志愿者到图书馆整理一批新进的图书。

若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?四、解答题(二)(本大题共3题,每小题7分,共21分) 20.如是20图,在ABC ∆中,A B ∠>∠.(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,连接AE ,若50B ∠=︒,求AEC ∠的度数。

21.如图21图所示,已知四边形ABCD 、ADEF 都是菱形,BAD FAD BAD ∠=∠∠、为锐角.(1)求证:AD BF⊥;(2)若BF=BC,求ADC∠的度数。

22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:(1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(三)(本大题共3题,每小题9分,共27分)23.如图23图,在平面直角坐标系中,抛物线2=-++交x轴于A(1,0),B(3,0)两点,点P是抛y x ax b物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线2=-++的解析式;y x ax b(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件,求sin OCB∠的值.24.如题24图,AB是⊙O的直径,错误!未找到引用源。

,点E为线段OB上一点(不与O、B重合),作,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,于点F,连结CB. (1)求证:CB是的平分线;(2)求证:CF=CE;(3)当错误!未找到引用源。

时,求劣弧BC的长度(结果保留π).25.如题25图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是错误!未找到引用源。

和错误!未找到引用源。

,点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:错误!未找到引用源。

;②设,矩形BDEF的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值2017年广东省中考数学试卷参考答案一、选择题 1 2 3 4 5 6 7 8 9 10 DCABBDABCC二、填空题 11、a (a +1) 12、6 13、> 14、52 15、-1 16、10 三、解答题(一) 17、计算:()1-031-1-7-⎪⎭⎫ ⎝⎛+π 解:原式=7-1+3 =918、先化简,再求值:()5421212=-⋅⎪⎭⎫⎝⎛++-x x x x ,其中 解:()()()()222222-++--++=x x x x x x 原式x 2= 当5=x 时,上式=5219、解:设男生x 人,女生y 人,则有⎩⎨⎧==⎩⎨⎧=+=+1612124040506802030y x y x y x 解得 答:男生有12人,女生16人。

四、解答题(二) 20、(1)作图略(2)∵ED 是AB 的垂直平分线 ∴EA =EB∴∠EAC =∠B =50°∵∠AEC 是△ABE 的外角 ∴∠AEC =∠EBA +∠B =100°21、(1)如图,∵ABCD 、ADEF 是菱形 ∴AB =AD =AF又∵∠BAD =∠F AD由等腰三角形的三线合一性质可得 AD ⊥BF(2)∵BF =BC ∴BF =AB =AF∵△ABF 是等比三角形 ∴∠BAF =60°又∵∠BAD =∠F AD ∴∠BAD =30° ∴∠ADC =180°-30°=150° 22、(1)①、52 (2)144 (3)(人)720%1002008052121000=⨯++⨯答:略五、解答题(三)23、解(1)把A (1,0)B (3,0)代入b ax x y ++-=2得⎩⎨⎧-==⎩⎨⎧=++-=++3403901-b a b a b a 解得 ∴342-+-=x x y (2)过P 做PM ⊥x 轴与M ∵P 为BC 的中点,PM ∥y 轴 ∴M 为OB 的中点 ∴P 的横坐标为23 把x =23代入342-+-=x x y 得43=y∴⎪⎭⎫⎝⎛43,23P (3)∵PM ∥OC ∴∠OCB =∠MPB ,2343==MB PM , ∴54349169=+=PB ∴sin ∠MPB =55254323==PB BM ∴sin ∠OCB =55224、证明:连接AC ,∵AB 为直径, ∴∠ACB =90° ∴∠1+∠2=90°,∠2+∠3=90° ∴∠1=∠3 又∵CP 为切线 ∴∠OCP =90° ∵DC 为直径 ∴∠DBC =90°∴∠4+∠DCB =90°,∠DCB +∠D =90° ∴∠4=∠D又∵弧BC =弧BC ∴∠3=∠D∴∠1=∠4即:CB 是∠ECP 的平分线 (2)∵∠ACB =90° ∴∠5+∠4=90°,∠ACE +∠1=90° 由(1)得∠1=∠4 ∴∠5=∠ACE在Rt △AFC 和Rt △AEC 中AEC AFC AC AC ECA FCA AEC F ≌△△∴⎪⎩⎪⎨⎧=∠=∠︒=∠=∠90 ∴CF =CE(3)延长CE 交DB 于Qxx x EQ x CQ CP PQCB QCB CB x CE CF x CP x CF CP CF =-=∴==∴⊥∠=====344324343的角平分线是∵)得由(,设:ππ332321806032346060-60-18060333tan 33290219019022=⨯∴=∴=︒=︒︒︒=∠∴︒=∠∴===∠=∴=⋅⋅=∴=∴∴∠=∠∴︒=∠+∠︒=∠+∠︒=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE xxEB CE CBE CEB xEB EB x x EQ CE EB EQEBEB CE BEQ CEB CQB CQB CBQ EB CE25、(1)()232,(2)存在理由:①如图1 若ED=EC 由题知:∠ECD =∠EDC =30° ∵DE ⊥DB ∴∠BDC =60° ∵∠BCD =90°-∠ECD =60°∴△BDC 是等边三角形,CD=BD=BC =2∴AC =422=+OC OA ∴AD=AC-CD =4-2=2 ②如图2 若CD=CE 依题意知:∠ACO =30°,∠CDE =∠CED =15° ∵DE ⊥DB ,∠DBE=90° ∴∠ADB =180°-∠ADB -∠CDE =75° ∵∠BAC =∠OCA =30° ∴∠ABD =180°-∠ADB -∠BAC =75° ∴△ABD 是等腰三角形,AD=AB =32③:若DC=DE 则∠DEC =∠DCE=30°或∠DEC =∠DCE=150° ∴∠DEC >90°,不符合题意,舍去 综上所述:AD 的值为2或者32,△CDE 为等腰三角形- 11 -(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H 。

相关文档
最新文档